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a b s t r a c t 

Human activity recognition systems are developed as part of a framework to enable continuous moni- 

toring of human behaviours in the area of ambient assisted living, sports injury detection, elderly care, 

rehabilitation, and entertainment and surveillance in smart home environments. The extraction of rel- 

evant features is the most challenging part of the mobile and wearable sensor-based human activity 

recognition pipeline. Feature extraction influences the algorithm performance and reduces computation 

time and complexity. However, current human activity recognition relies on handcrafted features that are 

incapable of handling complex activities especially with the current influx of multimodal and high di- 

mensional sensor data. With the emergence of deep learning and increased computation powers, deep 

learning and artificial intelligence methods are being adopted for automatic feature learning in diverse 

areas like health, image classification, and recently, for feature extraction and classification of simple and 

complex human activity recognition in mobile and wearable sensors. Furthermore, the fusion of mo- 

bile or wearable sensors and deep learning methods for feature learning provide diversity, offers higher 

generalisation, and tackles challenging issues in human activity recognition. The focus of this review is 

to provide in-depth summaries of deep learning methods for mobile and wearable sensor-based human 

activity recognition. The review presents the methods, uniqueness, advantages and their limitations. We 

not only categorise the studies into generative, discriminative and hybrid methods but also highlight their 

important advantages. Furthermore, the review presents classification and evaluation procedures and dis- 

cusses publicly available datasets for mobile sensor human activity recognition. Finally, we outline and 

explain some challenges to open research problems that require further research and improvements. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Human activity recognition is an important area of research

n ubiquitous computing, human behaviour analysis and human-

omputer interaction. Research in these areas employ different ma-

hine learning algorithms to recognise simple and complex activi-

ies such as walking, running, cooking, etc. Particularly, recognition

f daily activities is essential for maintaining healthy lifestyle, pa-

ient rehabilitation and activity shifts among the elderly citizens

hat can help to detect and diagnose serious illnesses. Therefore,

uman activity recognition framework provides mechanism to de-

ect both postural and ambulatory activities, body movements and
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ctions of users using different multimodal data generated by vari-

ty of sensors ( Cao, Wang, Zhang, Jin, & Vasilakos, 2017; Ordonez &

oggen, 2016 ). Previous studies in human activity recognition can

e broadly categorised based on diverse devices, sensor modali-

ies and data utilised for detection of activity details. These in-

lude video based, wearable and mobile phone sensors, social net-

ork sensors and wireless signals. Video-based sensors are utilised

o capture images, video or surveillance camera features to recog-

ise daily activity ( Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016;

nofri, Soda, Pechenizkiy, & Iannello, 2016 ). With the introduction

f mobile phones and other wearable sensors, inertial sensor data

 Bhattacharya & Lane, 2016; Bulling, Blanke, & Schiele, 2014b ) are

ollected using mobile or wearable embedded sensors placed at

ifferent body positions in order to infer human activities details

nd transportation modes. Alternatively, the use of social network

ethods ( Y. Jia et al., 2016 ) that exploit appropriate users’ informa-

ion from multiple social network sources to understand user be-
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haviour and interest have also been proposed recently. In addition,

wireless signal based human activity recognition ( Savazzi, Rampa,

Vicentini, & Giussani, 2016 ) takes advantages of signal propagated

by the wireless devices to categorise human activity. However, the

use of sensor data generated using smartphones and other wear-

able devices have dominated the research landscape in human mo-

tion analysis, activity monitoring and detection due to their ob-

vious advantages over other sensor modalities ( Cornacchia, Ozcan,

Zheng, & Velipasalar, 2017 ). 

Generally, mobile phones and wearable based sensors for hu-

man activity identification are driven by their ubiquity, unobtru-

siveness, cheap installation procedure and ease of usability. Mobile

phones have become part of our daily life and can be found in ev-

ery homes and carried everywhere we go. In this context, mobile

phones and wearable sensors are popular alternative methods of

inferring activity details. For instance, while the video sensor ex-

tract features such as the Histogram of Oriented Gradient (HOG),

Spatio-temporal interest Point (STIP) and Region of Interest (ROI),

mobile sensors utilise statistical and frequency based features to

recognise activity details. Statistical features provide less computa-

tion time and complexity ( Figo, Diniz, Ferreira, & Cardoso, 2010 ).

Furthermore, vision based techniques intrude on user privacy, re-

quire fixed location implementations and capture non-target infor-

mation ( Yang, Nguyen, San, Li, & Krishnaswamy, 2015 ). In addi-

tion, video sensors based human activity recognition are affected

by lighting variability leading to decrease in performances due to

visual disturbanes ( Wang, 2016 ). On the other hand, mobile and

wearable sensor-based methods provide better advantages for real-

time implementation of human activity recognition systems. More-

over, mobile phone and wearable devices are not location depen-

dents, cost effective, easy to deploy and do not pose any health

hazard caused by radiation ( Alsheikh et al., 2015 ) unlike wireless

signals based method. Considering the obvious advantages of mo-

bile and wearable sensor based implementation of human activity,

number of studies have been proposed by leveraging on the data

generated using these devices ( Morales & Akopian, 2017 ). 

The explosion of smartphones era embedded with multi-sensor

systems that enable researchers to collect human physiological sig-

nal for monitoring of activity of daily living, have made human

motion analysis integral part of our daily life. Smartphones pro-

vide access to wide range of sensor such as accelerometer, gy-

roscope, magnetometer, Bluetooth, Wi-Fi, microphones, proximity

and light sensor and cellular radio sensors that can be exploited

to infer activity details. Sensors such as accelerometer, gyroscope,

magnetometer, heart rate, GPS can be deployed for coarse grain

and context activity recognition, user location and social inter-

action between users. Motion sensors (Accelerometers, gyroscope

magnetometer) provide important information that facilitate recog-

nition and monitoring of users’ movement such as walking, stand-

ing or running. Similarly, proximity and light sensors embedded

in mobile devices to enhance user experiences can also be de-

ployed to determine whether the user is in light or dark places

( Incel, 2015 ). Other sensors such as barometers, thermometers,

air humidity and pedometers have also been applied to maintain

healthy status of elderly citizens and for assisted living ( Gong, Cui,

Xiao, & Wang, 2012 ). For instance, the pedometer found in the

Samsung Galaxy smartphones and exercises tracking wearable de-

vices are essential for step counts, heart rate and pulse monitoring.

These are effective for important health conditions identifications

which may interfere with user activities ( Kanaris, Kokkinis, Liotta,

& Stavrou, 2017; Natarajasivan & Govindarajan, 2016; Zouba, Bre-

mond, & Thonnat, 2009 ). 

In human activity recognition, data collection with varieties of

sensors installed in mobile phone and wearable devices is pre-

ceded by other data analytic phases such as pre-processing, data

segmentation, extraction of salient and discriminative features, and
nally classification of activity details. Pre-processing involves the

emoval and representation of the raw sensor data. Different meth-

ds such as nonlinear, low pass and high pass filter, and Laplacian

nd Gaussian filter have been utilised for pre-processing. The seg-

entation procedure divides the signal into different window sizes

o extract useful features. Generally, sensor data segmentation is

chieved using methods ranging from sliding windows, events or

nergy based activities ( Bulling, Blanke, & Schiele, 2014a ). Next,

elevant feature vectors are extracted from the segmented data

o determine lower set of features to minimise classification er-

ors and reduce computation time. In addition, the extracted fea-

ures are often further reduced through feature selection methods

o the most discriminative features for recognition tasks. Feature

ectors for human activity recognition can be broadly categorised

nto statistical and structural features ( Bulling et al., 2014a; Figo,

iniz, Ferreira, Jo, et al., 2010 ). Statistical features (mean, median,

ime domain, frequency domain, standard deviation, etc.) extract

uantitative properties of sensor data while structural features use

he relationship among the mobile sensor data for feature extrac-

ion. Likewise, dimensionality reduction reduces the dimension of

he extracted features to decrease the computational time. The di-

ensionality reductions widely used in human activity recognition

re principal component analysis (PCA), linear discriminate anal-

sis (LDA) and empirical cumulative distribution functions (ECDF)

 Abidine, Fergani, Fergani, & Oussalah, 2016 ). The activity recogni-

ion and classification phases help to map extracted features into

ets of activities using machine learning or pattern recognition

ethods ( Bulling et al., 2014b ). Large varieties of machine learning

echniques have played prominent roles in inferring activity details.

hese include the Support Vector Machine ( Anguita, Ghio, Oneto,

arra, & Reyes-Ortiz, 2012; Kim & Ling, 2009 ), Hidden Markov

odel ( Safi, Mohammed, Attal, Khalil, & Amirat, 2016 ), Decision

ree, K-Nearest Neighbour (KNN) ( Shoaib, Bosch, Incel, Scholten,

 Havinga, 2016 ) and Gaussian Mixture Model ( Rodriguez, Or-

ite, Medrano, & Makris, 2016 ). Studies by Bulling et al. (2014b ),

ncel, Kose, and Ersoy (2013) and Pires, Garcia, Pombo, and Flórez-

evuelta, 2016 ) provide excellent information on the human activ-

ty recognition process using handcrafted features with mobile and

earable sensor data. 

