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Stress is a major problem of our society, as it is the cause of many health problems and huge economic
losses in companies. Continuous high mental workloads and non-stop technological development, which
leads to constant change and need for adaptation, makes the problem increasingly serious for office
workers. To prevent stress from becoming chronic and provoking irreversible damages, it is necessary
to detect it in its early stages. Unfortunately, an automatic, continuous and unobtrusive early stress
detection method does not exist yet. The multimodal nature of stress and the research conducted in this
area suggest that the developed method will depend on several modalities. Thus, this work reviews and
brings together the recent works carried out in the automatic stress detection looking over the measure-
ments executed along the three main modalities, namely, psychological, physiological and behavioural
modalities, along with contextual measurements, in order to give hints about the most appropriate tech-
niques to be used and thereby, to facilitate the development of such a holistic system.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction that take into account the coping abilities of each individual have
Stress is a growing problem in our society. It is part of our daily
life and many people suffer from it. We spend most of our time in
the workplace, often with high workloads and time pressure,
which contributes to increase our stress levels.

Stress is the second most frequent work-related health problem
in Europe [1], preceded by musculoskeletal disorders which may
also be a stress symptom in some cases [2]. In 2002, work-
related stress cost € 20 billion to the enterprises of EU151[3] and
in 2005, 22% of working Europeans suffered from it [4]. According
to a recent opinion poll [5], 51% of European workers confess that
stress is common in their workplace and it is estimated that
50–60% of all lost working days in European enterprises are due to
work-related stress and psychosocial risks [1].

1.1. Definition

Hans Selye defined stress as ‘‘the non-specific response of the
body to any demand for change” [6]. Thenceforth, other definitions
been exposed [7], including the one of McEwen [8] that defines
stress as ‘‘events, that are threatening to an individual, and which
elicit physiological and behavioural responses”. Regarding the occu-
pational environment, work-related stress has been defined as ‘‘the
emotional, cognitive, behavioural and physiological reaction to
aversive and noxious aspects of work, work environments andwork
organisations. It is a state characterised by high levels of arousal and
distress and often by feelings of not coping” [9]. ‘‘Work-related
stress is experienced when the demands of the work environment
exceed the employees’ ability to cope with (or control) them” [1].
These demands are not only related to high workload or long work-
ing hours, but also to high perceived stress, low social support from
colleagues andmanagers, or to the individual characteristics of each
one like the education and competitiveness [10,11].

Therefore, work-related stress, which refers to the stress that
has been caused by work, or at least, made worse due to work,
[12] can be understood as a particular example of stress. It follows
the same characteristics as general stress and its response patterns
and effects can be evidenced, and accordingly, measured, in the
same way.
1.2. Stress types and levels

Selye [6] distinguished the concepts ‘‘eustress” and ‘‘distress”,
as a positive and negative stress, respectively. Eustress appears
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with positive changes or demands that don’t pose a problem for
coping with or to adapt ourselves to the new situation. It can help
us meet our goals and increase productivity [2]. Distress can be
really harmful and can carry negative consequences. It is the most
investigated aspect of stress and it is what in general terms, as well
as throughout this paper, is understood by ‘‘stress”.

Besides, three levels of stress can be distinguished depending
on the time of exposure to stressors. Acute stress is the innate
‘‘flight-or-fight” response in face of short lasting exposure to stres-
sors and it is not considered harmful [13]. Episodic stress appears
when stressful situations occur more frequently, but they cease
from time to time. It is associated with a very stressful and chaotic
life [13]. Finally, chronic stress, which is the most harmful, takes
place when stressors are persistent and long-standing, such as
family problems, job strain or poverty [2].

In order to avoid stress to reach the highest level and help
diminishing the risks [14], it is necessary to detect and treat it in
its earlier stages, i.e. when it is still acute or episodic stress.

1.3. Long-term consequences

When work-related stress arises and it is not treated, it can
cause big long-term physical and mental problems on the worker
[4], but also economic losses in the companies.

Musculoskeletal disorders, depression, anxiety, increased prob-
ability of infections [15], chronic fatigue syndrome, digestive prob-
lems, diabetes, osteoporosis, stomach ulcers [3,16,17] and coronary
heart disease are only some examples of chronic stress’ long-term
consequences.

These health problems bring consequences to enterprises,
where absenteeism, staff turnover [4] and tardiness increase,
decreasing the production. The problem of ‘‘presenteeism” also
arises, where employees attend their workplace, but they don’t
work at 100% of their capabilities. Recently, the annual cost of
absenteeism and presenteeism has been estimated at € 272 billion
and the annual cost for loss of productivity at € 242 billion [3].

Given the importance of stress’ long term consequences, the
need of avoiding it as much as possible becomes evident. It is of
great significance to detect stress in its early stages, before dam-
ages being caused. The scientific community is aware of this and
much progress has been done in the last years towards the devel-
opment of an automatic stress measuring system. Nevertheless, a
reliable real-time stress measuring system, which is unobtrusive
and completely transparent for the user has not been still created.
The objective of this paper is to review the research done in this
area to ascertain the paths to be followed in the future in order
to get such an unobtrusive real-time stress monitoring system.
For this purpose, the stress measurement techniques that have
been used or that could be used in an office environment are
reviewed, as well as the detection results of the state of the art
in order to help selecting the best signals and features, and the
methodological techniques that should be used for creating a stress
monitoring system based on these measurements. Sharma and
Gedeon [18] published a survey in automatic stress detection in
2012, where objective ways for measuring stress using physiolog-
ical and physical information were explained, as well as informa-
tion about the published stress data sets, monitoring systems
and stress scales used in the literature. Some of the feature extrac-
tion and computational techniques were also exposed. Neverthe-
less, stress’ multimodal nature was not considered in all its
fullness and relevant measurement techniques based on contex-
tual and behavioural information were ignored. Herein, an upgrade
of the state of the art since its publication is given, in addition to a
broader view of the multimodal nature of stress, which provides a
different point of view of stress measurements, giving a clue for
overcoming nowadays’ obstacles.
This paper is structured as follows. In Section 3 the multimodal-
ity of stress is introduced and state of the art stress measuring
methods are explained for each modality. In Section 4, stress elic-
itation methods are briefly described. Farther, in Section 5, a
framework for an ubiquitous stress monitoring system for office
environments is proposed based on the current technology and
in Section 6 the challenges that are still open for this purpose are
reviewed. Finally, in Section 7 a conclusion about the state of the
art is given along with clues for future work.
2. Methods

The following review of the state of knowledge concerning
stress detection, and, in particular, mental stress detection, was
undertaken to address three specific goals:

1. To review the signals or measurements, as well as the variety of
features, that can currently be used in order to measure mental
stress levels of individuals, starting from the most widely
accepted methods, to the new emerging ways.

2. To compare the accuracies that can be achieved with each sig-
nal or measurement, so as to help to decide among the most
suitable signals for each situation.

3. To highlight the steps that should be followed in order to
achieve a ubiquitous stress detection system for office workers.

To attain these goals a simple literature review was performed,
with the following search strategy and inclusion criteria.
2.1. Search strategy

Publications were retrieved by means of a computerised search
of the Compendex and Inspec databases via Engineering Village
[19] and of the PubMed database [20] in order to find relevant
studies published in English from January 2004 to date.

The review was carried out in an iterative way: first, a global
point of view of the current state in stress detection was searched.
The search terms used for this step were: ‘‘stress” AND ‘‘detect⁄”
OR ‘‘diagnos⁄” OR ‘‘measure⁄” AND ‘‘survey” OR ‘‘review”. Con-
trolled terms were used in order to discard all the publications
related to non-relevant domains. After removing duplicates, 101
results were achieved. Titles and abstracts of the remaining papers
were reviewed, rejecting the ones that did not work with human
beings or focused on aspects of stress other than the measurement.
Only eight papers were considered for further reading.

Once identified and understood the main concepts in current
stress detection, the search terms were refined so as to focus on
and identify the several domains and modalities of the measurable
stress responses. The search terms in this step included
‘‘multimodal” OR ‘‘multi-modal” OR ‘‘taxonomy” AND ‘‘stress”
AND ‘‘detect⁄” OR ‘‘diagnos⁄” OR ‘‘measure⁄” OR ‘‘anal⁄” OR
‘‘identif⁄” OR ‘‘model⁄”. The non-relevant and duplicated references
were excluded and 64 articles were retrieved. After title and
abstract analysis, 42 were selected for further reading where those
that did not accomplish the inclusion criteria were discarded.

After identifying the main domains and modalities involved in
the current state of stress detection, a more specific search was car-
ried out for each one of the domains. The combination of search
terms used were the following: ‘‘mental stress” OR ‘‘workload”
AND ‘‘detect⁄” OR ‘‘recogn⁄” OR ‘‘identif⁄” OR ‘‘model⁄” OR
‘‘anal⁄” OR ‘‘diagnos⁄” AND ‘‘physiolog⁄” OR ‘‘behavio⁄” OR
‘‘psycholog⁄” AND ‘‘accura⁄”. A first set of 1159 study abstracts
was retrieved for assessment. Controlled vocabulary terms were
used in order to exclude publications related to non-relevant
research areas and duplicates were rejected. The bibliographies of
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all relevant articles and reviewpaperswere also hand-searched. The
titles and abstracts of the remaining articles were reviewed in
applying the inclusion criteria. Thirty papers were in-depth read
and the 10 which reported the best accuracies in detecting stress
were selected.

A summary of the literature review methodology used is pre-
sented in Fig. 1.

2.2. Inclusion criteria

All the selected papers were original studies and journal or con-
ference articles, written in English and published from 2004
onwards. For the first step of this literature review, only the papers
in where objective stress measuring systems for human beings
were reviewed were accepted. In the second step only works in
where a taxonomy of stress detection systems and stress responses
was presented were in-depth analysed. Finally, for the third step of
the literature search, the inclusion criteria were the following:
studies of diagnostic accuracy of stress using at least physiological
or behavioural data and validated by means of psychological tests
and self-report questionnaires or hormonal biomarkers, total sub-
jects in the study at least nine and sufficient data reported either
directly or indirectly to enable the accuracy table construction.

2.3. Data extraction and quality assessment

A data extraction spreadsheet was created for collecting data
from the papers. Each one of the selected papers was fully read
andassessedbyoneof the authors,whereas the resultswere verified
by all of them. Disagreements were resolved through discussion.
3. Measuring stress levels

The Sympathetic Nervous System (SNS) provokes the stress
response in humans [21], carrying psychological, physiological
and behavioural symptoms [22]. Throughout this paper, the fol-
lowing definitions are considered for these groups of responses.
Psychological is understood as ‘‘of or relating to the mind or mental
activity” [23] and they do not involve the execution of an action.
Physiological responses are part of the normal functioning of a liv-
ing organism or bodily part [24], therefore, they are non-voluntary
actions or responses, and very hard or impossible to notice by
external observation. Behavioural is interpreted as ‘‘the manner
of conducting oneself” [25], so that, unlike physiological responses,
they involve an action that could be controlled or changed rela-
tively easily in a voluntary way, and can be externally observed.

Psychological responses comprise the increase of strong nega-
tive emotions, such as anger, anxiety, irritation or depression [4]
and can also make our emotional responses more intense feeling
more worried, frustrated, and hostile with the consequent effects
on our relationships [16].

From a physiological point of view, the increase of SNS activity
changes the hormonal levels of the body and provokes reactions
like sweat production, increased heart rate and muscle activation
[15]. Respiration becomes faster and the blood pressure increases
[17]. As a consequence of changes in the muscles which control
the respiratory system and vocal tract, speech characteristics
change too. Skin temperature decreases together with hands and
feet temperature [26] and the Heart Rate Variability (HRV)
decreases [27]. Moreover, pupil diameter can vary.

Finally, behavioural reactions include eye gaze and blink rate
variations, in addition to changes in facial expressions or head
movement [28]. When working in an office environment, interac-
tion patterns with the computer can be affected, together with
the General Somatic Activity or body’s agitation level. Performance
related to the accuracy and cognitive response, such as the logical
thinking [16], attention and working memory can also be affected,
leading to a decrease in productivity and tendency to mistakes.
Some people may also abuse of tobacco, alcohol and drugs [1].

While the analysis of physiological changes has been the objec-
tive of many stress researches, other areas such as behavioural
changes have not been enough studied. Furthermore, as context
affects the stress response of the individuals, measurable contex-
tual information may also provide important clues about individu-
als’ stress levels. Fig. 2 shows the multimodal nature of stress. It
can be seen that stress is affected by the context, which in turn
depends on the personal characteristics of the subject and on cir-
cumstances that are not subject-dependent like events, places or
moments. Stress responses are evidenced, at least, in the three
aforementioned modalities, and thereby, an efficient stress detec-
tion system should take advantage of as most evidences as
possible.

3.1. Psychological evaluation

Psychological evaluation of stress can be carried out by means
of self-report questionnaires or by being interviewed by a psychol-
ogist. The former is one of the most widely used ways to measure
stress levels in humans and it is considered a reliable method. The
Stress Self Rating Scale (SSRS) [29], the Perceived Stress Scale (PSS)
or the Stress Response Inventory (SRI) are some examples. How-
ever, these questionnaires only offer information about current
stress levels of the user and not about the stressors nor about
the evolution of the stress levels. These tests can be taken from
time to time, but may not be suitable for detecting the subtle
changes which could indicate an early stage of a major problem.
Actually, they are only taken when the affected himself or the peo-
ple around him realise or suspect about the severity of the situa-
tion, and this is too late in the vast majority of the cases.
Furthermore, questionnaires are subjective and require the full
attention of the user. ‘‘People can suffer lapses in memory about
the emotional tone of a day in as little as 24 h” [30], which means
that we are not always aware of our real stress levels and that
methods such as self-report questionnaires could sometimes lead
to an incorrect stress level measurement.

3.2. Physiological signals

Physiological signals can provide information regarding the
intensity and quality of an individual’s internal affect experience
[31]. Hormone measurement is considered a reliable way for mea-
suring stress’ physiological response, but entails some drawbacks.
While the relationships between some physiological signals such
as Heart Rate Variability (HRV) and salivary cortisol levels have
been proven [32], others need further research.

