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Abstract—The rapid uptake of mobile devices and the rising
popularity of mobile applications and services pose unprece-
dented demands on mobile and wireless networking infrastruc-
ture. Upcoming 5G systems are evolving to support exploding
mobile traffic volumes, real-time extraction of fine-grained ana-
lytics, and agile management of network resources, so as to
maximize user experience. Fulfilling these tasks is challenging,
as mobile environments are increasingly complex, heterogeneous,
and evolving. One potential solution is to resort to advanced
machine learning techniques, in order to help manage the rise in
data volumes and algorithm-driven applications. The recent suc-
cess of deep learning underpins new and powerful tools that
tackle problems in this space. In this paper, we bridge the
gap between deep learning and mobile and wireless networking
research, by presenting a comprehensive survey of the crossovers
between the two areas. We first briefly introduce essential back-
ground and state-of-the-art in deep learning techniques with
potential applications to networking. We then discuss several
techniques and platforms that facilitate the efficient deployment
of deep learning onto mobile systems. Subsequently, we pro-
vide an encyclopedic review of mobile and wireless networking
research based on deep learning, which we categorize by different
domains. Drawing from our experience, we discuss how to tailor
deep learning to mobile environments. We complete this survey
by pinpointing current challenges and open future directions for
research.

Index Terms—Deep learning, machine learning, mobile
networking, wireless networking, mobile big data, 5G systems,
network management.

I. INTRODUCTION

INTERNET connected mobile devices are penetrating every
aspect of individuals’ life, work, and entertainment. The

increasing number of smartphones and the emergence of ever-
more diverse applications trigger a surge in mobile data traffic.
Indeed, the latest industry forecasts indicate that the annual
worldwide IP traffic consumption will reach 3.3 zettabytes
(1015 MB) by 2021, with smartphone traffic exceeding PC
traffic by the same year [1]. Given the shift in user pref-
erence towards wireless connectivity, current mobile infras-
tructure faces great capacity demands. In response to this
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increasing demand, early efforts propose to agilely provi-
sion resources [2] and tackle mobility management distribu-
tively [3]. In the long run, however, Internet Service Providers
(ISPs) must develop intelligent heterogeneous architectures
and tools that can spawn the 5th generation of mobile systems
(5G) and gradually meet more stringent end-user application
requirements [4], [5].

The growing diversity and complexity of mobile network
architectures has made monitoring and managing the multi-
tude of network elements intractable. Therefore, embedding
versatile machine intelligence into future mobile networks is
drawing unparalleled research interest [6], [7]. This trend is
reflected in machine learning (ML) based solutions to prob-
lems ranging from radio access technology (RAT) selection [8]
to malware detection [9], as well as the development of
networked systems that support machine learning practices
(e.g., [10] and [11]). ML enables systematic mining of valu-
able information from traffic data and automatically uncover
correlations that would otherwise have been too complex to
extract by human experts [12]. As the flagship of machine
learning, deep learning has achieved remarkable performance
in areas such as computer vision [13] and natural language
processing (NLP) [14]. Networking researchers are also begin-
ning to recognize the power and importance of deep learning,
and are exploring its potential to solve problems specific to
the mobile networking domain [15], [16].

Embedding deep learning into the 5G mobile and wire-
less networks is well justified. In particular, data generated
by mobile environments are increasingly heterogeneous, as
these are usually collected from various sources, have dif-
ferent formats, and exhibit complex correlations [17]. As a
consequence, a range of specific problems become too dif-
ficult or impractical for traditional machine learning tools
(e.g., shallow neural networks). This is because (i) their
performance does not improve if provided with more data [18]
and (ii) they cannot handle highly dimensional state/action
spaces in control problems [19]. In contrast, big data fuels
the performance of deep learning, as it eliminates domain
expertise and instead employs hierarchical feature extraction.
In essence this means information can be distilled effi-
ciently and increasingly abstract correlations can be obtained
from the data, while reducing the pre-processing effort.
Graphics Processing Unit (GPU)-based parallel computing
further enables deep learning to make inferences within
milliseconds. This facilitates network analysis and manage-
ment with high accuracy and in a timely manner, over-
coming the run-time limitations of traditional mathematical
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techniques (e.g., convex optimization, game theory, meta
heuristics).

Despite growing interest in deep learning in the mobile
networking domain, existing contributions are scattered across
different research areas and a comprehensive survey is lacking.
This article fills this gap between deep learning and mobile
and wireless networking, by presenting an up-to-date survey of
research that lies at the intersection between these two fields.
Beyond reviewing the most relevant literature, we discuss
the key pros and cons of various deep learning architectures,
and outline deep learning model selection strategies, in view
of solving mobile networking problems. We further investi-
gate methods that tailor deep learning to individual mobile
networking tasks, to achieve the best performance in com-
plex environments. We wrap up this paper by pinpointing
future research directions and important problems that remain
unsolved and are worth pursing with deep neural networks.
Our ultimate goal is to provide a definite guide for networking
researchers and practitioners, who intend to employ deep
learning to solve problems of interest.

Survey Organization: We structure this article in a top-down
manner, as shown in Figure 1. We begin by discussing work
that gives a high-level overview of deep learning, future mobile
networks, and networking applications built using deep learn-
ing, which help define the scope and contributions of this paper
(Section II). Since deep learning techniques are relatively new
in the mobile networking community, we provide a basic deep
learning background in Section III, highlighting immediate
advantages in addressing mobile networking problems. There
exist many factors that enable implementing deep learning
for mobile networking applications (including dedicated deep
learning libraries, optimization algorithms, etc.). We discuss
these enablers in Section IV, aiming to help mobile network
researchers and engineers in choosing the right software and
hardware platforms for their deep learning deployments.

In Section V, we introduce and compare state-of-the-art
deep learning models and provide guidelines for model selec-
tion toward solving networking problems. In Section VI
we review recent deep learning applications to mobile and
wireless networking, which we group by different scenarios
ranging from mobile traffic analytics to security, and emerg-
ing applications. We then discuss how to tailor deep learning
models to mobile networking problems (Section VII) and con-
clude this article with a brief discussion of open challenges,
with a view to future research directions (Section VIII).1

II. RELATED HIGH-LEVEL ARTICLES AND

THE SCOPE OF THIS SURVEY

Mobile networking and deep learning problems have been
researched mostly independently. Only recently crossovers
between the two areas have emerged. Several notable works
paint a comprehensives picture of the deep learning and/or
mobile networking research landscape. We categorize these
works into (i) pure overviews of deep learning techniques,
(ii) reviews of analyses and management techniques in modern
mobile networks, and (iii) reviews of works at the intersection

1We list the abbreviations used throughout this paper in Table I.

TABLE I
LIST OF ABBREVIATIONS IN ALPHABETICAL ORDER

between deep learning and computer networking. We summa-
rize these earlier efforts in Table II and in this section discuss
the most representative publications in each class.
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Fig. 1. Diagramatic view of the organization of this survey.

A. Overviews of Deep Learning and Its Applications

The era of big data is triggering wide interest in deep
learning across different research disciplines [28]–[31] and
a growing number of surveys and tutorials are emerging
(e.g., [23] and [24]). LeCun et al. [20] give a milestone
overview of deep learning, introduce several popular mod-
els, and look ahead at the potential of deep neural networks.
Schmidhuber [21] undertakes an encyclopedic survey of deep
learning, likely the most comprehensive thus far, covering the
evolution, methods, applications, and open research issues.
Liu et al. [22] summarize the underlying principles of several
deep learning models, and review deep learning developments
in selected applications, such as speech processing, pattern
recognition, and computer vision.

Arulkumaran et al. [26] present several architectures and
core algorithms for deep reinforcement learning, including
deep Q-networks, trust region policy optimization, and asyn-
chronous advantage actor-critic. Their survey highlights the

remarkable performance of deep neural networks in differ-
ent control problem (e.g., video gaming, Go board game
play, etc.). Similarly, deep reinforcement learning has also
been surveyed in [77], where Li shed more light on appli-
cations. Zhang et al. survey developments in deep learning
for recommender systems [32], which have potential to play
an important role in mobile advertising. As deep learning
becomes increasingly popular, Goodfellow et al. [18] provide
a comprehensive tutorial of deep learning in a book that cov-
ers prerequisite knowledge, underlying principles, and popular
applications.

B. Surveys on Future Mobile Networks

The emerging 5G mobile networks incorporate a host
of new techniques to overcome the performance limita-
tions of current deployments and meet new application
requirements. Progress to date in this space has been sum-
marized through surveys, tutorials, and magazine papers
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TABLE II
SUMMARY OF EXISTING SURVEYS, MAGAZINE PAPERS, AND BOOKS RELATED TO DEEP LEARNING AND MOBILE NETWORKING. THE SYMBOL

� INDICATES A PUBLICATION IS IN THE SCOPE OF A DOMAIN; ✗ MARKS PAPERS THAT DO NOT DIRECTLY COVER THAT AREA, BUT FROM WHICH

READERS MAY RETRIEVE SOME RELATED INSIGHTS. PUBLICATIONS RELATED TO BOTH DEEP LEARNING AND MOBILE NETWORKS ARE SHADED

(e.g., [4], [5], [38], [39], and [47]). Andrews et al. [38] high-
light the differences between 5G and prior mobile network
architectures, conduct a comprehensive review of 5G

techniques, and discuss research challenges facing future
developments. Agiwal et al. [4] review new architectures
for 5G networks, survey emerging wireless technologies,
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TABLE III
CONTINUED FROM TABLE II

and point out research problems that remain unsolved.
Gupta and Jha [5] also review existing work on 5G cellu-
lar network architectures, subsequently proposing a framework
that incorporates networking ingredients such as Device-to-
Device (D2D) communication, small cells, cloud computing,
and the IoT.

Intelligent mobile networking is becoming a popu-
lar research area and related work has been reviewed
in [7], [34], [37], [54], and [56]–[59]. Jiang et al. [7] dis-
cuss the potential of applying machine learning to 5G network
applications including massive MIMO and smart grids. This
work further identifies several research gaps between ML and
5G that remain unexplored. Li et al. [58] discuss opportuni-
ties and challenges of incorporating artificial intelligence (AI)
into future network architectures and highlight the significance
of AI in the 5G era. Klaine et al. [57] present several suc-
cessful ML practices in Self-Organizing Networks (SONs),
discuss the pros and cons of different algorithms, and identify
future research directions in this area. Potential exists to apply
AI and exploit big data for energy efficiency purposes [53].
Chen et al. [52] survey traffic offloading approaches in
wireless networks, and propose a novel reinforcement learn-
ing based solution. This opens a new research direction
toward embedding machine learning towards greening cellular
networks.

C. Deep Learning Driven Networking Applications

A growing number of papers survey recent works that
bring deep learning into the computer networking domain.
Alsheikh et al. [17] identify benefits and challenges of using
big data for mobile analytics and propose a Spark based deep
learning framework for this purpose. Wang and Jones [63]
discuss evaluation criteria, data streaming and deep learning
practices for network intrusion detection, pointing out research
challenges inherent to such applications. Zheng et al. [6] put
forward a big data-driven mobile network optimization frame-
work in 5G networks, to enhance QoE performance. More
recently, Fadlullah et al. [66] deliver a survey on the progress
of deep learning in a board range of areas, highlighting its
potential application to network traffic control systems. Their
work also highlights several unsolved research issues worthy
of future study.

Ahad et al. [68] introduce techniques, applications, and
guidelines on applying neural networks to wireless networking
problems. Despite several limitations of neural networks iden-
tified, this article focuses largely on old neural networks
models, ignoring recent progress in deep learning and suc-
cessful applications in current mobile networks. Lane and
Georgiev [74] investigate the suitability and benefits of
employing deep learning in mobile sensing, and emphasize
on the potential for accurate inference on mobile devices.
Ota et al. report novel deep learning applications in mobile
multimedia. Their survey covers state-of-the-art deep learn-
ing practices in mobile health and wellbeing, mobile security,
mobile ambient intelligence, language translation, and speech
recognition. Mohammadi et al. [67] survey recent deep learn-
ing techniques for Internet of Things (IoT) data analytics. They
overview comprehensively existing efforts that incorporate
deep learning into the IoT domain and shed light on current
research challenges and future directions. Mao et al. [69] focus
on deep learning in wireless networking. Their work sur-
veys state-of-the-art deep learning applications in wireless
networks, and discusses research challenges to be solved in
the future.

D. Our Scope

The objective of this survey is to provide a comprehensive
view on state-of-the-art deep learning practices in the mobile
networking area. By this we aim to answer the following key
questions:

1) Why is deep learning promising for solving mobile
networking problems?

2) What are the cutting-edge deep learning models relevant
to mobile and wireless networking?

3) What are the most recent successful deep learning
applications in the mobile networking domain?

4) How can researchers tailor deep learning to specific
mobile networking problems?

5) Which are the most important and promising directions
worthy of further study?

The research papers and books we mentioned previously
only partially answer these questions. This article goes beyond
these previous works and specifically focuses on the crossovers
between deep learning and mobile networking. We cover a
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range of neural network (NN) structures that are increas-
ingly important and have not been explicitly discussed in
earlier tutorials, e.g., [78]. This includes auto-encoders and
Generative Adversarial Networks. Unlike such existing tuto-
rials, we also review open-source libraries for deploying and
training neural networks, a range of optimization algorithms,
and the parallelization of neural networks models and train-
ing across large numbers of mobile devices. We also review
applications not looked at in other related surveys, including
traffic/user analytics, security and privacy, mobile health, etc.

While our main scope remains the mobile networking
domain, for completeness we also discuss deep learning appli-
cations to wireless networks, and identify emerging application
domains intimately connected to these areas. We differentiate
between mobile networking, which refers to scenarios where
devices are portable, battery powered, potentially wearable,
and routinely connected to cellular infrastructure, and wire-
less networking, where devices are mostly fixed, and part of
a distributed infrastructure (including WLANs and WSNs),
and serve a single application. Overall, our paper distinguishes
itself from earlier surveys from the following perspectives:

(i) We particularly focus on deep learning applications
for mobile network analysis and management, instead
of broadly discussing deep learning methods (as, e.g.,
in [20] and [21]) or centering on a single application
domain, e.g., mobile big data analysis with a specific
platform [17].

(ii) We discuss cutting-edge deep learning techniques from
the perspective of mobile networks (e.g., [79] and [80]),
focusing on their applicability to this area, whilst giving
less attention to conventional deep learning models that
may be out-of-date.

(iii) We analyze similarities between existing non-
networking problems and those specific to mobile
networks; based on this analysis we provide insights
into both best deep learning architecture selection
strategies and adaptation approaches, so as to exploit
the characteristics of mobile networks for analysis and
management tasks.

To the best of our knowledge, this is the first time that
mobile network analysis and management are jointly reviewed
from a deep learning angle. We also provide for the first time
insights into how to tailor deep learning to mobile networking
problems.

III. DEEP LEARNING 101

We begin with a brief introduction to deep learning, high-
lighting the basic principles behind computation techniques in
this field, as well as key advantages that lead to their suc-
cess. Deep learning is essentially a sub-branch of ML, which
essentially enables an algorithm to make predictions, classifi-
cations, or decisions based on data, without being explicitly
programmed. Classic examples include linear regression, the
k-nearest neighbors classifier, and Q-learning. In contrast to
traditional ML tools that rely heavily on features defined by
domain experts, deep learning algorithms hierarchically extract
knowledge from raw data through multiple layers of nonlinear

Fig. 2. Venn diagram of the relation between deep learning, machine learning,
and AI. This survey particularly focuses on deep learning applications in
mobile and wireless networks.

processing units, in order to make predictions or take actions
according to some target objective. The most well-known deep
learning models are neural networks (NNs), but only NNs
that have a sufficient number of hidden layers (usually more
than one) can be regarded as ‘deep’ models. Besides deep
NNs, other architectures have multiple layers, such as deep
Gaussian processes [81], neural processes [82], and deep ran-
dom forests [83], and can also be regarded as deep learning
structures. The major benefit of deep learning over traditional
ML is thus the automatic feature extraction, by which expen-
sive hand-crafted feature engineering can be circumvented. We
illustrate the relation between deep learning, machine learning,
and artificial intelligence (AI) at a high level in Fig. 2.

In general, AI is a computation paradigm that endows
machines with intelligence, aiming to teach them how to work,
react, and learn like humans. Many techniques fall under this
broad umbrella, including machine learning, expert systems,
and evolutionary algorithms. Among these, machine learn-
ing enables the artificial processes to absorb knowledge from
data and make decisions without being explicitly programmed.
Machine learning algorithms are typically categorized into
supervised, unsupervised, and reinforcement learning. Deep
learning is a family of machine learning techniques that mimic
biological nervous systems and perform representation learn-
ing through multi-layer transformations, extending across all
three learning paradigms mentioned before. As deep learn-
ing has growing number of applications in mobile an wireless
networking, the crossovers between these domains make the
scope of this manuscript.

A. The Evolution of Deep Learning

The discipline traces its origins 75 years back, when
threshold logic was employed to produce a computational
model for neural networks [84]. However, it was only in
the late 1980s that neural networks (NNs) gained interest,
as Rumelhart et al. [85] showed that multi-layer NNs could
be trained effectively by back-propagating errors. LeCun and
Bengio subsequently proposed the now popular Convolutional
Neural Network (CNN) architecture [86], but progress stalled
due to computing power limitations of systems available at
that time. Following the recent success of GPUs, CNNs have
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Fig. 3. Illustration of the learning and inference processes of a 4-layer CNN.
w(·) denote weights of each hidden layer, σ(·) is an activation function, λ

refers to the learning rate, ∗(·) denotes the convolution operation and L(w)
is the loss function to be optimized.

been employed to dramatically reduce the error rate in the
Large Scale Visual Recognition Challenge (LSVRC) [87]. This
has drawn unprecedented interest in deep learning and break-
throughs continue to appear in a wide range of computer
science areas.

B. Fundamental Principles of Deep Learning

The key aim of deep neural networks is to approximate com-
plex functions through a composition of simple and predefined
operations of units (or neurons). Such an objective function
can be almost of any type, such as a mapping between images
and their class labels (classification), computing future stock
prices based on historical values (regression), or even deciding
the next optimal chess move given the current status on the
board (control). The operations performed are usually defined
by a weighted combination of a specific group of hidden units
with a non-linear activation function, depending on the struc-
ture of the model. Such operations along with the output units
are named “layers”. The neural network architecture resem-
bles the perception process in a brain, where a specific set of
units are activated given the current environment, influencing
the output of the neural network model.

C. Forward and Backward Propagation

In mathematical terms, the architecture of deep neural
networks is usually differentiable, therefore the weights (or
parameters) of the model can be learned by minimizing a
loss function using gradient descent methods through back-
propagation, following the fundamental chain rule [85]. We
illustrate the principles of the learning and inference processes
of a deep neural network in Fig. 3, where we use a two-
dimensional (2D) Convolutional Neural Network (CNN) as
an example.

Forward Propagation: The figure shows a CNN with 5 lay-
ers, i.e., an input layer (grey), 3 hidden layers (blue) and an
output layer (orange). In forward propagation, A 2D input x
(e.g., images) is first processed by a convolutional layer, which
perform the following convolutional operation:

h1 = σ(w1 ∗ x). (1)

Here h1 is the output of the first hidden layer, w1 is the con-
volutional filter and σ(·) is the activation function, aiming

TABLE IV
SUMMARY OF THE BENEFITS OF APPLYING DEEP LEARNING TO SOLVE

PROBLEMS IN MOBILE AND WIRELESS NETWORKS

at improving the non-linearity and representability of the
model. The output h1 is subsequently provided as input to and
processed by the following two convolutional layers, which
eventually produces a final output y. This could be for instance
vector of probabilities for different possible patterns (shapes)
discovered in the (image) input. To train the CNN appropri-
ately, one uses a loss function L(w) to measure the distance
between the output y and the ground truth y∗. The purpose
of training is to find the best weights w, so as to minimize
the loss function L(w). This can be achieved by the back
propagation through gradient descent.

Backward Propagation: During backward propagation, one
computes the gradient of the loss function L(w) over the
weight of the last hidden layer, and updates the weight by
computing:

w4 = w4 − λ
dL(w)
dw4

. (2)

Here λ denotes the learning rate, which controls the step size
of moving in the direction indicated by the gradient. The
same operation is performed for each weight, following the
chain rule. The process is repeated and eventually the gradient
descent will lead to a set w that minimizes the L(w).

For other NN structures, the training and inference processes
are similar. To help less expert readers we detail the principles
and computational details of various deep learning techniques
in Section V.

D. Advantages of Deep Learning in Mobile and Wireless
Networking

We recognize several benefits of employing deep learning
to address network engineering problems, as summarized in
Table IV. Specifically:

1) It is widely acknowledged that, while vital to the
performance of traditional ML algorithms, feature
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engineering is costly [88]. A key advantage of deep
learning is that it can automatically extract high-level
features from data that has complex structure and inner
correlations. The learning process does not need to be
designed by a human, which tremendously simplifies
prior feature handcrafting [20]. The importance of this is
amplified in the context of mobile networks, as mobile
data is usually generated by heterogeneous sources,
is often noisy, and exhibits non-trivial spatial/temporal
patterns [17], whose labeling would otherwise require
outstanding human effort.

2) Secondly, deep learning is capable of handling large
amounts of data. Mobile networks generate high vol-
umes of different types of data at fast pace. Training
traditional ML algorithms (e.g., Support Vector Machine
(SVM) [89] and Gaussian Process (GP) [90]) some-
times requires to store all the data in memory, which
is computationally infeasible under big data scenarios.
Furthermore, the performance of ML does not grow
significantly with large volumes of data and plateaus rel-
atively fast [18]. In contrast, Stochastic Gradient Descent
(SGD) employed to train NNs only requires sub-sets of
data at each training step, which guarantees deep learn-
ing’s scalability with big data. Deep neural networks
further benefit as training with big data prevents model
over-fitting.

3) Traditional supervised learning is only effective when
sufficient labeled data is available. However, most
current mobile systems generate unlabeled or semi-
labeled data [17]. Deep learning provides a variety
of methods that allow exploiting unlabeled data to
learn useful patterns in an unsupervised manner, e.g.,
Restricted Boltzmann Machine (RBM) [91], Generative
Adversarial Network (GAN) [92]. Applications include
clustering [93], data distributions approximation [92],
un/semi-supervised learning [94], [95], and one/zero
shot learning [96], [97], among others.