Recently, to overcome the challenges associated with single

ensor modalities and increase generalization, many studies have

roposed information fusion strategies that combine multiple sen-

ors modalities or classifiers to increase robustness, reliabilities,

erive confidence measures among different classifiers and re-

uce the complexity of recognition system ( Pires et al., 2016 ). In-

ormation fusion in human activity recognition are necessitated

y increase in sensor of different modalities ( Gravina, Alinia,

hasemzadeh, & Fortino, 2017 ). Information fusion techniques

re prevalent in both handcrafted features and automatic feature

earning using deep learning ( Habib, Makhoul, Darazi, & Couturier,

016; Shoaib, Bosch, Incel, Scholten, & Havinga, 2014; Zhu & Sheng,

0 09; Zouba et al., 20 09 ). In this review, recent works on informa-

ion fusion for human activity recognition using automatic feature

epresentation were also analysed. 

Of all the different phases of human activity recognition

ramework, feature extraction is the most important stage

 Domingos, 2012 ). This is because of the correlation between per-

ormances of activity recognition system and extraction of relevant

nd discriminative feature vectors. Therefore, extensive works have

een done on how to improve human activity recognition system

hrough extraction of expert-driven features ( Figo, Diniz, Ferreira,

o, et al., 2010 ). However, expert-driven features extraction meth-

ds depend on the knowledge of the experts or guess and applica-

ility of the feature vectors in the problem domains. Even though,

onventional handcrafted features learning methods are easy to

nderstand and have been widely utilised for activity recognition,
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eature vectors extracted using such techniques are tasks or ap-

lications dependent, and cannot be transferred to similar activ-

ty tasks. Furthermore, hand-engineered features cannot represent

he salient characteristics of complex activities, and involve time-

onsuming feature selection techniques to select the optimal fea-

ures ( Yang et al., 2015 ). Also, there are no universal procedures

or selecting appropriate features leading to many studies resort to

euristic means using feature engineering knowledge approach. In

he nutshell, the major challenges of conventional handcrafted fea-

ures for mobile and wearable sensor based human activity recog-

ition are summarised below: 

• Feature representation techniques in current human activity

recognition approaches for mobile and wearable sensors use

carefully engineered feature extraction and selections methods

that are manually extracted using expert domain knowledge.

However, such feature extraction approach are task or applica-

tions dependent and cannot be transferred to activity of similar

patterns. Furthermore, carefully engineered features vectors are

challenging to model complex activity details and involve time

consuming feature selections ( Ronao & Cho, 2016; Yang et al.,

2015 ); 
• There are no universal procedures for selecting appropriate fea-

tures but many studies resort to extensive heuristic knowledge

to develop and select appropriate tasks for a given human ac-

tivity recognition system ( Zdravevski et al., 2017 ); 
• Moreover, the current statistical features such as time or fre-

quency domain features for human activity recognition are un-

able to model and support the dynamic nature of the cur-

rent seamless and ubiquitous collection of mobile and wearable

senor streams ( Hasan & Roy-Chowdhury, 2015 ); 
• Also, human activity recognition using expert driven features

require large amount of labelled training sensor data to obtain

accurate recognition performance. The experimental protocol to

collect large amount of labelled training data require extensive

infrastructural setup that are time consuming. On the contrary,

unlabelled data are easy to obtain leveraging Internet of Things

(IoT), smart homes and mobile crowdsourcing from transporta-

tion modes ( Song-Mi, Sang Min, & Heeryon, 2017 ); 
• Other challenges of handcrafted features are the issues both-

ering on intra-class variability and inter-class similarities

( Bulling et al., 2014b ). In this case, same activities may be per-

formed differently by different individuals or different activities

appear to have same pattern of executions. Developing generic

expert driven features that can accurately model these issues

are challenging; 
• Furthermore, human activities are hierarchical and inherently

translational in nature with ambiguity in temporal segmenta-

tion of sub-activities that constitute the main activity. There-

fore, capturing spatial and temporal variation of activities are

important for accurate detection of complex activity details

( Kautz et al., 2017 ); 
• To achieve diversity and robust features for human activity

recognition performance generalisation across heterogeneous 

domain, approaches such as multimodal fusion and decision fu-

sion are utilised. However, there still exist, uncertainties on the

best fusion techniques to achieve higher generalisation with re-

duced computation time for mobile and wearable sensor imple-

mentation. 

To solve the above problems, studies have delved into tech-

iques that involve automatic features extraction with less hu-

an effort s ( LeCun, Bengio, & Hinton, 2015 ) using deep learning

echniques. Deep learning, a new branch of machine learning that

odels high-level features in data, has become an important trend

n human activity recognition. Deep learning comprises multiple

ayers of neural networks that represent features from low to high
evels hierarchically. It has become a critical research area in im-

ge and object recognition, natural language processing, machine

ranslation and environmental monitoring ( Y. Guo et al., 2016 ).

ore recently, various deep learning methods have been proposed

or mobile and wearable sensor based human activity recogni-

ion. These methods include restricted Boltzmann machine, au-

oencoder, sparse coding, convolutional neural network and recur-

ent neural network. These deep learning methods can be stacked

nto different layers to form deep learning models that provide en-

anced system performance, flexibility, robustness and remove the

eed to depend on conventional handcrafted features. The essence

f this study is to review different human activity recognition and

ealth monitoring systems in mobile and wearable sensors that

tilise deep neural network for feature representations. We pro-

ide an extensive review of the recent developments in the field

f human activity recognition for mobile and wearable sensors us-

ng deep learning. Specifically, we present comprehensive review

f deep learning methods; taxonomy of the recent studies in deep

earning based activity recognition, their advantages, training pro-

edure and popular deep learning software frameworks. Based on

he reviewed papers, open research issues were derived, and future

esearch directions are suggested. 

Deep learning and human activity recognition or activity of

aily living as a separate research areas have been progressive ar-

as for years. A good number of surveys and reviews have been

ublished. However, these reviews either focus on deep learning

nd their applications or activity recognition using conventional

eatures learning methods. Furthermore, these reviews have be-

ome outdated and require urgent research to analyse the high

olume of papers published in the area lately. In deep learn-

ng methods, reviews by Angermueller, Parnamaa, Parts, and Ste-

le (2016) , Benuwa, Zhan, Ghansah, Wornyo, and Kataka (2016) ,

olmans, Loyens, Marcq, and Gijbels (2016) , Gawehn, Hiss, and

chneider (2016) , LeCun et al. (2015) , W. Liu, Ma, Qi, Zhao,

nd Chen (2017) , W. Liu et al. (2016) , Mamoshina, Vieira, Putin,

nd Zhavoronkov (2016) , Ravì, Wong, Deligianni, et al. (2017) ,

chmidhuber (2015) provide comprehensive knowledge of the

evelopment and historical perspective. While studies such as

 Ahmad, Saeed, Saleem, & Kamboh, 2016; Attal et al., 2015; Bulling

t al., 2014b; Cornacchia et al., 2017; Gravina, Alinia, et al., 2017;

. D. Incel et al., 2013; Kumari, Mathew, & Syal, 2017; Onofri

t al., 2016; Pires et al., 2016; Turaga, Chellappa, Subrahmanian,

 Udrea, 2008 ) discussed the human activity and action recogni-

ion based on handcrafted features, sensor fusion techniques to in-

rease the robustness of recognition algorithms and developmen-

al trends on wearable sensors for the collection of activity data.

thers presented the use of handcrafted and deep learning based

eatures for human activity recognition in video sensor and images

 Aggarwal & Xia, 2014; Sargano, Angelov, & Habib, 2017; Xu et al.,

013; F. Zhu, Shao, Xie, & Fang, 2016 ). Recently, authors ( Gamboa,

017; Langkvist, Karlsson, & Loutfi, 2014 ) reviewed deep learning

or time series analysis; another closely related area in human ac-

ivity recognition. However, the author took a broader view on the

pplications of deep learning in time series that comprises speech

ecognition, sleep stage classification and anomaly detection but

his review focused on deep learning based human activity recog-

ition using sensor data generated by mobile or wearable devices.

rom the available literature, there are no studies on review or sur-

ey of deep learning based feature representation and extraction

or mobile and wearable sensors based on human activity recogni-

ion. To fill this gap, this review is a timely exploration of the pro-

esses for developing deep learning based human activity recogni-

ion and provide in-depth tutorial on the techniques, implementa-

ion procedure and feature learning process. 

The remainder of this paper is organised as follows:

ection 2 discusses Comparison of deep learning feature rep-
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resentation and conventional handcrafted feature learning ap-

proach. Section 3 discusses the deep learning methods and their

subdivisions. Section 4 review different representative studies in

deep learning for human activity recognition using mobile and

wearable sensors. The section is subdivided into generative feature

extraction techniques such as Deep Belief Network (DBN), Deep

Boltzmann Machine (DBM), sparse coding, and discriminative

feature extraction with Convolutional Neural Network (CNN), Re-

current Neural Network (RNN) and hybrid methods that combine

generative and discriminative deep learning methods. The descrip-

tion, advantages and weakness of these studies are also discussed

in details. Section 5 discusses the training procedure, classification

and evaluation of deep learning for human activity recognition.

Section 6 reviews common benchmark datasets for human activity

recognition using deep learning. Section 7 includes the software

frameworks for implementation of deep learning algorithms.

Section 8 provides the open research challenges requiring fur-

ther improvements and attention while Section 9 concludes the

review. 