3.2.1. Hormone levels
The stress response changes the endocrine and immune sys-

tems by releasing adrenaline and cortisol hormones [18] from
the adrenal cortex and the adrenal medulla, respectively. Cortisol
levels follow a daily cycle in healthy people, characterised by peak
values in the morning, decreasing them during the whole day and
reaching the lowest values at night. Under stress, the ability to reg-
ulate cortisol levels decreases [32] keeping them high even at night
[33] and changing the typical patterns [34]. Consequently, people
suffering from chronic stress have elevated cortisol levels. Cortisol
levels are considered a reliable biomarker of psychological stress
[32] and can be measured in blood, urine or saliva, being the latter
the preferred by the researchers due to its non-invasive nature
[34]. Nevertheless, cortisol levels measured in blood can offer bet-
ter inter-individual differences [35].
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Fig. 1. Search methodology used for the literature review process.

Fig. 2. The multimodal nature of stress. The figure is inspired from [28].
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However, as well as psychological questionnaires, this method
is not suitable neither practical for carrying out a continuous mon-
itoring of stress levels. Some researches [27] suggest that continu-
ous sampling of such biomarkers is not realistic. Actually, the same
as with the preceding method, this kind of measurements are only
done when the affected himself or the people around him realise or
suspect about the severity of the situation. Changes can be
detected performing measurements every several months and
comparing results, but this may not be enough to detect subtle
changes related to early stages of stress [36]. As Sharma and
Gedeon [18] state, these methods ‘‘require major human interven-
tion, including manually recognising and interpreting visual pat-
terns of behaviour”. Unfortunately, individuals may not recognise
these signs and let them go untreated [17]. Vizer et al. [36] also
suggest that ‘‘current tests are usually administered in a physi-
cian’s office or a rehabilitation facility, causing inconvenience for
the patient, using valuable healthcare resources, and making fre-
quent monitoring unrealistic”. Hormonal measurements are intru-
sive, costly and slow methods of analysis [37]. Consequently, the
appreciation of being over-stressed often comes too late, when
health problems already manifest themselves [38].
3.2.2. Electrocardiogram (ECG)
The electrocardiogram (ECG or EKG) is ‘‘the recording on the

body surface of the electrical activity generated by heart” [39]. It
is one of the most used signals in stress detection research because
it reflects directly the activity of the heart, which is clearly affected
by ANS changes [40]. An ECG can be easily measured placing some
electrodes on specific places of the body and measuring the poten-
tial difference. The number of electrodes and their positions can
vary, but one of the most simple and effective ways is the Lead-II
configuration, which consists of placing three electrodes: one on
the right arm, one on the left arm and the last one on the left
leg. The most typical and useful features computed with an ECG
are probably the ones related to the Heart Rate Variability (HRV).

Many stress researches have used ECG signals successfully.
An example could be the work of by Cinaz et al. [41], who

considered a 3 class classification problem to separate office
workers’ mental workload into low, medium and high groups using
only an ECG signal and nine HRV features (eight time domain
features and the LF/HF ratio), achieving correct predictions for 6
out of 7 subjects using Linear Discriminant Analysis (LDA) [42]
classification.
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Wijsman et al. [15] measured ECG along with skin conductance,
respiration and EMG of the Trapezius muscles. Using a very
reduced set of features (only five features) extracted from those
signals, including Heart Rate, they achieved an accuracy of 80%
and 69.1% in the non-stress and stress detection respectively.

In the study executed by Palanisamy et al. [43], HRV, ECG, EMG,
EDA and ST were measured and a total of 148 features were
extracted. Classification accuracy of each one of the signals was
analysed instead of creating a classification system based on the
whole set of signals. Results showed that compared to the other
signals, ECG and HRV performed well in stress detection. Precisely,
a maximum classification rate of 93.75% was achieved with HRV,
followed by ECG with 76.25% and the minimum classification rate
with EDA signals, 70.83%.

Melillo et al. [44] investigated the effect of stress on HRV
parameters under real-life conditions, unlike most of the State of
the Art works which have analysed them in laboratory settings.
They selected two critical moments to measure students’ ECGs:
during an oral exam and after holidays. They used 13 non-linear
HRV features and LDA to classify stressed and relaxed situations,
and an accuracy of 90% was achieved, affirming the potential of
these signals for the real life stress detection.

All these results suggest that ECG and HRV features allow dis-
tinguishing between different mental workload and stress levels.

Furthermore, it has been proved that ECG can be monitored
continuously. Okada et al. [27] developed a continuous stress mon-
itoring system for office workers based on ECG recordings and
helped by an accelerometer used for activity recognition and
movement artefact removal. RRI (R-R Interval), HRV spectrum
and Tone and Entropy information were extracted from the ECG.
After a 3 day experiment, the availability of the system was vali-
dated and thus, the feasibility of a continuous monitoring system
was approved. However, the developed system needed an off-
line analysis to be carried out by an expert.

3.2.2.1. ECG features. ECG has been studied for extracting features
like the mean, standard deviation, power and energy of the prepro-
cessed raw data [43], but it is more frequently used to extract
information about Heart Rate (HR) and Heart Rate Variability
(HRV).

HR is defined as the number of heartbeats per minute. World-
wide scientific research has shown that heart rate increases during
stressful times [22]. It is frequent to analyse the HR by computing
the Mean, Standard Deviation, and minimal and maximal values
over time[45,46].

HRV, which is the temporal variation between sequences of
consecutive heart beats [47], is probably the most commonly used
feature in stress detection. It is considered to be a non-invasive
biomarker that reflects the activity of the sympathetic and vagal
components of the Autonomic Nervous System, in the low (LF)
and high frequency (HF) power bands respectively [47,48]. Healthy
people’s HRV varies continuously, following sinus cycles that
reflect a balanced sympathovagal state, but when ANS’ activity is
disturbed, the resulting sympathovagal activity imbalance appears
as a decreased HRV.

Hjortskov et al. [49] concluded that HRV is a sensitive indicator
of mental stress in office environments. They have proven that HF
values of HRV decreased in stress situations at the same time as the
ratio LF/HF increased. The inverse correlation between salivary
cortisol levels and HRV has also been demonstrated [32]. Healey
et al. [50] concluded that this feature is the most relevant one after
the EDA measures for real-time stress recognition in a driving task.

HRV can be analysed both in the temporal and in the frequency
domain.

In the temporal domain, statistical and geometrical parameters
are computed. The most common parameters are the mean value
and the Standard deviation of RR intervals (SDRR), the Root Mean
Square (RMSSD) and the standard deviation (SDSD) of RR intervals’
successive differences, the standard deviation of the averages of
NN intervals in all 5-min segments of the entire recording
(SDANN), the percentage of the number of successive RR intervals
varying more than 50 ms from the previous interval (pNN50), the
HRV triangular index (TI) and the triangular interpolation of RR
interval histogram (TINN) [27,48,51]. Palanisamy et al. [43] anal-
ysed three HRV frequency bands, namely 0.04–0.15 Hz,
0.15–0.5 Hz and 0.04–0.5 Hz, using kurtosis, skewness, second,
third and fourth-order cumulant features.

In the frequency domain, the most widely used method for ana-
lysing HRV is computing the LF/HF ratio [49,52,53] but HF/All ratio
is also common [27] as well as the total energy of the spectrum and
energy of certain frequency bands, namely Ultra-Low (ULF), Very-
Low (VLF), Low (LF) and High (HF) bands [48]. Healey et al. [50]
also considered the (LF + MF)/HF ratio.

Non-linear measurements such as entropy, which measures the
degree of a system’s disorder, are also used [27,54,55]. Entropy (E)
can provide information about the regulation mechanisms of heart
rate when applied to the HRV. Approximate Entropy and Shannon
Entropy are the most frequent ones in the literature. Complexity
(C), which measures the randomness of RR intervals and tone (T)
[27], which represents the sympathovagal balance, are also com-
puted. PoincarT Plot is also commonly used to extract its SD values,
and other non-linear measures such as line-lengths in Recurrence
Plots and fluctuation slopes based on Detrended Fluctuation Anal-
ysis (DFA) have been used by Melillo et al. [44].

3.2.3. Electroencephalogram (EEG)
An electroencephalogram is a test that measures the electrical

activity of the brain. It is monitored by placing an array of elec-
trodes on the subject’s scalp so that the electrical fluctuations are
recorded. The number of electrodes depends on the application.
EEG signals can be divided into four main frequency bands: Alpha
(8–13 Hz), Beta (13–30 Hz), Delta (0.1–4 Hz) and Theta (4–8 Hz).

Alpha waves reflect a calm, open and balanced psychological
state, so Alpha activity decreases in stress situations [32]. Besides,
Beta activity reflects cognitive and emotional processes [56] so it
increases with mental workload and thus with stress. Stress has
also been related to changes in Right Frontal Activity (RFA) provok-
ing frontal asymmetry. Whether stress can be reliably evaluated
from the EEG has been unclear [32] but there are some researches
that suggest its validity.

Seo et al. [32] analysed the relationship between EEG, ECG and
cortisol levels when measuring chronic stress, using the Stress
Response Inventory and the Self Assessment Manikin tests as
ground truth. A significant positive correlation was found between
the cortisol levels and the high Beta activity at the anterior tempo-
ral sites when people kept their eyes closed, affirming the afore-
mentioned relationship between the Beta band and stress.
Furthermore, the mean high beta power at the anterior temporal
sites of the stress group was found to be significantly higher than
of the non-stress group.

Rahnuma et al. [57] recorded EEG from Frontal, Central and
Parietal lobes of the scalp, in order to create an emotion recogni-
tion system based on Russel’s model of affect [58]. This model
describes all the emotions based on arousal and valance, mapping
stress to a negative valence and a very negative arousal coordinate.
An accuracy of 96.4% was achieved, suggesting that emotions and
stress detection is possible combining valance and arousal infor-
mation obtained from EEGs.

Zhang et al. [59] monitored EDA, HRV and EEG signals of 16 sub-
jects under cognitive load and in relaxed states. Subjective stress
ratings based on the State-Trait Anxiety Inventory (STAI) were
used as labels. Discriminative spatial-spectral EEG components
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were computed by means of a spatial-spectral filtering in the theta,
alpha, low beta, mid beta and high beta frequency bands. Mean
EDA and 10 time-domain features of the HRV were also computed.
A large margin unbiased regression approach was developed in
order to overcome the inter-subject variability that may show
these signals. Results show that EEG features extracted using the
proposed filtering technique outperformed both EDA and HRV fea-
tures in discriminating both situations, with 87.5%, 75% and 62.5%
accuracies respectively.
3.2.3.1. EEG features. From EEG signals, mean amplitude, mean
amplitudes of Event Related Potential (ERP) components, mean
power spectra of Beta [53] Alpha, Delta and Theta frequency bands
[60] and mean power ratios are probably the most frequently com-
puted features. Fractal dimension, which is a measure that pro-
vides information of the space filling and self-similarity, has also
been used in various researches [60,61]. Other potential features
can also be found in the literature, like the three Hjorth parameters
(Activity, Mobility and Complexity) [60] which are time-based
characteristics of an EEG, mean and standard deviation of the lar-
gest Lyapunov exponent (LLE) [62] and Higher Order Crossings
(HOC) [61]. In addition, Kernel Density Estimation method has
been used [57] for feature extraction, computing their mean and
variance. Zhang et al. [59] also made use of some spatial-spectral
features extracted using a specific filter bank common spatial pat-
tern filtering technique.
3.2.4. Electrodermal Activity (EDA)
The Electrodermal Activity (EDA), also known as Galvanic Skin

Response (GSR), Electrodermal Response (EDR), Electrodermal
Level (EDL), Skin Condutance Activity (SCA) or Skin Conductance
Response (SCR), is defined as a change in the electrical properties
of the skin [63]. Under emotional arousal, increased cognitive
workload or physical activity, the level of sweating increases,
changing the skin properties, i.e. increasing conductance and
decreasing resistance [16,40]. EDA can be measured placing two
electrodes on the skin surface next to each other and applying a
weak electrical current between them.

EDA is one of the best real-time correlates of stress [50]. It is lin-
early related to arousal [37] and it has been widely used in stress
and emotion detection [21,30,38,50]. Even some researches con-
sider EDA measures as ground truth for analysing the performance
of other signals [16,37].

One of the most relevant stress related research was carried out
by Healey et al. [50], where a real-live driving task was analysed
with hand and foot EDA, together with three other physiological
measurements, namely ECG, Trapezius muscle EMG and respira-
tion. Three levels of stress were induced on subjects by making
them drive through a highway (medium stress level), through a
city (high stress level) and have rest periods (no stress). 22 features
were extracted and LDA classifier was used achieving a recognition
rate of 100%, 94.7% and 97.4% for low, medium and high stress
levels, respectively. From the viewpoint of a continuous monitor-
ing of stress levels, EDA and HRV were found to be the best corre-
lates of real-time stress.

De Santos Sierra et al. [45] created individual stress templates
for 80 individuals using EDA and HR signals and a fuzzy logic algo-
rithm. Accuracy of 99.5% was achieved for a two class classification
problem, suggesting that both signals have really the potential for
detecting stress levels precisely and in real-time.

Other researches are not consistent with these results. Seoane
et al. [64] suggest that cardiac and respiratory activity is better
stress indicator than EDA, ST and speech and Palanisamy et al.
[43] affirm that EDA offers lower classification accuracy than
ECG, HRV, EMG and ST signals.
3.2.4.1. EDA features. When getting information from an EDA sig-
nal, statistical values like the mean amplitude, standard deviation
(SD) of the amplitude, minimum and maximum values and the
Root Mean Square (RMS) are typically used [21,40,45,51,65].

Latency between the stress stimulus and the response, rising
time (tRise), difference between first value and the maximum
(DiffMax), position of maximum (MaxPos), position of minimum
(MinPos), difference between first value and the maximum (Diff-
Max), difference between value and the minimum (DiffMin), zero
crossings (ZC), number of peaks [66], peak height [21,30] and half
recovery time (tRecovery) also represent the typical electrodermal
activity under stressful stimulus.