4) Compressive representations learned by deep neural
networks can be shared across different tasks, while
this is limited or difficult to achieve in other ML
paradigms (e.g., linear regression, random forest, etc.).
Therefore, a single model can be trained to ful-
fill multiple objectives, without requiring complete
model retraining for different tasks. We argue that
this is essential for mobile network engineering, as
it reduces computational and memory requirements of
mobile systems when performing multi-task learning
applications [98].

5) Deep learning is effective in handing geometric mobile
data [99], while this is a conundrum for other
ML approaches. Geometric data refers to multivari-
ate data represented by coordinates, topology, metrics
and order [100]. Mobile data, such as mobile user
location and network connectivity can be naturally repre-
sented by point clouds and graphs, which have important
geometric properties. These data can be effectively mod-
elled by dedicated deep learning architectures, such as
PointNet++ [101] and Graph CNN [102]. Employing

Fig. 4. An example of an adversarial attack on deep learning.

these architectures has great potential to revolutionize
the geometric mobile data analysis [103].

E. Limitations of Deep Learning in Mobile and Wireless
Networking

Although deep learning has unique advantages when
addressing mobile network problems, it also has several short-
comings, which partially restricts its applicability in this
domain. Specifically,

1) In general, deep learning (including deep reinforce-
ment learning) is vulnerable to adversarial exam-
ples [104], [105]. These refer to artifact inputs that are
intentionally designed by an attacker to fool machine
learning models into making mistakes [104]. While it
is difficult to distinguish such samples from genuine
ones, they can trigger mis-adjustments of a model with
high likelihood. We illustrate an example of such an
adversarial attack in Fig. 4. Deep learning, especially
CNNs are vulnerable to these types of attacks. This may
also affect the applicability of deep learning in mobile
systems. For instance, hackers may exploit this vulner-
ability and construct cyber attacks that subvert deep
learning based detectors [106]. Constructing deep mod-
els that are robust to adversarial examples is imperative,
but remains challenging.

2) Deep learning algorithms are largely black boxes and
have low interpretability. Their major breakthroughs
are in terms of accuracy, as they significantly improve
performance of many tasks in different areas. However,
although deep learning enables creating “machines” that
have high accuracy in specific tasks, we still have limited
knowledge as of why NNs make certain decisions. This
limits the applicability of deep learning, e.g., in network
economics. Therefore, businesses would rather continue
to employ statistical methods that have high inter-
pretability, whilst sacrificing on accuracy. Researchers
have recognized this problem and investing continu-
ous efforts to address this limitation of deep learning
(e.g., [107]–[109]).

3) Deep learning is heavily reliant on data, which some-
times can be more important than the model itself. Deep
models can further benefit from training data augmen-
tation [110]. This is indeed an opportunity for mobile
networking, as networks generates tremendous amounts
of data. However, data collection may be costly, and face
privacy concern, therefore it may be difficult to obtain
sufficient information for model training. In such sce-
narios, the benefits of employing deep learning may be
outweigth by the costs.
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TABLE V
SUMMARY OF TOOLS AND TECHNIQUES THAT ENABLE DEPLOYING DEEP LEARNING IN MOBILE SYSTEMS

4) Deep learning can be computationally demanding.
Advanced parallel computing (e.g., GPUs, high-
performance chips) fostered the development and popu-
larity of deep learning, yet deep learning also heavily
relies on these. Deep NNs usually require complex
structures to obtain satisfactory accuracy performance.
However, when deploying NNs on embedded and mobile
devices, energy and capability constraints have to be
considered. Very deep NNs may not be suitable for
such scenario and this would inevitably compromise
accuracy. Solutions are being developed to mitigate
this problem and we will dive deeper into these in
Sections IV and VII.

5) Deep neural networks usually have many hyper-
parameters and finding their optimal configuration can
be difficult. For a single convolutional layer, we need
to configure at least hyper-parameters for the number,
shape, stride, and dilation of filters, as well as for
the residual connections. The number of such hyper-
parameters grows exponentially with the depth of the
model and can highly influence its performance. Finding
a good set of hyper-parameters can be similar to look-
ing for a needle in a haystack. The AutoML platform2

provides a first solution to this problem, by employing
progressive neural architecture search [111]. This task,
however, remains costly.

To circumvent some of the aforementioned problems and
allow for effective deployment in mobile networks, deep learn-
ing requires certain system and software support. We review
and discuss such enablers in the next section.

IV. ENABLING DEEP LEARNING IN MOBILE NETWORKING

5G systems seek to provide high throughput and ultra-low
latency communication services, to improve users’ QoE [4].
Implementing deep learning to build intelligence into 5G

2AutoML – training high-quality custom machine learning
models with minimum effort and machine learning expertise.
https://cloud.google.com/automl/.

Fig. 5. Hierarchical view of deep learning enablers. Parallel computing
and hardware in fog computing lay foundations for deep learning. Distributed
machine learning systems can build upon them, to support large-scale deploy-
ment of deep learning. Deep learning libraries run at the software level, to
enable fast deep learning implementation. Higher-level optimizers are used to
train the NN, to fulfill specific objectives.

systems, so as to meet these objectives is expensive. This is
because powerful hardware and software is required to support
training and inference in complex settings. Fortunately, sev-
eral tools are emerging, which make deep learning in mobile
networks tangible; namely, (i) advanced parallel computing,
(ii) distributed machine learning systems, (iii) dedicated deep
learning libraries, (iv) fast optimization algorithms, and (v) fog
computing. These tools can be seen as forming a hierar-
chical structure, as illustrated in Fig. 5; synergies between
them exist that makes networking problem amenable to deep
learning based solutions. By employing these tools, once the
training is completed, inferences can be made within millisec-
ond timescales, as already reported by a number of papers
for a range of tasks (e.g., [112]–[114]). We summarize these
advances in Table V and review them in what follows.
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A. Advanced Parallel Computing

Compared to traditional machine learning models, deep
neural networks have significantly larger parameters spaces,
intermediate outputs, and number of gradient values. Each of
these need to be updated during every training step, requiring
powerful computation resources. The training and inference
processes involve huge amounts of matrix multiplications and
other operations, though they could be massively parallelized.
Traditional Central Processing Units (CPUs) have a limited
number of cores, thus they only support restricted computing
parallelism. Employing CPUs for deep learning implementa-
tions is highly inefficient and will not satisfy the low-latency
requirements of mobile systems.

Engineers address these issues by exploiting the power of
GPUs. GPUs were originally designed for high performance
video games and graphical rendering, but new techniques
such as Compute Unified Device Architecture (CUDA) [116]
and the CUDA Deep Neural Network library (cuDNN) [117]
developed by NVIDIA add flexibility to this type of hard-
ware, allowing users to customize their usage for specific
purposes. GPUs usually incorporate thousand of cores and
perform exceptionally in fast matrix multiplications required
for training neural networks. This provides higher memory
bandwidth over CPUs and dramatically speeds up the learn-
ing process. Recent advanced Tensor Processing Units (TPUs)
developed by Google even demonstrate 15-30× higher pro-
cessing speeds and 30-80× higher performance-per-watt, as
compared to CPUs and GPUs [115].

Diffractive neural networks (D2NNs) that completely rely
on light communication were recently introduced in [132], to
enable zero-consumption and zero-delay deep learning. The
D2NN is composed of several transmissive layers, where
points on these layers act as neurons in a NN. The structure
is trained to optimize the transmission/reflection coefficients,
which are equivalent to weights in a NN. Once trained, trans-
missive layers will be materialized via 3D printing and they
can subsequently be used for inference.

There are also a number of toolboxes that can assist the
computational optimization of deep learning on the server side.
Spring and Shrivastava [133] introduce a hashing based tech-
nique that substantially reduces computation requirements of
deep network implementations. Mirhoseini et al. employ a
reinforcement learning scheme to enable machines to learn
the optimal operation placement over mixture hardware for
deep neural networks. Their solution achieves up to 20%
faster computation speed than human experts’ designs of such
placements [134].

Importantly, these systems are easy to deploy, therefore
mobile network engineers do not need to rebuild mobile
servers from scratch to support deep learning computing. This
makes implementing deep learning in mobile systems feasible
and accelerates the processing of mobile data streams.

B. Distributed Machine Learning Systems

Mobile data is collected from heterogeneous sources (e.g.,
mobile devices, network probes, etc.), and stored in multiple
distributed data centers. With the increase of data volumes, it

is impractical to move all mobile data to a central data center
to run deep learning applications [10]. Running network-wide
deep learning algorithms would therefore require distributed
machine learning systems that support different interfaces
(e.g., operating systems, programming language, libraries), so
as to enable training and evaluation of deep models across
geographically distributed servers simultaneously, with high
efficiency and low overhead.

Deploying deep learning in a distributed fashion will
inevitably introduce several system-level problems, which
require satisfying the following properties.

Consistency – Guaranteeing that model parameters and
computational processes are consistent across all machines.

Fault tolerance – Effectively dealing with equipment break-
downs in large-scale distributed machine learning systems.

Communication – Optimizing communication between
nodes in a cluster and to avoid congestion.

Storage – Designing efficient storage mechanisms tailored
to different environments (e.g., distributed clusters, single
machines, GPUs), given I/O and data processing diversity.

Resource management – Assigning workloads and ensuring
that nodes work well-coordinated.

Programming model – Designing programming interfaces
to support multiple programming languages.

There exist several distributed machine learning systems
that facilitate deep learning in mobile networking applica-
tions. Kraska et al. [129] introduce a distributed system
named MLbase, which enables to intelligently specify, select,
optimize, and parallelize ML algorithms. Their system helps
non-experts deploy a wide range of ML methods, allowing
optimization and running ML applications across different
servers. Hsieh et al. [10] develop a geography-distributed ML
system called Gaia, which breaks the throughput bottleneck by
employing an advanced communication mechanism over Wide
Area Networks, while preserving the accuracy of ML algo-
rithms. Their proposal supports versatile ML interfaces (e.g.,
TensorFlow, Caffe), without requiring significant changes to
the ML algorithm itself. This system enables deployments of
complex deep learning applications over large-scale mobile
networks.

Xing et al. [135] develop a large-scale machine learning
platform to support big data applications. Their architecture
achieves efficient model and data parallelization, enabling
parameter state synchronization with low communication cost.
Xiao et al. [11] propose a distributed graph engine for ML
named TUX2, to support data layout optimization across
machines and reduce cross-machine communication. They
demonstrate remarkable performance in terms of runtime and
convergence on a large dataset with up to 64 billion edges.
Chilimbi et al. [130] build a distributed, efficient, and scalable
system named “Adam”3 tailored to the training of deep mod-
els. Their architecture demonstrates impressive performance
in terms of throughput, delay, and fault tolerance. Another
dedicated distributed deep learning system called GeePS is
developed by Cui et al. [131]. Their framework allows data

3Note that this is distinct from the Adam optimizer discussed in
Section IV-D.
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TABLE VI
SUMMARY AND COMPARISON OF MAINSTREAM DEEP LEARNING LIBRARIES

parallelization on distributed GPUs, and demonstrates higher
training throughput and faster convergence rate. More recently,
Moritz et al. [136] designed a dedicated distributed framework
named Ray to underpin reinforcement learning applications.
Their framework is supported by an dynamic task execu-
tion engine, which incorporates the actor and task-parallel
abstractions. They further introduce a bottom-up distributed
scheduling strategy and a dedicated state storage scheme, to
improve scalability and fault tolerance.

C. Dedicated Deep Learning Libraries

Building a deep learning model from scratch can prove
complicated to engineers, as this requires definitions of for-
warding behaviors and gradient propagation operations at each
layer, in addition to CUDA coding for GPU parallelization.
With the growing popularity of deep learning, several dedi-
cated libraries simplify this process. Most of these toolboxes
work with multiple programming languages, and are built
with GPU acceleration and automatic differentiation support.
This eliminates the need of hand-crafted definition of gradient
propagation. We summarize these libraries below, and give a
comparison among them in Table VI.

TensorFlow4 is a machine learning library developed by
Google [118]. It enables deploying computation graphs on
CPUs, GPUs, and even mobile devices [137], allowing ML
implementation on both single and distributed architectures.
This permits fast implementation of deep NNs on both cloud
and fog services. Although originally designed for ML and
deep neural networks applications, TensorFlow is also suit-
able for other data-driven research purposes. It provides

4TensorFlow, https://www.tensorflow.org/.

TensorBoard,5 a sophisticated visualization tool, to help users
understand model structures and data flows, and perform
debugging. Detailed documentation and tutorials for Python
exist, while other programming languages such as C, Java, and
Go are also supported. currently it is the most popular deep
learning library. Building upon TensorFlow, several dedicated
deep learning toolboxes were released to provide higher-level
programming interfaces, including Keras,6 Luminoth7 and
TensorLayer [138].

Theano is a Python library that allows to efficiently
define, optimize, and evaluate numerical computations involv-
ing multi-dimensional data [119]. It provides both GPU and
CPU modes, which enables users to tailor their programs to
individual machines. Learning Theano is however difficult and
building a NNs with it involves substantial compiling time.
Though Theano has a large user base and a support com-
munity, and at some stage was one of the most popular deep
learning tools, its popularity is decreasing rapidly, as core ideas
and attributes are absorbed by TensorFlow.

Caffe(2) is a dedicated deep learning framework developed
by Berkeley AI Research [120] and the latest version, Caffe2,8

was recently released by Facebook. Inheriting all the advan-
tages of the old version, Caffe2 has become a very flexible
framework that enables users to build their models efficiently.
It also allows to train neural networks on multiple GPUs within
distributed systems, and supports deep learning implementa-
tions on mobile operating systems, such as iOS and Android.

5TensorBoard – A visualization tool for TensorFlow,
https://www.tensorflow.org/guide/summaries_and_tensorboard.

6Keras deep learning library, https://github.com/fchollet/keras.
7Luminoth deep learning library for computer vision,

https://github.com/tryolabs/luminoth.
8Caffe2, https://caffe2.ai/.
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Therefore, it has the potential to play an important role in the
future mobile edge computing.

(Py)Torch is a scientific computing framework with wide
support for machine learning models and algorithms [121]. It
was originally developed in the Lua language, but developers
later released an improved Python version [139]. In essence
PyTorch is a lightweight toolbox that can run on embedded
systems such as smart phones, but lacks comprehensive docu-
mentations. Since building NNs in PyTorch is straightforward,
the popularity of this library is growing rapidly. It also offers
rich pretrained models and modules that are easy to reuse and
combine. PyTorch is now officially maintained by Facebook
and mainly employed for research purposes.

MXNET is a flexible and scalable deep learning library
that provides interfaces for multiple languages (e.g., C++,
Python, MATLAB, R, etc.) [140]. It supports different levels
of machine learning models, from logistic regression to GANs.
MXNET provides fast numerical computation for both single
machine and distributed ecosystems. It wraps workflows com-
monly used in deep learning into high-level functions, such
that standard neural networks can be easily constructed with-
out substantial coding effort. However, learning how to work
with this toolbox in short time frame is difficult, hence the
number of users who prefer this library is relatively small.
MXNET is the official deep learning framework in Amazon.

Although less popular, there are other excellent deep learn-
ing libraries, such as CNTK,9 Deeplearning4j,10 Blocks,11

Gluon,12 and Lasagne,13 which can also be employed in
mobile systems. Selecting among these varies according to
specific applications. For AI beginners who intend to employ
deep learning for the networking domain, PyTorch is a good
candidate, as it is easy to build neural networks in this envi-
ronment and the library is well optimized for GPUs. On the
other hand, if for people who pursue advanced operations
and large-scale implementation, Tensorflow might be a bet-
ter choice, as it is well-established, under good maintainance
and has standed the test of many Google industrial projects.

D. Fast Optimization Algorithms

The objective functions to be optimized in deep learn-
ing are usually complex, as they involve sums of extremely
large numbers of data-wise likelihood functions. As the depth
of the model increases, such functions usually exhibit high
non-convexity with multiple local minima, critical points, and
saddle points. In this case, conventional Stochastic Gradient
Descent (SGD) algorithms [141] are slow in terms of con-
vergence, which will restrict their applicability to latency
constrained mobile systems. To overcome this problem and
stabilize the optimization process, many algorithms evolve the
traditional SGD, allowing NN models to be trained faster for
mobile applications. We summarize the key principles behind

9MS Cognitive Toolkit, https://www.microsoft.com/en-us/cognitive-toolkit/.
10Deeplearning4j, http://deeplearning4j.org.
11Blocks, A Theano framework for building and training neural networks

https://github.com/mila-udem/blocks.
12Gluon, A deep learning library https://gluon.mxnet.io/.
13Lasagne, https://github.com/Lasagne.

these optimizers and make a comparison between them in
Table VII. We delve into the details of their operation next.

Fixed Learning Rate SGD Algorithms: Sutskever
et al. [126] introduce a variant of the SGD optimizer
with Nesterov’s momentum, which evaluates gradients after
the current velocity is applied. Their method demonstrates
faster convergence rate when optimizing convex functions.
Another approach is Adagrad, which performs adaptive learn-
ing to model parameters according to their update frequency.
This is suitable for handling sparse data and significantly
outperforms SGD in terms of robustness [127]. Adadelta
improves the traditional Adagrad algorithm, enabling it to
converge faster, and does not rely on a global learning
rate [142]. RMSprop is a popular SGD based method
introduced by G. Hinton. RMSprop divides the learning rate
by an exponential smoothing the average of gradients and
does not require one to set the learning rate for each training
step [141].

Adaptive Learning Rate SGD Algorithms: Kingma and
Ba [128] propose an adaptive learning rate optimizer named
Adam, which incorporates momentum by the first-order
moment of the gradient. This algorithm is fast in terms of
convergence, highly robust to model structures, and is consid-
ered as the first choice if one cannot decide what algorithm
to use. By incorporating the momentum into Adam, Nadam
applies stronger constraints to the gradients, which enables
faster convergence [143].

Other Optimizers: Andrychowicz et al. [144] suggest that
the optimization process can be even learned dynamically.
They pose the gradient descent as a trainable learning problem,
which demonstrates good generalization ability in neural
network training. Wen et al. [147] propose a training algorithm
tailored to distributed systems. They quantize float gradi-
ent values to {−1, 0 and +1} in the training processing,
which theoretically require 20 times less gradient commu-
nications between nodes. Szegedy et al. prove that such
gradient approximation mechanism allows the objective func-
tion to converge to optima with probability 1, where in their
experiments only a 2% accuracy loss is observed on aver-
age on GoogleLeNet [145] training. Zhou et al. [146] employ
a differential private mechanism to compare training and
validation gradients, to reuse samples and keep them
fresh. This can dramatically reduce overfitting during
training.

E. Fog Computing

The fog computing paradigm presents a new opportunity to
implement deep learning in mobile systems. Fog computing
refers to a set of techniques that permit deploying applica-
tions or data storage at the edge of networks [148], e.g., on
individual mobile devices. This reduces the communications
overhead, offloads data traffic, reduces user-side latency, and
lightens the sever-side computational burdens [149], [150]. A
formal definition of fog computing is given in [151], where
this is interpreted as ‘a huge number of heterogeneous (wire-
less and sometimes autonomous) ubiquitous and decentralized
devices [that] communicate and potentially cooperate among
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them and with the network to perform storage and process-
ing tasks without the intervention of third parties.’ To be more
concrete, it can refer to smart phones, wearables devices and
vehicles which store, analyze and exchange data, to offload
the burden from cloud and perform more delay-sensitive
tasks [152], [153]. Since fog computing involves deployment
at the edge, participating devices usually have limited comput-
ing resource and battery power. Therefore, special hardware
and software are required for deep learning implementation,
as we explain next.

Hardware: There exist several efforts that attempt to shift
deep learning computing from the cloud side to mobile
devices [154]. For example, Gokhale et al. [122] develop
a mobile coprocessor named neural network neXt (nn-X),
which accelerates the deep neural networks execution in
mobile devices, while retaining low energy consumption.
Bang et al. [155] introduce a low-power and programmable
deep learning processor to deploy mobile intelligence on
edge devices. Their hardware only consumes 288 μW but
achieves 374 GOPS/W efficiency. A Neurosynaptic Chip

called TrueNorth is proposed by IBM [156]. Their solu-
tion seeks to support computationally intensive applications
on embedded battery-powered mobile devices. Qualcomm
introduces a Snapdragon neural processing engine to enable
deep learning computational optimization tailored to mobile
devices.14 Their hardware allows developers to execute neu-
ral network models on Snapdragon 820 boards to serve a
variety of applications. In close collaboration with Google,
Movidius15 develops an embedded neural network computing
framework that allows user-customized deep learning deploy-
ments at the edge of mobile networks. Their products can
achieve satisfying runtime efficiency, while operating with
ultra-low power requirements. It further supports difference

14Qualcomm Helps Make Your Mobile Devices Smarter With
New Snapdragon Machine Learning Software Development Kit:
https://www.qualcomm.com/news/releases/2016/05/02/qualcomm-helps-
make-your-mobile-devices-smarter-new-snapdragon-machine.

15Movidius, an Intel company, provides cutting edge solutions for deploy-
ing deep learning and computer vision algorithms on ultra-low power devices.
https://www.movidius.com/.
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TABLE VIII
COMPARISON OF MOBILE DEEP LEARNING PLATFORM

frameworks, such as TensorFlow and Caffe, providing users
with flexibility in choosing among toolkits. More recently,
Huawei officially announced the Kirin 970 as a mobile AI
computing system on chip.16 Their innovative framework
incorporates dedicated Neural Processing Units (NPUs), which
dramatically accelerates neural network computing, enabling
classification of 2,000 images per second on mobile devices.

Software: Beyond these hardware advances, there are also
software platforms that seek to optimize deep learning on
mobile devices (e.g., [157]). We compare and summarize all
these platforms in Table VIII.17 In addition to the mobile ver-
sion of TensorFlow and Caffe, Tencent released a lightweight,
high-performance neural network inference framework tai-
lored to mobile platforms, which relies on CPU computing.18

This toolbox performs better than all known CPU-based open
source frameworks in terms of inference speed. Apple has
developed “Core ML”, a private ML framework to facilitate
mobile deep learning implementation on iOS 11.19 This lowers
the entry barrier for developers wishing to deploy ML models
on Apple equipment. Yao et al. develop a deep learning frame-
work called DeepSense dedicated to mobile sensing related
data processing, which provides a general machine learning
toolbox that accommodates a wide range of edge applica-
tions. It has moderate energy consumption and low latency,
thus being amenable to deployment on smartphones.