2. Comparison of deep learning feature representation and 

conventional feature learning 

Feature extraction is a vital part of the human activity recog-

nition process as it helps to identify lower sets of features from

input sensor data to minimise classification errors and computa-

tional complexity. Effective performance of Human activity recog-

nition system depends on appropriate and efficient feature repre-

sentation ( Abidine et al., 2016 ). Therefore, extraction of efficient

feature vectors from mobile and wearable sensor data helps to re-

duce computation time and provide accurate recognition perfor-

mance. Feature extraction can be performed manually or automat-

ically based on expert knowledge. Manually engineered features

follow bottom-up approaches that consist of data collection, sig-

nal pre-processing and segmentation, handcrafted features extrac-

tion and selection, and classification. Manually engineered feature

processes utilise appropriate domain knowledge and expert-driven

approach to extract time domain, frequency domain and Hulbert-

Huang features using Empirical mode decomposition to represent

signal details ( Z. L. Wang, Wu, Chen, Ghoneim, & Hossain, 2016;

Zdravevski et al., 2017 ). Then, appropriate feature selection meth-

ods such as Minimal Redundancy Maximal Relevance, correlation

based features selection method and RELIEF F are employed to re-

duce computation time and memory usage due to inability of mo-

bile and wearable devices to support computational intensive ap-

plications ( Bulling et al., 2014b ). Also, data dimensionality reduc-

tion approach such Principal Component analysis (PCA), Linear Dis-

criminative analysis (LDA), Independent Component analysis (ICA)

and Empirical Cumulative Distribution Function (ECDF) ( Abidine

et al., 2016; Plötz, Hammerla, & Olivier, 2011 ) are utilised to fur-

ther reduce features dimensionality and produce compact feature

vectors representations. 

However, it is very challenging to measure the efficient perfor-

mances of manually engineered features across different applica-

tions and also require time consuming features selection and di-

mensionality reduction methods specified above to obtain accept-

able results ( X. Li et al., 2017; Ronao & Cho, 2016 ). Moreover, the

use of feature selection are often arbitrary and lacks generalizabil-

ity or ability to model complex activity details. It is highly ac-

knowledged that activity in natural environments are abstracts, hi-

erarchical and translational in nature with temporal and spatial

information ( X. Li et al., 2017) . In order to consider these mobile

and wearable sensor data characteristics for human activity recog-

nition, require intensive feature extraction and selection especially

for continuous sensor streams ( Ordóñez & Roggen, 2016 ). Another

pertinent issues with handcrafted features are based on the dimen-
ionality reduction commonly used. For instance, principal com-

onent analysis (PCA) treat each dimensionality as statistically in-

ependent and extract features based on sensor appearance, but

ctivities are performed based on activity windows, and this have

een found to affect recognition accuracy ( Plötz et al., 2011 ). 

Clearly, there is need for appropriate techniques to extract dis-

riminative features to achieve optimal performance accuracy. Re-

ent studies in human activity recognition have observed there

re no universally best discriminative feature that accurately rep-

esent across dataset and applications ( Capela, Lemaire, & Bad-

our, 2015 ). Therefore, automatic feature representations are re-

uired to enable extraction of translational invariant feature vec-

ors without reliance on domain expert knowledge. Deep learning

ethods for automatic feature representation provide the ability

o learn features from raw sensor data with little pre-processing

 LeCun et al., 2015 ). Using multiple layer of abstraction, deep learn-

ng methods learn intricate features representation from raw sen-

or data and discover the best pattern to improve recognition per-

ormance. Recently, studies have indicated the incredible results of

eep learning over conventional handcrafted features for human

ctivity recognition ( Ordóñez & Roggen, 2016; S. Yao, Hu, Zhao,

hang, & Abdelzaher, 2017 ). Also, the use of automatic feature rep-

esentation helps to capture local dependencies and scale invari-

nts features. Thus, deep learning provide effective means to solve

he problem of intra-class variabilities and inter-class similarities

hat are fundamental challenges for implementing human activity

ecognition with handcrafted features ( Bulling et al., 2014b ). Fur-

hermore, deep learning methods apply unsupervised pre-training

o learn structure of high dimensional sensor data to prevent over-

tting. With the current influx of unlabelled sensor streams from

nternet of Things (IoT), crowdsourcing and cyber-physical sys-

ems, implementing efficient human activity recognition would be

ery challenging without automatic feature representation from

aw sensor data ( Gravina et al., 2017 ). In Table 1 , we summarised

he comparison of the two approaches in terms of strengths and

eaknesses for mobile and wearable sensor based human activ-

ty recognition. The comparisons are summarised using five char-

cteristics. These include feature representation method, generali-

ation, data preparation, changes in activity details and execution

ime. 

. Automatic feature extraction using deep learning methods 

Deep learning as a machine learning method and artificial in-

elligence techniques for feature extraction has come a long way

ince its resurgence in 2006 with the work of Hinton, Osindero,

nd Teh (2006 ). The upsurge in deep learning research is fuelled

y its ability to extract salient features from raw sensor data with-

ut relying on laboriously handcrafted features. Furthermore, in

he area of human activity recognition, for instance, complex hu-

an activities are translational invariant and hierarchical in nature,

nd the same activities can be performed in different ways by the

ame participants. In some cases, activities can be a starting point

or other complex activities; running and jogging might not be dis-

inguishable depending on the age and health condition for the

erson performing the activity. 

Deep learning ( Bengio, 2009; Hinton et al., 2006; Hollensen

 Trappenberg, 2015 ) is a machine learning technique that uses

epresentational learning to discover feature representation in

aw sensor data automatically. Unlike classical machine learn-

ng (support vector machine, k-nearest neighbour, k-mean, etc.)

hat require a human engineered feature to perform optimally

 LeCun et al., 2015 ). Over the years, deep learning has provided

xtensive applications in image recognition ( Szegedy et al., 2015 ),

peech recognition ( G. Hinton et al., 2012 ), medicine and pharmacy

 J. Ma, Sheridan, Liaw, Dahl, & Svetnik, 2015 ), natural language pro-
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Table 1 

Comparison of deep learning feature representation and conventional feature learning. 

Characteristics Deep learning based feature representation Conventional feature learning approach 

Feature extraction and Representation Ability to learn features from raw sensors data and 

discover the most efficient patterns to improve 

recognition accuracy 

Use manually engineered feature vectors that are 

applications dependent, and unable to model complex 

activity details 

Generalisation and Diversity Helps to automatically capture spatial, temporal 

dependencies and scale invariant features from 

unlabelled raw sensor data 

Require labelled sensor data and use arbitrary feature 

selection, and dimensionality reduction approaches that 

are hardly generalizable 

Data preparations Data pre-processing and normalisation is not compulsory 

in deep learning features to obtain improved results 

Extract features based on sensor appearance but activities 

are performed within activity windows. Furthermore, 

manually engineered features require extensive data 

pre-processing and normalization to produce improved 

results 

Temporal and Spatial changes in 

Activities 

The use of hierarchical and translational invariant features 

helps to solve the problem of intra-class variabilities and 

inter-class similarities inherent in handcrafted features. 

Handcrafted features are inefficient at handling inter-class 

variabilities and inter-class similarities. 

Model Training and Execution time Require large amount of sensor dataset to avoid overfitting 

and high computation intensive system, therefore require 

Graphical Processing Unit (GPU) to speed up training 

Require small training data with less computation time 

and memory usage. 

Fig. 1. Different architecture of deep learning algorithms. 
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essing ( Bordes, Chopra, & Weston, 2014; Sutskever, Vinyals, & Le,

014 ) and recently in human activity recognition ( Y. Q. Chen, Xue,

 Ieee, 2015; L. Lin et al., 2016; Rahhal et al., 2016; Ronao and Cho,

016; Vollmer, Gross, & Eggert, 2013a ). 

Extensive number of deep learning methods ( LeCun et al., 2015;

chmidhuber, 2015 ) have been proposed recently, and these meth-

ds can be broadly classified into Restricted Boltzmann Machine,

eep Autoencoder, Sparse Coding, Convolutional Neural Network

nd Recurrent Neural Networks ( Fig. 1 ). These methods are re-

iewed in the subsection below, outlining the characteristics, ad-

antages and drawbacks of each method. 

.1. Restricted Boltzmann Machine 

Restricted Boltzmann Machine ( Fischer & Igel, 2014 ; Hinton &

ejnowski, 1986 ) is a generative model that serves as a building

lock in greedy layer by layer feature learning and training of deep

eural network. The model is trained with contrastive divergence

CD) to provide unbiased estimates of maximum likelihood learn-

ng. However, Restricted Boltzmann Machine is difficult to converge

o local minimal and variant of data representation. Furthermore, it

s challenging to know how automatic adaptation parameters set-

ings such as learning rate, weight decay, momentum, the size of

ini-batch and sparsity can be specified to achieve optimal re-

ults ( Cho, Raiko, & Ihler, 2011; G. E. Hinton, Srivastava, Krizhevsky,
utskever, & Salakhutdinov, 2012 ). Restricted Boltzmann Machine is

omposed of the visible unit and hidden units that are restricted to

orm bipartite graph for effective algorithm implementation. There-

ore, weights connecting the neurons between visible units and

idden units are conditionally independent without visible-visible

r hidden-hidden connections. To provide efficient feature extrac-

ion, several RBMs are stacked to form visible to hidden units,

nd the top layers are fully connected or embedded with classi-

al machine learning to discriminate features vectors ( Fischer &

gel, 2014 ). Although, issues like inactive hidden neuron, class vari-

tion, intensity and sensitivity to larger dataset make training RBM

ifficult. Recently, methods such as regularisation using noisy rec-

ified linear unit ( Nair & Hinton, 2010 ) and temperature based Re-

tricted Boltzmann Machine ( G. Li et al., 2016 ) have been proposed

o resovle the issue. Restricted Boltzmann Machine has been exten-

ively studied in feature extraction and dimensionality reduction

G. E. Hinton & Salakhutdinov, 2006 ), modelling high dimensional

ata in video and motion sensors ( Taylor, Hinton, & Roweis, 2007 ),

ovie rating ( Salakhutdinov, Mnih, & Hinton, 2007 ) and speech

ecognition ( Mohamed & Hinton, 2010 ). Two well know Restricted

oltzmann Machine methods in literature are Deep Belief Network

nd Deep Boltzmann Machine (See Fig. 2 ). 