Onset (O), peak (P), duration (D) and magnitude (M) of the ori-
enting responses were measured by Healey et al. [50] as well as the
total number of responses, the sum of magnitudes, the sum of
response duration and the sum of the estimated areas under the
responses (areaResp). Orienting response refers in this case to
the immediate response to stress stimuli, which is reflected as a
peak in the EDA signal. Kurtosis, skewness and smoothed 1st
derivative average (DiffAvg) have also been used by Giaukomis
et al. [67] as well as the SCR amplitude (Aq) and duration (Dq)
quantile thresholds at 25%, 50%, 75%, 85%, and 95% and the average
area under the rising half of SCRs (areaRise).

3.2.5. Blood Pressure (BP)
Blood Pressure is the pressure of the blood against the inner

walls of the blood vessels and it can be measured using a stetho-
scope and a sphyngomanometer [68].

It is proven that stress increases blood pressure [22] depending
on the experienced stress levels. Nevertheless, Hjortskov et al. [49]
state that blood pressure is not as good indicator as HRV to detect
stress situations. They discovered an increased blood pressure dur-
ing the whole experiment, both in stress situations and control sit-
uations, remarking no differences, i.e. decreases, in control
situations when there was no exposure to stressors. They state that
this could be explained by the fact that unlike HRV, which is regu-
lated by the ‘‘central command”, blood pressure is regulated
peripherally and is influenced by local conditions in working mus-
cles which could mask the changes of mental workloads. Thus, BP
may not be as suitable as other physiological measurements for
detecting subtle stress responses in real-time.

3.2.5.1. BP features. Systolic (SBP) and Diastolic (DBP) values have
been used as features for analysing the BP [22]. Mean and standard
deviation values, together with the number of peaks have been
measured by Sharma et al. [51].

3.2.6. Skin Temperature (ST)
ST at constant room temperature may vary for different reasons,

like fever, malnutrition, physical exertion and physiological
changes [69]. If the other variables are controlled, effect of physio-
logical changes could be appreciated. Physiological variations in
the ST mainly come from localised changes in blood flow caused
by vascular resistance or arterial blood pressure, which in turn
are influenced by the ANS activity [70], suggesting that stress level
changes ST. ST can be easily measured placing a temperature sen-
sor in contact with the skin.

Skin Temperature has been measured in many stress and emo-
tion detection researches [38,64,65,70]. However, not all of them
agree on the effects that stress and emotions have on this param-
eter. Some of them affirm that finger temperature rises with stress
[22]. In the experiment carried out by Palanisamy et al. [43], ST
measured under the armpit increased in most of the subjects.
Notwithstanding, others found out that finger temperature
decreases under stress [40,71].
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Skin temperature of facial features, such as the nose and fore-
head, could be an effective indicator in objectively evaluating
human sensations such as stress and fatigue [72,73]. Nakayama
et al. [74] found out in a research carried out with monkeys that
a decrease in nasal ST is suffered when negative emotions arise.
However, recent researches on facial thermal imaging suggest that
facial temperature in some parts rises when feeling stressed
[72,75].

Some other researchers simply state that ST does not provide
much information about subjects’ emotions [69]. This might be
true when considering universal temperature patterns, but the rea-
son for these disagreements may probably be that the temperature
response hardly depends on each individual. Further research is
needed to clarify this ambiguity.

3.2.6.1. ST features. Mean [65], minimum and maximum and the
standard deviation [43,46] of the skin temperature have been used
in the literature.

3.2.7. Electromyogram (EMG)
An Electromyogram measures the electrical activity of the mus-

cles by using electrodes placed over the muscle of interest. As it is
known that stress elevates muscle tone, many researches have
been done to analyse the potential of EMG for measuring stress.

Stress has been found to provoke involuntary reactions on facial
and Trapezius muscles [43]. In the study carried out by Wijsman
et al. [76], it was verified that a significant increase in Trapezius
muscle activity is suffered during mental stress. This increase in
Trapezius muscle activity is translated into increased EMG ampli-
tude and a decrease in the amount of gaps, i.e. short periods of
relaxation. They also found out that low frequency contents
increase significantly under stress situations, demonstrating that
EMG signals give a useful information for detecting mental stress.

Wei [77] affirms that EMG is more effective than respiration
signals for detecting stress levels. In this study, EMG and respira-
tion measurements were done and a total of 37 features were
extracted from these signals. LDA classifier was used for a 2-class
classification problem, and the results showed that EMG signals
provided a more relevant information than respiration signals,
achieving 97.8% of accuracy discriminating relax and stress states
with EMG, and 86.7% with respiration.

As most of the physiological measurements, obtaining an EMG
can be obtrusive for certain situations. In order to make themmore
practical and realistic, Taelman et al. [78] developed a biofeedback
EMG recording shirt for daily use.

3.2.7.1. EMG features. EMG statistics like the mean [50], median,
standard deviation, Root Mean Square and minimum and maxi-
mum values are often used, as well as the range and the static,
median and peak loads (10th, 50th and 90th percentile of rank
ordered RMS values). Gaps have also the potential to measure
stress levels, thus the average number of gaps per minute and
the relative time with gaps (tGaps) have also been taken into
account. Gaps are considered EMG values below the 5% RMS. Infor-
mation about loads and gaps can be obtained from 1s segments of
the reference contraction (Contraction signal). Mean and median
frequency values and the first and second derivatives of the EMG
in the temporal domain can also be found in the literature, as well
as the number of maxima divided by the total number of signal
values (maxRatio) and the number of minima divided by the total
number of signal values (minRatio) [15,76,77].

3.2.8. Respiration
In 1973 researchers from the department of psychology of

Peking University discovered that when the stress level changes,
the speed and depth of respiration system also change [77]. Due
to this finding, respiration has been measured in many stress-
related researches [15,50,77,79] together with other physiological
signals.

Respiration can be measured with a pneumotachometer (or
pneumotachograph). Nevertheless, a device of this nature may be
very intrusive and consequently, the possibility of estimating res-
piration rates from an ECG signal has already been analysed [80]
with satisfying results.

Unfortunately, the literature suggests that respiration monitor-
ing is not as worth as other physiological signals. Healey et al. [50]
found out that contribution of respiration signals to stress detec-
tion was far from being as evident as EDA or HRV’s contribution.
Wei [77] also qualified respiration signals as less effective for stress
classification than EMG signals.

3.2.8.1. Respiration features. Typical features obtained from respira-
tion are the mean, variance, standard deviation, median, Root
Mean Square, minimum and maximum values [15,70] as well as
the range, the first and the second derivative, the maxRatio [77]
and the respiration rate (rRate). Energy in four bands (0–0.1 Hz,
0.1–0.2 Hz, 0.2–0.3 Hz, 0.3–0.4 Hz) has also been considered [50].

3.2.9. Blood Volume Pulse (BVP)
Blood Volume Pulse is the measure of the volume of blood that

passes over a photoplethysmographic (PPG) sensor with each pulse
[81]. Photoplethysmography, consists of measuring blood volume
in skin capillary beds in the finger, relying on the capability of
blood for absorbing light.

BVP has not been used as frequently as other signals in stress
detection researches. Zhai and Barreto [65] measured it together
with other three physiological signals and a competent prediction
method was developed. The biggest contribution of this signal in
the literature is probably that it allows to measure information
of HRV non-intrusively [40]. Chigira et al. [82] took advantage of
this property, and described a photo-plethysmographic mouse to
measure heart activity in office workers in a completely transpar-
ent way. More precisely, blood volume of fingers is measured using
a near-IR light and a photo-detector, and enough IBI (Inter Beat
Interval) precision is achieved to compute HRV features.

3.2.9.1. BVP features. The amplitude waveform of the BVP signal
can be used directly [65], but it may be more useful to extract
HR and HRV features or IBI features like the mean, standard devi-
ation or the L/H ratio from it.

3.2.10. Pupil Diameter (PD), eye gaze and blinking
Pupil Diameter, eye gaze and blink rates can be measured with

infrared eye tracking systems or with Image Processing techniques
applied to visual spectrum images of the eyes.

Pupil dilations and constrictions are governed by the ANS [40].
Thus, PD exhibits changes under stress situations [46] and litera-
ture suggests that it can positively contribute to the problem posed
herein.

Liao et al. [26] affirmed that pupils are dilated more often under
stress situations. Later, Zhai and Barreto [65] used PD as stress
inferring information, together with BVP, EDA and ST and the
results indicated the validity of the chosen signals and features
for a 2-class classification problem, i.e. to distinguish between
stressed and not stressed people, as an accuracy of 90.10% was
achieved.

Barreto et al. [83] have also carried out significant researches
related to the PD activity under stress stimuli. They verified that
the PD measured before and after the stress stimulus, show differ-
ent statistics and that the mean of PD signal is significantly more
relevant than the mean ST, mean BVP and the mean of BVP period
for the identification of affective states [84].
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Sakamoto et al. [85] measured PD variability in the same fre-
quency bands as HRV, and they concluded that the LF/HF ratio of
PD variability could effectively replace the LF/HF ratio of HRV, val-
idating its use in stress recognition.

Recently, a work of Ren et al. [86] affirmed the high ability of PD
features to discriminate between stress and relaxed situations. In
fact, their results showed that PD outperforms EDA features. In
their study, 42 individuals were subjected to an experiment where
stress was induced by a Stroop test while their EDA and PD signals
were being measured. A self-assessment test with 2 questions was
answered by all the subjects to verify the stress eliciting method,
and only those subjects who reported a higher stress response than
a certain threshold were selected. T-test based labels were also
computed to select relevant sections of the data. 3 features were
extracted from each one of the signals. Five different classifiers
were used to create the stress models, in which 4 out of five gave
the best results using the questionnaire-based labels and only PD
features, only one out of five using the combination of both EDA
and PD features, and the worst in all the cases was achieved by
using only the EDA based features. When t-test-based labels were
used instead of the questionnaires, similar results were achieved:
PD features outperformed all the others in 3 out of 5 cases, in
the other two cases the combination of both gave the highest accu-
racies while there was no case in where the EDA outperformed PD.
The highest accuracy of 88.71% was achieved with the Nanve Bayes
algorithm, using only PD features and self-reported stress levels as
ground truth.

3.2.10.1. PD features. Mean [65,86] of PD is probably the most used
feature, but max value [86], standard deviation [51], percentage of
large pupil dilation (PerLPD), pupil ratio variation (PRV) and Walsh
coefficients (‘‘Difference value between the first and the second
Walsh coefficient after Walsh transform based on the PD signal
during the onset of each Stroop segment” [86]) have also been cho-
sen in some researches [26].

Whether eye gaze is a good predictor of stress levels has also
been wondered by some researchers. It has been measured by
Sharma et al. [51] and Liao et al. [26] for real-time stress detection
when reading and working with a computer, respectively. In the
latter, eye gaze spatial distribution was found to be positively cor-
related with stress levels. To be more precise, it was found that
eyes focus more often on the screen and lay focused there more
time under stressful situations. Eye gaze has also been measured
for driving security purposes [87].

3.2.10.2. Eye gaze features. Eye pupils’ coordinates have been mea-
sured for eye gaze tracking [26,87], as well as the Gaze Spatial
Distribution (GazeDis) and the percentage of saccadic eye move-
ment (PerSac) [26]. Sharma et al. [51] computed many features,
namely the mean, standard deviation, the distance an eye covered,
the number of forward and backward tracking fixations, proportion
of the time the eye fixated on different regions of the computer
screen and others.

Being aware of the effects of stress on the PD and eye gaze, it is
natural to think that blinking may also vary under stress. Haak
et al. [88] extracted blinking information from EEG signals while
subjects were submitted to a simulated driving task. It was con-
cluded that blink rate is directly related to the perceived stress,
as it was evidenced each time a subject had a crash with a tempo-
rary increase in blink frequency. In the experiment carried out by
Norzali et al. [72] too, it has been concluded that blink rate is
highly correlated with mental stress. They found out that the blink
rate under stress situation doubles, blinking 10 times per second in
average before the stress stimulus, around 20 times under the
stimulus and decreases at about 13 times per second after
stimulus.
Nevertheless, others state the opposite idea. Liao et al. [26]
affirmed that blink rate decreases under stressful situations.

3.2.10.3. Blinking features. Blink rate or blinking frequency is the
most common blink-related feature, but average eye closure speed
(AECS) has also been used [26].

3.2.11. Thermal Imaging (TI)
Several existing studies state that stress can be measured from

thermal images due to the temperature changes suffered from
stressed individuals [14,75,89]. Facial temperature can be easily
measured using an Infrared camera, which is a completely unob-
trusive method, making it interesting for office-place applications.
In the past few years, this technique has been included in the set of
stress measuring methods.

In 2009, Levine et al. [75] have used TI to analyse the activation
of the corrugator muscle placed on the supraorbital area which
may indicate mental stress. They concluded that progressive and
sustained corrugator muscle warming was experienced by all the
subjects under stress conditions. They also affirmed the possibility
of detecting subtle changes using this method due to the lack of
adipose tissue above the corrugator muscle, minimising the ther-
mal inertia needed for provoking changes on the surface.

Norzali et al. [72] confirmed the previous information verifying
that supraorbital temperature changes under stress situations, and
went further finding out that blood flow under stress situations
increased in periorbital and maxillary areas too.

A stress detection system using a combination of both thermal
and visual spectrum (VS) facial data has also been tested by
Sharma et al. [14]. Facial expressions were analysed in visual
images while temperature changes have been detected in thermal
images. Spatio-temporal features were extracted from recordings
where individuals’ faces were registered while watching stressed
and not-stressed films. A classification accuracy of 85% of was
exceeded using LBP-TOP (Local Binary Pattern – Three Orthogonal
Planes) features for VS and LBP-TOP and HDTP (Histogram
Dynamic Thermal Patterns) features for TI.

The promising results obtained with TI, have led other
researches to analyse facial blood flow under stress situations with
even more sophisticated methods. Recently, Chen et al. [90] have
developed a stress detection system based on hyperspectral imag-
ing, improving the TI technique for situations where big tempera-
ture changes or changes in subjects’ sweating due to reasons other
than stress may arise. The aim of using this technique was to detect
the tissue oxygen saturation (StO2) on facial tissues, because the
increase in facial blood-flow under stressful situations suggests
that oxygen saturation may also vary. Results prompt the use of
this method for stress detection because increased StO2 levels have
been detected around the eye sockets and forehead areas, but fur-
ther research is needed for verifying its viability in real-time and
real-life situations.