The techniques and toolboxes mentioned above make the
deployment of deep learning practices in mobile network
applications feasible. In what follows, we briefly introduce
several representative deep learning architectures and discuss
their applicability to mobile networking problems.

V. DEEP LEARNING: STATE-OF-THE-ART

Revisiting Fig. 2, machine learning methods can be natu-
rally categorized into three classes, namely supervised learn-
ing, unsupervised learning, and reinforcement learning. Deep
learning architectures have achieved remarkable performance
in all these areas. In this section, we introduce the key prin-
ciples underpinning several deep learning models and discuss
their largely unexplored potential to solve mobile networking
problems. Technical details of classical models are provided
to readers who seek to obtain a deeper understanding of

16Huawei announces the Kirin 970 – new flagship SoC with AI capabilities
http://www.androidauthority.com/huawei-announces-kirin-970-797788/.

17Adapted from https://mp.weixin.qq.com/s/3gTp1kqkiGwdq5olrpOvKw.
18ncnn is a high-performance neural network inference framework opti-

mized for the mobile platform, https://github.com/Tencent/ncnn.
19Core ML: Integrate machine learning models into your app,

https://developer.apple.com/documentation/coreml.

neural networks. The more experienced can continue read-
ing with Section VI. We illustrate and summarize the most
salient architectures that we present in Fig. 6 and Table IX,
respectively.

A. Multilayer Perceptron

The Multilayer Perceptrons (MLPs) is the initial Artificial
Neural Network (ANN) design, which consists of at least three
layers of operations [174]. Units in each layer are densely
connected, hence require to configure a substantial number of
weights. We show an MLP with two hidden layers in Fig. 6(a).
Note that usually only MLPs containing more than one hidden
layer are regarded as deep learning structures.

Given an input vector x, a standard MLP layer performs the
following operation:

y = σ(W · x + b). (3)

Here y denotes the output of the layer, W are the weights
and b the biases. σ(·) is an activation function, which aims
at improving the non-linearity of the model. Commonly used
activation function are the sigmoid,

sigmoid(x) =
1

1 + e−x ,

the Rectified Linear Unit (ReLU) [175],

ReLU(x) = max(x, 0),

tanh,

tanh(x) =
ex − e−x

ex + e−x ,

and the Scaled Exponential Linear Units (SELUs) [176],

SELU(x) = λ

{
x, if x > 0;
αex − α, if x ≤ 0,

where the parameters λ = 1.0507 and α = 1.6733 are fre-
quently used. In addition, the softmax function is typically
employed in the last layer when performing classification:

softmax(xi ) =
exi∑k

j=0 exk
,

where k is the number of labels involved in classification. Until
recently, sigmoid and tanh have been the activation func-
tions most widely used. However, they suffer from a known
gradient vanishing problem, which hinders gradient propaga-
tion through layers. Therefore these functions are increasingly
more often replaced by ReLU or SELU. SELU enables to nor-
malize the output of each layer, which dramatically accelerates
the training convergence, and can be viewed as a replacement
of Batch Normalization [177].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6. Typical structure and operation principles of MLP, RBM, AE, CNN, RNN, LSTM, GAN, and DRL. (a) Structure of an MLP with 2 hidden layers
(blue circles). (b) Graphical model and training process of an RBM. v and h denote visible and hidden variables, respectively. (c) Operating principle of an
auto-encoder, which seeks to reconstruct the input from the hidden layer. (d) Operating principle of a convolutional layer. (e) Recurrent layer – x1:t is the
input sequence, indexed by time t, st denotes the state vector and ht the hidden outputs. (f) The inner structure of an LSTM layer. (g) Underlying principle
of a generative adversarial network (GAN). (h) Typical deep reinforcement learning architecture. The agent is a neural network model that approximates the
required function.

The MLP can be employed for supervised, unsupervised,
and even reinforcement learning purposes. Although this struc-
ture was the most popular neural network in the past, its

popularity is decreasing because it entails high complexity
(fully-connected structure), modest performance, and low con-
vergence efficiency. MLPs are mostly used as a baseline or
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TABLE IX
SUMMARY OF DIFFERENT DEEP LEARNING ARCHITECTURES. GAN AND DRL ARE SHADED, SINCE THEY ARE BUILT UPON OTHER MODELS

integrated into more complex architectures (e.g., the final layer
in CNNs used for classification). Building an MLP is straight-
forward, and it can be employed, e.g., to assist with feature
extraction in models built for specific objectives in mobile
network applications. The advanced Adaptive learning of neu-
ral Network (AdaNet) enables MLPs to dynamically train their
structures to adapt to the input [158]. This new architecture can
be potentially explored for analyzing continuously changing
mobile environments.

B. Boltzmann Machine

Restricted Boltzmann Machines (RBMs) [91] were origi-
nally designed for unsupervised learning purposes. They are
essentially a type of energy-based undirected graphical mod-
els, and include a visible layer and a hidden layer, and where
each unit can only assume binary values (i.e., 0 and 1). The
probabilities of these values are given by:

P
(
hj = 1|v)

=
1

1 + e−W·v+bj

P
(
vj = 1|h)

=
1

1 + e−WT·h+aj
,

where h, v are the hidden and visible units respectively, and
W are weights and a, b are biases. The visible units are con-
ditional independent to the hidden units, and vice versa. A
typical structure of an RBM is shown in Fig. 6(b). In general,
input data are assigned to visible units v. Hidden units h are
invisible and they fully connect to all v through weights W,
which is similar to a standard feed forward neural network.
However, unlike in MLPs where only the input vector can
affect the hidden units, with RBMs the state of v can affect
the state of h, and vice versa.

RBMs can be effectively trained using the contrastive
divergence algorithm [178] through multiple steps of Gibbs
sampling [179]. We illustrate the structure and the training pro-
cess of an RBM in Fig. 6(b). RBM-based models are usually
employed to initialize the weights of a neural network in more
recent applications. The pre-trained model can be subsequently
fine-tuned for supervised learning purposes using a standard
back-propagation algorithm. A stack of RBMs is called a Deep
Belief Network (DBN) [159], which performs layer-wise train-
ing and achieves superior performance as compared to MLPs
in many applications, including time series forecasting [180],
ratio matching [181], and speech recognition [182]. Such
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structures can be even extended to a convolutional architecture,
to learn hierarchical spatial representations [160].

C. Auto-Encoders

Auto-Encoders (AEs) are also designed for unsupervised
learning and attempt to copy inputs to outputs. The underlying
principle of an AE is shown in Fig. 6(c). AEs are frequently
used to learn compact representation of data for dimension
reduction [183]. Extended versions can be further employed to
initialize the weights of a deep architecture, e.g., the Denoising
Auto-Encoder (DAE) [161]), and generate virtual examples
from a target data distribution, e.g., Variational Auto-Encoders
(VAEs) [162].

A VAE typically comprises two neural networks – an
encoder and a decoder. The input of the encoder is a data
point x (e.g., images) and its functionality is to encode this
input into a latent representation space z. Let fΘ(z|x) be an
encoder parameterized by Θ and z is sampled from a Gaussian
distribution, the objective of the encoder is to output the mean
and variance of the Gaussian distribution. Similarly, denot-
ing gΩ(x|z) the decoder parameterized by Ω, this accepts the
latent representation z as input, and outputs the parameter of
the distribution of x. The objective of the VAE is to minimize
the reconstruction error of the data and the Kullback-Leibler
(KL) divergence between p(z) and fΘ(z|x). Once trained, the
VAE can generate new data point samples by (i) drawing
latent variables zi ∼ p(z) and (ii) drawing a new data point
xi ∼ p(x|z).

AEs can be employed to address network security problems,
as several research papers confirm their effectiveness in detect-
ing anomalies under different circumstances [184]–[186],
which we will further discuss in Section VI-H. The structures
of RBMs and AEs are based upon MLPs, CNNs or RNNs.
Their goals are similar, while their learning processes are dif-
ferent. Both can be exploited to extract patterns from unlabeled
mobile data, which may be subsequently employed for various
supervised learning tasks, e.g., routing [187], mobile activity
recognition [188], [189], periocular verification [190] and base
station user number prediction [191].

D. Convolutional Neural Network

Instead of employing full connections between layers,
Convolutional Neural Networks (CNNs or ConvNets) employ
a set of locally connected kernels (filters) to capture correla-
tions between different data regions. Mathematically, for each
location py of the output y, the standard convolution performs
the following operation:

y
(
py

)
=

∑
pG∈G

w(pG) · x(
py + pG

)
, (4)

where pG denotes all positions in the receptive field G of
the convolutional filter W, effectively representing the recep-
tive range of each neuron to inputs in a convolutional layer.
Here the weights W are shared across different locations of
the input map. We illustrate the operation of one 2D convolu-
tional layer in Fig. 6(d). Specifically, the inputs of a 2D CNN
layer are multiple 2D matrices with different channels (e.g., the

RGB representation of images). A convolutional layer employs
multiple filters shared across different locations, to “scan” the
inputs and produce output maps. In general, if the inputs and
outputs have M and N filters respectively, the convolutional
layer will require M × N filters to perform the convolution
operation.

CNNs improve traditional MLPs by leveraging three impor-
tant ideas, namely, (i) sparse interactions, (ii) parameter
sharing, and (iii) equivariant representations [18]. This reduces
the number of model parameters significantly and maintains
the affine invariance (i.e., recognition results are robust to the
affine transformation of objects). Specifically, The sparse inter-
actions imply that the weight kernel has smaller size than the
input. It performs moving filtering to produce outputs (with
roughly the same size as the inputs) for the current layer.
Parameter sharing refers to employing the same kernel to scan
the whole input map. This significantly reduces the number of
parameters needed, which mitigates the risk of over-fitting.
Equivariant representations indicate that convolution opera-
tions are invariant in terms of translation, scale, and shape.
This is particularly useful for image processing, since essen-
tial features may show up at different locations in the image,
with various affine patterns.

Owing to the properties mentioned above, CNNs
achieve remarkable performance in imaging applications.
Krizhevsky et al. [87] exploit a CNN to classify images on
the ImageNet dataset [192]. Their method reduces the top-5
error by 39.7% and revolutionizes the imaging classification
field. GoogLeNet [145] and ResNet [163] significantly
increase the depth of CNN structures, and propose incep-
tion and residual learning techniques to address problems
such as over-fitting and gradient vanishing introduced by
“depth”. Their structure is further improved by the Dense
Convolutional Network (DenseNet) [165], which reuses
feature maps from each layer, thereby achieving significant
accuracy improvements over other CNN based models, while
requiring fewer layers. CNNs have also been extended to
video applications. Ji et al. propose 3D convolutional neural
networks for video activity recognition [164], demonstrating
superior accuracy as compared to 2D CNN. More recent
research focuses on learning the shape of convolutional
kernels [193]–[195]. These dynamic architectures allow to
automatically focus on important regions in input maps. Such
properties are particularly important in analyzing large-scale
mobile environments exhibiting clustering behaviors (e.g.,
surge of mobile traffic associated with a popular event).

Given the high similarity between image and spatial mobile
data (e.g., mobile traffic snapshots, users’ mobility, etc.),
CNN-based models have huge potential for network-wide
mobile data analysis. This is a promising future direction that
we further discuss in Section VIII.

E. Recurrent Neural Network

Recurrent Neural Networks (RNNs) are designed for
modeling sequential data, where sequential correlations exist
between samples. At each time step, they produce output via
recurrent connections between hidden units [18], as shown in
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Fig. 6(e). Given a sequence of inputs x = {x1, x2, . . . , xT }, a
standard RNN performs the following operations:

st = σs(Wx xt + Wsst−1 + bs)
ht = σh(Whst + bh),

where st represents the state of the network at time t and it
constructs a memory unit for the network. Its values are com-
puted by a function of the input xt and previous state st−1. ht

is the output of the network at time t. In natural language pro-
cessing applications, this usually represents a language vector
and becomes the input at t + 1 after being processed by an
embedding layer. The weights Wx ,Wh and biases bs , bh are
shared across different temporal locations. This reduces the
model complexity and the degree of over-fitting.

The RNN is trained via a Backpropagation Through Time
(BPTT) algorithm. However, gradient vanishing and exploding
problems are frequently reported in traditional RNNs, which
make them particularly hard to train [196]. The Long Short-
Term Memory (LSTM) mitigates these issues by introducing
a set of “gates” [166], which has been proven successful in
many applications (e.g., speech recognition [197], text cate-
gorization [198], and wearable activity recognition [113]). A
standard LSTM performs the following operations:

it = σ(WxiXt + WhiHt−1 + bi ),
ft = σ

(
Wxf Xt + Whf Ht−1 + bf

)
,

Ct = ft � Ct−1 + it � tanh(WxcXt + WhcHt−1 + bc),
ot = σ(WxoXt + WhoHt−1 + bo),
ht = ot � tanh(Ct ).

Here, ‘�’ denotes the Hadamard product, Ct denotes the cell
outputs, ht are the hidden states, it , ft , and ot are input gates,
forget gates, and output gates, respectively. These gates mit-
igate the gradient issues and significantly improve the RNN.
We illustrated the structure of an LSTM in Fig. 6(f).

Sutskever et al. [167] introduce attention mechanisms to
RNNs, which achieves outstanding accuracy in tokenized
predictions. Xingjian et al. [168] substitute the dense matrix
multiplication in LSTMs with convolution operations, design-
ing a Convolutional Long Short-Term Memory (ConvLSTM).
Their proposal reduces the complexity of traditional LSTM
and demonstrates significantly lower prediction errors in
precipitation nowcasting (i.e., forecasting the volume of
precipitation).

Mobile networks produce massive sequential data from var-
ious sources, such as data traffic flows, and the evolution of
mobile network subscribers’ trajectories and application laten-
cies. Exploring the RNN family is promising to enhance the
analysis of time series data in mobile networks.

F. Generative Adversarial Network

The Generative Adversarial Network (GAN) is a framework
that trains generative models using the following adversarial
process. It simultaneously trains two models: a generative one
G that seeks to approximate the target data distribution from
training data, and a discriminative model D that estimates the
probability that a sample comes from the real training data

Algorithm 1 Typical GAN Training Algorithm
1: Inputs:

Batch size m.
The number of steps for the discriminator K.
Learning rate λ and an optimizer Opt(·)
Noise vector z ∼ pg (z ).
Target data set x ∼ pdata(x ).

2: Initialise:
Generative and discriminative models, G and
D , parameterized by ΘG and ΘD .

3: while ΘG and ΘD have not converged do
4: for k = 1 to K do
5: Sample m-element noise vector {z (1), · · · , z (m)}

from the noise prior pg (z )
6: Sample m data points {x (1), · · · , x (m)} from the

target data distribution pdata(x )
7: gD ← ΔΘD [ 1

m

∑m
i=1 log D(x (i))+

+ 1
m

∑m
i=1 log(1−D(G(z (i))))].

8: ΘD ← ΘD + λ ·Opt(ΘD , gD).
9: end for

10: Sample m-element noise vector {z (1), · · · , z (m)}
from the noise prior pg (z )

11: gG ← 1
m

∑m
i=1 log(1−D(G(z (i))))

12: ΘG ← ΘG − λ ·Opt(ΘG , gG ).
13: end while

rather than the output of G [92]. Both of G and D are nor-
mally neural networks. The training procedure for G aims to
maximize the probability of D making a mistake. The overall
objective is solving the following minimax problem [92]:

min
G

max
D

Ex∼Pr (x)[log D(x )] + Ez∼Pn (z)[log(1−D(G(z )))].

Algorithm 1 shows the typical routine used to train a simple
GAN. Both the generators and the discriminator are trained
iteratively while fixing the other one. Finally G can produce
data close to a target distribution (the same with training exam-
ples), if the model converges. We show the overall structure of
a GAN in Fig. 6(g). In practice, the generator G takes a noise
vector z as input, and generates an output G(z ) that follows
the target distribution. D will try to discriminate whether G(z )
is a real sample or an artifact [199]. This effectively constructs
a dynamic game, for which a Nash Equilibrium is reached if
both G and D become optimal, and G can produce lifelike data
that D can no longer discriminate, i.e., D(G(z )) = 0.5,∀z .

The training process of traditional GANs is highly sensitive
to model structures, learning rates, and other hyper-parameters.
Researchers are usually required to employ numerous ad
hoc ‘tricks’ to achieve convergence and improve the fidelity
of data generated. There exist several solutions for mitigat-
ing this problem, e.g., Wasserstein Generative Adversarial
Network (WGAN) [80], Loss-Sensitive Generative Adversarial
Network (LS-GAN) [169] and BigGAN [170], but research on
the theory of GANs remains shallow. Recent work confirms
that GANs can promote the performance of some supervised
tasks (e.g., super-resolution [200], object detection [201], and
face completion [202]) by minimizing the divergence between
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inferred and real data distributions. Exploiting the unsuper-
vised learning abilities of GANs is promising in terms of
generating synthetic mobile data for simulations, or assisting
specific supervised tasks in mobile network applications. This
becomes more important in tasks where appropriate datasets
are lacking, given that operators are generally reluctant to
share their network data.

G. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) refers to a set of meth-
ods that approximate value functions (deep Q learning) or
policy functions (policy gradient method) through deep neu-
ral networks. An agent (neural network) continuously interacts
with an environment and receives reward signals as feedback.
The agent selects an action at each step, which will change
the state of the environment. The training goal of the neu-
ral network is to optimize its parameters, such that it can
select actions that potentially lead to the best future return.
We illustrate this principle in Fig. 6(h). DRL is well-suited to
problems that have a huge number of possible states (i.e., envi-
ronments are high-dimensional). Representative DRL methods
include Deep Q-Networks (DQNs) [19], deep policy gradient
methods [171], Asynchronous Advantage Actor-Critic [79],
Rainbow [172] and Distributed Proximal Policy Optimization
(DPPO) [173]. These perform remarkably in AI gaming (e.g.,
Gym20), robotics, and autonomous driving [204]–[207], and
have made inspiring deep learning breakthroughs recently.

In particular, the DQN [19] is first proposed by DeepMind
to play Atari video games. However, traditional DQN requires
several important adjustments to work well. The A3C [79]
employs an actor-critic mechanism, where the actor selects
the action given the state of the environment, and the critic
estimates the value given the state and the action, then
delivers feedback to the actor. The A3C deploys different
actors and critics on different threads of a CPU to break
the dependency of data. This significantly improves train-
ing convergence, enabling fast training of DRL agents on
CPUs. Rainbow [172] combines different variants of DQNs,
and discovers that these are complementary to some extent.
This insight improved performance in many Atari games.
To solve the step size problem in policy gradients methods,
Schulman et al. [173] propose a Distributed Proximal Policy
Optimization (DPPO) method to constrain the update step of
new policies, and implement this on multi-threaded CPUs in a
distributed manner. Based on this method, an agent developed
by OpenAI defeated a human expert in Dota2 team in a 5v5
match.21 Recent DRL method also conquers a more complex
real-time multi-agent game StarCraft II.22 In [208], DeepMind
develops an game agent based on supervised learning and
DRL named AlphaStar, beating one of the world’s strongest
professional StarCraft players by 5-0.

20Gym is a toolkit for developing and comparing reinforcement learning
algorithms. It supports teaching agents everything from walking to playing
games like Pong or Pinball. In combination with the NS3 simulator Gym
becomes applicable to networking research [203] https://gym.openai.com/.

21Dota2 is a popular multiplayer online battle arena video game.
22StarCraft II is a popular multi-agent real-time strategy game.

Many mobile networking problems can be formulated as
Markov Decision Processes (MDPs), where reinforcement
learning can play an important role (e.g., base station on-
off switching strategies [209], routing [210], and adaptive
tracking control [211]). Some of these problems nevertheless
involve high-dimensional inputs, which limits the applica-
bility of traditional reinforcement learning algorithms. DRL
techniques broaden the ability of traditional reinforcement
learning algorithms to handle high dimensionality, in scenar-
ios previously considered intractable. Employing DRL is thus
promising to address network management and control prob-
lems under complex, changeable, and heterogeneous mobile
environments. We further discuss this potential in Section VIII.

VI. DEEP LEARNING DRIVEN MOBILE

AND WIRELESS NETWORKS

Deep learning has a wide range of applications in mobile
and wireless networks. In what follows, we present the
most important research contributions across different mobile
networking areas and compare their design and principles. In
particular, we first discuss a key prerequisite, that of mobile
big data, then organize the review of relevant works into nine
subsections, focusing on specific domains where deep learning
has made advances. Specifically,

1) Deep Learning Driven Network-Level Mobile Data
Analysis focuses on deep learning applications built on
mobile big data collected within the network, including
network prediction, traffic classification, and Call Detail
Record (CDR) mining.

2) Deep Learning Driven App-Level Mobile Data Analysis
shifts the attention towards mobile data analytics on edge
devices.

3) Deep Learning Driven User Mobility Analysis sheds
light on the benefits of employing deep neural networks
to understand the movement patterns of mobile users,
either at group or individual levels.

4) Deep Learning Driven User Localization reviews lit-
erature that employ deep neural networks to localize
users in indoor or outdoor environments, based on dif-
ferent signals received from mobile devices or wireless
channels.

5) Deep Learning Driven Wireless Sensor Networks dis-
cusses important work on deep learning applications in
WSNs from four different perspectives, namely central-
ized vs. decentralized sensing, WSN data analysis, WSN
localization and other applications.

6) Deep Learning Driven Network Control investigate the
usage of deep reinforcement learning and deep imitation
learning on network optimization, routing, scheduling,
resource allocation, and radio control.

7) Deep Learning Driven Network Security presents work
that leverages deep learning to improve network security,
which we cluster by focus as infrastructure, software,
and privacy related.

8) Deep Learning Driven Signal Processing scrutinizes
physical layer aspects that benefit from deep learning
and reviews relevant work on signal processing.
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Fig. 7. Classification of the literature reviewed in Section VI.