Deep Belief Network ( Hinton et al., 2006 ) is a deep learning al-

orithm trained in a greedy-wise layer manner by stacking sev-

ral Restricted Boltzmann to extract hierarchical features from raw
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Fig. 2. Representation of restricted Boltzmann machine: (a) Deep belief network (b) Deep Boltzmann machine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Deep Autoencoder encoding and decoding process. 
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sensor data. Deep Belief Network has directed connection between

the lower layer and undirected connection at the top layer that

helps to model observed distribution between the vectors space

and hidden layers. Likewise, training involves layer by layer at a

time with weight fine-tuning using contrastive convergence (CD).

Then, the conditional probability distribution of the data is com-

puted to learn robust features that are invariant to transformation,

noise and displacement ( G. E. Hinton et al., 2006). 

Deep Boltzmann Machine (DBM) ( Salakhutdinov & Hinton, 2009;

Salakhutdinov & Larochelle, 2010 ) is a generative model with sev-

eral hidden layers in undirected connection in the entire network

layers. DBM hierarchically learns features from data in which fea-

tures learned in the first layer are used as latent variables in

the next layer. Similar to deep belief network (DBN), Deep Boltz-

mann machine deploys Markov random field for layer by layer

pre-training of massive unlabelled data and provide feedback us-

ing bottom-up pass approach. Furthermore, the algorithm is fined

through back propagation approach. Fine-tuning allows variation

inference and the algorithm to be deployed in specific classification

or activity recognition task. Training RBM ( Salakhutdinov & Hin-

ton, 2012; Salakhutdinov & Larochelle, 2010 ) involves maximising

the lower bound of likelihood with stochastic maximum likelihood

algorithms ( Younes, 1999 ). In this case, training strategies need to

adopt a way to determine the training statistics, weight initializa-

tion and update after each mini-batch by replacing stochastic bi-

nary values with deterministic real probabilities. The major draw-

back that has been observed in DBM is the time complexity with

higher optimisation parameters. In Montavon and Müller (2012) ,

a centring optimisation method was proposed for stable learning

algorithms and Midsized DBM for faster and good generative and

discriminative model 

3.2. Deep Autoencoder 

The autoencoder method replicates the copies of the input

value as output as shown in Fig. 3 . Using encoder and decoding

units, autoencoder methods produces the most discriminative fea-

tures from unlabeled sensor data by projecting them to lower di-

mensional space. The encoder transforms the sensor data input

into hidden features which are then reconstructed by the decoder

to approximate values to minimise error rates ( Liou, Cheng, Liou, &

Liou, 2014 ; Lukun Wang, 2016 ). The method provides data-driven

learning feature extraction techniques to avoid problems inherent

in handcrafted features. Training autoencoder is done in such a

way that the hidden units are smaller than the inputs or outputs
o provide a lower dimensional discriminative feature for recogni-

ion of activities with reduced computation time ( Ravì, Wong, Deli-

ianni, et al., 2017 ). Moreover, autoencoder algorithm uses multi-

le layer of encoder units to transform high dimensional data into

he low dimensional feature vectors. Autoencoder algorithm is pre-

rained using restricted Boltzmann machine due to its complexity

 Hinton & Salakhutdinov, 2006 ) and then obtains higher feature

epresentations by stacking several level of autoencoder algorithms

 Zhang, Shan, Kan, & Chen, 2014 ). Generally, different variations of

utoencoder have been proposed to ensure robust features repre-

entation for machine learning applications. These include denois-

ng autoencoder, sparse autoencoder and contractive autoencoder. 

Denoising autoencoder was first introduced by

incent, Larochelle, Bengio, and Manzagol (2008) as method

o stochastically learn robust feature representation from cor-

upted version of data (e.g. sensor values) by partial destruction

f the raw input sample. Thus, denoising autoencoder is trained to

econstruct sample input data from corrupted version by forcing

andom sample values of the data to zero through stochastic map-

ing. Similar to other unsupervised deep learning model, denoising

utoencoder is trained through layer to layer initialisation. Each

ayer of the network is trained to produce input data of the next

igher level layer representation. The layer to layer training ensure

hat autoencoder network is able to capture robust structure and

bserved statistical dependencies and regularities about input

ata distributions. Moreover, stacked denoising autoencoder can

e stacked to learn useful representation of corrupted version of

nput sample data which have been found to give less classifica-
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ion error ( Vincent, Larochelle, Lajoie, Bengio, & Manzagol, 2010 ),

nd this was recently applied to recognise complex activities

 Oyedotun & Khashman, 2016 ). 

Sparse autoencoder ( Marc’Aurelio Ranzato, et al., 2007 ) is un-

upervised deep learning model developed for sparse and over-

omplete feature representation from input data by forcing sparsity

erm to the model loss function and set some of the active units

lose to zero. Sparse autoencoder is highly applicable in tasks that

equire analysis of high dimensional and complex input data such

s motion sensors, images and videos. Generally, the use of spar-

ity term allow the model to learn feature representation that are

obust, linearly separable and invariant to changes, distortion, dis-

lacements and learning applications ( Zhou et al., 2015 ). Therefore,

parse autoencoder model is very efficient for extraction of low di-

ensional features from high dimensional input data and compact

nterpretation of complex input data using supervised learning ap-

roach ( Liu & Taniguchi, 2014 ). 

Recently, Rifai, Vincent, Muller, Glorot, and Bengio (2011) pro-

ose contrative autoencoder by introducing penalty term of par-

ial derivatives for efficient feature representation. The use of sum

f square of all partial derivatives for the feature vectors with

espect to size of input data, force the features within neigh-

ourhood of the input data ( Dauphin et al., 2012 ). Furthermore,

enalty term reduces the dimensional feature space with the train-

ng datasets and makes it invariant to changes and distortion. Con-

ractive autoencoder is similar to denoising autoencoder as both

pply penalty term to the small corrupted data sample. However,

nlike the denoising autoencoder, the contractive autoencoder ap-

lies an analytic penalty to the whole data instead of the encod-

ng input sample ( Mesnil et al., 2012 ). Section 4.1.3 discusses the

pplications of autoencoder in mobile and wearable sensor based

uman activity recognition and health monitoring. 

.3. Sparse coding 

Sparse coding was first proposed by Olshausen and

ield (1997) as a machine learning technique for learning over-

omplete basis in order to produce efficient data representation.

parse coding provides an effective means of reducing the dimen-

ionality of data and dynamically represent the data as a linear

ombination of basis vectors. This enable sparse coding model

aptures the data structure and determines correlations between

arious input vectors ( Y. Guo et al., 2016 ). Recently, some studies

ave proposed sparse coding methods to learn data representation

articularly in human activity recognition. These include the shift-

nvariant method ( Vollmer, Gross, & Eggert, 2013b ) and sparse

usion ( Ding, Lei, & Rao, 2016 ). These algorithms provide feature

imensionality reduction strategies to reduce computational com-

lexities for implementation of human activity recognition system

sing mobile phone and wearable devices. 

.4. Convolutional Neural Network 

Convolutional Neural Network (CNN) ( LeCun, Huang, & Bottou,

004 ) is a Deep Neural Network with interconnected structures. A

onvolutional neural network performs convolution operations on

aw data (e.g. sensor values) and is one of the most researched

eep learning techniques which has found extensive applications

n image classification, sentence modelling, speech recognition and

ecently in mobile and wearable sensors based human activity

ecognition ( Y. Guo, et al., 2016; Karpathy, Johnson, & Fei-Fei, 2015;

onao & Cho, 2016 ). Generally, convolutional neural network model

s composed of convolutional layer, pooling layer and fully con-

ected layer. These layers are stacked to form deep architecture

or automatic feature extraction in raw sensor data ( Ordóñez &

oggen, 2016 ; Wang, Qiao, & Tang, 2015 ). The convolutional layer
aptures the feature maps with different kernel sizes and strides

nd then pooled the features maps together in order to reduce the

umber of connections between the convolutional layer and the

ooling layer. The pooling layer reduces the feature maps, num-

er of parameters and makes the network translational invariant

o changes and distortion. In the past, different pooling strategies

ave been proposed for Convolutional Neural Network implemen-

ation in various area of applications. These include max pool-

ng, average pooling, stochastic pooling and spatial pooling units

 Y. Guo et al., 2016 ). Recently, theoretical analysis and performance

valuations of these pooling strategies have shown superior per-

ormance of max pooling strategies. Thus, max pooling strategy

s extensively applied in deep learning training ( Boureau, Ponce,

 LeCun, 2010; Scherer, Müller, & Behnke, 2010 ). Moreover, recent

tudies human activity recognition also applies max pooling strate-

ies due to its robustness to small changes ( Kautz et al., 2017 ;

iu, Liang, Lan, Hao, & Chen, 2016 ). However, studies in time series

nalysis with deep learning observed reduction in discriminative

bility of max pooling strategies ( Abdel-Hamid, Deng, & Yu, 2013 ).

herefore, further experimental analysis and evaluation is required

o ascertain the effectives of these pooling strategies in human ac-

ivity recognition and time series applications. 