3.2.11.1. TI features. Thermal images are used to extract tempera-
ture of different facial ROIs like the periorbital, supraorbital (corru-
gator area) [73], maxillary [72] and perinasal [89] areas. In some
researches [14,60], temporal temperature patterns of 3 � 3 facial
regions were extracted and mean, standard deviation, kurtosis,
skewness, interquartile range, minimum and maximum values
were computed from them.

3.2.12. Functional Magnetic Resonance Imaging (fMRI)
fMRI, is a technique for measuring brain activity. When the neu-

ral activity of a brain area increases, this area consumes more oxy-
gen and to meet this increased demand, blood-flow increases to
the active area. fMRI detects these changes in blood oxygenation
and flow. Thus, fMRI can be used to produce activation maps
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showing which parts of the brain are involved in a particular men-
tal process.

The number of research papers on brain functional activities
associated with emotional stress using fMRI has increased because
of its non-invasive nature and because it does not involve radia-
tion, making it safer. Moreover, it is easy to use and it has a good
spatial resolution.

The downside is that unlike EEG, fMRI does not provide a good
temporal resolution. When brain function is analysed using EEG,
both the temporal and spatial changes can be detected [53] and
when analysing the stress response to a certain stimulus, good
temporal resolution may be highly desirable. Furthermore, this
method is restrictive by nature and it does not allow monitoring
in the workplace [75].

Hayashi et al. [29] used fMRI technology so as to verify whether
stress responses are evident in some brain regions, including the
ones related to emotional and cognitive processing, while stimulat-
ing stressed and not stressed people with audio-visual contents.
The results did not show differences on brain regions related to
emotional processing, but did show less activity in cognitive pro-
cessing brain regions on stressed people. They also found out that
superior and inferior parietal gyrus was significantly more acti-
vated by pleasant and unpleasant stimuli in people not suffering
from stress than those who were suffering from, suggesting that
attention deficits may take place even on the early stages of stress.
3.2.12.1. fMRI features. When fMRI techniques are used, the avail-
able features are the activation or not of different brain areas under
stress stimulus. Amygdala, Hippocampus, Superior Frontal gyrus
(SFG), Inferior Frontal gyrus (IFG), Inferior Parietal gyrus (IPG),
Superior Parietal gyrus (SPG) and Superior Temporal gyrus (STG)
[29] are the typical parts involved in the stress response analysis.
3.2.13. Summary
Table 1 summarises the aforementioned physiological signals

and features present in the literature.
As it has been seen in this section, there are many physiological

signals that have been used in stress detection and some of them
have shown to provide reliable information about peoples’ real-
time stress levels. Unfortunately, the drawback of most of them
is that extra equipment is necessary for the measurements, becom-
ing an obtrusive method for the real-life. Even if some researches
[27] are focused on creating wearable physiological measuring sys-
tems to make them more transparent, the user is forced to wear
continuously those equipments, which remains being unobtrusive
and even not affordable for some people. Solutions that aim at
overcoming these drawbacks are being developed and are dis-
cussed in the Section 5.4.
3.3. Behavioural responses

Behaviour regards expectations of how a person or a group of
people will behave in a given situation based on established proto-
cols, rules of conduct or accepted social practices [22].

Stress affects in individuals’ behaviour. Some of the induced
changes are well-known, for example, being much more irritated
or angry, but these are not easily measurable. Other possible beha-
vioural changes have been investigated, for example, by analysing
people’s interaction with technological devices in order to verify
their relationship with stress and to create a reliable way to mea-
sure it. The advantage of measuring behavioural responses is that
unlike physiological measurements, they can normally be done in
a totally unobtrusive way and in some cases, without the need of
expensive extra equipment.
3.3.1. Keystroke and mouse dynamics
Keystroke dynamics is the study of the unique characteristics

that are present in an individual’s typing rhythm when using a
keyboard or keypad [91]. The same way, mouse dynamics are
affected by the subject’s characteristics when moving it or clicking
on its buttons.

Keystroke and mouse dynamics have been widely analysed in
the security area for authentication of people [92,93] and for emo-
tion recognition [94] as Kolakowska et al. explain in their recently
published review [95]. Stress detection, although fewer, has also
been the objective of some researches based on keystroke and
mouse dynamics.

In 2003, Zimmermann et al. [31] first mentioned the possibility
of using mouse and keyboard dynamics information to measure
the affective state of the user. Thenceforth, many other researchers
have tried to implement a method based on different features
extracted from these devices.

One of the biggest advantages of using a keyboard and a mouse
for this purpose is that the developed technique is not intrusive
and there is no need of any special hardware. Vizer et al. [36] high-
lighted other advantages like allowing to monitor information con-
tinuously leading to the possibility of an early detection and
permitting to easily extract baseline data. Moreover, the article
states that this kind of systems can be introduced in the users’
everyday life without the need to change their habits.

Peoples’ writing patterns are considered to be stable enough for
security applications, but small variations which have been attrib-
uted to stress and other situational factors on these patterns have
been detected. Some researchers, as, for example, Hernandez et al.
[37], affirm that relevant information about the affective and cog-
nitive state of the user can be provided by keyboard dynamics. In
their study, they used a pressure sensitive keyboard and a capaci-
tive sensing mouse in order to detect stress levels in users. Self-
reports and physiological signals were used as reliable assessment
techniques. The results showed that 79% of the participants
increased significantly the typing pressure and that the 75% had
more contact with the mouse under stress. This may be inconsis-
tent with other researches [26] that affirm that the mouse button
is clicked harder when stress is decreasing. Surprisingly, at odds
with other studies, no significant differences were found in terms
of the amount of characters introduced, task duration or typing
speed between the stressed and relaxed conditions.

Other authors, disagree that keyboard dynamics provide rele-
vant affective and cognitive information. Alhothali [96] stated that
typing speed, key latency and key duration are only weakly corre-
lated to emotional changes. Nevertheless, some researches [97]
have already gone a step further accepting the reliability of beha-
vioural biometrics based on keyboard and mouse usage patterns
to assess stress levels and using it to extract personality traits.

3.3.1.1. Keystroke and mouse dynamics’ features. The most fre-
quently extracted features from the keystroke dynamics are dwell
time, which is the time a key is pressed, and the average dwell
time, duration between keystrokes (KeysUp) and their average,
time between two consecutive keys are down (tDown), pause rate,
typing speed, number of key press events (nKeys), duration of
digraphs and trigraphs, number of events in the key events combi-
nation (nEvents) and frequency of using specific keys such as back-
space or the space-bar [98,99]. Key pressure has also been
measured in some researches [37].

Mouse dynamics are typically characterised by mouse horizon-
tal and vertical speeds (v), acceleration (a), frequency of move-
ment, stillness, x and y coordinates of the mouse, overall distance
and the direction. Average speed against the distance travelled
(vDistance) and average speed against the movement direction
(vDirection) have been measured too, as well as the number of



Table 1
Physiological features used in the literature.

Signal Ref. Feature Parameters

ECG [27,43–46,48–55], l, SD, P and E
HR l, min, max
HRV Temporal & geometric: l, SDNN, SDANN, RMSSD, pnn50,

SDSD, HRV TI, TINN, Kurt., Skew., 2nd, 3rd and 4th-order cum.

Frequential: LF/HF, HF/All, (LF + MF)/HF, ULF, VLF, LF, HF and

total P. Non-linear: T, E, C, SD1 & SD2 of Poincaré Plot, Long-
term & Short-term fluctuation slope in DFA, min & max lines
in RP, Recurrence Rate, Determinism, Correlation Dimension

EEG [53,57,59–62] l, Fractal dim., HOC, Hjorth params., spatial-
spectral features
ERP components l
Spectrum a, b, d and h bands’ mean P and mean P ratios
LLE l and SD
KDE features l and r2

EDA [21,30,40,45,50,51,65–67] l, SD, min, max, RMS, Kurtosis, Skewness, DiffAvg,
DiffMax, DiffMin, MaxPos, MinPos, ZC
Orienting responses O, P, D, M, no. of P, P height, avg. M and D, l, latency, tRise,

tRecovery,
P

M,
P

D, Aq, Dq, areaResp, areaRise

BP [22] l, SD, no. of peaks, SBP, DBP

ST [43,46,65] l, min, max, SD

EMG [15,50,76,77] l, median, SD, min, max, range, minRatio,
maxRatio, Diff., Diff2
Contraction signal l, static, median and peak loads, Gaps/min, tGaps
Spectrum l frequency, Median frequency

Resp. [15,50,70,77] l, SD, Diff., Diff2, median, min, max, range,
maxRatio, rRate
Spectrum Power of 0–0.1 Hz, 0.1–0.2 Hz, 0.2–0.3 Hz and 0.3–0.4 Hz

bands

BVP [65] Amplitude
IBI L/H, l, SD
HR See ECG
HRV See ECG

PD [26,51,65,86,87] l, max, SD, PerLPD, PRV, Walsh coeffs.

Eye gaze Eye position GazeDis, PerSac l, SD, distance, no. of fwd. and bw. tracking
fixations, and tFixed

Blinks [26] Blink frequency, AECS

TI [14,73,72,89] Facial (3 ROIs) temperature
Temporal facial T� patterns l, SD, kurtosis, skewness, interquartile range, min and max

fMRI [29] ROIs: Amygdala, Hippoc., SFG, IFG, IPG, SPG and STG Activation of the ROIs
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clicks including left, right and both buttons (nClicks), absolute sum
of angles and mouse wheel movements (nWheel) [37,98,99].

Covered distance between two button press events (DPP), dis-
tance the cursor has been moved between a button press and the
following button release event (DPR), between two button release
events (DRR) and between a button release and the following but-
ton press events (DRP) have been computed [98], as well as the
Euclidean distances in the previous cases (EuDPP, EuDPR, EuDRR,
EuDRP), the difference between the covered and the Euclidean dis-
tance between the events described before (DifDPP, DifDPR,
DifDRR, DifDRP) and the times elapsed between the mentioned
events (tDPP, tDPR, tDRR, tDRP).
3.3.2. Posture
It has been proven that posture is a good indicator about the

feelings of the worker towards the tasks they are carrying out
[100]. Thus, individuals’ postural behaviour may also provide
important information about stress levels.

Anrich et al. [101] have tried to verify this hypothesis analysing
the changes in the posture of office workers using a pressure distri-
bution measuring system installed in their chairs. The spectra of
the norm of the centre of pressure (CoP) was used as postural
feature. 28 men were stressed using the MIST [102] and it has been
verified that the amount of fast movement increases during stress
tests compared to control tests, and that the spectra of the CoP
obtained in the two tests also show differences. Using spectral
information, 73.75% of accuracy was achieved when separating
stress situations from cognitive load, suggesting that postural
behaviour contains information related to stress levels.

Others [30] have analysed the posture using visual techniques.
Specifically, a Kinect has been used for detecting the interest levels
of the office workers. Using techniques such as depth information
and skeletal tracking, the inclination of the person and conse-
quently an indicator of the workers’ motivation was deduced.
3.3.2.1. Posture features. To analyse subjects’ postural behaviour,
direction of lean has been evaluated [30] measuring the gradient
from front-to-back and from side-to-side. The mean of several
spectral bands of the norm of the centre of pressure (CoP)
measured on a chair were computed in [101].
3.3.3. Facial expressions
Automatic recognition of facial expressions has been the subject

of many researches [87,103,104]. They can be estimated with
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computer vision techniques [30] or by means of a facial Elec-
tromyogram (EMG). The latter can provide better time resolution
and greater sensitivity when measuring the weakest responses of
the facial muscles, but it is also much more obtrusive than the for-
mer for real life applications [105]. Furthermore, EMG can some-
times be less selective than desirable because the electrical
activity created by a muscle can be extended to the adjacent areas,
and moreover, activities that are not related to emotions, such as
speaking, can generate confusing EMG activity. Thus, most of stress
related researches using facial expressions have used visual
techniques.

Dinges et al. [103] created an Optical Computer Recognition
(OCR) technique to detect facial expressions related to stress
induced by workload. Self-reports, salivary cortisol measures and
HR signals were used as ground truth. A 3D deformable mask
was created to detect changes in eyebrows, mouth and lips (includ-
ing asymmetry, which is especially useful for stress recognition)
and HMM was used to detect facial stress patterns, achieving clas-
sification results of between 75–88% when discriminating high and
low stress levels and thus, validating the potential of eyebrow and
mouth movements’ measurement for this purpose.

McDuff et al. [30] analysed facial expressions together with
head movements using a Webcam, in this case for valence detec-
tion, and concluded that they are a good source of information.
This suggests that they can be equally valid for stress recognition.
In a recent work [106], unlike in most of stress detection
researches, a mathematical stress model was created instead of
considering the main objective as a classification problem. Instan-
taneous facial expressions were analysed from images, creating an
emotional percentage mixture model and relating it to stress
levels. Moreover, the seven basic emotions, without any image
for reference, were also related to stress, and finally, the equation
for evaluating stress quantitatively from facial expressions was
estimated. Unfortunately, no information about its performance
was provided.

3.3.3.1. Facial expressions features. Mean smile intensity, mean eye-
brow activity and mean mouth activity are the typical facial fea-
tures measured [30,103]. Some researches [87] have measured
these features placing 22 points of interest (POIs) around the eyes,
nose, mouth and eyebrows.

3.3.4. Speech analysis
Many researchers agree with the fact that stress changes human

vocal production [107–109]. More precisely, it has been found out
that under stress situations, changes in pitch (fundamental fre-
quency) and in the speaking rate are usual, together with varia-
tions in features related to the energy and spectral characteristics
of the glottal pulse [108]. Speech analysis has caused interest prin-
cipally because it can be easily measured in a completely unobtru-
sive way.