9) Emerging Deep Learning Driven Mobile Network
Application warps up this section, presenting other
interesting deep learning applications in mobile
networking.

For each domain, we summarize work broadly in tabular form,
providing readers with a general picture of individual topics.
Most important works in each domain are discussed in more
details in text. Lessons learned are also discussed at the end
of each subsection. We give a diagramatic view of the topics
dealt with by the literature reviewed in this section in Fig. 7.

A. Mobile Big Data as a Prerequisite

The development of mobile technology (e.g., smartphones,
augmented reality, etc.) are forcing mobile operators to evolve
mobile network infrastructures. As a consequence, both the
cloud and edge side of mobile networks are becoming increas-
ingly sophisticated to cater for users who produce and con-
sume huge amounts of mobile data daily. These data can
be either generated by the sensors of mobile devices that
record individual user behaviors, or from the mobile network
infrastructure, which reflects dynamics in urban environments.
Appropriately mining these data can benefit multidisciplinary
research fields and the industry in areas such mobile network
management, social analysis, public transportation, personal
services provision, and so on [36]. Network operators, how-
ever, could become overwhelmed when managing and ana-
lyzing massive amounts of heterogeneous mobile data [466].
Deep learning is probably the most powerful methodology
that can overcoming this burden. We begin therefore by intro-
ducing characteristics of mobile big data, then present a

TABLE X
THE TAXONOMY OF MOBILE BIG DATA

holistic review of deep learning driven mobile data analysis
research.

Yazti and Krishnaswamy [467] propose to categorize mobile
data into two groups, namely network-level data and app-level
data. The key difference between them is that in the former
data is usually collected by the edge mobile devices, while
in the latter obtained throughout network infrastructure. We
summarize these two types of data and their information com-
prised in Table X. Before delving into mobile data analytics,
we illustrate the typical data collection process in Figure 9.

Network-level mobile data generated by the networking
infrastructure not only deliver a global view of mobile network
performance (e.g., throughput, end-to-end delay, jitter, etc.),
but also log individual session times, communication types,
sender and receiver information, through Call Detail Records
(CDRs). Network-level data usually exhibit significant spatio-
temporal variations resulting from users’ behaviors [468],
which can be utilized for network diagnosis and manage-
ment, user mobility analysis and public transportation plan-
ning [218]. Some network-level data (e.g., mobile traffic
snapshots) can be viewed as pictures taken by ‘panoramic
cameras’, which provide a city-scale sensing system for urban
sensing.

On the other hand, App-level data is directly recorded by
sensors or mobile applications installed in various mobile
devices. These data are frequently collected through crowd-
sourcing schemes from heterogeneous sources, such as
Global Positioning Systems (GPS), mobile cameras and video
recorders, and portable medical monitors. Mobile devices act
as sensor hubs, which are responsible for data gathering and
preprocessing, and subsequently distributing such data to spe-
cific locations, as required [36]. We show a typical app-level
data processing system in Fig. 8. App-level mobile data is gen-
erated and collected by a Software Development Kit (SDK)
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Fig. 8. Typical pipeline of an app-level mobile data processing system.

installed on mobile devices. After pre-processing and load-
balancing (e.g., Nginx23), Such data is subsequently processed
by real-time collection and computing services (e.g., Storm,24

Kafka,25 HBase,26 Redis,27 etc.) as required. Further offline
storage and computing with mobile data can be performed
with various tools, such as Hadoop Distribute File System
(HDFS),28 Python, Mahout,29 Pig,30 or Oozie.31 The raw data
and analysis results will be further transferred to databases
(e.g., MySQL32) Business Intelligence – BI (e.g., Online

23Nginx is an HTTP and reverse proxy server, a mail proxy server, and a
generic TCP/UDP proxy server, https://nginx.org/en/.

24Storm is a free and open-source distributed real-time computation system,
http://storm.apache.org/.

25Kafka is used for building real-time data pipelines and streaming apps,
https://kafka.apache.org/.

26Apache HBase is the Hadoop database, a distributed, scalable, big data
store, https://hbase.apache.org/.

27Redis is an open source, in-memory data structure store, used as a
database, cache and message broker, https://redis.io/.

28The Hadoop Distributed File System (HDFS) is a dis-
tributed file system designed to run on commodity hardware,
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

29Apache Mahout is a distributed linear algebra framework,
https://mahout.apache.org/.

30Apache Pig is a high-level platform for creating programs that run on
Apache Hadoop, https://pig.apache.org/.

31Oozie is a workflow scheduler system to manage Apache Hadoop jobs,
http://oozie.apache.org/.

32MySQL is the open source database, https://www.oracle.com/
technetwork/database/mysql/index.html.

Analytical Processing – OLAP33), and data warehousing (e.g.,
Hive34). Among these, the algorithms container is the core of
the entire system as it connects to front-end access and fog
computing, real-time collection and computing, and offline
computing and analysis modules, while it links directly to
mobile applications, such as mobile healthcare, pattern recog-
nition, and advertising platforms. Deep learning logic can be
placed within the algorithms container.

App-level data may directly or indirectly reflect users’
behaviors, such as mobility, preferences, and social links [61].
Analyzing app-level data from individuals can help recon-
structing one’s personality and preferences, which can be
used in recommender systems and users targeted advertising.
Some of these data comprise explicit information about indi-
viduals’ identities. Inappropriate sharing and use can raise
significant privacy issues. Therefore, extracting useful pat-
terns from multi-modal sensing devices without compromising
user’s privacy remains a challenging endeavor.

Compared to traditional data analysis techniques, deep
learning embraces several unique features to address the
aforementioned challenges [17]. Namely:

1) Deep learning achieves remarkable performance in
various data analysis tasks, on both structured and

33OLAP is an approach to answer multi-dimensional analytical queries
swiftly in computing, and is part of the broader category of business
intelligence.

34The Apache Hive is a data warehouse software, https://hive.apache.org/.
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Fig. 9. Illustration of the mobile data collection process in cellular, WiFi
and wireless sensor networks. BSC: Base Station Controller; RNC: Radio
Network Controller.

unstructured data. Some types of mobile data can be
represented as image-like (e.g., [218]) or sequential
data [226].

2) Deep learning performs remarkably well in feature
extraction from raw data. This saves tremendous effort
of hand-crafted feature engineering, which allows spend-
ing more time on model design and less on sorting
through the data itself.

3) Deep learning offers excellent tools (e.g., RBM, AE,
GAN) for handing unlabeled data, which is common in
mobile network logs.

4) Multi-modal deep learning allows to learn features over
multiple modalities [469], which makes it powerful
in modeling with data collected from heterogeneous
sensors and data sources.

These advantages make deep learning as a powerful tool for
mobile data analysis.

B. Deep Learning Driven Network-Level Mobile Data
Analysis

Network-level mobile data refers broadly to logs recorded
by Internet service providers, including infrastructure

metadata, network performance indicators and call detail
records (CDRs) (see Table XI). The recent remarkable success
of deep learning ignites global interests in exploiting this
methodology for mobile network-level data analysis, so as to
optimize mobile networks configurations, thereby improving
end-uses’ QoE. These work can be categorized into four
types: network state prediction, network traffic classification,
CDR mining and radio analysis. In what follows, we review
work in these directions, which we first summarize and
compare in Table XI.

Network State Prediction refers to inferring mobile network
traffic or performance indicators, given historical measure-
ments or related data. Pierucci and Micheli [212] investigate
the relationship between key objective metrics and QoE. They
employ MLPs to predict users’ QoE in mobile communica-
tions, based on average user throughput, number of active
users in a cells, average data volume per user, and chan-
nel quality indicators, demonstrating high prediction accuracy.
Network traffic forecasting is another field where deep learning
is gaining importance. By leveraging sparse coding and max-
pooling, Gwon and Kung [213] develop a semi-supervised
deep learning model to classify received frame/packet patterns
and infer the original properties of flows in a WiFi network.
Their proposal demonstrates superior performance over tradi-
tional ML techniques. Nie et al. [214] investigate the traffic
demand patterns in wireless mesh network. They design a
DBN along with Gaussian models to precisely estimate traffic
distributions.

In addition to the above, several researchers employ deep
learning to forecast mobile traffic at city scale, by considering
spatio-temporal correlations of geographic mobile traffic mea-
surements. We illustrate the underlying principle in Fig. 10.
Wang et al.[216] propose to use an AE-based architecture and
LSTMs to model spatial and temporal correlations of mobile
traffic distribution, respectively. In particular, the authors use
a global and multiple local stacked AEs for spatial fea-
ture extraction, dimension reduction and training parallelism.
Compressed representations extracted are subsequently pro-
cessed by LSTMs, to perform final forecasting. Experiments
with a real-world dataset demonstrate superior performance
over SVM and the Autoregressive Integrated Moving Average
(ARIMA) model. The work in [217] extends mobile traf-
fic forecasting to long time frames. The authors combine
ConvLSTMs and 3D CNNs to construct spatio-temporal
neural networks that capture the complex spatio-temporal
features at city scale. They further introduce a fine-tuning
scheme and lightweight approach to blend predictions with
historical means, which significantly extends the length of
reliable prediction steps. Deep learning was also employed
in [78], [219], [235], and [470], where the authors employ
CNNs and LSTMs to perform mobile traffic forecasting. By
effectively extracting spatio-temporal features, their proposals
gain significantly higher accuracy than traditional approaches,
such as ARIMA. Wang et al. [103] represent spatio-temporal
dependencies in mobile traffic using graphs, and learn such
dependencies using Graph Neural Networks. Beyond the
accurate inference achieved in their study, this work also
demonstrates potential for precise social events inference.
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TABLE XI
A SUMMARY OF WORK ON NETWORK-LEVEL MOBILE DATA ANALYSIS

More recently, Zhang et al. [218] propose an original
Mobile Traffic Super-Resolution (MTSR) technique to infer
network-wide fine-grained mobile traffic consumption given

coarse-grained counterparts obtained by probing, thereby
reducing traffic measurement overheads. We illustrate the prin-
ciple of MTSR in Fig. 11. Inspired by image super-resolution
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Fig. 10. The underlying principle of city-scale mobile traffic forecasting. The
deep learning predictor takes as input a sequence of mobile traffic measure-
ments in a region (snapshots t − s to t), and forecasts how much mobile traffic
will be consumed in the same areas in the future t + 1 to t + n instances.

Fig. 11. Illustration of the image super-resolution (SR) principle (above) and
the mobile traffic super-resolution (MTSR) technique (below). Figure adapted
from [218].

techniques, they design a dedicated CNN with multiple skip
connections between layers, named deep zipper network, along
with a Generative Adversarial Network (GAN) to perform
precise MTSR and improve the fidelity of inferred traffic
snapshots. Experiments with a real-world dataset show that
this architecture can improve the granularity of mobile traffic
measurements over a city by up to 100×, while significantly
outperforming other interpolation techniques.

Traffic Classification is aimed at identifying specific appli-
cations or protocols among the traffic in networks. Wang [222]
recognizes the powerful feature learning ability of deep neu-
ral networks and uses a deep AE to identify protocols in
a TCP flow dataset, achieving excellent precision and recall
rates. Work in [223] proposes to use a 1D CNN for encrypted
traffic classification. The authors suggest that this struc-
ture works well for modeling sequential data and has lower
complexity, thus being promising in addressing the traffic clas-
sification problem. Similarly, Lotfollahi et al. [224] present
Deep Packet, which is based on a CNN, for encrypted traf-
fic classification. Their framework reduces the amount of
hand-crafted feature engineering and achieves great accu-
racy. An improved stacked AE is employed in [234], where
Li et al. incorporate Bayesian methods into AEs to enhance
the inference accuracy in network traffic classification. More

recently, Aceto et al. [471] employ MLPs, CNNs, and LSTMs
to perform encrypted mobile traffic classification, arguing that
deep NNs can automatically extract complex features present
in mobile traffic. As reflected by their results, deep learning
based solutions obtain superior accuracy over RFs in classify-
ing Android, IOS and Facebook traffic. CNNs have also been
used to identify malware traffic, where work in [225] regards
traffic data as images and unusual patterns that malware traf-
fic exhibit are classified by representation learning. Similar
work on mobile malware detection will be further discussed
in Section VI-H.

CDR Mining involves extracting knowledge from specific
instances of telecommunication transactions such as phone
number, cell ID, session start/end time, traffic consumption,
etc. Using deep learning to mine useful information from
CDR data can serve a variety of functions. For example,
Liang et al. [226] propose Mercury to estimate metro den-
sity from streaming CDR data, using RNNs. They take the
trajectory of a mobile phone user as a sequence of locations;
RNN-based models work well in handling such sequential
data. Likewise, Felbo et al. [227] use CDR data to study
demographics. They employ a CNN to predict the age and
gender of mobile users, demonstrating the superior accu-
racy of these structures over other ML tools. More recently,
Chen et al. [228] compare different ML models to predict
tourists’ next locations of visit by analyzing CDR data. Their
experiments suggest that RNN-based predictors significantly
outperform traditional ML methods, including Naive Bayes,
SVM, RF, and MLP.

Lessons Learned: Network-level mobile data, such as
mobile traffic, usually involves essential spatio-temporal corre-
lations. These correlations can be effectively learned by CNNs
and RNNs, as they are specialized in modeling spatial and tem-
poral data (e.g., images, traffic series). An important observa-
tion is that large-scale mobile network traffic can be processed
as sequential snapshots, as suggested in [217] and [218], which
resemble images and videos. Therefore, potential exists to
exploit image processing techniques for network-level analy-
sis. Techniques previously used for imaging usually, however,
cannot be directly employed with mobile data. Efforts must
be made to adapt them to the particularities of the mobile
networking domain. We expand on this future research direc-
tion in Section VIII-B.

On the other hand, although deep learning brings precision
in network-level mobile data analysis, making causal inference
remains challenging, due to limited model interpretability. For
example, a NN may predict there will be a traffic surge in a
certain region in the near future, but it is hard to explain why
this will happen and what triggers such a surge. Additional
efforts are required to enable explanation and confident deci-
sion making. At this stage, the community should rather use
deep learning algorithms as intelligent assistants that can make
accurate inferences and reduce human effort, instead of relying
exclusively on these.

C. Deep Learning Driven App-Level Mobile Data Analysis

Triggered by the increasing popularity of Internet of Things
(IoT), current mobile devices bundle increasing numbers of
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Fig. 12. Illustration of two deployment approaches for app-level mobile data analysis, namely cloud-based (left) and edge-based (right). The cloud-based
approach makes inference on clouds and send results to edge devices. On the contrary, the edge-based approach deploys models on edge devices which can
make local inference.

applications and sensors that can collect massive amounts of
app-level mobile data [472]. Employing artificial intelligence
to extract useful information from these data can extend the
capability of devices [75], [473], [474], thus greatly benefit-
ing users themselves, mobile operators, and indirectly device
manufacturers. Analysis of mobile data therefore becomes
an important and popular research direction in the mobile
networking domain. Nonetheless, mobile devices usually oper-
ate in noisy, uncertain and unstable environments, where their
users move fast and change their location and activity con-
texts frequently. As a result, app-level mobile data analysis
becomes difficult for traditional machine learning tools, which
performs relatively poorly. Advanced deep learning practices
provide a powerful solution for app-level data mining, as
they demonstrate better precision and higher robustness in IoT
applications [475].

There exist two approaches to app-level mobile data anal-
ysis, namely (i) cloud-based computing and (ii) edge-based
computing. We illustrate the difference between these scenar-
ios in Fig. 12. As shown in the left part of the figure, the cloud-
based computing treats mobile devices as data collectors and
messengers that constantly send data to cloud servers, via local
points of access with limited data preprocessing capabilities.
This scenario typically includes the following steps: (i) users
query on/interact with local mobile devices; (ii) queries are
transmitted to severs in the cloud; (iii) servers gather the data
received for model training and inference; (iv) query results
are subsequently sent back to each device, or stored and ana-
lyzed without further dissemination, depending on specific
application requirements. The drawback of this scenario is
that constantly sending and receiving messages to/from servers
over the Internet introduces overhead and may result in severe

34Human profile source: https://lekeart.deviantart.com/art/male-body-
profile-251793336.

latency. In contrast, in the edge-based computing scenario
pre-trained models are offloaded from the cloud to individual
mobile devices, such that they can make inferences locally. As
illustrated in the right part of Fig. 12, this scenario typically
consists of the following: (i) servers use offline datasets to per-
train a model; (ii) the pre-trained model is offloaded to edge
devices; (iii) mobile devices perform inferences locally using
the model; (iv) cloud servers accept data from local devices;
(v) the model is updated using these data whenever necessary.
While this scenario requires less interactions with the cloud,
its applicability is limited by the computing and battery capa-
bilities of edge hardware. Therefore, it can only support tasks
that require light computations.

Many researchers employ deep learning for app-level
mobile data analysis. We group the works reviewed according
to their application domains, namely mobile healthcare, mobile
pattern recognition, and mobile Natural Language Processing
(NLP) and Automatic Speech Recognition (ASR). Table XII
gives a high-level summary of existing research efforts and we
discuss representative work next.

Mobile Health: There is an increasing variety of wearable
health monitoring devices being introduced to the market. By
incorporating medical sensors, these devices can capture the
physical conditions of their carriers and provide real-time feed-
back (e.g., heart rate, blood pressure, breath status etc.), or
trigger alarms to remind users of taking medical actions [476].

Liu and Du [237] design a deep learning-driven MobiEar
to aid deaf people’s awareness of emergencies. Their proposal
accepts acoustic signals as input, allowing users to register dif-
ferent acoustic events of interest. MobiEar operates efficiently
on smart phones and only requires infrequent communications
with servers for updates. Likewise, Sicong et al. [238] develop
a UbiEar, which is operated on the Android platform to
assist hard-to-hear sufferers in recognizing acoustic events,
without requiring location information. Their design adopts
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TABLE XII
A SUMMARY OF WORKS ON APP-LEVEL MOBILE DATA ANALYSIS

a lightweight CNN architecture for inference acceleration
and demonstrates comparable accuracy over traditional CNN
models.

Hosseini et al. [243] design an edge computing system
for health monitoring and treatment. They use CNNs to
extract features from mobile sensor data, which plays an
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important role in their epileptogenicity localization applica-
tion. Stamate et al. [244] develop a mobile Android app called
cloudUPDRS to manage Parkinson’s symptoms. In their work,
MLPs are employed to determine the acceptance of data col-
lected by smart phones, to maintain high-quality data samples.
The proposed method outperforms other ML methods such as
GPs and RFs. Quisel et al. [245] suggest that deep learn-
ing can be effectively used for mobile health data analysis.
They exploit CNNs and RNNs to classify lifestyle and environ-
mental traits of volunteers. Their models demonstrate superior
prediction accuracy over RFs and logistic regression, over six
datasets.

As deep learning performs remarkably in medical data
analysis [477], we expect more and more deep learning pow-
ered health care devices will emerge to improve physical
monitoring and illness diagnosis.

Mobile Pattern Recognition: Recent advanced mobile
devices offer people a portable intelligent assistant, which
fosters a diverse set of applications that can classify surround-
ing objects (e.g., [247]–[249], and [252]) or users’ behaviors
(e.g., [113], [254], [257], [263], [264], [478], and [479]) based
on patterns observed in the output of the mobile camera or
other sensors. We review and compare recent works on mobile
pattern recognition in this part.

Object classification in pictures taken by mobile devices is
drawing increasing research interest. Li et al. [247] develop
DeepCham as a mobile object recognition framework. Their
architecture involves a crowd-sourcing labeling process, which
aims to reduce the hand-labeling effort, and a collaborative
training instance generation pipeline that is built for deploy-
ment on mobile devices. Evaluations of the prototype system
suggest that this framework is efficient and effective in terms
of training and inference. Tobías et al. [248] investigate the
applicability of employing CNN schemes on mobile devices
for objection recognition tasks. They conduct experiments on
three different model deployment scenarios, i.e., on GPU,
CPU, and respectively on mobile devices, with two benchmark
datasets. The results obtained suggest that deep learning mod-
els can be efficiently embedded in mobile devices to perform
real-time inference.

Mobile classifiers can also assist Virtual Reality (VR) appli-
cations. A CNN framework is proposed in [252] for facial
expressions recognition when users are wearing head-mounted
displays in the VR environment. Rao et al. [253] incorporate a
deep learning object detector into a mobile augmented reality
(AR) system. Their system achieves outstanding performance
in detecting and enhancing geographic objects in outdoor envi-
ronments. Further work focusing on mobile AR applications
is introduced in [480], where Ran et al. characterize the trade-
offs between accuracy, latency, and energy efficiency of object
detection.

Activity recognition is another interesting area that relies on
data collected by mobile motion sensors [479], [481]. This
refers to the ability to classify based on data collected via,
e.g., video capture, accelerometer readings, motion – Passive
Infra-Red (PIR) sensing, specific actions and activities that a
human subject performs. Data collected will be delivered to

servers for model training and the model will be subsequently
deployed for domain-specific tasks.

Essential features of sensor data can be automatically
extracted by neural networks. The first work in this space that
is based on deep learning employs a CNN to capture local
dependencies and preserve scale invariance in motion sensor
data [254]. The authors evaluate their proposal on 3 offline
datasets, demonstrating their proposal yields higher accuracy
over statistical methods and Principal Components Analysis
(PCA). Almaslukh et al. [255] employ a deep AE to perform
human activity recognition by analyzing an offline smart phone
dataset gathered from accelerometers and gyroscope sensors.
Li et al. [256] consider different scenarios for activity recogni-
tion. In their implementation, Radio Frequency Identification
(RFID) data is directly sent to a CNN model for recogniz-
ing human activities. While their mechanism achieves high
accuracy in different applications, experiments suggest that the
RFID-based method does not work well with metal objects or
liquid containers.