The fully connected layer is fused with the inference engine

uch as SoftMax, Support Vector Machine or Hidden Markov Model

hat takes the features vectors from sensor data for activity recog-

ition ( Erfani, Rajasegarar, Karunasekera, & Leckie, 2016; Ronao &

ho (2016, 2015 ). In CNN, activation unit values are computed for

ach region of the network in order to learn patterns across the

nput data ( Ordóñez & Roggen, 2016 ). The output of convolutional

peration is computed as C 
1 . j 
i 

= α( b l 
j 
+ 

M ∑ 

m =1 

w 

l. j 
m 

x 
l−1 . j 
i + m −1 

) , where l is

he layer index, σ is the activation function, b is the bias term

or the feature map, M is the kernel/filter size, W is the weight

f the feature map. The weight may be shared to reduce com-

lexity and make the network easy to train. Generally, idea of

onvolutional neural network (CNN) was inspired by Hubel and

iesel (1962) which noted that the human visual cortex con-

ists of maps of the local receptive field that decrease in granu-

arity as the cortex move along the receptive fields. Since the pro-

osal, a number of other CNN architectures have been developed

y researchers. These include the AlexNet ( Krizhevsky, Sutskever,

 Hinton, 2012 ), VGG ( Krizhevsky et al., 2012 ) and GoogleNet

 Szegedy et al., 2015 ). 

Recently, CNN architectures that combine other deep learning

echniques or fusion of different CNN architectures ( Jing, Wang,

hao, & Wang, 2017; Ordóñez & Roggen, 2016 ) were also pro-

osed. For instance, ( Ordóñez & Roggen, 2016 ) proposes DeepCon-

LSTM, an architecture that replaces the pooling layer of the con-

olutional neural network with Long Short Term Memory (LSTM)

f the recurrent neural network. Also, convolutional deep be-

ief networks (CDBN) was developed by Lee, Grosse, Ranganath,

nd Ng (2009) which exploit the power of discriminative CNN

nd pre-training technique of Deep Belief Network. Furthermore,

asci, Meier, Cire ̧s an, and Schmidhuber (2011) proposed deep con-

olutional autoencoder for feature learning by integrating convolu-

ion neural network and autoencoder trained with online stochas-

ic gradient descent optimisation. The architecture of Convolutional

eural network is shown in Fig. 4 . 

.5. Recurrent neural network 

Recurrent neural network (RNN) was developed to model se-

uential data such as time series or raw sensor data ( Fig. 5 ). RNN

ncorporates a temporal layer to capture sequential information

nd then learns complex changes using the hidden unit of the re-

urrent cell. The hidden unit cells can change based on the infor-
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Fig. 4. Deep convolutional neural network. 

Fig. 5. Simple recurrent neural network. 
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mation available to the network, and this information is constantly

updated to reflect the current status of the network. RNN com-

putes the current hidden state by estimating the next hidden state

as activation of the previously hidden state. However, the model is

difficult to train and suffer from vanishing or exploding gradients

limiting its application for modelling long time activity sequence

and temporal dependencies in sensor data ( Guan & Ploetz, 2017 ).

Variations of RNN such as Long Short Term Memory (LSTM) and

Gated Recurrent Unit (GRU) integrate varieties of gates and mem-

ory cells to capture temporal activity sequence ( Graves, 2013 ). Long

Short Term Memory ( Hochreiter & Schmidhuber, 1997 ) incorpo-

rated memory cell to store contextual information, thereby con-

trol flow of information into the network. With the inclusion of

memory cells such input gate, function gate and output gate along-

side learnable weights, allow LSTM model temporal dependencies

in sequential data and adequately capture global features to boost

recognition accuracy ( Zaremba, 2015 ). 

Despite the advantages inherent in LSTM, Cho et al. (2014) ob-

served that issues of too many parameters that need to be up-

dated during training increases computational complexity of LSTM.

To reduce parameter update, they introduced Gated recurrent units

with fewer parameters that make it faster and less complex to im-

plement. LSTM and Gated Recurrent Unit (GRU) differ in the way

the next hidden state are updated and contents exposure mecha-
ism ( Valipour, Siam, Jagersand, & Ray, 2016 ). While LSTM updates

y summation operation, GRU updates the next hidden state by

aking correlation based on the amount of time needed to keep

uch information in the memory. Moreover, recent comparative

nalysis of the performance of LSTM and GRU shown that GRU

lightly outperformed LSTM in most of machine learning applica-

ions ( Chung, Gulcehre, Cho, & Bengio, 2014 ). An attempt has also

een made to improve on GRU by reducing the number of gates

n the network and introduce only multiplicative gates to control

he flow of information ( Gao & Glowacka, 2016 ). The algorithm

as compared with LSTM and GRU, and it outperformed them in

erms of memory requirement and computational time. Recently,

hung, Gülçehre, Cho, and Bengio (2015) proposed Gated Feedback

ecurrent Neural Network (GF-RNN) to solve the problem of learn-

ng at multiplicative scale. This learning process is very challeng-

ng in application area such as language modelling and program-

ing language sequence evaluation. Specifically, Gated Feedback

ecurrent Neural Networks is developed by stacking multiple re-

urrent layers and allow control of the signal flowing from upper

ayer to the lower layer. The mechanism is done by adaptively con-

rolling based on the previously hidden state and assign different

ayer with different timescale. However, GF-RNN is not popular in

uman activity recognition. For all the studies review, we find no

pecific work that apply GF-RNN for human activity. Therefore, the

odel is omitted in our review of deep learning based human ac-

ivity recognition in Section 4.2.2 . 

.6. Strengths and weaknesses of different deep learning methods 

In this section, we compare these methods discussed above not-

ng their strengths and weaknesses for mobile and wearable based

uman activity recognition. The different deep learning methods

iscussed in this review have produce state-of-arts performances

n mobile and wearable sensor based human activity recognition

 Section 4 ). The main advantage of deep learning is the ability

o automatically learn from unlabelled raw sensor data. However,

hese methods provide different capabilities for sensor stream pro-

essing. For instance, Restricted Boltzmann machine algorithms are

fficient for automatic and efficient unsupervised transformation
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f sensor data into feature vector using layer by layer training

everaging unlabelled data. Also, the methods allow robust fea-

ure vectors extraction. Nevertheless, Restricted Boltzmann ma-

hine presents major drawback such as high parameter initialisa-

ion that make training computationally expensive. Considering the

omputation capabilities of mobile and wearable sensor devices,

t is difficult to support on-board and real-time activity recogni-

ion ( Yalçın, 2016 ). On the other hand, Deep autoencoder are ef-

cient for unsupervised feature transformation into lower feature

ectors automatically from raw sensor data. Specifically, deep au-

oencoder methods are trained using greedy layer by layer ap-

roach for unsupervised feature learning from continuous sensor

treams. Deep autoencoder algorithms are robust to noisy sensor

ata with ability to learn hierarchical and complex features from

ensor data. However, the major drawbacks of deep autoencoder

re the inability to search for optimal solutions and high com-

utation time due to high parameter tuning. While sparse cod-

ng methods are efficient for reduction of high dimensional sensor

ata into linear combination feature vectors and ensure compact

epresentation of features. Moreover, sparse coding is invariant to

ensor transformation and orientation, and effective for modelling

hanges in activity progression ( Zhang & Sawchuk, 2013 ). Change

n sensor orientation is big challenges in human activity recogni-

ion system especially for smartphone accelerometers ( Incel, 2015 ).

n this, accelerometer signal produce by smartphone or wearable

evices change with variations in orientation and placement po-

itions. Nevertheless, it is still challenging to effectively perform

nsupervised features learning with sparse coding. Convolutional

eural Network are capable of learning deep feature vectors from

ensor data for modelling complex and high dimensional sensor

ata. The main advantage of CNN is the ability to use pooling layer

o reduce training data dimensions and make it translational in-

ariant to changes and distortion ( Ronao & Cho, 2016 ). The algo-

ithms is capable of learning long range and repetitive activities

hrough multi-channel approach ( Zeng et al., 2014 ). Convolutional

eural Networks are more inclined for image processing, therefore,

ensor data are converted to image description to support extrac-

ion of discriminative features ( Sathyanarayana et al., 2016b ). Con-

olutional Neural Network are deployed to solve the problem of

ncertainty in sensor measurement and conflicting correlation in

igh dimensional sensor data. However, CNN require high num-

er of hyper-parameter tuning to achieve optimal features. Further-

ore, it is challenging to support effective on-board recognition of

omplex activity details. Section 4.2.1 provide comprehensive re-

iew of Convolutional Neural Networks implementation for human

ctivity recognition. Finally, Recurrent Neural Networks are applied

o model temporal dynamics in sensor data, thus enable modelling

f complex activity details. RNN such as Long Short Term Mem-

ry are efficient at creating global temporal dependencies in sen-

or data. The major issue in Recurrent Neural Networks especially

ong short term memory is the high computation time due to large

umber of parameter update. Techniques such as high throughput

arameter update approach may help to reduce computation time

 Inoue, Inoue, & Nishida, 2016 ). 

Table 2 summarises the recent applications domain in mobile

nd wearable sensor based human activity recognition, strength

nd weakness of each deep learning methods, placing emphasis

n sensor data processing. Furthermore, the categorisation of each

ethod for human activity recognition is presented in Section 4 . 