Nevertheless, voice-based stress analysis can be ineffective both
in quiet and noisy spaces [110], due to the lack of speech record-
ings and to the excessive noise, respectively. Most of the research
done in stress recognition from voice, has been carried out in lab-
oratories or in quiet environments, but there are exceptions, such
as the research carried out by Lu et al. [108], where stress detection
both in indoor and outdoor acoustic environments was executed,
using mobile phones. An accuracy of 82.9% indoors and of 77.9%
outdoors was achieved.

Demenko et al. [111] analysed call-centre recordings, including
stress and no-stress speech. They achieved 84% accuracy distin-
guishing between the two classes, using LDA classifier and 9 fea-
tures extracted from amplitude and pitch information.

In the laboratory experiment carried out by Kurniawan et al.
[21], speech and EDA were measured and used to create a universal
stress model and an inter-individual stress model, both with inde-
pendent information given by each signal and combining the two
of them. Three two-class classification problems were considered:
recovery vs. workload, recovery vs. heavy workload and light
workload vs. heavy workload. Results showed that the selected
speech features (Mel Frequency Cepstral Coefficients and pitch)
were more efficient for stress detection than the selected EDA fea-
tures. Furthermore, the combination of both types of signals didn’t
show any improvement and as expected, the inter-individual
model outperformed the universal model. Thus, the best result
for the most difficult case (distinguishing light and heavy work-
load) was achieved using the inter-individual model with the
SVM classifier and speech features: 92.6% of accuracy. This result
suggests that effectively, stress detection can be done by means
of speech features when the subject is placed in an environment
with good acoustic conditions.

3.3.4.1. Speech features. Pitch is the most frequently extracted fea-
ture from speech in stress detection. It has been found that mean
value, standard deviation and range of pitch increase under stress
while pitch jitter decreases [108]. Minimum, maximum, median
and first derivation of pitch are also used by some researchers
[21,111]. As spectral centroid goes up under stress and energy is
concentrated in higher frequency bands, high frequency bands’
(above 500 Hz) energy is also considered. Speaking rate also
increases, as well as voice intensity. Intensity features like the
mean, range and variability can be used in certain environments
[108]. Amplitude-based features were used by Demenko et al.
[111], precisely, the perturbation quotient (sAPQ), the degree of
subharmonic segments (DSH), the noise to harmonic ratio (NHR)
and the degree of voiceless (DUV). However, pitch and speaking
rate features frequently the most suitable ones, because they can
work well even in noisy environments.

Smoothed energy, voiced and unvoiced speech, Mel Frequency
Cepstral Coefficients (MFCC) and Relative Spectral Transform –
Perceptual Linear Perception (RASTA-PLP) [21,107] have also been
computed in some cases. Teager Energy Operator based non-linear
transformation (TEO-CB-AutoEnv) has also been applied to the sig-
nal for better computing pitch and harmonic related parameters
[108].

3.3.5. Mobile phone usage
Nowadays, a huge amount of information related to users’

behaviour can be extracted from Smartphones. Call logs, SMS,
e-mails, internet browsing, app’s usage, location data and many
other knowledge can be easily obtained without the user even
noticing it. Recently, research on stress detection has evaluated
the possibility of taking advantage of this unobtrusive information
collecting method.

Muaremi et al. [112] used iOS Smartphone data collected during
the day and HRV data registered when sleeping, to classify people
in low, medium and high work-related stress groups. Feature
selection techniques were used to result in a seven features’ collec-
tion where 4 belonged to HRV and 3 to Smartphone data, suggest-
ing that HRV features were more important than the extracted
Smartphone features in this case. The best results were achieved
in the user-specific model case, with an accuracy of 55% with only
Smartphone data, 59% with only HRV data and 61% with the com-
bination of both. This classification results also show that the
selected HRV features were better than the Smartphone features
selected for the stated classification problem. However,
Smartphone derived features worked better than chance (which
in this case was 33%) affirming that they could also provide some
information to the stress recognition methodology.

In the research carried out by Sano et al. [66], skin conductance,
3D accelerometer data and mobile phone usage data were
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collected in order to assess users’ stress levels. Calls, SMS, location,
communication aspects and screen on/off events were monitored
as phone usage data and 351 features were extracted from this
information. Other 240 features were extracted from surveys and
accelerometer and skin conductance data. Correlation of both
physiological data and mobile usage data with PSS was proven.
Results suggested that under high levels of stress, the sent SMS
percentage among all sent and received SMS decreases, together
with the percentage of the length of all sent and received SMS.
They also indicated that screen on/off patterns change, decreasing
the ‘‘on” time, showing less variation of this time between 6 pm
and 9 pm and turning on the screen earlier in the day. Thus, it
has been proven that mobile usage patterns change under stress,
and an accuracy of over 75% in high and low stress detection was
achieved.

3.3.5.1. Mobile phone usage features. The number of calls (nCalls),
the sum of all call duration (tCalls), mean, variance and median
of call duration, and the ratio between incoming and outgoing calls
have been obtained from mobile phones [112]. The relative
changes of the number of contacts, phone numbers, and e-mail
addresses have also been measured. Battery usage is also used as
a stress inferring feature, calculating the time the battery is not
charging (tNotCharging) and the time the battery is charging
(tCharging).

Mean, SD and median of the time of each SMS message (tSMS),
mean, SD and median of length for all SMS messages (lSMS), the
total number of SMS messages (nSMS), the ratio between received
and sent SMS are also measured as well as the mean, SD and med-
ian of unanswered calls and the total number of individuals with
whom a participant interacted through calls (ncPeople) or SMS
(nsPeople) [66].

Screen features are also taken into account: Mean, SD and med-
ian of the time of each screen on (tScreenOn) and the number of
times screen has gone on (nScreenOn) have been studied [66].

3.3.6. Computer exposure
It is natural to think that computer exposure of workers

changes under high stress levels because high workload is one of
the reasons for individuals to be stressed, and this could lead work-
ers to spend more time in front of the computer. Eijckelhof et al.
[11] have investigated neither stress levels affect the overall
human–computer interactions within a day, i.e. computer expo-
sure times and breaks’ frequency and lengths, using a specific soft-
ware for this purpose. They affirm that workers suffering from
individually oriented stressors, i.e. overcommitment and high per-
ceived stress levels, spend more time in front of the computer dur-
ing the day, while the workday itself is not extended. In addition,
they suggest that these stressors do not affect on their break pat-
terns. Besides, they concluded that workers with high levels of
organisationally oriented stressors, i.e. effort and reward, tended
to have fewer short (30 s–5 min long) computer breaks and slightly
longer breaks (more than 15 min).

3.3.6.1. Computer exposure features. In this study, the mean of total
duration of computer interaction for each workday and the mean
of the number of short (30 s–5 min), medium (5 min–15 min)
and long (>15 min) breaks per workday were extracted from the
computer interaction information. The mean duration of total
workdays was also computed.

3.3.7. Smart environments
Much research work has been done in the smart environments

area related to people’s behaviour pattern detection [113,114].
Some of these researches are placed in office environments
[115–118]. Nevertheless, many of these researches have been
oriented to energy efficiency and they have hardly been used for
stress recognition purposes.

Suryadevara et al. [119] carried the emotion detection problem,
including stress, to a Smart House, suggesting that an initial change
in regular daily activities can mean changes in health. They created
a two part monitoring system, which included on one hand, phys-
iological information obtained from heart rate, skin temperature
and skin conductance signals in order to determine the emotion
of the person. On the other hand, a smart house with wireless sen-
sors to monitor house appliances’ usage in order to detect abnor-
mal behaviours. The idea of analysing information extracted from
such different sources can be very interesting, on one hand because
of their complementarity, and on the other hand because of their
non-invasive and privacy respecting nature. Unfortunately, both
parts of the system as described in the article were completely
independent, and a method for integrating their results and to find
correlations was not even mentioned.

3.3.7.1. Smart environments’ features. In this study, activities were
deduced from the sensor activation information, and at the same
time, the duration of devices’ use and inactivity times were com-
puted, enabling this way the computation of the wellness function.

3.3.8. Text linguistics
The way a subject writes can vary depending on his stress

levels. On one hand, some pressure can enhance the writing abili-
ties of a person, making writings of better quality, using a more
diverse lexicon, etc. On the other hand, mood can be directly
reflected on the text being written, especially, in free texts. There-
fore, analysing text linguistics can be an added value for a stress
recognition system.

Currently, there exist many tools that allow to automatically
analyse linguistic features, as, for example, LIWC [120], Harvard
General Inquirer (GI) [121], Semantria [122], SentiStrength [123],
Synesketch [124], which can be used both measuring writing per-
formance in users by means of lexical diversity measures, or
directly analysing the ‘‘feelings” of the text, which is their main
purpose. These tools count the word-type rate (such as the self-
reference rate, or article rate), as well as their polarity, i.e. their
positivity or negativity, and strength (the degree in which they
are positive or negative) [120,123]. There is a whole scientific
branch dedicated to the sentiment analysis of texts, which could
be considered the neighbour of stress detection. Sentiment Analy-
sis (also called opinion mining, subjectivity, analysis of stance, etc.)
aims at finding a polarity and strength value for any text, analysing
it word by word, following some pre-established dictionaries and
their corresponding sentiment classification. We refer the user to
the review of Taboada et al. [125] for further information.

Whereas sentiment analysis techniques have been widely used
for analysing, for example, depressive moods [126,127], only a few
studies have focused on inferring stress levels from texts: this is
the case of Saleem et al. [128] and Vizer et al. [36]. The former used
this technology to analyse online forum posts and detect user
stress levels from them. GI and LIWC tools were used for sentiment
analysis, but many other features, like pronoun count, punctuation
count or features more specialised on forums, were also extracted
from the texts. The different feature combinations were tested
with an SVM classifier and Markov Logic Networks (MLN) giving
promising results. Free text analysis was done by Vizer et al. and
timing, keystroke and linguistic features were analysed in order
to distinguish between physical stress, cognitive stress and no
stress situations. An improvement on lexical performance under
both types of stress was found, reducing the number of mistakes,
increasing lexical and content diversity and decreasing pause
lengths. They found out the possibility of distinguishing both types
of stress affirming that physical stress affects on linguistic features
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while the cognitive stress affects more on keystroke. They achieved
classification rates of 62.5% for physical stress and 75% for cogni-
tive stress.

3.3.8.1. Linguistic features. Many linguistic features extracted from
a free text have been considered [36], in order to measure the writ-
ing performance of the subjects. The features included lexical and
content diversity, that measure the rate of unique words and con-
tent words, noun and verb rates, average word length, function
word rate where determiners, conjunctions, prepositions, pro-
nouns, auxiliary verbs, modals and quantifiers are included, con-
junction rate, cognition operation rate (considering cognition
words the ones that express cognitive operations such as thinking),
emotive word rate as well as modifier rate where all adjectives and
adverbs are considered, adjective rate, intensity word rate (where
words like ‘‘greatly” or ‘‘seldom” are taken into account), negative
and positive affect rates, sensory information rate where words
expressing sounds, smells, and physical sensations are included,
passive tense rate, third person pronoun rate, modal verb rate,
negation rate where all kinds of negative words are considered,
first person plural pronoun rate, self-reference rate, generalising
term rate where words referring to a class of people and objects
like ‘‘everyone” or ‘‘none” are counted and finally, average sentence
length. Polarity and strength of the text have also been considered
[128].

3.3.9. Summary
Table 2 shows a summary of the behavioural measurements

and features used in the state of the art.
Behavioural measurements for stress recognition are much less

frequent than the physiological ones in the state of the art. They
have not probably been still enough studied, and thus, stress detec-
tion results in general are not as accurate as with physiological
methods. Even so, some of them look very promising, on one hand
because of their results and on the other hand, because they do not
require any extra equipment. Precisely, this is the biggest advan-
tage of the behavioural measurements: in many cases, no extra
equipment is needed, and when it is necessary, it is unobtrusive
to the user as no contact nor different behaviours or habits are
needed, being totally transparent methods. Furthermore, this leads
to a decrease in the developed system’s cost.

3.4. Contextual information

User context is defined as one or a group of parameters, which
deliver information about the state of a user at a certain point in
time [16]. The place, the time and the ambient factors where the
subject is may affect the stress response, thus, measuring these
parameters could help inferring the subjects’ stress levels.

3.4.1. Calendar events
Meetings a worker is attending, people with whom he is inter-

acting or tasks he is developing can be registered as calendar
events and can give information about an individual’s workload
and stressors. Some researches have taken into account the vast
amount of information that calendar events can provide about an
individual’s stress level.

In 2012, AffectAura [30], which is an emotion tracking system
and a reflective tool for office workers, was created combining
audio, visual, physiological and contextual data. Contextual data
included calendar events and GPS information, along with file
activity. The study concludes that registered calendar events were
very useful for people in recalling their mood of a certain moment
in the past, thus, calendar events could help tracking the emotions
and stress over the time. Unfortunately, AffectAura did not offer
the possibility of creating patterns and detecting abnormalities
automatically.

Later, calendar events have been analysed along with some
physiological (skin temperature, skin conductivity), physical (3D
acceleration) and some other contextual information (lighting
and ambient temperature) [38]. A modified Self-Assessment Man-
ikin test was used for collecting subjective information about the
user’s feelings in relation to each calendar event. A stress level
monitoring and memorising environment was created and tested
for 4 weeks, resulting in a useful tool for recognising stressors
and for tracking stress levels within the time. The same way as
in AffectAura [30], the registered information had to be evaluated
by the user or by an expert manually.

Much more research is needed in order to develop a stress mea-
suring methodology using calendar information. These researches
can help in creating stress patterns for each individual, recognising
each individual’s stressors in order to use such information in
stress recognition applications.
3.4.1.1. Calendar features. Number of events, total time spent on
events, mean value of event duration, and the mean size of notes
[112] and valence, arousal, energy and dominance level obtained
by a self assessment questionnaire of each calendar event [38] is
taken into account from calendar data.
3.4.2. Location and ambience
Location and ambiance can also affect in our stress levels. For

example, the simple fact of being in the workplace can make some
people feel more stressed than when they are at home. Therefore,
tracking location could also help to recognise stress. Taking this
into account, location (mobile phone’s location) of the user,
together with activity (physical activity, call status, ringer status,
and Keyboard and mouse dynamics’ features) and ambience
(ambient audio features) information was collected using a smart
phone and a personal computer in a research [16]. To assess stress
levels’, a HMM which models seven levels of stress was used.