Reference [257] exploits an RBM to predict human activi-
ties, given 7 types of sensor data collected by a smart watch.
Experiments on prototype devices show that this approach
can efficiently fulfill the recognition objective under tolera-
ble power requirements. Ordóñez and Roggen [113] architect
an advanced ConvLSTM to fuse data gathered from multiple
sensors and perform activity recognition. By leveraging
CNN and LSTM structures, ConvLSTMs can automatically
compress spatio-temporal sensor data into low-dimensional
representations, without heavy data post-processing effort.
Wang et al. [259] exploit Google Soli to architect a
mobile user-machine interaction platform. By analyzing radio
frequency signals captured by millimeter-wave radars, their
architecture is able to recognize 11 types of gestures with
high accuracy. Their models are trained on the server side,
and inferences are performed locally on mobile devices. More
recently, Zhao et al. [289] design a 4D CNN framework (3D
for the spatial dimension + 1D for the temporal dimension)
to reconstruct human skeletons using radio frequency signals.
This novel approach resembles virtual “X-ray”, enabling to
accurately estimate human poses, without requiring an actual
camera.

Mobile NLP and ASR: Recent remarkable achievements
obtained by deep learning in Natural Language Processing
(NLP) and Automatic Speech Recognition (ASR) are also
embraced by applications for mobile devices.

Powered by deep learning, the intelligent personal assis-
tant Siri, developed by Apple, employs a deep mixture density
networks [482] to fix typical robotic voice issues and synthe-
size more human-like voice [279]. An Android app released
by Google supports mobile personalized speech recogni-
tion [280]; this quantizes the parameters in LSTM model
compression, allowing the app to run on low-power mobile
phones. Likewise, Prabhavalkar et al. [281] propose a math-
ematical RNN compression technique that reduces two thirds
of an LSTM acoustic model size, while only compromising
negligible accuracy. This allows building both memory- and
energy-efficient ASR applications on mobile devices.
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Yoshioka et al. [282] present a framework that incorporates
a network-in-network architecture into a CNN model, which
allows to perform ASR with mobile multi-microphone devices
used in noisy environments. Mobile ASR can also accelerate
text input on mobile devices, Ruan et al.’s [283] study show-
ing that with the help of ASR, the input rates of English and
Mandarin are 3.0 and 2.8 times faster over standard typing
on keyboards. More recently, the applicability of deep learn-
ing to multi-task audio sensing is investigated in [98], where
Georgiev et al. propose and evaluate a novel deep learning
modelling and optimization framework tailored to embedded
audio sensing tasks. To this end, they selectively share com-
pressed representations between different tasks, which reduces
training and data storage overhead, without significantly com-
promising accuracy of an individual task. The authors evaluate
their framework on a memory-constrained smartphone per-
forming four audio tasks (i.e., speaker identification, emotion
recognition, stress detection, and ambient scene analysis).
Experiments suggest this proposal can achieve high efficiency
in terms of energy, runtime and memory, while maintaining
excellent accuracy.

Other Applications: Deep learning also plays an important
role in other applications that involve app-level data analy-
sis. For instance, Ignatov et al. [284] show that deep learning
can enhance the quality of pictures taken by mobile phones.
By employing a CNN, they successfully improve the quality
of images obtained by different mobile devices, to a digital
single-lens reflex camera level. Lu et al. focus on video
post-processing under wireless networks [285], where their
framework exploits a customized AlexNet to answer queries
about detected objects. This framework further involves an
optimizer, which instructs mobile devices to offload videos, in
order to reduce query response time.

Another interesting application is presented in [286], where
Lee et al. show that deep learning can help smartwatch users
reduce distraction by eliminating unnecessary notifications.
Specifically, the authors use an 11-layer MLP to predict the
importance of a notification. Fang et al. [288] exploit an
MLP to extract features from high-dimensional and hetero-
geneous sensor data, including accelerometer, magnetometer,
and gyroscope measurements. Their architecture achieves 95%
accuracy in recognizing human transportation modes, i.e., still,
walking, running, biking, and on vehicle.

Lessons Learned: App-level data is heterogeneous and gen-
erated from distributed mobile devices, and there is a trend
to offload the inference process to these devices. However,
due to computational and battery power limitations, models
employed in the edge-based scenario are constrained to light-
weight architectures, which are less suitable for complex tasks.
Therefore, the trade-off between model complexity and accu-
racy should be carefully considered [67]. Numerous efforts
were made towards tailoring deep learning to mobile devices,
in order to make algorithms faster and less energy-consuming
on embedded equipment. For example, model compression,
pruning, and quantization are commonly used for this purpose.
Mobile device manufacturers are also developing new software
and hardware to support deep learning based applications. We
will discuss this work in more detail in Section VII.

Fig. 13. Illustration of mobility analysis paradigms at individual (left) and
group (right) levels.

At the same time, app-level data usually contains impor-
tant users information and processing this poses significant
privacy concerns. Although there have been efforts that com-
mit to preserve user privacy, as we discuss in Section VI-H,
research efforts in this direction are new, especially in terms of
protecting user information in distributed training. We expect
more efforts in this direction in the future.

D. Deep Learning Driven Mobility Analysis

Understanding movement patterns of groups of human
beings and individuals is becoming crucial for epidemiol-
ogy, urban planning, public service provisioning, and mobile
network resource management [483]. Deep learning is gaining
increasing attention in this area, both from a group and indi-
vidual level perspective (see Fig. 13). In this subsection, we
thus discuss research using deep learning in this space, which
we summarize in Table XIII.

Since deep learning is able to capture spatial dependen-
cies in sequential data, it is becoming a powerful tool for
mobility analysis. The applicability of deep learning for trajec-
tory prediction is studied in [484]. By sharing representations
learned by RNN and Gate Recurrent Unit (GRU), the frame-
work can perform multi-task learning on both social networks
and mobile trajectories modeling. Specifically, the authors first
use deep learning to reconstruct social network representa-
tions of users, subsequently employing RNN and GRU models
to learn patterns of mobile trajectories with different time
granularity. Importantly, these two components jointly share
representations learned, which tightens the overall architecture
and enables efficient implementation. Ouyang et al. argue that
mobility data are normally high-dimensional, which may be
problematic for traditional ML models. Therefore, they build
upon deep learning advances and propose an online learn-
ing scheme to train a hierarchical CNN architecture, allowing
model parallelization for data stream processing [294]. By
analyzing usage records, their framework “DeepSpace” pre-
dicts individuals’ trajectories with much higher accuracy as
compared to naive CNNs, as shown with experiments on a
real-world dataset. Tkačík and Kordík [307] design a Neural
Turing Machine [485] to predict trajectories of individu-
als using mobile phone data. The Neural Turing Machine
embraces two major components: a memory module to store
the historical trajectories, and a controller to manage the
“read” and “write” operations over the memory. Experiments
show that their architecture achieves superior generalization
over stacked RNN and LSTM, while also delivering more
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TABLE XIII
A SUMMARY OF WORK ON DEEP LEARNING DRIVEN MOBILITY ANALYSIS

precise trajectory prediction than the n-grams and k nearest
neighbor methods.

Instead of focusing on individual trajectories,
Song et al. [296] shed light on the mobility analysis at
a larger scale. In their work, LSTM networks are exploited
to jointly model the city-wide movement patterns of a large
group of people and vehicles. Their multi-task architecture
demonstrates superior prediction accuracy over a standard
LSTM. City-wide mobile patterns is also researched in [297],
where Zhang et al. architect deep spatio-temporal residual
networks to forecast the movements of crowds. In order
to capture the unique characteristics of spatio-temporal
correlations associated with human mobility, their frame-
work abandons RNN-based models and constructs three
ResNets to extract nearby and distant spatial dependencies
within a city. This scheme learns temporal features and

fuses representations extracted by all models for the final
prediction. By incorporating external events information,
their proposal achieves the highest accuracy among all deep
learning and non-deep learning methods studied. An RNN is
also employed in [309], where Jiang et al. perform short-term
urban mobility forecasting on a huge dataset collected from
a real-world deployment. Their model delivers superior
accuracy over the n-gram and Markovian approaches.

Lin et al. [229] consider generating human movement
chains from cellular data, to support transportation planning. In
particular, they first employ an input-output Hidden Markov
Model (HMM) to label activity profiles for CDR data pre-
processing. Subsequently, an LSTM is designed for activity
chain generation, given the labeled activity sequences. They
further synthesize urban mobility plans using the generative
model and the simulation results reveal reasonable fit accuracy.
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Jiang et al. [311] design 24-h mobility prediction system base
on RNN mdoels. They employ dynamic Region of Interests
(ROIs) for each hour to discovered through divide-and-merge
mining from raw trajectory database, which leads to high
prediction accuracy. Feng et al. incorporate attention mech-
anisms on RNN [312], to capture the complicated sequential
transitions of human mobility. By combining the heteroge-
neous transition regularity and multi-level periodicity, their
model delivers up to 10% of accuracy improvement compared
to state-of-the-art forecasting models.

Yayeh et al. [301] employ an MLP to predict the mobil-
ity of mobile devices in mobile ad-hoc networks, given
previously observed pause time, speed, and movement direc-
tion. Simulations conducted using the random waypoint mobil-
ity model show that their proposal achieves high prediction
accuracy. An MLP is also adopted in [308], where Kim
and Song model the relationship between human mobil-
ity and personality, and achieve high prediction accuracy.
Yao et al. [304] discover groups of similar trajectories
to facilitate higher-level mobility driven applications using
RNNs. Particularly, a sequence-to-sequence AE is adopted
to learn fixed-length representations of mobile users’ trajec-
tories. Experiments show that their method can effectively
capture spatio-temporal patterns in both real and synthetic
datasets. Shao et al. [300] design a sophisticated pedome-
ter using a CNN. By reducing false negative steps caused by
periodic movements, their proposal significantly improves the
robustness of the pedometer.

Chen et al. [302] combine GPS records and traffic accident
data to understand the correlation between human mobility and
traffic accidents. To this end, they design a stacked denoising
AE to learn a compact representation of the human mobil-
ity, and subsequently use that to predict the traffic accident
risk. Their proposal can deliver accurate, real-time prediction
across large regions. GPS records are also used in other
mobility-driven applications. Song et al. [303] employ DBNs
to predict and simulate human emergency behavior and mobil-
ity in natural disaster, learning from GPS records of 1.6
million users. Their proposal yields accurate predictions in
different disaster scenarios such as earthquakes, tsunamis, and
nuclear accidents. GPS data is also utilized in [305], where
Liu et al. study the potential of employing deep learning for
urban traffic prediction using mobility data.

Lessons Learned: Mobility analysis is concerned with the
movement trajectory of a single user or large groups of users.
The data of interest are essential time series, but have an addi-
tional spatial dimension. Mobility data is usually subject to
stochasticity, loss, and noise; therefore precise modelling is
not straightforward. As deep learning is able to perform auto-
matic feature extraction, it becomes a strong candidate for
human mobility modelling. Among them, CNNs and RNNs
are the most successful architectures in such applications
(e.g., [229] and [294]–[297]), as they can effectively exploit
spatial and temporal correlations.

E. Deep Learning Driven User Localization

Location-based services and applications (e.g., mobile AR,
GPS) demand precise individual positioning technology [486].

Fig. 14. An illustration of device-based (left) and device-free (right) indoor
localization systems.

As a result, research on user localization is evolving rapidly
and numerous techniques are emerging [487]. In general, user
localization methods can be categorized as device-based and
device-free [488]. We illustrate the two different paradigms
in Fig. 14. Specifically, in the first category specific devices
carried by users become prerequisites for fulfilling the appli-
cations’ localization function. This type of approaches rely on
signals from the device to identify the location. Conversely,
approaches that require no device pertain to the device-free
category. Instead these employ special equipment to moni-
tor signal changes, in order to localize the entities of interest.
Deep learning can enable high localization accuracy with both
paradigms. We summarize the most notable contributions in
Table XIV and delve into the details of these works next.

To overcome the variability and coarse-granularity
limitations of signal strength based methods,
Wang et al. [313] propose a deep learning driven fin-
gerprinting system name “DeepFi” to perform indoor
localization based on Channel State Information (CSI).
Their toolbox yields much higher accuracy as compared to
traditional methods, including FIFS [489], Horus [490], and
Maximum Likelihood [491]. The same group of authors
extend their work in [274], [275], [314], and [315], where
they update the localization system, such that it can work
with calibrated phase information of CSI [274], [275], [325].
They further use more sophisticated CNN [314], [333] and
bi-modal structures [315] to improve the accuracy.

Nowicki and Wietrzykowski [316] propose a localization
framework that reduces significantly the effort of system tun-
ing or filtering and obtains satisfactory prediction performance.
Wang et al. suggest that the objective of indoor localiza-
tion can be achieved without the help of mobile devices.
Wang et al. [318] employ an AE to learn useful patterns from
WiFi signals. By automatic feature extraction, they produce a
predictor that can fulfill multi-tasks simultaneously, including
indoor localization, activity, and gesture recognition. A similar
work in presented in [328], where Zhou et al. employ an MLP
structure to perform device-free indoor localization using CSI.
Kumar et al. [322] use deep learning to address the problem
of indoor vehicles localization. They employ CNNs to analyze
visual signal and localize vehicles in a car park. This can help
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TABLE XIV
LEVERAGING DEEP LEARNING IN USER LOCALIZATION

driver assistance systems operate in underground environments
where the system has limited vision ability.

Xiao et al.[334] achieve low cost indoor localization with
Bluetooth technology. The authors design a denosing AE to
extract fingerprint features from the received signal strength of
Bluetooth Low Energy beacon and subsequently project that
to the exact position in 3D space. Experiments conducted in
a conference room demonstrate that the proposed framework

can perform precise positioning in both vertical and hori-
zontal dimensions in real-time. Niitsoo et al. [332] employ
a CNN to perform localization given raw channel impulse
response data. Their framework is robust to multipath propa-
gation environments and more precise than signal processing
based approaches. A CNN is also adopted in [331], where
the authors work with received signal strength series and
achieve 100% prediction accuracy in terms of building and
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Fig. 15. EZ-Sleep setup in a subject’s bedroom. Figure adopted from [335].

floor identification. The work in [330] combines deep learn-
ing with linear discriminant analysis for feature reduction,
achieving low positioning errors in multi-building environ-
ments. Zhang et al. [329] combine pervasive magnetic field
and WiFi fingerprinting for indoor localization using an MLP.
Experiments show that adding magnetic field information to
the input of the model can improve the prediction accuracy,
compared to solutions based soley on WiFi fingerprinting.

Hsu et al. [335] use deep learning to provide Radio
Frequency-based user localization, sleep monitoring, and
insomnia analysis in multi-user home scenarios where indi-
vidual sleep monitoring devices might not be available.
They use a CNN classifier with a 14-layer residual network
model for sleep monitoring, in addition to Hidden Markov
Models, to accurately track when the user enters or leaves
the bed. By deploying sleep sensors called EZ-Sleep in
8 homes (see Fig. 15), collecting data for 100 nights
of sleep over a month, and cross-validating this using
an electroencephalography-based sleep monitor, the authors
demonstrate the performance of their solution is comparable
to that of individual, electroencephalography-based devices.

Most mobile devices can only produce unlabeled posi-
tion data, therefore unsupervised and semi-supervised learning
become essential. Mohammadi et al. address this problem by
leveraging DRL and VAE. In particular, their framework envi-
sions a virtual agent in indoor environments [319], which can
constantly receive state information during training, including
signal strength indicators, current agent location, and the real
(labeled data) and inferred (via a VAE) distance to the tar-
get. The agent can virtually move in eight directions at each
time step. Each time it takes an action, the agent receives an
reward signal, identifying whether it moves to a correct direc-
tion. By employing deep Q learning, the agent can finally
localize accurately a user, given both labeled and unlabeled
data.

Beyond indoor localization, there also exist several research
works that apply deep learning in outdoor scenarios. For
example, Zhengj and Weng [323] introduce a lightweight
developmental network for outdoor navigation applications
on mobile devices. Compared to CNNs, their architecture
requires 100 times fewer weights to be updated, while main-
taining decent accuracy. This enables efficient outdoor navi-
gation on mobile devices. Work in [112] studies localization

Fig. 16. An example framework for WSN data collection and (centralized
and decentralized) analysis.

under both indoor and outdoor environments. They use an
AE to pre-train a four-layer MLP, in order to avoid hand-
crafted feature engineering. The MLP is subsequently used
to estimate the coarse position of targets. The authors fur-
ther introduce an HMM to fine-tune the predictions based on
temporal properties of data. This improves the accuracy esti-
mation in both in-/out-door positioning with Wi-Fi signals.
More recently, Shokry et al. [327] propose DeepLoc, a deep
learning-based outdoor localization system using crowdsensed
geo-tagged received signal strength information. By using an
MLP to learn the correlation between cellular signal and users’
locations, their framework can deliver median localization
accuracy within 18.8m in urban areas and within 15.7m in
rural areas on Android devices, while requiring modest energy
budgets.

Lessons Learned: Localization relies on sensorial output,
signal strength, or CSI. These data usually have complex
features, therefore large amounts of data are required for
learning [316]. As deep learning can extract features in an
unsupervised manner, it has become a strong candidate for
localization tasks. On the other hand, it can be observed that
positioning accuracy and system robustness can be improved
by fusing multiple types of signals when providing these as the
input (e.g., [329]). Using deep learning to automatically extract
features and correlate information from different sources for
localization purposes is becoming a trend.

F. Deep Learning Driven Wireless Sensor Networks

Wireless Sensor Networks (WSNs) consist of a set of unique
or heterogeneous sensors that are distributed over geographi-
cal regions. Theses sensors collaboratively monitor physical or
environment status (e.g., temperature, pressure, motion, pol-
lution, etc.) and transmit the data collected to centralized
servers through wireless channels (see top circle in Fig. 9
for an illustration). A WSN typically involves three key core
tasks, namely sensing, communication and analysis. Deep
learning is becoming increasingly popular also for WSN appli-
cations [348]. In what follows, we review works adopting deep
learning in this domain, covering different angles, namely:
centralized vs. decentralized analysis paradigms, WSN data
analysis per se, WSN localization, and other applications. Note
that the contributions of these works are distinct from mobile
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TABLE XV
A SUMMARY OF WORK ON DEEP LEARNING DRIVEN WSNS

data analysis discussed in Sections VI-B and VI-C, as in this
subsection we only focus on WSN applications. We begin by
summarizing the most important works in Table XV.

Centralized vs Decentralized Analysis Approaches: There
exist two data processing scenarios in WSNs, namely central-
ized and decentralized. The former simply takes sensors as
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data collectors, which are only responsible for gathering data
and sending these to a central location for processing. The
latter assumes sensors have some computational ability and
the main server offloads part of the jobs to the edge, each
sensor performing data processing individually. We show an
example framework for WSN data collection and analysis in
Fig. 16, where sensor data is collected via various nodes in a
field of interest. Such data is delivered to a sink node, which
aggregates and optionally further processes this. Work in [345]
focuses on the centralized approach and the authors apply a
3-layer MLP to reduce data redundancy while maintaining
essential points for data aggregation. These data are sent to a
central server for analysis. In contrast, Li et al. [346] propose
to distribute data mining to individual sensors. They partition
a deep neural network into different layers and offload layer
operations to sensor nodes. Simulations conducted suggest
that, by pre-processing with NNs, their framework obtains high
fault detection accuracy, while reducing power consumption at
the central server.

WSN Localization: Localization is also an important and
challeging task in WSNs. Chuang and Jiang [337] exploit neu-
ral networks to localize sensor nodes in WSNs. To adapt deep
learning models to specific network topology, they employ an
online training scheme and correlated topology-trained data,
enabling efficient model implementations and accurate loca-
tion estimation. Based on this, Bernas and Płaczek [338]
architect an ensemble system that involves multiple MLPs
for location estimation in different regions of interest. In
this scenario, node locations inferred by multiple MLPs are
fused by a fusion algorithm, which improves the localiza-
tion accuracy, particularly benefiting sensor nodes that are
around the boundaries of regions. A comprehensive compar-
ison of different training algorithms that apply MLP-based
node localization is presented in [339]. Experiments suggest
that the Bayesian regularization algorithm in general yields the
best performance. Dong et al. [340] consider an underwater
node localization scenario. Since acoustic signals are subject to
loss caused by absorption, scattering, noise, and interference,
underwater localization is not straightforward. By adopting a
deep neural network, their framework successfully addresses
the aforementioned challenges and achieves higher inference
accuracy as compared to SVM and generalized least square
methods.

Phoemphon et al. [350] combine a fuzzy logic system
and an ELM via a particle swarm optimization technique to
achieve robust range-free location estimation for sensor nodes.
In particular, the fuzzy logic system is employed for adjust-
ing the weight of traditional centroids, while the ELM is used
for optimization for the localization precision. Their method
achieves superior accuracy over other soft computing-based
approaches. Similarly, Banihashemian et al. [351] employ
the particle swarm optimization technique combining with
MLPs to perform range-free WSN localization, which achieves
low localization error. Kang et al. [353] shed light water
leakage and localization in water distribution systems. They
represent the water pipeline network as a graph and assume
leakage events occur at vertices. They combine CNN with
SVM to perform detection and localization on wireless sensor

network testbed, achieving 99.3% leakage detection accuracy
and localization error for less than 3 meters.

WSN Data Analysis: Deep learning has also been exploited
for identification of smoldering and flaming combustion phases
in forests. Yan et al. [341] embed a set of sensors into a
forest to monitor CO2, smoke, and temperature. They sug-
gest that various burning scenarios will emit different gases,
which can be taken into account when classifying smolder-
ing and flaming combustion. Wang et al. [342] consider deep
learning to correct inaccurate measurements of air tempera-
ture. They discover a close relationship between solar radiation
and actual air temperature, which can be effectively learned
by neural networks. Sun et al. [352] employ a Wavelet neural
network based solution to evaluate radio link quality in WSNs
on smart grids. Their proposal is more precise than traditional
approaches and can provide end-to-end reliability guarantees
to smart grid applications.

Missing data or de-synchronization are common in WSN
data collection. These may lead to serious problems in analy-
sis due to inconsistency. Lee et al. [343] address this problem
by plugging a query refinement component in deep learn-
ing based WSN analysis systems. They employ exponential
smoothing to infer missing data, thereby maintaining the
integrity of data for deep learning analysis without signif-
icantly compromising accuracy. To enhance the intelligence
of WSNs, Li and Serpen [344] embed an artificial neural
network into a WSN, allowing it to agilely react to poten-
tial changes and following deployment in the field. To this
end, they employ a minimum weakly-connected dominating
set to represent the WSN topology, and subsequently use a
Hopfield recurrent neural network as a static optimizer, to
adapt network infrastructure to potential changes as necessary.
This work represents an important step towards embedding
machine intelligence in WSNs.