. Deep learning approaches for human activity recognition 

sing mobile and wearable sensor data 

Research on the use of deep learning for feature representa-

ions and classification is growing rapidly. Generally, deep learn-

ng methods can be subdivided into generative model, discrim-
native model and hybrid model ( Deng, 2014 ). These subdivi-

ions are presented in Fig. 6 . The generative models are graphi-

al models that represent independent or dependent distributions

n sensor data where graphs node represent the random variable

f the given sensor data and arc represent the relationship be-

ween variables. Generative models capture higher order corre-

ation by identifying joint statistical distributions with associated

lass. Moreover, generative models use unlabeled datasets that are

re-trained with greedy layer by layer approach and then fine-

uned with labelled data which is then classified with classical

achine learning such as Support Vector Machine (SVM) or HMM

 Bengio, 2009; Hodo, Bellekens, Hamilton, Tachtatzis, & Atkinson,

017; Mamoshina et al., 2016 ). Among deep learning methods

n these categories are Restricted Boltzmann, Autoencoder, Sparse

oding and Deep Gaussian Mixture. In the case of the discrim-

native models, the posterior distribution provides discriminative

ower in classification and modelling of label sensor data. A con-

olutional neural network is an important category of discrimina-

ive deep learning model ( Mamoshina et al., 2016 ). Others are Re-

urrent Neural Network, Artificial Hydrocarbon and Deep Neural

odel. Conversely, hybrid models are used to classify data by de-

loying the feature output generated by generative models. This in-

olves pre-training of the data to enhance computational time and

hen classify with classical machine learning algorithms. The gen-

rative model reinforces hybrid models through optimisation and

egularisation procedures ( Deng, 2014 ). In this review, the stud-

es categorised as a hybrid models are those that combine gen-

rative and discriminative or both methods for human activity

ecognition. Notable examples in this area are Convolutional Re-

tricted Boltzmann Machine ( Sarkar, Reddy, Dorgan, Fidopiastis, &

iering, 2016 ), Convolutional Recurrent Neural Network ( Ordóñez

 Roggen, 2016 ) and an ensemble of homogenous convolutional

eural network features ( Ijjina & Mohan, 2016 ). 

In human activity recognition, deep learning is used in diverse

asks such as estimating changes in the movement pattern for the

lderly ( Yi, Cheng, & Xu, 2017 ), labelling of human activity se-

uence ( Yao, Lin, Shi, & Ranasinghe, 2017 ), recognition of emotion

n people in need using electroencephalogram (EEG) ( Yanagimoto

 Sugimoto, 2016 ) and health anomaly detection using physiolog-

cal signals. To efficiently achieve these, require automatic feature

epresentation. Therefore, deep learning methods provide effective

eatures representation approach to improve classification errors

nd reduce computational complexity in human activity recogni-

ion. For instance, the variants of Restricted Boltzmann Machine

ethods play vital role in features dimension reduction and au-

omatically discover discriminative features using a layer by layer

re-training to increase recognition accuracy. Restricted Boltzmann

achine provides an excellent method for learning improved fea-

ures from unlabeled data and then pre-trained for complex ac-

ivity recognition. The high-order dependencies and localisation

mong group activities features are extracted with different deep

earning methods ( Alsheikh et al., 2015 ). 

Sensor data processing are classical time series learning and re-

uire high input sensor data adaptation to enable efficient process-

ng. Mobile and wearable sensor data generate time series sen-

or data in one dimension (1D) ( Zeng et al., 2014 ). It is chal-

enging to processing motion sensor with high dimensional deep

earning architectures. Two approaches have been proposed to con-

ert the sensor streams to fit into deep learning algorithms. These

nclude channel or model based approaches. Channel based ap-

roach utilise the sensor dimension as the dimension of the net-

ork architecture and extract features from each axis for activ-

ty recognition and fall detection ( Khan & Taati, 2017; Ordóñez &

oggen, 2016 ). The sensor axes are used to perform 1D convolu-

ion for extraction of salient feature and then combined at the

ully connected layers ( Sathyanarayana et al., 2016a ). Model based
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Table 2 

Deep learning methods. 

Methods Descriptions Strengths Weaknesses Recent application in human 

activity monitoring and 

detection 

Deep Belief Network Has directed connection at the 

lower layer and undirected 

connection at two topmost 

layer 

Unsupervised training with 

unlabelled sensor streams 

which is naturally available 

through cyber-physical systems 

and Internet of Things and 

initialisation prevent 

convergence at local minima 

Mobile and wearable sensor 

on-board training of the 

network is computationally 

complex due to extensive 

parameters initialization 

process 

Activity of daily living (ADL) 

localisation, detection of 

posture and hand gestures 

activities in Alzheimer. 

Deep Boltzmann 

Machine 

Has undirected connection at 

every layer of the network 

Allow feedback mechanism for 

more robust feature extraction 

through unsupervised training. 

Due to resource constraint 

nature of mobile devices, Joint 

optimisations are required to 

reduce operation overhead and 

execution cost. However, DBM 

joint optimisation is practically 

difficult to achieve 

Diagnosis of emotional state in 

elderly and detection of 

irregular heartbeats during 

intensive exercise. 

Denoising autoencoder Enable correct reconstruction 

of corrupted input values 

Robust to corrupted sensor 

data streams 

High computational time, lack 

of scalability to high 

dimensional data, rely on 

iterative and numerical 

optimisation and high 

parameter tuning ( M. Chen, Xu, 

Weinberger, & Sha, 2012 ) 

Automatic detection of activity 

of daily living (ADL). 

Sparse Autoencoder Impose sparsity term to the 

loss function to produce robust 

features that are invariant to 

learning applications 

Produce more linearly 

separable features 

High computational time due 

to numerous forward pass for 

every example of the data 

sample ( Ng, 2011 ) 

Health rate analysis during 

intensive sports activities and 

health monitoring 

Contractive 

autoencoder 

Add analytic penalty instead of 

the stochastic penalty to the 

reconstruction error functions 

Reduced dimensional features 

space and is invariant to 

changes and local dependencies 

Difficult to optimise and greedy 

pre-training does not find 

stable nonlinear features 

especially for one layer 

autoencoder ( Schulz, Cho, 

Raiko, & Behnke, 2015 ) 

Activity of daily living (ADL), 

user location and activity 

context recommendations 

Sparse Coding Over-complete basis for 

reducing the dimensionality of 

data as linear combination of 

basis vector 

The use of sparse coding 

method for dimensionality 

reduction of input data helps 

to minimise computational 

complexity 

Efficient handling and 

computation of feature vectors 

are non-trivial 

( Harandi, Sanderson, Hartley, & 

Lovell, 2012 ). It is also difficult 

to develop deep architecture 

with sparse coding 

( He, Kavukcuoglu, Wang, 

Szlam, & Qi, 2014 ) 

Representation of energy 

related and health monitoring 

smart homes and Activity of 

daily living (ADL) 

Convolutional Neural 

Network 

Deep neural network with 

interconnected structure 

inspired by biological visual 

cortex 

Widely implemented in deep 

learning with a lot of training 

strategies proposed. 

Automatically learn features 

from raw sensor data. 

Moreover, CNN is invariant to 

sensor data orientation and 

change in activity details. 

Require large dataset and high 

number of hyper-parameter 

tuning to achieve optimal 

features. Maybe difficult to 

support effective on-board 

recognition of complex activity 

details. 

Predict relationship between 

exercises and sleep patterns, 

automatic pain recognition 

during strenuous sports 

activities, energy expenditure 

estimation and tracking of 

personal activities. 

Recurrent Neural 

Network 

Neural network for modelling 

sequential time series data. 

Incorporate temporal layer to 

learn complex changes in data 

Used to model time 

dependencies in data 

Difficult to train and suffer 

from vanishing or exploding 

gradients. In case of LSTM, 

require too many parameter 

updates. Large parameter 

update is challenging for 

real-time activity predictions. 

Model temporal patterns in 

activity of daily living (ADL), 

progressive detection of activity 

levels, fall and heart failures in 

elderly. 
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methods use temporal correlation of sensor data to convert the

sensor data into 2-D image descriptions and apply 2-D convolu-

tion operation to extract features. These are common in Convolu-

tional Neural Network for human activity recognition ( Jiang & Yin,

2015; Ravì, Wong, Lo, & Yang, 2017 ). For instance, Ravì, Wong, Lo,

et al. (2017) propose spectrogram representation to transform the

motion sensor data (accelerometer and gyroscope) into local tem-

poral convolution to reduce computational complexity. The types

of input adaptation employ for motion sensor in human activ-

ity recognition depends application domains. Other works mod-

ified the convolutional kernel of Convolutional Neural Network

to capture temporal dependencies from multiple sensors ( Chen &

Xue, 2015 ). Therefore, previous studies on deep learning imple-

mentation for human activity recognition adopt these input data
daptation approaches to automatically extract relevant features

rom raw sensor data. 

In this section, we discuss recent studies for deep learning im-

lementation of human activity recognition for mobile and wear-

ble sensors. In Fig. 6 , these methods are depicted while subse-

uent sections outline their uniqueness for feature extraction in

obile and wearable sensor based human activity recognition. 