They stated that the results looked promising but unfortunately
quantified results are not available in the paper.
3.4.2.1. Location and ambience features. The total distance travelled
during the day and the number of locations visited were calculated
using GPS in the experiment of Muaremi et al. [112], where loca-
tions were derived using the DBSCAN [129] algorithm. Mean, SD
and median of radius and distance have also been measured [66].
In a research[16], location was used as a three-value parameter,
distinguishing between home, work and unknown places. Ambient
sound was also measured to differentiate silent, low-volume and
high-volume ambiences.
3.4.3. Summary
Table 3 summarises the contextual measurements and the fea-

tures that are present in the state of the art.
Contextual data cannot measure peoples’ stress response. Con-

text does not vary with users’ stress levels, but it can affect on peo-
ple’s reactions. Thus, contextual measurements cannot be
interpreted the same way as the aforementioned modalities’ mea-
surements, but they can provide information about personalised
stressors after a learning stage, or about the probability of a user
to be highly stressed, for example, based on calendar events.
Including this kind of information could help improving the devel-
oped system’s accuracy in a totally unobtrusive and low-cost way,
because as in the case of behavioural measurements, expensive
equipment is not needed.



Table 2
Behavioural features used in the literature.

Signal Ref. Feature Parameters

Keyboard use [37,98,99] Keystroke KeysUp, avg. KeysUp, dwell time, avg. dwell time, nKeys, typing speed, use of particular
keys, pause rate, tDown, duration of the digraph/trigraph and nEvents

Pressure

Mouse use [22,37,98,99] Movement Coordinates, overall distance, stillness, horizontal v, vertical v, tangential v, tangential a,
tangential jerk, angular v, vDistance and vDirection

Clicks nClicks, menu and toolbar clicks, DPP, DPR, DRR, DRP, EuDPP, EuDPR, EuDRR, EuDRP,
DifDPP, DifDPR, DifDRR, DifDRP, tDPP, tDPR, tDRR, tDRP

Wheel use nWheel

Posture [30,101] CoP l of several frequency bands
Lean Gradient front-to-back, gradient side-to-side

Facial Expressions [30,103] AAM or POIs Mean smile intensity, Mean eyebrow activity, Mean mouth activity

Speech [21,107,108,111] Speech waveform Speaking rate, voiced and unvoiced speech
Intensity l, range and variability
Pitch (f0) l, min, max, SD, median, jitter, range, 1st derivation
Spectrum Spectral centroid, smoothed E, E > 500 Hz
MFCC (Cepstrum) l, r2, min, max of the first 12 cepstral, d and d-d coefficients
TEO-CB-AutoEnv feature Pitch and harmonic related params.
RASTA-PLP l, r2,min, max

Smartphone use [66,112] Calls nCalls, tCalls, l, r2 and median of call duration, incoming/outgoing calls, l, SD and
median of unanswered calls and ncPeople

SMS l, SD and median of tSMS, l, SD and median of lSMS, nSMS, received/sent SMS, nsPeople
Screen use l, SD and median of tScreenOn and nScreenOn
Contacts list Changes of the no. of contacts, phone numbers, and e-mail addresses
Battery use tNotCharging/tCharging

Computer exposure [11] Computer interaction Total interaction, short, medium and long breaks per workday
Log on/off Duration of workday

Smart home sensor events [119] Activity
Use/inactivity times Wellness function

Text linguistics [36,128] Free text Lexical & content diversity, noun rate & verb rate, average word length, function word
rate, conjunction rate, cognition operation rate, emotive word rate, modifier rate,
adjective rate, intensity word rate, positive and negative affect rate, sensory information
rate, passive tense rate, other reference rate, modal verb rate, negation rate, group
reference rate, self-reference rate, generalising term rate, average sentence length,
polarity, strength

Table 3
Context features used in the literature.

Signal Ref. Feature Parameters

Calendar [38,112] Subjective feelings about events Valence, arousal, energy and dominance level
Times and attendees of meetings Peoples’ interactions
Events No. of events, total events time, mean event duration

GPS [66,112] Latitude and longitude Distance/day, l, SD and median of radius and distance,
current location: home, work or unknown

Location No. of locations

Ambient sound [16] Volume

File activity [30] File instances No. of activities, no. of unique activities
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3.5. Multimodal techniques

As it has been seen in the previous sections, information about a
phenomenon, in this case stress, can be acquired using different
types of instruments and measurement techniques [130]. Each
acquisition framework is called a modality, and thereby the setup
of a framework making use of different modalities is called
multimodal. Lahat et al. [130] affirm that multimodality provides
redundancy to the data set, which can help in resolving otherwise
ill-posed problems.

In the context of stress detection, Liao et al. [26] affirm that
‘‘the effectiveness of multiple-modality information fusion is
demonstrated by the increasing accuracy of inferred stress with
the number of source evidences”. They also state that ‘‘some phys-
ical symptoms such as fast heart rate and rapid breathing are not
unique to stress” so information coming from different modalities
could help discriminating stress and no-stress situations. Carneiro
et al. [28] affirm that for a sufficiently precise and accurate mea-
surement of stress, a multimodal approach should be considered.

Many stress recognition researches have taken advantage of
this multimodal nature of stress and have combined very different
information. Examples of this are the research of Healey et al. [50]
and Wijsman et al. [15] who combined several physiological fea-
tures coming from EDA, ECG, EMG and respiration, or Zhai and Bar-
reto [65] who used PD, BVP, EDA and ST for measuring stress levels.
Nonetheless, most of them have only made use of physiological
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data. Much less examples can be found that have mixed data com-
ing from different domains, i.e. psychological, physiological, beha-
vioural or context modalities.

One of the few examples could be the work of Liao et al. [26],
who affirmed that their research was the first one combining mea-
surements of the three principal modalities. They combined EDA,
HR, ST, PD, eye gaze, blink dynamics and facial expressions as
physiological measurements, head movements, mouse clicks and
pressure as behavioural measurements as well as errors and
response times of mathematical and audio exercises as perfor-
mance evaluators.

Kaklauskas et al. [22] created a computer-based advisory sys-
tem, called ‘‘The Web-based Biometric Computer Mouse Advisory
System to Analyze a User’s Emotions and Work Productivity” to
detect emotions, including stress, using physiological (heart rate,
systolic and diastolic blood pressures, user’s hand temperature
and humidity, skin conductance) and behavioural measurements
(mouse touch intensity, clicks and movements, hand–holding
time) and a validating system based on a psychological self-
assessment questionnaire.

In the research of Kocielnik et al. [38], a continuous stress level
monitoring system was proposed using physiological (EDA, ST),
behavioural (3D acceleration) and contextual (ambient tempera-
ture, lightings and calendar events) information, together with
subjective information extracted from questionnaires.

Okada et al. [27] have also made use of accelerometer data in
combination of physiological signals in order to identify the actions
being carried out by the monitored subjects and by the way,
remove movement artifacts.

The lack of literature in stress detection using multimodal data
of different domains may be due to several reasons, including, the
problems that may pose the integration of such diverse data and
the multidisciplinary approach that this kind of research implies.
Nevertheless, this area is gaining interest and the results of the
aforementioned researches and the advantages of multimodality
in general suggest that researching in a multimodal system for
stress detection could improve the state of the art.

Table 4 shows the best stress detection accuracies achieved in
the state of the art. It can be appreciated that SVM classifier was
used in 5 out of the 15 best results, suggesting the high potential
of this classifier. LDA, is probably one of the most simple classifica-
tion algorithms, but its satisfactory performance can be verified
since 4 out of the 15 best results were achieved with this classifier.
Fuzzy classifier is present only once, but it is the one who has
achieved the best classification result, nearly the 100%. Its low fre-
quency in this ranking is probably because it has not been suffi-
ciently tested on stress and emotion detection areas.

Regarding the signals and features that can be found in the
ranking, EDA and ECG are present in four studies each, verifying
their potential for stress recognition purposes. ECG is exploited
using the HRV features in the vast majority of cases, and in EDA’s
case, the mean value and the orienting responses are the most fre-
quent features.

It is remarkable that all the signals that are present in this rank-
ing of the best stress detection accuracies are physiological mea-
surements. Neither behavioural, performance nor contextual
measurements have been used resulting in as high classification
results as with physiological signals. This is logical because physi-
ological measurements have been much more considered since
many years ago in stress detection, but also in many other kinds
of researches and thus, their handling is much better achieved.
However, this does not mean that other kind of measurements
are not able to provide as good classification accuracies as the ones
gotten by physiological measurements, but that much more work
is still to be done. State of the art shows that behavioural, perfor-
mance and contextual measurements have also the potential to
distinguish between stress and no stress situations and a detection
method based on these alternative techniques could improve the
actual detection systems as they can be completely unobtrusive
and transparent for the user.
4. Psychological stress elicitation

In order to carry out stress-related researches, it is necessary to
provoke the stress response on the desired subject at the required
moment. For this purpose, many different stress elicitation meth-
ods have been validated. Probably the most frequently used
method has been the Stroop Color-Word Interference Test, fol-
lowed by mental arithmetic tasks. Both methods have been fre-
quently studied [43]. Car driving is also considered a stress
eliciting task [50], as well as watching films with stressful content
[14,131], or playing computer games. In a research [77], speed and
difficulty of the game ‘‘Tetris” have been varied in order to provoke
stress and calm reactions alternately on subjects. Public speaking
tasks [79,132] and the Cold pressor test [133] have also been used.
Finally, Dedovic et al. [102] have tested and validated fMRI as a
stress eliciting method.
5. Framework approach and methodological issues

The development of such a continuous, unobtrusive and auto-
matic early stress detection system, implies difficulties other than
choosing the most appropriate and significant signals and features
for it. As in any application that involves the use of big amounts of
data, the steps followed to collect and store or process this data are
of high relevance, in order to ensure the quality and the reliability
of the system.

A possible solution for the automatic stress detection system is
shown in the Fig. 3. Such a system requires data to be collected,
transmitted, preprocessed, reduced, merged and used for automat-
ically making the final decision. Nonetheless, all these steps imply
several difficulties and therefore, they may vary both in the order
in which they are performed and in the way they are implemented
in order to overcome the methodological issues.

5.1. Data collection and quality

The first step of such a system is the data collection, which has to
be meticulously carried out in order to ensure its quality. For data
to be of high quality, it must be ‘‘accurate, complete, relevant,
timely, sufficiently detailed, appropriately represented, and must
retain sufficient contextual information to support decision mak-
ing” [134]. Nowadays’ physiological monitoring devices, such as
the BIOPAC System [135] or the FlexComp System [136], allow
high quality data acquisition. Nonetheless, some varying factors
can affect and thus, they have to be taken into account.

The incorrect placement of electrodes would derive in meaning-
less measurements, so in order to avoid ambiguities, standards for
the correct measurement of physiological data have been defined
and are internationally used. It is the case of the International
10-20 EEG System [137] or the standard 12-lead ECG. For sensors
that do not have any standards defined, trials must be done to ver-
ify the best placement. It has been verified that different body
placement of the sensors result in different signal patterns and
classification accuracies [138]. Sensor placement is also crucial to
the quality of the behavioural signals’ recording in AI environ-
ments [139].

Sampling frequency of the data must also be adequate to the
signal being collected, in order to establish a compromise between
the amount of data to be treated and the quality obtained from
them. Khusainov et al. [140] affirmed that for ADL (Activities of



Table 4
Best classification results of the state of the art according to accuracy.

Acc. (%) Prec. (%) Rec. (%) Ref. Signal Features Parameters Class.

1 98.45 97.5 99.5 [45] EDA l;r2 Fuzzy logic
ECG HR l;r2

2 98 – 96a [60] Thermal
images

Temporal facial T� patterns l, SD, kurtosis, skewness, interquartile range,
min and max

SVM

EEG Hjorth params., fractal dim.
Spectrum a;b; d and h bands’ mean P

3 97.3 97.4 97.4 [50] ECG HRV LF/HF, (LF + MF)/HF LDA
EMG l
EDA Orienting responses Onset, peak, duration, magnitude, total no. of

peaks, sum of magnitudes, sum of response
durations, areaResp

Resp. Spectrum Power of 0–0.1 Hz, 0.1–0.2 Hz, 0.2–0.3 Hz and
0.3–0.4 Hz bands

4 96.4 96.4 96.5 [54] ECG HRV RMMSD, HF, entropy, complexity, pulse
waveform (HR)

HMM

5 93.8 91.3 97.3 [43] ECG HRV 2nd cummulant of the band 0.04–0.15 Hz or
the 3rd cummulant of the band 0.15–0.5 Hz

kNN

6 92.6 – – [21] Speech Pitch l, min, max, median, SD, range, 1st deriv. . . . SVM
MFCC l;r2, min and max of the 1st 12 cepstral, delta

and delta-delta coefficients

7 90.1 90.1 90.1 [65] PD l SVM
EDA l

Orienting responses No. of peaks, magnitude, tRise, energy
BVP IBI L/H, l, SD

Amplitude
ST l

8 90.0 95b 86.0 [44] ECG HRV SD1, SD2, ApEn (threshold = 0.2⁄SDNN) LDA

9 89 – 89a [51] EDA l, SD and others SVM
BP l, SD, no. of peaks and

others
ECG HRV l, SDSD and others
Eye gaze Eye position l, SD, distance, no. of fwd. and bw. tracking

fixations, eye fixation time (%) and others
PD l, SD and others

10 88.71 – – [86] PD mean, max, Walsh coeffs. Naïve Bayes

a F-score.
b Specificity.
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Fig. 3. A framework approach for the automatic stress recognition system.
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Daily Living) monitoring a sampling frequency of 20 Hz is suffi-
cient, while audio, speech and biomedical signals must be sampled
with a higher frequency of up to 40 kHz.