Other Applications: The benefits of deep learning have
also been demonstrated in other WSN applications. The work
in [349] focuses on reducing energy consumption while main-
taining security in wireless multimedia sensor networks. A
stacked AE is employed to categorize images in the form
of continuous pieces, and subsequently send the data over
the network. This enables faster data transfer rates and lower
energy consumption. Mehmood et al. [354] employ MLPs
to achieve robust routing in WSNs, so as to facilitate pol-
lution monitoring. Their proposal use the NN to provide an
efficiency threshold value and switch nodes that consume less
energy than this threshold, thereby improving energy efficiency.
Alsheikh et al. [355] introduce an algorithm for WSNs that
uses AEs to minimize the energy expenditure. Their architecture
exploits spatio-temporal correlations to reduce the dimensions
of raw data and provides reconstruction error bound guarantees.

Wang et al. [357] design a dedicated projection-recovery
neural network to blindly calibrate sensor measurements in
an online manner. Their proposal can automatically extract
features from sensor data and exploit spatial and temporal
correlations among information from all sensors, to achieve
high accuracy. This is the first effort that adopts deep learn-
ing in WSN data calibration. Jia et al. [358] shed light on
ammonia monitoring using deep learning. In their design, an
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LSTM is employed to predict the sensors’ electrical resistance
during a very short heating pulse, without waiting for settling
in an equilibrium state. This dramatically reduces the energy
consumption of sensors in the waiting process. Experiments
with 38 prototype sensors and a home-built gas flow system
show that the proposed LSTM can deliver precise prediction
of equilibrium state resistance under different ammonia con-
centrations, cutting down the overall energy consumption by
approximately 99.6%.

Lessons learned: The centralized and decentralized WSN
data analysis paradigms resemble the cloud and fog computing
philosophies in other areas. Decentralized methods exploit the
computing ability of sensor nodes and perform light processing
and analysis locally. This offloads the burden on the cloud
and significantly reduces the data transmission overheads and
storage requirements. However, at the moment, the centralized
approach dominates the WSN data analysis landscape. As deep
learning implementation on embedded devices becomes more
accessible, in the future we expect to witness a grow in the
popularity of the decentralized schemes.

On the other hand, looking at Table XV, it is interesting
to see that the majority of deep learning practices in WSNs
employ MLP models. Since MLP is straightforward to archi-
tect and performs reasonably well, it remains a good candidate
for WSN applications. However, since most sensor data col-
lected is sequential, we expect RNN-based models will play
a more important role in this area.

G. Deep Learning Driven Network Control

In this part, we turn our attention to mobile network control
problems. Due to powerful function approximation mecha-
nism, deep learning has made remarkable breakthroughs in
improving traditional reinforcement learning [26] and imita-
tion learning [492]. These advances have potential to solve
mobile network control problems which are complex and
previously considered intractable [493], [494]. Recall that in
reinforcement learning, an agent continuously interacts with
the environment to learn the best action. With constant explo-
ration and exploitation, the agent learns to maximize its
expected return. Imitation learning follows a different learning
paradigm called “learning by demonstration”. This learning
paradigm relies on a ‘teacher’ who tells the agent what action
should be executed under certain observations during the train-
ing. After sufficient demonstrations, the agent learns a policy
that imitates the behavior of the teacher and can operate stan-
dalone without supervision. For instance, an agent is trained
to mimic human behaviour (e.g., in applications such as game
play, self-driving vehicles, or robotics), instead of learning
by interacting with the environment, as in the case of pure
reinforcement learning. This is because in such applications,
making mistakes can have fatal consequences [27].

Beyond these two approaches, analysis-based control is
gaining traction in mobile networking. Specifically, this
scheme uses ML models for network data analysis, and subse-
quently exploits the results to aid network control. Unlike rein-
forcement/imitation learning, analysis-based control does not
directly output actions. Instead, it extract useful information

Fig. 17. Principles of three control approaches applied in mobile and wireless
networks control, namely reinforcement learning (above), imitation learning
(middle), and analysis-based control (below).

and delivers this to an agent, to execute the actions. We illus-
trate the principles between the three control paradigms in
Fig. 17. We review works proposed so far in this space next,
and summarize these efforts in Table XVI.

Network Optimization refers to the management of network
resources and functions in a given environment, with the
goal of improving the network performance. Deep learn-
ing has recently achieved several successful results in this
area. For example, Liu et al. [359] exploit a DBN to dis-
cover the correlations between multi-commodity flow demand
information and link usage in wireless networks. Based on the
predictions made, they remove the links that are unlikely to be
scheduled, so as to reduce the size of data for the demand con-
strained energy minimization. Their method reduces runtime
by up to 50%, without compromising optimality. Subramanian
and Banerjee [360] propose to use deep learning to predict
the health condition of heterogeneous devices in machine
to machine communications. The results obtained are subse-
quently exploited for optimizing health aware policy change
decisions.

He et al. [361], [362] employ deep reinforcement learning to
address caching and interference alignment problems in wire-
less networks. In particular, they treat time-varying channels
as finite-state Markov channels and apply deep Q networks
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TABLE XVI
A SUMMARY OF WORK ON DEEP LEARNING DRIVEN NETWORK CONTROL

to learn the best user selection policy. This novel frame-
work demonstrates significantly higher sum rate and energy
efficiency over existing approaches. Chen et al. [366] shed

light on automatic traffic optimization using a deep reinforce-
ment learning approach. Specifically, they architect a two-level
DRL framework, which imitates the Peripheral and Central
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Nervous Systems in animals, to address scalability problems
at datacenter scale. In their design, multiple peripheral systems
are deployed on all end-hosts, so as to make decisions locally
for short traffic flows. A central system is further employed to
decide on the optimization with long traffic flows, which are
more tolerant to longer delay. Experiments in a testbed with
32 severs suggest that the proposed design reduces the traf-
fic optimization turn-around time and flow completion time
significantly, compared to existing approaches.

Routing: Deep learning can also improve the efficiency of
routing rules. Lee [367] exploit a 3-layer deep neural network
to classify node degree, given detailed information of the rout-
ing nodes. The classification results along with temporary
routes are exploited for subsequent virtual route genera-
tion using the Viterbi algorithm. Mao et al. [187] employ
a DBN to decide the next routing node and construct a
software defined router. By considering Open Shortest Path
First as the optimal routing strategy, their method achieves
up to 95% accuracy, while reducing significantly the over-
head and delay, and achieving higher throughput with a
signaling interval of 240 milliseconds. In follow up work,
the authors use tensors to represent hidden layers, weights
and biases in DBNs, which further improves the routing
performance [396].

A similar outcome is obtained in [295], where Yang et al.
employ Hopfield neural networks for routing, achieving bet-
ter usability and survivability in mobile ad hoc network
application scenarios. Geyer and Carle [397] represent the
network using graphs, and design a dedicated Graph-Query
NN to address the distributed routing problem. This novel
architecture takes graphs as input and uses message passing
between nodes in the graph, allowing it to operate with various
network topologies. Pham et al. [404] shed light on rout-
ing protocols in knowledge-defined networking, using a Deep
Deterministic Policy Gradient algorithm based on reinforce-
ment learning. Their agent takes traffic conditions as input
and incorporates QoS into the reward function. Simulations
show that their framework can effectively learn the corre-
lations between traffic flows, which leads to better routing
configurations.

Scheduling: There are several studies that investigate
scheduling with deep learning. Zhang et al. [369] intro-
duce a deep Q learning-powered hybrid dynamic voltage and
frequency scaling scheduling mechanism, to reduce the energy
consumption in real-time systems (e.g., Wi-Fi, IoT, video
applications). In their proposal, an AE is employed to approx-
imate the Q function and the framework performs experience
replay [496] to stabilize the training process and acceler-
ate convergence. Simulations demonstrate that this method
reduces by 4.2% the energy consumption of a traditional Q
learning based method. Similarly, the work in [370] uses
deep Q learning for scheduling in roadside communications
networks. In particular, interactions between vehicular envi-
ronments, including the sequence of actions, observations, and
reward signals are formulated as an MDP. By approximating
the Q value function, the agent learns a scheduling policy that
achieves lower latency and busy time, and longer battery life,
compared to traditional scheduling methods.

More recently, Chinchali et al. [371] present a policy gradi-
ent based scheduler to optimize the cellular network traffic
flow. Specifically, they cast the scheduling problem as a
MDP and employ RF to predict network throughput, which
is subsequently used as a component of a reward function.
Evaluations with a realistic network simulator demonstrate that
this proposal can dynamically adapt to traffic variations, which
enables mobile networks to carry 14.7% more data traffic,
while outperforming heuristic schedulers by more than 2×.
Wei et al. [372] address user scheduling and content caching
simultaneously. In particular, they train a DRL agent, consist-
ing of an actor for deciding which base station should serve
certain content, and whether to save the content. A critic is
further employed to estimate the value function and deliver
feedback to the actor. Simulations over a cluster of base sta-
tions show that the agent can yield low transmission delay.
Li et al. [393] shed light on resource allocation in a multi-user
mobile computing scenario. They employ a deep Q learn-
ing framework to jointly optimize the offloading decision and
computational resource allocation, so as to minimize the sum
cost of delay and energy consumption of all user equipment.
Simulations show that their proposal can reduce the total cost
of the system, as compared to fully-local, fully-offloading, and
naive Q-learning approaches.

Resource Allocation: Sun et al. use a deep neural network
to approximate the mapping between the input and output of
the Weighted Minimum Mean Square Error resource alloca-
tion algorithm [497], in interference-limited wireless network
environments [373]. By effective imitation learning, the neural
network approximation achieves close performance to that of
its teacher. Deep learning has also been applied to cloud radio
access networks, Xu et al. [374] employing deep Q learning to
determine the on/off modes of remote radio heads given, the
current mode and user demand. Comparisons with single base
station association and fully coordinated association methods
suggest that the proposed DRL controller allows the system to
satisfy user demand while requiring significantly less energy.

Ferreira et al. [375] employ deep State-Action-Reward-
State-Action (SARSA) to address resource allocation manage-
ment in cognitive communications. By forecasting the effects
of radio parameters, this framework avoids wasted trials of
poor parameters, which reduces the computational resources
required. Mennes et al. [394] employ MLPs to precisely fore-
cast free slots prediction in a Multiple Frequencies Time
Division Multiple Access (MF-TDMA) network, thereby
achieving efficient scheduling. The authors conduct simula-
tions with a network deployed in a 100×100 room, showing
that their solution can effectively reduces collisions by half.
Zhou et al. [395] adopt LSTMs to predict traffic load at base
stations in ultra dense networks. Based on the predictions,
their method changes the resource allocation policy to avoid
congestion, which leads to lower packet loss rates, and higher
throughput and mean opinion scores.

Radio Control: Naparstek and Cohen [378] address the
dynamic spectrum access problem in multichannel wireless
network environments using deep reinforcement learning. In
this setting, they incorporate an LSTM into a deep Q network,
to maintain and memorize historical observations, allowing
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the architecture to perform precise state estimation, given par-
tial observations. The training process is distributed to each
user, which enables effective training parallelization and the
learning of good policies for individual users. Experiments
demonstrate that this framework achieves double the chan-
nel throughput, when compared to a benchmark method.
Yu et al. apply deep reinforcement learning to address chal-
lenges in wireless multiple access control [389], recognizing
that in such tasks DRL agents are fast in terms of con-
vergence and robust against non-optimal parameter settings.
Li et al. investigate power control for spectrum sharing in
cognitive radios using DRL. In their design, a DQN agent is
built to adjust the transmit power of a cognitive radio system,
such that the overall signal-to-interference-plus-noise ratio is
maximized.

The work in [379] sheds light on the radio control and signal
detection problems. In particular, the authors introduce a radio
signal search environment based on the Gym Reinforcement
Learning platform. Their agent exhibits a steady learning
process and is able to learn a radio signal search policy.
Rutagemwa et al. [381] employ an RNN to perform traffic
prediction, which can subsequently aid the dynamic spec-
trum assignment in mobile networks. With accurate traffic
forecasting, their proposal improves the performance of spec-
trum sharing in dynamic wireless environments, as it attains
near-optimal spectrum assignments. Liu et al. [403] approach
the anti-jamming communications problem in dynamic and
unknown environments with a DRL agent. Their system is
based on a DQN with CNN, where the agent takes raw spec-
trum information as input and requires limited prior knowl-
edge about the environment, in order to improve the overall
throughput of the network in such adversarial circumstances.

Luong et al. incorporate the blockchain technique into cog-
nitive radio networking [398], employing a double DQN agent
to maximize the number of successful transaction transmis-
sions for secondary users, while minimizing the channel cost
and transaction fees. Simulations show that the DQN method
significantly outperforms na ive Q learning in terms of suc-
cessful transactions, channel cost, and learning speed. DRL
can further attack problems in the satellite communications
domain. Ferreira et al. [495] fuse multi-objective reinforce-
ment learning [405] with deep neural networks to select among
multiple radio transmitter settings while attempting to achieve
multiple conflicting goals, in a dynamically changing satel-
lite communications channel. Specifically, two set of NNs are
employed to execute exploration and exploitation separately.
This builds an ensembling system, with makes the frame-
work more robust to the changing environment. Simulations
demonstrate that their system can nearly optimize six dif-
ferent objectives (i.e., bit error rate, throughput, bandwidth,
spectral efficiency, additional power consumption, and power
efficiency), only with small performance errors compared to
ideal solutions.

Other Applications: Deep learning is playing an impor-
tant role in other network control problems as well.
Mao et al. [383] develop the Pensieve system that generates
adaptive video bit rate algorithms using deep reinforcement
learning. Specifically, Pensieve employs a state-of-the-art deep

reinforcement learning algorithm A3C, which takes the band-
width, bit rate and buffer size as input, and selects the bit rate
that leads to the best expected return. The model is trained
offline and deployed on an adaptive bit rate server, demonstrat-
ing that the system outperforms the best existing scheme by
12%-25% in terms of QoE. Liu et al. [391] apply deep Q learn-
ing to reduce the energy consumption in cellular networks.
They train an agent to dynamically switch on/off base stations
based on traffic consumption in areas of interest. An action-
wise experience replay mechanism is further designed for
balancing different traffic behaviours. Experiments show that
their proposal can significantly reduce the energy consumed
by base stations, outperforming naive table-based Q learn-
ing approaches. A control mechanism for unmanned aerial
vehicles using DQN is proposed in [401], where multiple
objectives are targeted: maximizing energy efficiency, com-
munications coverage, fairness and connectivity. The authors
conduct extensive simulations in an virtual playground, show-
ing that their agent is able to learn the dynamics of the
environment, achieving superior performance over random and
greedy control baselines.

Kim and Kim [386] link deep learning with the load bal-
ancing problem in IoT. The authors suggest that DBNs can
effectively analyze network load and process structural con-
figuration, thereby achieving efficient load balancing in IoT.
Challita et al. [387] employ a deep reinforcement learn-
ing algorithm based on echo state networks to perform
path planning for a cluster of unmanned aerial vehicles.
Their proposal yields lower delay than a heuristic baseline.
Xu et al. [390] employ a DRL agent to learn from network
dynamics how to control traffic flow. They advocate that DRL
is suitable for this problem, as it performs remarkably well in
handling dynamic environments and sophisticated state spaces.
Simulations conducted over three network topologies confirm
this viewpoint, as the DRL agent significantly reduces the
delay, while providing throughput comparable to that of tra-
ditional approaches. Zhu et al. employ the A3C algorithm to
address the caching problem in mobile edge computing. Their
method obtains superior cache hit ratios and traffic offloading
performance over three baselines caching methods. Several
open challenges are also pointed out, which are worthy of
future pursuit. The edge caching problem is also addressed
in [402], where He et al. architect a DQN agent to perform
dynamic orchestration of networking, caching, and comput-
ing. Their method facilitates high revenue to mobile virtual
network operators.

Lessons learned: There exist three approaches to network
control using deep learning, i.e., reinforcement learning, imi-
tation learning, and analysis-based control. Reinforcement
learning requires to interact with the environment, trying dif-
ferent actions and obtaining feedback in order to improve. The
agent will make mistakes during training, and usually needs
a large number of steps of steps to become smart. Therefore,
most works do not train the agent on the real infrastructure,
as making mistakes usually can have serious consequences for
the network. Instead, a simulator that mimics the real network
environments is built and the agent is trained offline using
that. This imposes high fidelity requirements on the simulator,
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as the agent can not work appropriately in an environment
that is different from the one used for training. On the other
hand, although DRL performs remarkable well in many appli-
cations, considerable amount of time and computing resources
are required to train an usable agent. This should be considered
in real-life implementation.

In contrast, the imitation learning mechanism “learns by
demonstration”. It requires a teacher that provides labels
telling the agent what it should do under certain circum-
stances. In the networking context, this mechanism is usually
employed to reduce the computational time [187]. Specifically,
in some network application (e.g., routing), computing the
optimal solution is time-consuming, which cannot satisfy the
delay constraints of mobile network. To mitigate this, one can
generate a large dataset offline, and use an NN agent to learn
the optimal actions.

Analysis-based control on the other hand, is suitable for
problems were decisions cannot be based solely on the state
of the network environment. One can use a NN to extract addi-
tional information (e.g., traffic forecasts), which subsequently
aids decisions. For example, the dynamic spectrum assignment
can benefit from the analysis-based control.

H. Deep Learning Driven Network Security

With the increasing popularity of wireless connectivity, pro-
tecting users, network equipment and data from malicious
attacks, unauthorized access and information leakage becomes
crucial. Cyber security systems guard mobile devices and users
through firewalls, anti-virus software, and Intrusion Detection
Systems (IDS) [498]. The firewall is an access security gate-
way that allows or blocks the uplink and downlink network
traffic, based on pre-defined rules. Anti-virus software detects
and removes computer viruses, worms and Trojans and mal-
ware. IDSs identify unauthorized and malicious activities, or
rule violations in information systems. Each performs its own
functions to protect network communication, central servers
and edge devices.

Modern cyber security systems benefit increasingly from
deep learning [500], since it can enable the system to
(i) automatically learn signatures and patterns from experi-
ence and generalize to future intrusions (supervised learning);
or (ii) identify patterns that are clearly differed from regular
behavior (unsupervised learning). This dramatically reduces
the effort of pre-defined rules for discriminating intrusions.
Beyond protecting networks from attacks, deep learning can
also be used for attack purposes, bringing huge potential to
steal or crack user passwords or information. In this subsec-
tion, we review deep learning driven network security from
three perspectives, namely infrastructure, software, and user
privacy. Specifically, infrastructure level security work focuses
on detecting anomalies that occur in the physical network and
software level work is centred on identifying malware and bot-
nets in mobile networks. From the user privacy perspective, we
discuss methods to protect from how to protect against private
information leakage, using deep learning. To our knowledge,
no other reviews summarize these efforts. We summarize these
works in Table XVII.

Infrastructure level security: We mostly focus on anomaly
detection at the infrastructure level, i.e., identifying network
events (e.g., attacks, unexpected access and use of data) that do
not conform to expected behaviors. Many researchers exploit
the outstanding unsupervised learning ability of AEs [406]. For
example, Thing investigates features of attacks and threats that
exist in IEEE 802.11 networks [186]. The author employs a
stacked AE to categorize network traffic into 5 types (i.e., legit-
imate, flooding, injection and impersonation traffic), achieving
98.67% overall accuracy. The AE is also exploited in [407],
where Aminanto and Kim use an MLP and stacked AE
for feature selection and extraction, demonstrating remark-
able performance. Similarly, Feng et al. [408] use AEs to
detect abnormal spectrum usage in wireless communications.
Their experiments suggest that the detection accuracy can
significantly benefit from the depth of AEs.

Distributed attack detection is also an important issue
in mobile network security. Khan et al. [409] focus on
detecting flooding attacks in wireless mesh networks. They
simulate a wireless environment with 100 nodes, and artifi-
cially inject moderate and severe distributed flooding attacks,
to generate a synthetic dataset. Their deep learning based
methods achieve excellent false positive and false negative
rates. Distributed attacks are also studied in [410], where
Diro and Chilamkurti focus on an IoT scenario. Another work
in [411] employs MLPs to detect distributed denial of service
attacks. By characterizing typical patterns of attack incidents,
the proposed model works well in detecting both known and
unknown distributed denial of service attacks. More recently,
Nguyen et al. [421] employ RBMs to classify cyberattacks
in the mobile cloud in an online manner. Through unsuper-
vised layer-wise pre-training and fine-tuning, their methods
obtain over 90% classification accuracy on three different
datasets, significantly outperforming other machine learning
approaches.

Lopez-Martin et al. [412] propose a conditional VAE to
identify intrusion incidents in IoT. In order to improve detec-
tion performance, their VAE infers missing features associated
with incomplete measurements, which are common in IoT
environments. The true data labels are embedded into the
decoder layers to assist final classification. Evaluations on the
well-known NSL-KDD dataset [501] demonstrate that their
model achieves remarkable accuracy in identifying denial of
service, probing, remote to user and user to root attacks, out-
performing traditional ML methods by 0.18 in terms of F1
score. Hamedani et al. [413] employ MLPs to detect malicious
attacks in delayed feedback networks. The proposal achieves
more than 99% accuracy over 10,000 simulations.

Software level security: Nowadays, mobile devices are
carrying considerable amount of private information. This
information can be stolen and exploited by malicious apps
installed on smartphones for ill-conceived purposes [502].
Deep learning is being exploited for analyzing and detecting
such threats.

Yuan et al. [416] use both labeled and unlabeled mobile
apps to train an RBM. By learning from 300 samples,
their model can classify Android malware with remark-
able accuracy, outperforming traditional ML tools by up to
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TABLE XVII
A SUMMARY OF WORK ON DEEP LEARNING DRIVEN NETWORK SECURITY

19%. Their follow-up research in [417] named Droiddetector
further improves the detection accuracy by 2%. Similarly,
Su et al. [418] analyze essential features of Android apps,

namely requested permission, used permission, sensitive appli-
cation programming interface calls, action and app compo-
nents. They employ DBNs to extract features of malware and
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an SVM for classification, achieving high accuracy and only
requiring 6 seconds per inference instance.