.1. Generative deep learning methods 

As stated earlier, generative deep learning methods model in-

ependent or dependent distributions in data and high order cor-

elation by identifying the joint statistical distribution with asso-

iated classes. In the past decade, various studies have been con-
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Fig. 6. Taxonomy of recent deep learning methods for human activity recognition. 
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ucted using generative feature extraction models for human activ-

ty recognition. Here, we analysed these and their implementation

dvantages 

.1.1. Deep restricted Boltzmann machine methods 

Pioneering the use of deep learning based generative fea-

ure extraction for human activity recognition was started by

lötz et al. (2011) when they proposed the performance evalu-

tion of different generative feature extraction and dimensional-

ty reduction techniques such as autoencoder, principal compo-

ent analysis, empirical cumulative distribution function and sta-

istical features. An extensive experiment using sensor based on

ublic datasets showed that autoencoder outperforms other fea-

ure extraction techniques including handcrafted features. A num-

er of other deep learning methods for human activity recognition

ave since followed suit. For instance, the deep belief network pro-

osed by Hinton et al . (2006 ) was used to extract hierarchical fea-

ures from motion sensor data and then model stochastic tempo-

al activity sequence using Hidden Markov Model ( Alsheikh, Niy-

to, Lin, Tan, & Han, 2016 ). The work was later extended for on-

oard mobile phone implementation using mobile Spark platform

 Alsheikh et al . , 2016 ). Also, studies by Yalçın (2016) and L. Zhang,

u, & Luo (2015a) introduce deep belief network for online and

eal-time feature extraction for human activity recognition. How-

ver, due to the computationally intensive nature of deep learning,

he algorithm was trained offline with generative backpropagation

nitialized parameters and activity classification done with SoftMax

egression. Deep learning has also provided feature representation

or the online classification task, contextual information provision

or sensor and real-time recognition of simple to complex activi-

ies details using datasets collected with the aid of mobile devices
 Zhang, Wu, & Luo, 2015a,b,c,d ). However, the use of large window

ize and storing previous data to provide contextual information in

ome of the studies aid increased computational time and mem-

ry usage. Deep Belief Network has also provided excellent means

o model temporal dependencies and observable posterior distri-

ution in sensor data with Hidden Markov model for diagnosis

nd recognition of emotions state in elderly using wearable sen-

or worn on the patients’ scalp ( X. Jia, Li, Li, & Zhang, 2014; Zhang

t al., 2015b,d ). Also, Z. Y. Wu, Ding, and Zhang (2016) proposed

nsupervised feature extraction and recognition of irregular heart

eat during intensive exercise by stacking various layers of Re-

tricted Boltzmann machine. The stacked layers enable hierarchical

xtraction of discriminative features that clearly describe complex

ctivity details. The objective is to provide automatic health mon-

toring in special cases such as brain activity detection (Electroen-

ephalogram), eye movement (Electrocochleogram), skeletal mus- 

le activity (Electromyogram) and heart rate (Electrocardiogram).

his will ensure appropriate independent living and overall health

tatus for the elderly ( Längkvist, Karlsson, & Loutfi, 2012; Z. Y. Wu

t al . , 2016 ; H. Xu & Plataniotis, 2016 ). 

Zhao and He (2014) explored implementation of deep Restricted

oltzmann Machine for detection of hand activity in elderly with

lzheimer’s disease using Electroencephalogram dataset collected 

ith wearable devices worn by patients. They leverage on in-

remental learning and support vector machine to classify what

eatures may lead to accurate diagnosis of the disease. In re-

ent study, Bhattacharya and Lane (2016) investigated smartwatch-

entric activity recognition and the possibility of implementing

eep learning in wearable devices. They concluded that GPU-

nabled smartwatch could provide deep learning implementation.

he framework implemented on Snapdragon 400 SoC wristwatch
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achieved high accuracy for common daily activity such as hand

gesture, indoor/outdoor localisation, and transport model using

public datasets. Another key study was presented by Fang and

Hu (2014) , to learn automatic features for recognition of human

activities in constrained environment. The dataset was gathered for

a fifty (50) day period, leveraging on current and previous activity,

and the duration of the activity to ascertain the individual activi-

ties. The problem of recognising interleaved and overlapped activi-

ties was examined by Radu et al. (2016) , for multimodal and Deep

Boltzmann Machine based human activity recognition using pat-

tern mining. With this, the unannotated activity can be discovered

by deploying sensors of different modalities. 

4.1.2. Deep Autoencoder methods 

Autoencoder, another generative feature learning technique has

also dominated human activity recognition landscape. For instance,

Plötz et al. (2011) had earlier argued the superiority of autoen-

coder over PCA, ECDF and statistical feature extraction methods.

Other researchers have also developed autoencoder techniques for

human activity recognition. Recent studies by Hasan and Roy-

Chowdhury (2014, 2015 ) propose the use of sparse autoencoder

for human activity recognition. The algorithm was proposed to

learn features from continuous data streams and then activity de-

tails were classified using multi-logistic regression classifier (Soft-

Max). Learning of features in stream sensors are very challeng-

ing due to the scarcity of label data, class invariant and con-

cept drift. However, with incremental learning and sparse autoen-

coder, they automatically learn features without relying on man-

ually annotated data. Performance evaluation of sparse autoen-

coder, deep autoencoder and principal component analysis was ex-

amined by Liu and Taniguchi (2014) . They observed that the use

high depth deep sparse autoencoder enable extraction of more

discriminative features compared to deep autoencoder and PCA

using a dataset from CMU Lab. In Li, Shi, Ding, and Liu (2014) ,

three basic autoencoder methods were evaluated for human activ-

ity recognition from data collected using smartphones. They con-

cluded that sparse autoencoder outperformed other feature learn-

ing techniques in terms of accuracy. However, due to the small

size of the smartphone dataset and computational platform used in

the study, the performance cannot be accurately generalised. Sim-

ilarly, Harasimowicz (2014) evaluated effects of pre-processing on

the performance of generative models for feature extraction, exam-

ining algorithms comparatively using sparse autoencoder and con-

cluded that pre-processing has a strong influence on the perfor-

mance of activity classification especially normalisation techniques.

Besides works that parameters evaluation of autoencoder for

and preprocessing for human activity recogniton, other studies

have further examined mobile based implementation of stacked

autoencoder for human motion analysis using motion sensors (ac-

celerometer, gyroscope, gravity sensors etc.) with high perfor-

mance accuracy ( Zhou et al . , 2015 ). Similarly, Wang (2016) extracts

features from the accelerometer and magnetic sensors using con-

tinuous autoencoder for the development of automatic human ac-

tivity recognition. The proposed continuous autoencoder adds ran-

domness and converts the high dimension inputs into low dimen-

sional vectors by encoding and decoding process at the hidden

layers. To increase the learning rate of the algorithm, stochastic

gradient descent optimisation was introduced in the hidden layer,

and the algorithm was compared with statistical features with en-

hanced performance obtained. Shared-based autoencoder for sep-

aration of multiple input modalities sensors into hierarchical com-

ponent was proposed by Shahroudy, Liu, Ng, and Wang (2016) . In

the study, factorised input modalities were stacked to convert com-

plex and nonlinear input representation into linear vectors for clas-

sification. The main advantage of this method is its robustness to

noise and ability to extract hierarchical and complex features. Fur-
hermore, Zhou et al. (2015) proposed stacked autoencoder for fea-

ure extraction for Android smartphone based motion recognition

sing sensor data modalities with high-performance accuracy. In

ddition to checking human activity to promote a healthy life, mo-

ile sensor data can further help in the diagnosis of lifestyle re-

ated illnesses. Related work for such application was recently pro-

osed by Unger, Bar, Shapira, and Rokach (2016) using stacked au-

oencoder. The proposed stacked autoencoder was developed for

ecognition and recommendation of online based activity leverag-

ng mobile sensor data. The deep learning method helped to re-

uce the dimensionality of the data and select the feature that

est provides the context-aware recommendation, user location

nd users preference. Stacked autoencoder has also been extended

o generate a sequence of time series to characterise human move-

ent pattern based on time elapse window properties ( Munoz-

rganero & Ruiz-Blazquez, 2017 ). Related implementation for fall

etection using sensor data generated by radar was presented in

okanovic, Amin, and Ahmad (2016) . The stacked autoencoder pro-

ides mechanism to reduce the dimensionality of the data into

ower dimensional features that are feed into SoftMax regression

or fall identification. The use of dimensionality reduction strate-

ies helps to reduce computational complexity notably for mobile

ased implementation. 

Stacked denoising autoencoder when combined with active

earning provide excellent means for automatic labelling and fea-

ure extraction for activity recognition and heart rate analysis dur-

ng intensive exercise. Moreover, stacked denoising autoencoder

mplementation are important for morbidity rate prediction ( Al

ahhal et al . , 2016; Song, Zheng, Xue, Sheng, & Zhao, 2017 ). There

s a great need to enable independent living for elderly in different

arts of the world due to the high rate of ageing populations. With

uch assistance, elderly citizens can function optimally by utilis-

ng sensor-equipped smart homes. One major challenge is how to

ncrease the performance of the algorithm and automatically ex-

ract feature vectors. More so, obtaining labelled data that will

e exploited by features engineers is difficult. To solve the prob-

em and improve the performance of human activity recognition

n the smart home environment, Wang, Chen, Shang, Zhang, and

iu (2016) proposed denoising autoencoder techniques to learn un-

erlying feature representation in sensor data and then integrate it

ith a classifier trained into single architecture to obtain powerful

ecognition model. In general, autoencoder methods have demon-

trated excellent approaches for automatic feature representation

o learn latent feature representation for human activity monitor-

ng and detection approach. Generally, stacked autoencoder pro-

ide compact feature representation from continuous unlabelled

ensor streams to enable robust and seamless implementation of

uman activity recognition system. 