Signals are easily corrupted by instrumentation noise, random
noise, electric and magnetic noise, etc., as well as by poor elec-
trode–skin contact and body movements [140], resulting in noisy
and artefact containing data. Signal processing techniques are
needed to remove all these undesired effects from the signals.
Noise can be filtered by means of several filters, like Kalman filters,
Butterworth low-pass filters, Median filers, Wiener filters, Wavelet
Decomposition, etc. The selection of the best filter in each case
depends on the nature of the signal, the features to be extracted,



A. Alberdi et al. / Journal of Biomedical Informatics 59 (2016) 49–75 65
and on the type of noise [140]. Power line interference can be
removed by means of a notch filter. For artefact removal, algo-
rithms like least mean squares algorithm, regression analysis, inde-
pendent component (ICA) and principal component analysis (PCA)
can be used, or pressure sensors can be used in order to detect
movement artefacts [141] and reject the corresponding recordings.

5.2. Integration of multimodal data

The data collected in a stress monitoring system based on
multimodal measurements, will come from a wide variety of
sensors and devices, and integrating all this data still poses some
challenges.

Different acquisition systems, rely on different physical phe-
nomena and, thereby, the resulting data is represented in different
physical units. Furthermore, they do not offer the same time and
space resolutions, and what’s more, datasets do not have the same
dimensions: whereas arrays are used for unidimensional signals’
representation, matrix or tensors can be used for representing
images. Even so, these difficulties can be overcome working with
features extracted from the data instead of working with the raw
data by itself.

Another issue to take into account is that when working with
data coming from several sources, it is easy to lack data on some
of them. This makes impossible to compare multimodal data at
the same time points. However, possibilistic data fusion frame-
works could allow to overcome this issue [142–144]. Another
problem that may arise is that the data from different sources
can be inconsistent. This might be solved with a voting system
[145], but other solutions have also been proposed [146–148].

At what point to integrate the multimodal data in the detection
system is another issue. Data can be processed separately, and
merged in the final decision step; they can be sequentially pro-
cessed and merged, adding new data to constrain the prior solution
or they might be fused from the very beginning using a few vari-
ables from each modality, multivariate features (see Section 5.3)
or minimally reduced raw data. This decision depends on the nat-
ure of data to be fused.

Finally, it must be taken into account that when merging data
from different modalities, synchrony between them must be
ensured.

For more details about the current challenges in data fusion the
reader is referred to [130,149].

5.3. ‘‘Big data” issues

One of the biggest problems of such a system will probably be
the huge amount of data being collected non-stop. This problem
might be avoided with on-board signal processing algorithms,
and thus, avoiding the transmission and storage of big amounts
of data. Nevertheless, this affects power consumption and battery
lifespan of the individual devices, as well as their storage require-
ments, and complexity of algorithms, so it will be a choice to make
according to the equipment that is available. When this is not pos-
sible, dimensionality reduction of the data must be carried out,
extracting the pertinent features from it, so as to ease the wireless
transmission. The aim of extracting features from raw signal data is
twofold: on one hand, it allows to manage much less quantity of
data, while keeping all the relevant information for stress assess-
ment, and on the other hand, it permits the data to be somehow
interpreted because raw data, per se, is meaningless. Here come
into place, feature extraction algorithms, being the most popular
one the Principal Component Analysis (PCA) [150]. For successfully
applying these algorithms in behavioural data, data segmentation
may also be a critical issue: an incorrect selection of the segmenta-
tion window can lead to incorrectly infer ADLs, and the use of
sliding window techniques has been recommended for the correct
classification of human activity [140]. Nevertheless, in order to
avoid a set of features that contains redundant information which
only makes the classifier spend more time and decrease the classi-
fication accuracy, feature selection algorithms should be applied.
Feature selection is a search problem which finds an optimal sub-
set of n features out of the extracted set of N features that best dis-
criminate between classes. This reduction in dimensionality also
provides improvements in classification accuracy. Some examples
of the algorithms that can be found in the literature are Sequential
Forward Search (SFS) [66,151], Sequential Backward Search (SBS)
[67], Correlation based feature extraction (CBFS) [94] and Genetic
Algorithms (GA) [14]. For an empirical study on feature selection
methods the reader is referred to [152].

Other strategies for data collection could also be considered and
tested before applying the aforementioned techniques because, a
completely different approach to the methodology would allow
to collect much less data. Thereby, it might be preferable to contin-
uously monitor only some part of the data (as, for example, beha-
vioural changes), and trigger the rest of the signal monitoring
(physiological signals) when suspicious changes are detected, in
order to verify or reject the suspect. The validity of such a system
is still to verify, mainly because it might delay the stress detection.

5.4. Unobtrusiveness, non-invasiveness and ubiquity

The unobtrusiveness and non-invasiveness of biomedical mea-
suring devices are key factors on acceptance and satisfaction from
the subjects [153].

Nowadays, technology for making this monitoring system ubiq-
uitous and completely transparent to the user, exists. Smart offices
allow to record behavioural data without disturbing the user by
means of sensors integrated both in the ambient and in objects
(Smart Objects), for example, in ceilings [118], chairs
[101,117,141], or doors [117], and with simple monitoring soft-
ware installed in computers allowing to sense the interaction
activity with the computer, i.e. computer exposure [11], keyboard
and mouse dynamics [37], etc. Physiological monitoring has been
much more obtrusive and, thereby, a bigger issue for this kind of
application. Nonetheless, nowadays, wearable devices and physio-
logical sensors integrated into devices and textiles (E-textiles) of
everyday use are making increasingly easier the measurement of
physiological variables in a completely transparent way for the
user. Among the examples, it is possible to find a computer mouse
with photo-plethysmographic surfaces that allows to measure RR
intervals enough accurately for computing HRV parameters [82],
a belt for sensing breath [154], a shirt for EMG sensing [78] or a
wearable ECG recorder with acceleration sensors [27].

Smart wearable systems are being increasingly used. In fact,
they have already been considered for monitoring the progress of
diseases such as cardiovascular [155], renal [156] or respiratory
diseases [157], diabetes [158], and even cancer [159]. They can
be used for monitoring patients 24 h a day, recording physiological
or behavioural data, with sensors integrated in jewellery, wrist-
watches [160], armbands [161], shoes [162], embedded in clothes
[163] and implanted in vivo [164,165]. Unfortunately, not all the
physiological data can yet be unobtrusively acquired with wear-
able devices [166], namely, EEG requires electrodes or an electrode
cap to be worn. We refer the reader to the recent review of Chan
et al. [167] for a more detailed information about current wearable
technology’s state.

As it has been mentioned in the Section 3.3.5, smartphones also
allow to acquire big amounts of data without the user being aware
of it. Furthermore, apart from monitoring the characteristic beha-
vioural features of a smartphone (e.g. number of sent SMS), these
devices can be used to unobtrusively monitor other physiological
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or behavioural features 24 h a day. Thus, smartphones can be used
to measure, for example, speech features [168] or travelled dis-
tance [66]. However, current solutions based on smartphones suf-
fer from scalability, security and privacy issues, apart from
providing only a snapshot of physiological conditions instead of a
continuous and longitudinal view of the users’ health status [169].

5.5. Automaticity

The system to be able to automatically detect stress, a prior
learning process could be considered. The system should learn
the values corresponding to the relaxed and stressed states for
each individual, so that in the future, it will be able to detect stress
by detecting abnormal values of these features.

For this purpose, features must be extracted and selected from
the raw data. Many different algorithms have been used in prece-
dent works for feature extraction and selection, as, for example,
SFS [66,151], SBS [67], PCA [150]. Furthermore, supervised classifi-
cation algorithms can be used in order to make a decision with the
selected features as input. A wide variety of classifiers used for
stress detection can be found in the literature, among the most
interesting ones, SVM [41,51,61,70,170], LDA [41,67,111] and
Fuzzy Classification [45]. For further information on how can these
algorithms be applied in this application and for a comparison
between them, we encourage the reader to consult some interest-
ing reviews on these topics (see [171–173] for feature selection,
[174] for classification and [175,176] for a wider overview of Data
Mining).

Smart environments pose some challenges when developing
completely automatic monitoring systems: when working with
environment sensors that are located in distributed positions, it
is necessary to interpret their information in order to infer what
action is being carried out by the user. For this purpose, activity
recognition algorithms are being developed and improved. Algo-
rithms such as Hidden Markov Models or dynamic Bayesian Net-
works [177] have been used to model typical complex activities.
Nonetheless, the correct segmentation of the sensor data streams
remains still as a challenge, as well as coping with multiple users
in the same environment or with multiple activities being carried
out in parallel. Automatic diagnosis also requires anomalous beha-
viour detection, and for this purpose, the system must also be able
to learn continuously and discover new non-anomalous beha-
vioural patterns. Algorithms with these abilities have already been
developed [113,115,178,179].

5.6. Interoperability

The system being proposed herein, apart from detecting stress,
could be useful for a continuous health monitoring, and data being
collected and treated can be practical for many other purposes.
These secondary objectives might imply exchanging data between
other medical devices, or with experts of the health area. Conse-
quently, it may be interesting to develop the monitoring system
following the existing standards for physiological and medical data
coding and storage.

Many standards have been defined in order to overcome inter-
operability problems and improve the communication and data
exchange between different devices all around the world. For
example, the European Data Format (EDF), which has already an
extended version (EDF+), was originally created for EEG and PSG
recordings, but the new version also allows to store information
of ECG, EMG, and Evoked Potential data, as well as annotations
[180,181]. The General Data Format (GDF) for Biomedical Signals
[182] derived from EDF, aiming at satisfying the needs of all the
biomedical research community. An ISO standard has also been
defined to assign medical waveforms’ description rules in order
to ensure interoperability between devices. This standard is known
as Medical waveform Format Encoding Rules (MFER). As it is a
general specification, it is compatible with other standards. The
Standard Communication Protocol for Computer Assisted ECG
(SCP-ECG) is also defined by the ISO [183], and specifies the
conventions to interchange ECG signal data, measurements and
interpretation results. Nowadays, the most known standards are
the Digital Imaging and Communications in Medicine (DICOM)
standard [184], which was created for the communication and
management of medical imaging information and related data,
and the standard of annotated ECGs (aECG) of the international
organization Health Level 7 (HL7) [185], which is an XML-based
format for the exchange of data in hospitals.

Data to be appropriately represented and to avoid them to be
lost or messed, it is advisable the use of common terminology,
and for this purpose, standards like the Systematized Nomencla-
ture of Medicine – Clinical Terms (SNOMED-CT) [186] of the Inter-
national Health Terminology Standards Development Organisation
(IHTSDO) and the LOINC [187] which stands for ‘‘Laboratory Obser-
vations, Identifiers, Names and Codes” have been created.
5.7. Framework approach

Taking all of these issues into account, the framework repre-
sented in Fig. 3 is proposed. As it can be seen, after selecting the
most appropriate signals and features to be monitored, it will be
necessary to select how these data will be collected in order to
ensure quality, unobtrusivity and ubiquity.

Environmental sensors placed in strategic places of the offices,
common office workers’ instruments in form of smart objects or
comfortable wearable devices can monitor workers’ physiology
and behaviour, as well as the ambient variables of the offices, such
as luminosity or temperature. For data transmission, collection and
processing no extra equipment would be needed as the vast major-
ity of nowadays’ offices have all of them available. Namely, per-
sonal computers could be used as central processing units for all
of the collected data, whereas wireless data transmission could
be carried out by means of VPNs established over the widely acces-
sible WiFi networks. Physiological and contextual data, as well as
behavioural data coming from smart objects, can be treated by
means of data reduction and feature extraction techniques, and
fused at the feature level. Behavioural data coming from environ-
mental sensors may require other processing in order to infer the
realised activities, and how they follow or differ from the user’s
usual behaviour patterns. For the final fusing of data of such differ-
ent modalities, another fusion system, as, for example, a voting
system, could be used. As a reliable stress detection system must
be modelled for individual use, due to the differences that people
can reveal in their stress patterns, the intermediate decision that
the system will take should be based on personal knowledge that
at first can be extracted from experiments using psychological
stress elicitation techniques Section 4 and later, by learning
dynamically both behavioural and physiological patterns.
6. Open challenges

Nowadays, whereas technological advances allow to overcome
most of the problems that could exist for the purpose herein, there
are still some open challenges common for all monitoring and
Telecare systems that must be addressed as soon as possible. These
challenges include the following:

� Privacy, security and ethical issues:
As stated before, such a system implies people to be continu-
ously monitored. Therefore, huge amounts of information about
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the individuals and their lives can be inferred, and unfortu-
nately, this information may be the target of many people inter-
ested in things that have little to do with the health of
individuals [188]. In fact, a Financial Times investigation
revealed that 9 of the top 20 health-related mobile apps have
been used to transmit data to a company interested on people’s
mobile phone usage [189]. Currently, approaches are being
developed in order to avoid this information to be used for evil
or non-ethical purposes [169,190,191]. This type of solutions
must contain safety precautions such as the encryption of data
and patient authentication mechanisms. The awareness of the
subjects being monitored must also be assured [188], and their
autonomy must be respected [192]. The current Personal Data
Protection Directive of the European Union is being revised in
order to give a better response to these issues posed by the
development and globalisation of the new technologies [193].

� Efficiency and reliability:
Efficiency and reliability are key characteristics for the wide-
spread use of the developed technology [167]. It has recently
been affirmed that many algorithms, for example, those used
in smart environments for activity recognition, need improve-
ments in order to become more reliable and more accurate for
real life [194]. Other reports have also remarked that some solu-
tions do not work as expected or they have not been properly
tested, which in some cases may pose a risk to people’s safety
[195]. The European Commission adverts that errors may arise
frommany different sources due to the large list of stakeholders
involved in the development and use of these medical devices,
such as the doctor who may make an incorrect diagnosis due
to inaccurate data, the IT engineer who might have introduced
a bug in the code or the patient who might have misused the
device [193]. This becomes a real problem if because of any of
these reasons the patient is harmed, and in order to limit these
risks the legal responsibilities of each stakeholder should be
clearly stated. Furthermore, safety must be demonstrated by
safety standards such as the IEC 82304-1 [196] or specific qual-
ity labels, and certifications might be used for ensuring the
credibility of the health solutions [193].