Hou et al. [419] attack the malware detection problem
from a different perspective. Their research points out that
signature-based detection is insufficient to deal with sophisti-
cated Android malware. To address this problem, they propose
the Component Traversal, which can automatically execute
code routines to construct weighted directed graphs. By
employing a Stacked AE for graph analysis, their framework
Deep4MalDroid can accurately detect Android malware that
intentionally repackages and obfuscates to bypass signatures
and hinder analysis attempts to their inner operations. This
work is followed by that of Martinelli et al. [420], who exploit
CNNs to discover the relationship between app types and
extracted syscall traces from real mobile devices. The CNN
has also been used in [422], where McLaughlin et al. draw
inspiration from NLP and take the disassembled byte-code
of an app as a text for analysis. Their experiments demon-
strate that CNNs can effectively learn to detect sequences of
opcodes that are indicative of malware. Chen et al. [423] incor-
porate location information into the detection framework and
exploit an RBM for feature extraction and classification. Their
proposal improves the performance of other ML methods.

Botnets are another important threat to mobile networks. A
botnet is effectively a network that consists of machines com-
promised by bots. These machine are usually under the control
of a botmaster who takes advantages of the bots to harm public
services and systems [503]. Detecting botnets is challenging
and now becoming a pressing task in cyber security. Deep
learning is playing an important role in this area. For exam-
ple, Oulehla et al. [424] propose to employ neural networks to
extract features from mobile botnet behaviors. They design a
parallel detection framework for identifying both client-server
and hybrid botnets, and demonstrate encouraging performance.
Torres et al. [425] investigate the common behavior patterns
that botnets exhibit across their life cycle, using LSTMs. They
employ both under-sampling and over-sampling to address
the class imbalance between botnet and normal traffic in the
dataset, which is common in anomaly detection problems.
Similar issues are also studies in [426] and [427], where the
authors use standard MLPs to perform mobile and peer-to-peer
botnet detection respectively, achieving high overall accuracy.

User privacy level: Preserving user privacy during train-
ing and evaluating a deep neural network is another important
research issue [504]. Initial research is conducted in [428],
where Shokri and Shmatikov enable user participation in the
training and evaluation of a neural network, without sharing
their input data. This allows to preserve individual’s privacy
while benefiting all users, as they collaboratively improve
the model performance. Their framework is revisited and
improved in [429], where another group of researchers employ
additively homomorphic encryption, to address the information
leakage problem ignored in [428], without compromising
model accuracy. This significantly boosts the security of the
system. More recently, Wang et al. [499] propose a frame-
work called ARDEN to preserve users’ privacy while reducing
communication overhead in mobile-cloud deep learning appli-
cations. ARDEN partitions a NN across cloud and mobile

devices, with heavy computation being conducted on the cloud
and mobile devices performing only simple data transforma-
tion and perturbation, using a differentially private mechanism.
This simultaneously guarantees user privacy, improves infer-
ence accuracy, and reduces resource consumption.

Ossia et al. [430] focus on privacy-preserving mobile analyt-
ics using deep learning. They design a client-server framework
based on the Siamese architecture [505], which accommodates
a feature extractor in mobile devices and correspondingly a
classifier in the cloud. By offloading feature extraction from
the cloud, their system offers strong privacy guarantees. An
innovative work in [431] implies that deep neural networks
can be trained with differential privacy. The authors intro-
duce a differentially private SGD to avoid disclosure of private
information of training data. Experiments on two publicly-
available image recognition datasets demonstrate that their
algorithm is able to maintain users privacy, with a manage-
able cost in terms of complexity, efficiency, and performance.
This approach is also useful for edge-based privacy filtering
techniques such as Distributed One-class Learning [506].

Servia-Rodriguez et al. [433] consider training deep neu-
ral networks on distributed devices without violating privacy
constraints. Specifically, the authors retrain an initial model
locally, tailored to individual users. This avoids transferring
personal data to untrusted entities, hence user privacy is guar-
anteed. Osia et al. focus on protecting user’s personal data
from the inferences’ perspective. In particular, they break the
entire deep neural network into a feature extractor (on the
client side) and an analyzer (on the cloud side) to mini-
mize the exposure of sensitive information. Through local
processing of raw input data, sensitive personal information
is transferred into abstract features, which avoids direct dis-
closure to the cloud. Experiments on gender classification and
emotion detection suggest that this framework can effectively
preserve user privacy, while maintaining remarkable inference
accuracy.

Deep learning has also been exploited for cyber attacks,
including attempts to compromise private user information and
guess passwords. Hitaj et al. [434] suggest that learning a
deep model collaboratively is not reliable. By training a GAN,
their attacker is able to affect such learning process and lure
the victims to disclose private information, by injecting fake
training samples. Their GAN even successfully breaks the dif-
ferentially private collaborative learning in [431]. The authors
further investigate the use of GANs for password guessing.
In [507], they design PassGAN, which learns the distribu-
tion of a set of leaked passwords. Once trained on a dataset,
PassGAN is able to match over 46% of passwords in a dif-
ferent testing set, without user intervention or cryptography
knowledge. This novel technique has potential to revolutionize
current password guessing algorithms.

Greydanus [435] breaks a decryption rule using an LSTM
network. They treat decryption as a sequence-to-sequence
translation task, and train a framework with large enigma pairs.
The proposed LSTM demonstrates remarkable performance in
learning polyalphabetic ciphers. Maghrebi et al. [436] exploit
various deep learning models (i.e., MLP, AE, CNN, LSTM) to
construct a precise profiling system and perform side channel
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TABLE XVIII
A SUMMARY OF DEEP LEARNING DRIVEN SIGNAL PROCESSING

key recovery attacks. Surprisingly, deep learning based meth-
ods demonstrate overwhelming performance over other tem-
plate machine learning attacks in terms of efficiency in
breaking both unprotected and protected Advanced Encryption
Standard implementations. Ning et al. [438] demonstrate that
an attacker can use a CNN to infer with over 84% accuracy
what apps run on a smartphone and their usage, based on mag-
netometer or orientation data. The accuracy can increase to
98% if motion sensors information is also taken into account,
which jeopardizes user privacy. To mitigate this issue, the
authors propose to inject Gaussian noise into the magnetome-
ter and orientation data, which leads to a reduction in inference
accuracy down to 15%, thereby effectively mitigating the risk
of privacy leakage.

Lessons learned: Most deep learning based solutions focus
on existing network attacks, yet new attacks emerge every day.
As these new attacks may have different features and appear
to behave ‘normally’, old NN models may not easily detect
them. Therefore, an effective deep learning technique should
be able to (i) rapidly transfer the knowledge of old attacks to
detect newer ones; and (ii) constantly absorb the features of
newcomers and update the underlying model. Transfer learn-
ing and lifelong learning are strong candidates to address this
problems, as we will discuss in Section VII-C. Research in
this directions remains shallow, hence we expect more efforts
in the future.

Another issue to which attention should be paid is the fact
that NNs are vulnerable to adversarial attacks. This has been
briefly discussed in Section III-E. Although formal reports on
this matter are lacking, hackers may exploit weaknesses in
NN models and training procedures to perform attacks that
subvert deep learning based cyber-defense systems. This is an

important potential pitfall that should be considered in real
implementations.

I. Deep Learning Driven Signal Processing

Deep learning is also gaining increasing attention in signal
processing, in applications including Multi-Input Multi-Output
(MIMO) and modulation. MIMO has become a fundamental
technique in current wireless communications, both in cellular
and WiFi networks. By incorporating deep learning, MIMO
performance is intelligently optimized based on environment
conditions. Modulation recognition is also evolving to be more
accurate, by taking advantage of deep learning. We give an
overview of relevant work in this area in Table XVIII.

MIMO Systems: Samuel et al. suggest that deep neural
networks can be a good estimator of transmitted vectors in
a MIMO channel. By unfolding a projected gradient descent
method, they design an MLP-based detection network to per-
form binary MIMO detection [448]. The Detection Network
can be implemented on multiple channels after a single train-
ing. Simulations demonstrate that the proposed architecture
achieves near-optimal accuracy, while requiring light com-
putation without prior knowledge of Signal-to-Noise Ratio
(SNR). Yan et al. [449] employ deep learning to solve a
similar problem from a different perspective. By consider-
ing the characteristic invariance of signals, they exploit an
AE as a feature extractor, and subsequently use an Extreme
Learning Machine (ELM) to classify signal sources in a
MIMO orthogonal frequency division multiplexing (OFDM)
system. Their proposal achieves higher detection accuracy
than several traditional methods, while maintaining similar
complexity.
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Fig. 18. A communications system over an additive white Gaussian noise channel represented as an autoencoder.

Vieira et al. [324] show that massive MIMO chan-
nel measurements in cellular networks can be utilized for
fingerprint-based inference of user positions. Specifically,
they design CNNs with weight regularization to exploit
the sparse and information-invariance of channel finger-
prints, thereby achieving precise positions inference. CNNs
have also been employed for MIMO channel estimation.
Neumann et al. [447] exploit the structure of the MIMO chan-
nel model to design a lightweight, approximated maximum
likelihood estimator for a specific channel model. Their meth-
ods outperform traditional estimators in terms of computation
cost and reduce the number of hyper-parameters to be tuned. A
similar idea is implemented in [454], where Ye et al. employ
an MLP to perform channel estimation and signal detection in
OFDM systems.

Wijaya et al. [380], [382] consider applying deep learn-
ing to a different scenario. The authors propose to use
non-iterative neural networks to perform transmit power
control at base stations, thereby preventing degradation of
network performance due to inter-cell interference. The neu-
ral network is trained to estimate the optimal transmit
power at every packet transmission, selecting that with the
highest activation probability. Simulations demonstrate that
the proposed framework significantly outperform the belief
propagation algorithm that is routinely used for transmit
power control in MIMO systems, while attaining a lower
computational cost.

More recently, O’Shea et al. [439] bring deep learning
to physical layer design. They incorporate an unsupervised
deep AE into a single-user end-to-end MIMO system, to
optimize representations and the encoding/decoding processes,
for transmissions over a Rayleigh fading channel. We illus-
trate the adopted AE-based framework in Fig. 18. This design
incorporates a transmitter consisting of an MLP followed by
a normalization layer, which ensures that physical constraints
on the signal are guaranteed. After transfer through an addi-
tive white Gaussian noise channel, a receiver employs another
MLP to decode messages and select the one with the highest
probability of occurrence. The system can be trained with an
SGD algorithm in an end-to-end manner. Experimental results
show that the AE system outperforms the Space Time Block

Code approach in terms of SNR by approximately 15 dB.
Borgerding et al. [440] propose to use deep learning to recover
a sparse signal from noisy linear measurements in MIMO
environments. The proposed scheme is evaluated on compres-
sive random access and massive-MIMO channel estimation,
where it achieves better accuracy over traditional algorithms
and CNNs.

Modulation: West and O’Shea [443] compare the modu-
lation recognition accuracy of different deep learning archi-
tectures, including traditional CNN, ResNet, Inception CNN,
and LSTM. Their experiments suggest that the LSTM is the
best candidate for modulation recognition, since it achieves the
highest accuracy. Due to its superior performance, an LSTM
is also employed for a similar task in [442]. O’Shea et al. then
focus on tailoring deep learning architectures to radio prop-
erties. Their prior work is improved in [444], where they
architect a novel deep radio transformer network for precise
modulation recognition. Specifically, they introduce radio-
domain specific parametric transformations into a spatial
transformer network, which assists in the normalization of
the received signal, thereby achieving superior performance.
This framework also demonstrates automatic synchronization
abilities, which reduces the dependency on traditional expert
systems and expensive signal analytic processes. O’Shea and
Hoydis [450] introduce several novel deep learning appli-
cations for the network physical layer. They demonstrate a
proof-of-concept where they employ a CNN for modulation
classification and obtain satisfying accuracy.

Other Signal Processing Applciations: Deep learning is also
adopted for radio signal analysis. O’Shea et al. [452] employ
an LSTM to replace sequence translation routines between
radio transmitter and receiver. Although their framework
works well in ideal environments, its performance drops sig-
nificantly when introducing realistic channel effects. Later,
the authors consider a different scenario in [453], where they
exploit a regularized AE to enable reliable communications
over an impaired channel. They further incorporate a radio
transformer network for signal reconstruction at the decoder
side, thereby achieving receiver synchronization. Simulations
demonstrate that this approach is reliable and can be efficiently
implemented.
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TABLE XIX
A SUMMARY OF EMERGING DEEP LEARNING DRIVEN MOBILE NETWORK APPLICATIONS

Liang et al. [455] exploit noise correlations to decode chan-
nels using a deep learning approach. Specifically, they use a
CNN to reduce channel noise estimation errors by learning
the noise correlation. Experiments suggest that their frame-
work can significantly improve the decoding performance.
The decoding performance of MLPs, CNNs and RNNs is
compared in [456]. By conducting experiments in different
setting, the obtained results suggest the RNN achieves the
best decoding performance, nonetheless yielding the high-
est computational overhead. Liao et al. [458] employ MLPs
to perform accurate Rayleigh fading channel prediction. The
authors further equip their proposal with a sparse channel
sample construction method to save system resources with-
out compromising precision. Deep learning can further aid
visible light communication. Huang and Lin [460] employ
a deep learning based system for error correction in optical
communications. Specifically, an AE is used in their work to
perform dimension reduction on light-emitting diode (LED)
visible light downlink, thereby maximizing the channel band-
width . The proposal follows the theory in [450], where
O’Shea and Hoydis demonstrate that deep learning driven sig-
nal processing systems can perform as good as traditional
encoding and/or modulation systems.

Deep learning has been further adopted in solving mil-
limeter wave beamforming. Alkhateeb et al. [446] propose a
millimeter wave communication system that utilizes MLPs to
predict beamforming vectors from signals received from dis-
tributed base stations. By substituting a genie-aided solution
with deep learning, their framework reduces the coordination
overhead, enabling wide-coverage and low-latency beamform-
ing. Similarly, Gante et al. employ CNNs to infer the position
of a device, given the received millimeter wave radiation. Their
preliminary simulations show that the CNN-based system can
achieve small estimation errors in a realistic outdoors scenario,
significantly outperforming existing prediction approaches.

Lessons learned: Deep learning is beginning to play an
important role in signal processing applications and the
performance demonstrated by early prototypes is remark-
able. This is because deep learning can prove advantageous
with regards to performance, complexity, and generalization
capabilities. At this stage, research in this area is however
incipient. We can only expect that deep learning will become
increasingly popular in this area.

J. Emerging Deep Learning Applications in Mobile Networks

In this part, we review work that builds upon deep learning
in other mobile networking areas, which are beyond the scopes

of the subjects discussed thus far. These emerging applications
open several new research directions, as we discuss next. A
summary of these works is given in Table XIX.

Network Data Monetization: Gonzalez et al. employ unsu-
pervised deep learning to generate real-time accurate user
profiles [461] using an on-network machine learning platform
called Net2Vec [509]. Specifically, they analyze user brows-
ing data in real time and generate user profiles using product
categories. The profiles can be subsequently associated with
the products that are of interest to the users and employed for
online advertising.

IoT In-Network Computation: Instead of regarding IoT
nodes as producers of data or the end consumers of processed
information, Kaminski et al. [462] embed neural networks
into an IoT deployment and allow the nodes to collaboratively
process the data generated. This enables low-latency commu-
nication, while offloading data storage and processing from
the cloud. In particular, the authors map each hidden unit of a
pre-trained neural network to a node in the IoT network, and
investigate the optimal projection that leads to the minimum
communication overhead. Their framework achieves function-
ality similar to in-network computation in WSNs and opens a
new research directions in fog computing.

Mobile Crowdsensing: Xiao et al. investigate vulnerabili-
ties facing crowdsensing in the mobile network context. They
argue that there exist malicious mobile users who intentionally
provide false sensing data to servers, to save costs and preserve
their privacy, which in turn can make mobile crowdsensings
systems vulnerable [463]. The authors model the server-users
system as a Stackelberg game, where the server plays the
role of a leader that is responsible for evaluating the sensing
effort of individuals, by analyzing the accuracy of each sensing
report. Users are paid based on the evaluation of their efforts,
hence cheating users will be punished with zero reward. To
design an optimal payment policy, the server employs a deep
Q network, which derives knowledge from experience sensing
reports, without requiring specific sensing models. Simulations
demonstrate superior performance in terms of sensing qual-
ity, resilience to attacks, and server utility, as compared to
traditional Q learning based and random payment strategies.

Mobile Blockchain: Substantial computing resource require-
ments and energy consumption limit the applicability of
blockchain in mobile network environments. To mitigate this
problem, Luong et al. shed light on resource management in
mobile blockchain networks based on optimal auction in [464].
They design an MLP to first conduct monotone transforma-
tions of the miners’ bids and subsequently output the allocation
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scheme and conditional payment rules for each miner. By
running experiments with different settings, the results sug-
gest the propsoed deep learning based framework can deliver
much higher profit to edge computing service provider than
the second-price auction baseline.

Internet of Vehicles (IoV): Gulati et al. [465] extend the
success of deep learning to IoV. The authors design a deep
learning-based content centric data dissemination approach
that comprises three steps, namely (i) performing energy
estimation on selected vehicles that are capable of data
dissemination; (ii) employing a Weiner process model to iden-
tify stable and reliable connections between vehicles; and
(iii) using a CNN to predict the social relationship among
vehicles. Experiments unveil that the volume of data dissem-
inated is positively related to social score, energy levels, and
number of vehicles, while the speed of vehicles has negative
impact on the connection probability.

Lessons learned: The adoption of deep learning in the
mobile and wireless networking domain is exciting and
undoubtedly many advances are yet to appear. However, as
discussed in Section III-E, deep learning solutions are not uni-
versal and may not be suitable for every problem. One should
rather regard deep learning as a powerful tool that can assist
with fast and accurate inference, and facilitate the automation
of some processes previously requiring human intervention.
Nevertheless, deep learning algorithms will make mistakes,
and their decisions might not be easy to interpret. In tasks
that require high interpretability and low fault-tolerance, deep
learning still has a long way to go, which also holds for the
majority of ML algorithms.

VII. TAILORING DEEP LEARNING TO MOBILE NETWORKS

Although deep learning performs remarkably in many
mobile networking areas, the No Free Lunch (NFL) theorem
indicates that there is no single model that can work univer-
sally well in all problems [510]. This implies that for any
specific mobile and wireless networking problem, we may
need to adapt different deep learning architectures to achieve
the best performance. In this section, we look at how to tailor
deep learning to mobile networking applications from three
perspectives, namely, mobile devices and systems, distributed
data centers, and changing mobile network environments.

A. Tailoring Deep Learning to Mobile Devices and Systems

The ultra-low latency requirements of future 5G networks
demand runtime efficiency from all operations performed by
mobile systems. This also applies to deep learning driven
applications. However, current mobile devices have limited
hardware capabilities, which means that implementing com-
plex deep learning architectures on such equipment may be
computationally unfeasible, unless appropriate model tun-
ing is performed. To address this issue, ongoing research
improves existing deep learning architectures [511], such that
the inference process does not violate latency or energy con-
straints [512], [513], nor raise any privacy concern [514].
We outline these works in Table XX and discuss their key
contributions next.

Iandola et al. [515] design a compact architecture for
embedded systems named SqueezeNet, which has similar
accuracy to that of AlexNet [87], a classical CNN, yet 50 times
fewer parameters. SqueezeNet is also based on CNNs, but
its significantly smaller model size (i) allows more efficiently
training on distributed systems; (ii) reduces the transmis-
sion overhead when updating the model at the client side;
and (iii) facilitates deployment on resource-limited embedded
devices. Howard et al. [516] extend this work and introduce an
efficient family of streamlined CNNs called MobileNet, which
uses depth-wise separable convolution operations to drastically
reduce the number of computations required and the model
size. This new design can run with low latency and can satisfy
the requirements of mobile and embedded vision applications.
The authors further introduce two hyper-parameters to con-
trol the width and resolution of multipliers, which can help
strike an appropriate trade-off between accuracy and efficiency.
The ShuffleNet proposed by Zhang et al. [517] improves the
accuracy of MobileNet by employing point-wise group con-
volution and channel shuffle, while retaining similar model
complexity. In particular, the authors discover that more
groups of convolution operations can reduce the computation
requirements.

Zhang et al. [518] focus on reducing the number of param-
eters of structures with fully-connected layers for mobile
multimedia features learning. This is achieved by apply-
ing Trucker decomposition to weight sub-tensors in the
model, while maintaining decent reconstruction capability.
The Trucker decomposition has also been employed in [523],
where Huynh et al. seek to approximate a model with fewer
parameters, in order to save memory. Mobile optimizations are
further studied for RNN models. Cao et al. [519] use a mobile
toolbox called RenderScript35 to parallelize specific data struc-
tures and enable mobile GPUs to perform computational
accelerations. Their proposal reduces the latency when running
RNN models on Android smartphones. Chen et al. [520] shed
light on implementing CNNs on iOS mobile devices. In par-
ticular, they reduce the model executions latency, through
space exploration for data re-usability and kernel redun-
dancy removal. The former alleviates the high bandwidth
requirements of convolutional layers, while the latter reduces
the memory and computational requirements, with negligible
performance degradation.

Rallapalli et al. [521] investigate offloading very deep
CNNs from clouds to edge devices, by employing memory
optimization on both mobile CPUs and GPUs. Their frame-
work enables running at high speed deep CNNs with large
memory requirements in mobile object detection applica-
tions. Lane et al. develop a software accelerator, DeepX,
to assist deep learning implementations on mobile devices.
The proposed approach exploits two inference-time resource
control algorithms, i.e., runtime layer compression and deep
architecture decomposition [522]. The runtime layer compres-
sion technique controls the memory and computation runtime
during the inference phase, by extending model compression

35Android Renderscript https://developer.android.com/guide/topics/
renderscript/compute.html.
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SUMMARY OF WORKS ON IMPROVING DEEP LEARNING FOR MOBILE DEVICES AND SYSTEMS

principles. This is important in mobile devices, since offload-
ing the inference process to edge devices is more practical
with current hardware platforms. Further, the deep architec-
ture designs “decomposition plans” that seek to optimally
allocate data and model operations to local and remote pro-
cessors. By combining these two, DeepX enables maximizing
energy and runtime efficiency, under given computation and
memory constraints. Yao et al. [535] design a framework
called FastDeepIoT, which first learns the execution time
of NN models on target devices, and subsequently conducts
model compression to reduce the runtime without compromis-
ing the inference accuracy. Through this process, up to 78%
of execution time and 69% of energy consumption is reduced,
compared to state-of-the-art compression algorithms.