� Cost:
Costs associated with such a system include the first invest-
ments, as well as maintenance and operational costs. Even if
the research stage of the stress detection system might be
funded, the lack of financing structure for the continuation of
the project can make all the work come to nothing as it has
already happened with some telemedicine applications [197–
200]. It has been affirmed that the high cost of current wearable
system services limits their expansion and that this economic
issues have to be addressed to ensure the opening of the market
to these new technological systems [167]. The European Com-
mission also accepts that the lack of innovative and adequate
refund models for electronic health solutions is a major obstacle
in their development and in their spread. Even if some insur-
ance companies are adopting measures, most of them do not
yet have standard tariffs for these applications [193,201,202].

� Interoperability:
As it has been mentioned in the previous section, some stan-
dards for medical data collection and storage have been devel-
oped. Nonetheless, standards are not yet available for all the
necessary aspects of telemedicine [200,203].The European
Commission affirms that interoperability problems are one of
the most important issues that avoid investments in these
devices to be well-used and therefore, limit the scalability of
this kind of solutions. Interoperability is not guaranteed with-
out globally accepted standards, and hence, the existing stan-
dards must be adopted by systems all over the world. This
might be complicated due to the wide heterogeneity of health
information systems, and because millions of terminologies
and vocabulary are required to describe and codify health data
[193], but as it is a priority for the successful development of
emerging health services, the first steps towards interoperabil-
ity of electronic health systems in the EU have already been
taken [204].

� Legislation:
Legislation and policy for certain aspects of telemedicine are not
yet available [194,200], albeit they are a prerequisite for the
development of the system described herein. Licensure, certifi-
cation and protection must be standardised in terms of laws
inside the European Communities, specially, if services are to
be given over the internet [167].

7. Conclusions

Stress is a growing problem in our society, and nowadays job
issues, including high workloads and need of adaptation to con-
stant changes, only serve to worsen the problem. People are suffer-
ing from health problems derived from too high stress levels, while
major losses of money are elicited in enterprises. Thus, it is impor-
tant to monitor and control employees’ stress levels continuously
in order to detect stress in its early stages and prevent the harmful
long-term consequences.

Stress measuring methods based on hormonal techniques and
on subjective questionnaires are not suitable for real time monitor-
ing and require people to get out of their routine activities.

Changes in some physiological features have been associated
with changes in stress levels, but there are many conflicts to be
solved yet. Physiological changes due to stress are not always
reflected the same way in all individuals, making more difficult
the development of a detection system based on this kind of infor-
mation. A system that is able to adapt itself to each individual’s
physiology should be considered. Furthermore, the discomfort pro-
voked by most of the physiological monitoring devices is still to
overcome if they are going to be used in real-life activities. Apart
from the classical psychological stress assessing methods, beha-
vioural monitoring systems, as well as contextual information,
are being more and more considered in the stress detection field.
Methods which do not require expensive hardware and are not
highly intrusive are being analysed and opening the doors to
new opportunities. Nevertheless, there is much work to do to gain
enough reliability in this kind of systems.

An analysis of the measurement systems and features of differ-
ent modalities used in the literature has been done in this research.
A summary of the reviewed literature can be found in Table 5. The
most accurate stress detection systems developed in the state of the
art show that stress detection using physiological signals is much
more accomplished than using the rest of the modalities. This does
not mean that behavioural and contextual information do not have
the potential to correctly detect stress, as results of the literature
prove they do, but that there is still much work to do in this area.
The results also suggest that ECG, especially using HRV features,
and EDA are the most accurate physiological signals for recognising
stress. The same or bigger accuracies would be desired using other
modalities’ information, such as the behavioural responses, to
develop a much less intrusive and ubiquitous monitoring system,
which would be much more practical for the real life.

It is evident that stress, being a problem that affects in many
aspects of a human being, a real-life stress monitoring system can-
not be developed considering only one of the modalities, i.e. it can-
not be reliable enough if it is based only on physiological signals or
behavioural responses. Thereby, a multimodal technique must be
considered.

There have been some difficulties for fusing data of different
modalities until now, but nowadays most of them are solved.



Table 5
Summary of reviewed literature.

Reference Target Classes Subj. Ground truth Elicitation Signals F. selec. Decision Accuracy

Cinaz et al. [41] Workload 3 7 (m) Nasa TLX and salivary
cortisol

Arithmetics ECG Corr. based MR analysis,
LDA, kNN, SVM

7/8 subjects

Wijsman et al. [15] Stress 2 30 PSS and VAS Calculation, memory, logical
tasks

ECG, EDA, Resp, EMG Corr. based Generalized
Estimating
Equations

80%, 69.1% (S/NS) (avg
74.5%)

Palanisamy et al. [43] Stress 2 40 An effectiveness report Arithmetics ECG, EMG, EDA, ST – kNN, PNN HRV: 93.75%, ECG:
76.25%, EDA: 70.83%,
ST: 75.32%, EMG:
71.25%

Melillo et al. [44] Stress 2 42 – Exam/Holidays ECG Exhaustive
Search
Method

LDA 90%

Seo et al. [32] Stress 2 33 SRI, SAM, Salivary
cortisol

Visual stimuli (un) pleasant
imag.

EEG, ECG, cortisol – No decision:
corr. analysis

–

Rahnuma et al. [57] Emotion 4 4 – IAPS emotion stimuli EEG – MLP 96.4%
Zhang et al. [59] Workload 2 16 STAI Cognitive tasks: visual

reaction, stroop, fast
counting, memory,. . .

EEG, EDA, HRV – LMUR EEG: 87.5%, EDA: 75%,
HRV: 62.5%

Healey et al. [50] Stress 3 – Questionnaire and a
score derived from
videos

Driving task EDA, ECG, EMG, Resp – LDA 100%, 94.7% and 97.4%
for low, medium and
high stress levels

De Santos Sierra et al.
[45]

Stress 2 80 (f) – Hyperventilation and Talk
Preparation

EDA, ECG – Fuzzy Logic,
GMM, kNN,
Discriminant
Anal., SVM

Fuzzy Logic: 99.5%
(Recall)

Seoane et al. [64] Stress 4 42 SAM, Profile of Mood
States

Videos, games, exercise EDA, ST, ECG, Resp, voice GA LDC ECG: 76.28%

Sharma and Gedeon
[51]

Stress 2 35 Survey Reading S/NS texts EDA, ECG, BP, eye gaze, PD GA ANN and SVM GA-SVM: 89%

Kocielnik et al. [38], Stress – 10 – – ST, EDA, accelerometer, ambient
illumination, calendar events

– – –

Zhai et al. [65], Stress 2 32 – Stroop PD, BVP, EDA and ST – Naïve Bayes, DT,
SVM

SVM: 90.1%

Maaoui et al. Emotion 6 10 SAM IAPS BVP, EMG, EDA, ST, Resp – Fisher
Discriminant
and SVM

SVM: 90% ind. models,
45% general model

Wijsman et al. [76] Stress 2 22 PSS and self-report
questionnaire

Calculation, logical and
memory tasks

EMG – No decision:
corr. analysis

–

Wei [77] Stress 2 1 – Tetris game EMG and Resp – Fisher
Discriminant

EMG: 97.8%, Resp:
86.7%

Shi et al. [79] Stress 2 22 EMA Public speaking, cold,
arithmetic

ECG, EDA, Resp, ST – SVM (linear and
RBF)

56% ind. models, 62%
general models
(precision)

Liao et al. [26] Stress – 5 – Math task, audio task Blink f., eye gaze, PD, head movement,
facial expression, ECG, ST, EDA, mouse
dynamics, error rates, response times

– No decision:
corr. analysis

–

Sakamoto et al. [85] Emotion – 6 Interviews Categorizing cognitive task PD, ECG – No decision:
corr. analysis

–

Ren et al. [86] Stress 2 31 Self-Assesment test Stroop EDA and PD – K⁄, MLP, Naïve
Bayes, RF, Jrip

Naïve Bayes and PD:
88.71%

Haak et al. [88] Stress – 1 – Car-driving simulation Eye blinks from EEG – No decision:
corr. analysis

–

Norzali et al. [72] Stress – 5 – Color word test Facial ST by TI, Blood Volume, BF – No decision, corr.
analysis

–

Levine et al. [75] Stress – – – Stroop, arithmetic TI – No decision:
corr. analysis

–
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Sharma et al. [14] Stress 2 35 Survey Watch S/NS videos TI, visual facial patterns GA SVM 86%
Chen et al. [90] Stress 2 21 Salivary cortisol, HR TSST Hyperspectral Imaging – Binary classifier Auto. threshold:

76.19%, Manual
threshold: 88.1%

Hayashi et al. [29] Stress 2 33 SSRS, VAS, CMI Emotional audio-visual
stimuli

fMRI – No decision, corr.
analysis

–

Hernandez et al. [37] Stress – 24 Survey of valence,
arousal and stress
levels, EDA,
accelerometer, ST

Text transcription,
expressive writing, mouse
clicking

Keyboard and mouse dynamics – No decision,
significance
levels

–

Salmeron-Majadas
et al. [98]

Emotion
(Valence)

2 17 SAM, description of
feelings

IAPS, arithmetic and logical
tasks

Keyboard and mouse dynamics – C4.5, Naïve
Bayes, Bagging,
RF, AdaBoost

RF and AdaBoost: 59%

Anrich et al. [101] Stress 2 28 (m) – MIST stress and cognitive
load tasks

Physiological signals, acceleration,
sitting pressure

– SOM 73.75%

McDuff et al. [30] Emotion 2 5 Self-reported valence,
arousal and
engagement levels

– Posture, facial expressions, EDA, speech,
head movements, calendar events, GPS,
file activity

– kNN 68%

Dinges et al. [103] Stress 2 60 Self-reports, salivary
cortisol measures and
HR signals

Workload and social
feedback

Facial expressions – HMM 75–88%

Das and Yamada [106] Stress – 105
expressions

A survey Posed expressions Facial expressions – Regression
analysis + math.
formula

–

Lu et al. [108], Stress 2 14 EDA Job interview and marketing
job

Voice from mobile phones,
accelerometer, GPS

– GMM General: 71.3% in.
66.6% out. Individual:
82.9% in. 77.9% out.

Demenko et al. [111] Stress 2 45 Manually labelled
arousal levels

Emergency phone call DB Voice from calls – LDA 84%

Kurniawan et al. [21] Stress 2 230
instances

– Stroop, TSST, TMCT Speech, facial expressions and EDA – K-means, GMM,
SVM

EDA: 80.72%, Speech:
92.6%, Both: 92.4%
(SVM)

Muaremi et al. [112] Stress 3 35 PANAS – Audio, acceleration, GPS, mobile phone
usage, calendar, ECG

Cross-corr.
+ SFS

Multinomial
Logistic
Regression

Phone: 55%, HRV: 59%,
Both: 61%

Sano et al. [66] Stress 2 18 PSS, PSQI, BFIPT – EDA, accelerometer, mobile phone usage SFFS, PCA Linear and RBF
SVM, kNN

75%

Eijckelhof et al. [11] Stress – 93 PSS, ERI, ‘‘the need for
control model”

– Computer usage patterns Corr. based Linear
Regression (corr.
analysis)

–

Suryadevara et al. [119] Emotion – – – – HR, ST, EDA, smart home behaviour
patterns

– – –

Saleem et al. [128] Stress – 512
threads
(5000
messages)

Manually labeled – Sentiment analysis from forum texts SVM, MLN
(Markov Logic
Networks)

MLN: 0.4515 AUC

Vizer et al. [36] Stress 3 24 Survey Likert Scale Arithmetics and memory
and physical stress

Keyboard dynamics and linguistic
features

DT DT, SVM, kNN,
AdaBoost, ANN

62.5% (physical), 75%
(cognitive)

Peternel et al. [16] Stress 7 – – – Location, activity, mobile phone use,
computer use, ambient audio

– HMM –

Sharma and Gedeon
[60]

Stress 2 (25 + 40)
65

Survey Likert Scale Interview & mediation
settings

EEG, EDA, TI GA SVM 98%

Li et al. [54] Stress 5 39 A questionnaire Workload, strange phone
calls, audio–videos,
threatening letters, exam
notification

ECG – HMM 96.4%
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Feature-level fusion and voting systems could be used for merging
data of different nature, allowing at the same time to reduce the
amount of information to work with. Furthermore, continuous
and unobtrusive monitoring can be assured thanks to devices of
low consumption in the form of wearables, smart devices and
ambient sensors, which send data via wireless connections to the
processing units. Offices are the perfect environment for such a
system, because they already have the necessary infrastructure
such as personal computers, which can be used for data processing,
and WiFi connections for creating the wireless sensor networks. AI
algorithms that allow the automatic pattern learning and detection
of anomalies are also available. One of the few issues that might
need improvements is the fact of dealing with multiple-users in
the same environment, which can be of great importance in offices.

Moreover, there are still some few open challenges concerning
all ubiquitous health systems which are delaying the adoption of
mobile health and telehealth systems in our society. These chal-
lenges include privacy, security and ethical issues, as well as finan-
cial affairs and the lack of reliability of some existing health
applications that must be overcome for these devices and systems
to be affordable for everyone. Interoperability standards should
also start being used by all of these systems, and the necessary leg-
islation must be defined in order to avoid both physical and
privacy-related security problems. Steps are already being taken
in order to overpass all these issues and promote the development
and widespread use of ubiquitous health systems which can arrive
in the very near future.

Therefore, future work must be carried out combining informa-
tion of different modalities and creating methods for obtaining this
information in a totally unobtrusive, but ubiquitous way, which is
necessary for a practical real-life monitoring. A framework that
aims at integrating all the existing technology that could aid in cre-
ating such a system has been proposed in this paper, as well as
reviewing the open challenges that must be overcome in order to
definitely be able to create and widespread use this kind of tech-
nology. Suggestions for correctly collecting and integrating the
data have been done, as well as other recommendations for over-
coming issues related to the great amount of data, to the ubiquity
and automaticity and to the interoperability between devices.

In conclusion, with a few further research, a system which
involves all the aforementioned characteristics and helps improv-
ing people’s life quality avoiding or greatly reducing the current
stress-related problems will be reached.
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