More recently, Fang et al. [531] design a framework called
NestDNN, to provide flexible resource-accuracy trade-offs on
mobile devices. To this end, the NestDNN first adopts a model
pruning and recovery scheme, which translates deep NNs to
single compact multi-capacity models. With this approach
up to 4.22% inference accuracy can be achieved with six
mobile vision applications, at a 2.0× faster video frame
processing rate and reducing energy consumption by 1.7×.
Xu et al. [532] accelerate deep learning inference for mobile
vision from the caching perspective. In particular, the proposed
framework called DeepCache stores recent input frames as
cache keys and recent feature maps for individual CNN layers
as cache values. The authors further employ reusable region
lookup and reusable region propagation, to enable a region
matcher to only run once per input video frame and load
cached feature maps at all layers inside the CNN. This reduces
the inference time by 18% and energy consumption by 20%
on average. Liu et al. [533] develop a usage-driven frame-
work named AdaDeep, to select a combination of compression

techniques for a specific deep NN on mobile platforms. By
using a deep Q learning optimizer, their proposal can achieve
appropriate trade-offs between accuracy, latency, storage and
energy consumption.

Beyond these works, researchers also successfully adapt deep
learning architectures through other designs and sophisticated
optimizations, such as parameters quantization [524], [529],
model slimming [536], sparsification and separation [525],
representation and memory sharing [98], [530], convolution
operation optimization [526], pruning [527], cloud assis-
tance [528] and compiler optimization [534]. These techniques
will be of great significance when embedding deep neural
networks into mobile systems.

B. Tailoring Deep Learning to Distributed Data Containers

Mobile systems generate and consume massive volumes of
mobile data every day. This may involve similar content, but
which is distributed around the world. Moving such data to
centralized servers to perform model training and evaluation
inevitably introduces communication and storage overheads,
which does not scale. However, neglecting characteristics
embedded in mobile data, which are associated with local
culture, human mobility, geographical topology, etc., during
model training can compromise the robustness of the model
and implicitly the performance of the mobile network appli-
cations that build on such models. The solution is to offload
model execution to distributed data centers or edge devices,
to guarantee good performance, whilst alleviating the burden
on the cloud.

As such, one of the challenges facing parallelism, in the con-
text of mobile networking, is that of training neural networks
on a large number of mobile devices that are battery powered,
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TABLE XXI
SUMMARY OF WORK ON MODEL AND TRAINING PARALLELISM FOR MOBILE SYSTEMS AND DEVICES

have limited computational capabilities and in particular lack
GPUs. The key goal of this paradigm is that of training with
a large number of mobile CPUs at least as effective as with
GPUs. The speed of training remains important, but becomes
a secondary goal.

Generally, there are two routes to addressing this problem,
namely, (i) decomposing the model itself, to train (or make
inference with) its components individually; or (ii) scaling the
training process to perform model update at different locations
associated with data containers. Both schemes allow one to
train a single model without requiring to centralize all data.
We illustrate the principles of these two approaches in Fig. 19
and summarize the existing work in Table XXI.

Model Parallelism: Large-scale distributed deep learning is
first studied in [127], where Dean et al. develop a frame-
work named DistBelief, which enables training complex neural
networks on thousands of machines. In their framework, the
full model is partitioned into smaller components and dis-
tributed over various machines. Only nodes with edges (e.g.,
connections between layers) that cross boundaries between
machines are required to communicate for parameters update
and inference. This system further involves a parameter
server, which enables each model replica to obtain the lat-
est parameters during training. Experiments demonstrate that
the proposed framework can be training significantly faster
on a CPU cluster, compared to training on a single GPU,
while achieving state-of-the-art classification performance on
ImageNet [192].

Teerapittayanon et al. [537] propose deep neural networks
tailored to distributed systems, which include cloud servers,
fog layers and geographically distributed devices. The authors
scale the overall neural network architecture and distribute

its components hierarchically from cloud to end devices.
The model exploits local aggregators and binary weights,
to reduce computational storage, and communication over-
heads, while maintaining decent accuracy. Experiments on a
multi-view multi-camera dataset demonstrate that this proposal
can perform efficient cloud-based training and local infer-
ence. Importantly, without violating latency constraints, the
deep neural network obtains essential benefits associated with
distributed systems, such as fault tolerance and privacy.

Coninck et al. [114] consider distributing deep learning over
IoT for classification applications. Specifically, they deploy
a small neural network to local devices, to perform coarse
classification, which enables fast response filtered data to be
sent to central servers. If the local model fails to classify, the
larger neural network in the cloud is activated to perform fine-
grained classification. The overall architecture maintains good
accuracy, while significantly reducing the latency typically
introduced by large model inference.

Decentralized methods can also be applied to deep rein-
forcement learning. Omidshafiei et al. [538] consider a multi-
agent system with partial observability and limited communi-
cation, which is common in mobile systems. They combine a
set of sophisticated methods and algorithms, including hystere-
sis learners, a deep recurrent Q network, concurrent experience
replay trajectories and distillation, to enable multi-agent coor-
dination using a single joint policy under a set of decentralized
partially observable MDPs. Their framework can potentially
play an important role in addressing control problems in
distributed mobile systems.

Training Parallelism is also essential for mobile system,
as mobile data usually come asynchronously from differ-
ent sources. Training models effectively while maintaining
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Fig. 19. The underlying principles of model parallelism (left) and training parallelism (right).

consistency, fast convergence, and accuracy remains however
challenging [545].

A practical method to address this problem is to perform
asynchronous SGD. The basic idea is to enable the server that
maintains a model to accept delayed information (e.g., data,
gradient updates) from workers. At each update iteration, the
server only requires to wait for a smaller number of workers.
This is essential for training a deep neural network over dis-
tributed machines in mobile systems. The asynchronous SGD
is first studied in [539], where Recht et al. propose a lock-
free parallel SGD named HOGWILD, which demonstrates
significant faster convergence over locking counterparts. The
Downpour SGD in [127] improves the robustness of the train-
ing process when work nodes breakdown, as each model
replica requests the latest version of the parameters. Hence
a small number of machine failures will not have a sig-
nificant impact on the training process. A similar idea has
been employed in [540], where Goyal et al. investigate the
usage of a set of techniques (i.e., learning rate adjustment,
warm-up, batch normalization), which offer important insights
into training large-scale deep neural networks on distributed
systems. Eventually, their framework can train an network on
ImageNet within 1 hour, which is impressive in comparison
with traditional algorithms.

Zhang et al. [541] argue that most of asynchronous
SGD algorithms suffer from slow convergence, due to the
inherent variance of stochastic gradients. They propose an
improved SGD with variance reduction to speed up the conver-
gence. Their algorithm outperforms other asynchronous SGD
approaches in terms of convergence, when training deep neu-
ral networks on the Google Cloud Computing Platform. The
asynchronous method has also been applied to deep reinforce-
ment learning. Mnih et al. [79] create multiple environments,
which allows agents to perform asynchronous updates to the
main structure. The new A3C algorithm breaks the sequen-
tial dependency and speeds up the training of the traditional
Actor-Critic algorithm significantly. Hardy et al. [542] further
study distributed deep learning over cloud and edge devices.
In particular, they propose a training algorithm, AdaComp,

which allows to compress worker updates of the target model.
This significantly reduce the communication overhead between
cloud and edge, while retaining good fault tolerance.

Federated learning is an emerging parallelism approach
that enables mobile devices to collaboratively learn a
shared model, while retaining all training data on individ-
ual devices [543], [546]. Beyond offloading the training data
from central servers, this approach performs model updates
with a Secure Aggregation protocol [544], which decrypts the
average updates only if enough users have participated, with-
out inspecting individual updates. Based on this idea, Google
recently build a prototype system using federated Learning in
the domain of mobile devices [547]. This fulfills the objective
that “bringing the code to the data, instead of the data to the
code”, which protects individuals’ privacy.

C. Tailoring Deep Learning to Changing Mobile Network
Environments

Mobile network environments often exhibit changing pat-
terns over time. For instance, the spatial distributions of mobile
data traffic over a region may vary significantly between dif-
ferent times of the day [548]. Applying a deep learning model
in changing mobile environments requires lifelong learning
ability to continuously absorb new features, without forgetting
old but essential patterns. Moreover, new smartphone-targeted
viruses are spreading fast via mobile networks and may
severely jeopardize users’ privacy and business profits. These
pose unprecedented challenges to current anomaly detection
systems and anti-virus software, as such tools must react to
new threats in a timely manner, using limited information. To
this end, the model should have transfer learning ability, which
can enable the fast transfer of knowledge from pre-trained
models to different jobs or datasets. This will allow models to
work well with limited threat samples (one-shot learning) or
limited metadata descriptions of new threats (zero-shot learn-
ing). Therefore, both lifelong learning and transfer learning
are essential for applications in ever changing mobile network
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Fig. 20. The underlying principles of deep lifelong learning (left) and deep transfer learning (right). Lifelong learning retains the knowledge learned while
transfer learning exploits labeled data of one domain to learn in a new target domain.

environments. We illustrated these two learning paradigms in
Fig. 20 and review essential research in this subsection.

Deep Lifelong Learning mimics human behaviors and seeks
to build a machine that can continuously adapt to new envi-
ronments, retain as much knowledge as possible from previous
learning experience [549]. There exist several research efforts
that adapt traditional deep learning to lifelong learning. For
example, Lee et al. [550] propose a dual-memory deep learn-
ing architecture for lifelong learning of everyday human
behaviors over non-stationary data streams. To enable the pre-
trained model to retain old knowledge while training with new
data, their architecture includes two memory buffers, namely
a deep memory and a fast memory. The deep memory is
composed of several deep networks, which are built when
the amount of data from an unseen distribution is accumu-
lated and reaches a threshold. The fast memory component is
a small neural network, which is updated immediately when
coming across a new data sample. These two memory mod-
ules allow to perform continuous learning without forgetting
old knowledge. Experiments on a non-stationary image data
stream prove the effectiveness of this model, as it signifi-
cantly outperforms other online deep learning algorithms. The
memory mechanism has also been applied in [551]. In par-
ticular, the authors introduce a differentiable neural computer,
which allows neural networks to dynamically read from and
write to an external memory module. This enables lifelong
lookup and forgetting of knowledge from external sources, as
humans do.

Parisi et al. consider a different lifelong learning scenario
in [552]. They abandon the memory modules in [550] and
design a self-organizing architecture with recurrent neurons
for processing time-varying patterns. A variant of the Growing
When Required network is employed in each layer, to predict
neural activation sequences from the previous network layer.
This allows learning time-vary correlations between inputs
and labels, without requiring a predefined number of classes.
Importantly, the framework is robust, as it has tolerance to
missing and corrupted sample labels, which is common in
mobile data.

Another interesting deep lifelong learning architecture is
presented in [553], where Tessler et al. build a DQN agent
that can retain learned skills in playing the famous com-
puter game Minecraft. The overall framework includes a
pre-trained model, Deep Skill Network, which is trained
a-priori on various sub-tasks of the game. When learning
a new task, the old knowledge is maintained by incorpo-
rating reusable skills through a Deep Skill module, which
consists of a Deep Skill Network array and a multi-skill
distillation network. These allow the agent to selectively
transfer knowledge to solve a new task. Experiments demon-
strate that their proposal significantly outperforms traditional
double DQNs in terms of accuracy and convergence. This
technique has potential to be employed in solving mobile
networking problems, as it can continuously acquire new
knowledge.

Deep Transfer Learning: Unlike lifelong learning, transfer
learning only seeks to use knowledge from a specific domain
to aid learning in a target domain. Applying transfer learning
can accelerate the new learning process, as the new task does
not require to learn from scratch. This is essential to mobile
network environments, as they require to agilely respond to
new network patterns and threats. A number of important
applications emerge in the computer network domain [57],
such as Web mining [554], caching [555] and base station
sleep strategies [209].

There exist two extreme transfer learning paradigms,
namely one-shot learning and zero-shot learning. One-shot
learning refers to a learning method that gains as much
information as possible about a category from only one or
a handful of samples, given a pre-trained model [556]. On the
other hand, zero-shot learning does not require any sample
from a category [557]. It aims at learning a new distribution
given meta description of the new category and correla-
tions with existing training data. Though research towards
deep one-shot learning [96], [558] and deep zero-shot learn-
ing [559], [560] is in its infancy, both paradigms are very
promising in detecting new threats or traffic patterns in mobile
networks.
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VIII. FUTURE RESEARCH PERSPECTIVES

As deep learning is achieving increasingly promising results
in the mobile networking domain, several important research
issues remain to be addressed in the future. We conclude our
survey by discussing these challenges and pinpointing key
mobile networking research problems that could be tackled
with novel deep learning tools.

A. Serving Deep Learning With Massive High-Quality Data

Deep neural networks rely on massive and high-quality data
to achieve good performance. When training a large and com-
plex architecture, data volume and quality are very important,
as deeper models usually have a huge set of parameters to
be learned and configured. This issue remains true in mobile
network applications. Unfortunately, unlike in other research
areas such as computer vision and NLP, high-quality and
large-scale labeled datasets still lack for mobile network appli-
cations, because service provides and operators keep the data
collected confidential and are reluctant to release datasets.
While this makes sense from a user privacy standpoint, to
some extent it restricts the development of deep learning
mechanisms for problems in the mobile networking domain.
Moreover, mobile data collected by sensors and network
equipment are frequently subject to loss, redundancy, mislabel-
ing and class imbalance, and thus cannot be directly employed
for training purpose.

To build intelligent 5G mobile network architecture, effi-
cient and mature streamlining platforms for mobile data
processing are in demand. This requires considerable amount
of research efforts for data collection, transmission, cleaning,
clustering, transformation, and annonymization. Deep learn-
ing applications in the mobile network area can only advance
if researchers and industry stakeholder release more datasets,
with a view to benefiting a wide range of communities.

B. Deep Learning for Spatio-Temporal Mobile Data Mining

Accurate analysis of mobile traffic data over a geographical
region is becoming increasingly essential for event localiza-
tion, network resource allocation, context-based advertising
and urban planning [548]. However, due to the mobility of
smartphone users, the spatio-temporal distribution of mobile
traffic [561] and application popularity [562] are difficult
to understand (see the example city-scale traffic snapshot
in Fig. 21). Recent research suggests that data collected by
mobile sensors (e.g., mobile traffic) over a city can be regarded
as pictures taken by panoramic cameras, which provide a
city-scale sensing system for urban surveillance [564]. These
traffic sensing images enclose information associated with the
movements of individuals [468].

From both spatial and temporal dimensions perspective, we
recognize that mobile traffic data have important similarity
with videos or speech, which is an analogy made recently
also in [218] and exemplified in Fig. 22. Specifically, both
videos and the large-scale evolution of mobile traffic are com-
posed of sequences of “frames”. Moreover, if we zoom into
a small coverage area to measure long-term traffic consump-
tion, we can observe that a single traffic consumption series

Fig. 21. Example of a 3D mobile traffic surface (left) and 2D projection
(right) in Milan, Italy. Figures adapted from [218] using data from [563].

Fig. 22. Analogies between mobile traffic data consumption in a city (left)
and other types of data (right).

looks similar to a natural language sequence. These observa-
tions suggest that, to some extent, well-established tools for
computer vision (e.g., CNN) or NLP (e.g., RNN, LSTM) are
promising candidate for mobile traffic analysis.

Beyond these similarity, we observe several properties of
mobile traffic that makes it unique in comparison with images
or language sequences. Namely,

1) The values of neighboring ‘pixels’ in fine-grained traffic
snapshots are not significantly different in general, while
this happens quite often at the edges of natural images.

2) Single mobile traffic series usually exhibit some period-
icity (both daily and weekly), yet this is not a feature
seen among video pixels.

3) Due to user mobility, traffic consumption is more likely
to stay or shift to neighboring cells in the near future,
which is less likely to be seen in videos.

Such spatio-temporal correlations in mobile traffic can be
exploited as prior knowledge for model design. We recog-
nize several unique advantages of employing deep learning
for mobile traffic data mining:

1) CNN structures work well in imaging applications, thus
can also serve mobile traffic analysis tasks, given the
analogies mentioned before.
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2) LSTMs capture well temporal correlations in time series
data such as natural language; hence this structure can
also be adapted to traffic forecasting problems.

3) GPU computing enables fast training of NNs and
together with parallelization techniques can support
low-latency mobile traffic analysis via deep learning
tools.

In essence, we expect deep learning tools tailored to
mobile networking, will overcome the limitation of tradi-
tional regression and interpolation tools such as Exponential
Smoothing [565], Autoregressive Integrated Moving Average
model [566], or unifrom interpolation, which are commonly
used in operational networks.

C. Deep Learning for Geometric Mobile Data Mining

As discussed in Section III-D, certain mobile data has
important geometric properties. For instance, the location of
mobile users or base stations along with the data carried can
be viewed as point clouds in a 2D plane. If the temporal
dimension is also added, this leads to a 3D point cloud repre-
sentation, with either fixed or changing locations. In addition,
the connectivity of mobile devices, routers, base stations, gate-
ways, and so on can naturally construct a directed graph, where
entities are represented as vertices, the links between them
can be seen as edges, and data flows may give direction to
these edges. We show examples of geometric mobile data and
their potential representations in Fig. 23. At the top of the fig-
ure a group of mobile users is represented as a point cloud.
Likewise, mobile network entities (e.g., base station, gateway,
users) are regarded as graphs below, following the rationale
explained below. Due to the inherent complexity of such rep-
resentations, traditional ML tools usually struggle to interpret
geometric data and make reliable inferencess.

In contrast, a variety of deep learning toolboxes for
modelling geometric data exist, albeit not having been
widely employed in mobile networking yet. For instance,
PointNet [567] and the follow on PointNet++ [101] are the
first solutions that employ deep learning for 3D point cloud
applications, including classification and segmentation [568].
We recognize that similar ideas can be applied to geometric
mobile data analysis, such as clustering of mobile users or base
stations, or user trajectory predictions. Further, deep learning
for graphical data analysis is also evolving rapidly [569]. This
is triggered by research on Graph CNNs [102], which brings
convolution concepts to graph-structured data. The applica-
bility of Graph CNNs can be further extend to the temporal
domain [570]. One possible application is the prediction of
future traffic demand at individual base station level. We
expect that such novel architectures will play an increasingly
important role in network graph analysis and applications such
as anomaly detection over a mobile network graph.

D. Deep Unsupervised Learning in Mobile Networks

We observe that current deep learning practices in mobile
networks largely employ supervised learning and reinforce-
ment learning. However, as mobile networks generate consid-
erable amounts of unlabeled data every day, data labeling is

costly and requires domain-specific knowledge. To facilitate
the analysis of raw mobile network data, unsupervised learn-
ing becomes essential in extracting insights from unlabeled
data [571], so as to optimize the mobile network functionality
to improve QoE.

The potential of a range of unsupervised deep learning
tools including AE, RBM and GAN remains to be fur-
ther explored. In general, these models require light feature
engineering and are thus promising for learning from het-
erogeneous and unstructured mobile data. For instance, deep
AEs work well for unsupervised anomaly detection [572].
Though less popular, RBMs can perform layer-wise unsu-
pervised pre-training, which can accelerate the overall model
training process. GANs are good at imitating data distribu-
tions, thus could be employed to mimic real mobile network
environments. Recent research reveals that GANs can even
protect communications by crafting custom cryptography to
avoid eavesdropping [573]. All these tools require further
research to fulfill their full potentials in the mobile networking
domain.

E. Deep Reinforcement Learning for Mobile Network
Control

Many mobile network control problems have been solved
by constrained optimization, dynamic programming and game
theory approaches. Unfortunately, these methods either make
strong assumptions about the objective functions (e.g., func-
tion convexity) or data distribution (e.g., Gaussian or Poisson
distributed), or suffer from high time and space complexity. As
mobile networks become increasingly complex, such assump-
tions sometimes turn unrealistic. The objective functions are
further affected by their increasingly large sets of variables,
that pose severe computational and memory challenges to
existing mathematical approaches.

In contrast, deep reinforcement learning does not make
strong assumptions about the target system. It employs func-
tion approximation, which explicitly addresses the problem of
large state-action spaces, enabling reinforcement learning to
scale to network control problems that were previously consid-
ered hard. Inspired by remarkable achievements in Atari [19]
and Go [574] games, a number of researchers begin to explore
DRL to solve complex network control problems, as we dis-
cussed in Section VI-G. However, these works only scratch
the surface and the potential of DRL to tackle mobile network
control problems remains largely unexplored. For instance, as
DeepMind trains a DRL agent to reduce Google’s data centers
cooling bill,36 DRL could be exploited to extract rich features
from cellular networks and enable intelligent on/off base sta-
tions switching, to reduce the infrastructure’s energy footprint.
Such exciting applications make us believe that advances in
DRL that are yet to appear can revolutionize the autonomous
control of future mobile networks.

36DeepMind AI Reduces Google Data Center Cooling Bill by 40%
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-
bill-40/.
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Fig. 23. Examples of mobile data with geometric properties (left), their geometric representations (middle) and their candidate models for analysis (right).
PointNet++ could be used to infer user trajectories when fed with point cloud representations of user locations (above); A GraphCNN may be employed to
forecast future mobile traffic demand at base station level (below).

F. Summary

Deep learning is playing an increasingly important role in
the mobile and wireless networking domain. In this paper, we
provided a comprehensive survey of recent work that lies at
the intersection between deep learning and mobile networking.
We summarized both basic concepts and advanced principles
of various deep learning models, then reviewed work specific
to mobile networks across different application scenarios. We
discussed how to tailor deep learning models to general mobile
networking applications, an aspect overlooked by previous
surveys. We concluded by pinpointing several open research
issues and promising directions, which may lead to valuable
future research results. Our hope is that this article will become
a definite guide to researchers and practitioners interested in
applying machine intelligence to complex problems in mobile
network environments.
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