.1.3. Sparse coding methods 

Sparse coding proposed in Olshausen and Field (1997) provides

 means to reduce sensor data dimension and represent them as

n efficient linear combination of basis vectors. Due to the efficient

ata representation ability of sparse coding, a number of stud-

es have used it to develop feature extraction and representations

or human activity recognition. For instance, sparse coding method

as presented Zhu, Zhao, Fu, and Liu (2010) to convert feature

n activity recognition into linear combination vector trained with

ictionary algorithm. Additionally, Bhattacharya, Nurmi, Hammerla,

nd Plötz (2014) examined the use of sparse coding algorithm

rained on self-taught theorem and codebook basis for combi-

ation of feature vectors. The sensor data were converted into

 linear combination, and the dimension was reduced to gener-

ted movement patterns computed from raw sensor signals. The

lgorithm outperformed other well-known dimensionality reduc-

ion feature learning algorithms such as PCA and semi-supervised
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n-co Training. Sparse Coding was also used to pre-process and

earn basic function that captures high representation in sen-

or data. Then, activity details were classified using neural net-

ork classifier for wireless sensor network based health moni-

oring ( Guo, Xie, Bie, & Sun, 2014 ). A major problem in activ-

ty recognition is how to solve the problem of intra-class and

nter-class variation and complex nature of human body move-

ent ( Bulling et al . , 2014b ). To minimize intra-class and inter-class

ariation, Zhang and Sawchuk (2013) proposed sparse representa-

ion techniques that employ the use of an over-complete dictio-

ary to represent the human signal as a sparse linear combination

f activity classes. In the algorithm, class membership was deter-

ined by solving the L 1 minimisation problem. The authors com-

are the technique with other established classical machine learn-

ng method (logistic regression, multinomial regression and deci-

ion tree) with impressive results obtain with sparse coding. Sparse

oding methods provide the possibility for constrained linear cod-

ng representation of energy-related activities in smart home en-

ironments using sensor streams. Therefore, sparse coding inher-

ntly apply sparse dictionary to reduce manual annotation of data

 Q. Zhu, Chen, & Soh, 2015 ). 

.1.4. Stacked deep Gaussian methods 

Recently, various studies have developed deep learning model

y stacking a classical generative model to form a deep archi-

ecture. Typical examples are Gaussian process classifier ( X. M.

ang et al . , 2016 ), molecular complex detection method ( Lu et al . ,

016 ), and the Deep Gaussian Model. The Gaussian process

odel provides unsupervised feature extraction by stacking sev-

ral layers of Gaussian processes to produce robust features.

u et al. (2016) explored the issue of gathering huge amount

f sensor data, complex and diverse activities by proposing

he molecular complex detection method. The technique was

rst introduced to study protein interaction by Bader and

ogue (2003) and the authors extended the algorithm for effec-

ive recognition and detection daily activity, product recommenda-

ion and sports activity using accelerometer data. Recent work by

eng, Yuan, and Lu (2017) , proposed Deep Gaussian Mixture Model

hat adaptively uses multilayer nonlinear input transformation to

xtract salient features from motion sensors for human activity

ecogniton. 

However, majority of the generative models have fully con-

ected layer and cannot capture local and temporal dependencies

n sensor data. In general, generative models have difficult opti-

isation procedures, computationally expensive training processes

nd suffer from vanishing gradient problem ( G. E. Hinton et al . ,

012 ). Table 3 summarises the different generative deep learning

ethods for feature extraction in human activity recognition. 

.2. Discriminative deep learning methods 

Discriminative feature learning algorithms are modelled with

osterior distribution classes to provide discriminative powers for

ctivity classification and recognition. In recent years, there has

een a tremendous growth in the amount of activity recognition

hat deploys the use of discriminative deep learning methods. The

ethods traverse from Convolutional Neural Network to Recurrent

eural Networks. Researchers in ubiquitous sensing have proposed

ifferent algorithms in this regard. In this section of the review,

e discuss these implementations for human activity recognition

sing mobile and wearable sensor data. 

.2.1. Convolutional Neural Networks 

A comprehensive implementation of Convolutional Neural Net-

ork (CNN) for human activity recognition using mobile phone

ensor data was reported by Ronao and Cho (2016) and Ronaoo
nd Cho (2015) . In their study, Convolutional Neural Network was

eployed to extract hierarchical and translational invariant fea-

ures from accelerometer and gyroscope sensor data and activ-

ty details classified using Multinomial Logistic regression (Soft-

ax). However, the method failed to capture temporal variance

nd change in complex activity detail and generalisation to differ-

nt activity models. Furthermore, intra-class and inter-class varia-

ions can be solved by incorporating time-frequency convolution

hich was not implemented in the study. In study by Yuqing

hen and Xue (2015) , instead of developing new CNN architecture

odified the convolutional kernel using transfer learning to suit

he tri-axial characteristics of acceleration signal for human activ-

ty recognition. While Charalampous and Gasteratos (2016) exam-

ned the use of the convolutional neural network for online deep

earning feature extraction using the whole data sequence. More-

ver, they introduce Viterbi algorithm using optimisation criterion

nd a network of computational nodes in hierarchical form to in-

rease performance of the network. However, the proposed ap-

roach applied entire sample of the sensor dataset to implement

he CNN and this may increase the computation time for mobile

nd wearable devices implementation. On the other hand, Ha, Yun,

nd Choi (2015) proposed a 2-D kernel convolutional neural net-

ork to capture local dependencies over time and spatial depen-

encies over sensors and this is important where multiple sensors

re attached to different part of the body. When using 1-D ker-

el convolution, it will be difficult to capture features from differ-

nt sensor modalities. The use of a convolutional neural network

an also predict the relationship between physical exercises and

leep pattern using accelerometer and gyroscope sensors. In re-

ent study, Sathyanarayana et al. (2016b) observed that convolu-

ional neural network outperformed handcrafted features in terms

f robust feature generation, high dimensional data and classifica-

ion accuracy when applied to predict the link between exercises

nd sleep. Furthermore, similar studies have comparatively ex-

lore the performances of convolutional neural network and hand-

rafted features ( Egede, Valstar, & Martinez, 2017 ; Gjoreski, Bizjak,

joreski, & Gams, 2015 ). The experimental analysis showed convo-

utional neural network conveniently outperform handcrafted fea-

ures using sensor data generated by wearable devices attached to

he wrist for human activity recognition and automatic pain detec-

ion during intensive sports activities. However, wrist sensor place-

ent produce irregular movement pattern and it is challenging to

scertain best feature combinations to achieve higher performance

ccuracy ( Gjoreski, Gjoreski, Luštrek, & Gams, 2016 ) for such loca-

ion placement. Therefore, the results obtain by the comparative

nalysis cannot be active generalised. 

Implementation of deep learning algorithm on low-power wear-

ble devices was recently reported in Ravi, Wong, Lo, and Yang

2016a,b) . They proposed a temporal convolutional neural network

hat limits the number of hidden layer connections with few in-

ut nodes to avoid computational complexity and enable real-

ime activity recognition. Furthermore, the authors applied spec-

ral representation of the inertial sensor to achieve invariance to

ensor placement, orientation and data collection rate. The au-

hors later reported successive implementation combined hand-

rafted features to reduce computation time and enhance on-board

earable devices implementation ( Ravì, Wong, Lo, et al . , 2017 ).

n other way, scale invariant features and local dependencies can

lso be achieved through weight sharing in convolutional layer

 Zeng et al . , 2014 ). Weight sharing helps to reduce the number of

raining parameters and computational complexity as closely re-

ated filters share similar weights. The issue of computational com-

lexity of convolutional neural network algorithm implemented on

ow power devices was also analysed by Jiang and Yin (2015) . The

ensor data were transferred and transformed into activity image

hat has descriptive information about the data. The activity im-
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Table 3 

Generative deep learning methods for human activity recognition. 

References Methods Description Advantages 

( Alsheikh et al . , 2016; Alsheikh et al . , 2015; 

Erfani et al . , 2016 ; Fang & Hu, 2014; X. Jia 

et al . , 2014; Längkvist et al . , 2012; Z. Y. Wu 

et al . , 2016; Yalçın, 2016 ; Zhang, Wu, & 

Luo, 2015a,b,c,d ) 

Deep Belief Network Generative model that learn greedy 

layer-wise compact representation of 

sensor data and learn high-dimensional 

manifold from unlabelled data 

Generate feature from unlabelled sensor 

data that are invariant to irrelevant 

variation. Used for nonlinear 

dimensionality reduction of high 

dimensional sensor data 

( Bhattacharya & Lane, 2016; Radu et al . , 

2016 ; Zhao & He, 2014 ) 

Deep Boltzmann Machine Generative undirected bipartite graphs 

composed of stochastic visible and hidden 

units. The layers are stacked into deep 

layers for extracting salient features from 

sensor observations 

Use sparse representation techniques to 

reduce data sensitivity. Allow 

cross-correlation feature extraction and 

sensor fusion for innate feature 

representation 

( Al Rahhal et al . , 2016; Jokanovic et al . , 

2016; Munoz-Organero & Ruiz-Blazquez, 

2017; Plötz et al . , 2011 ; Shahroudy, Ng, 

Gong, & Wang, 2016; Shimizu et al . , 2016; 

Unger et al . , 2016; Zhou et al . , 2015 ) 

Deep Autoencoder Unsupervised feature algorithm that 

discovers correlation between features and 

extracts low dimensional representation 

using backpropagation to reconstruct 

sensor sample 

Reduce feature dimensionality, minimise 

undesirable activities and extract 

hierarchical features. Learn identity 

approximation and compressed version to 

select the most suitable feature vectors 

( Song, Zheng, Xue, Sheng, & Zhao, 2017; A. 

Wang et al . , 2016 ) 

Denoising Autoencoder Generative model for partial reconstruction 

of raw sensor input corrupted by adding 

stochastic mapping term 

Learn robust and compressed 

representation of features from raw sensor 

data 

( Harasimowicz, 2014 ; Hasan & 

Roy-Chowdhury, 2015; Y. Li et al . , 2014 ; Liu 

& Taniguchi, 2014 ; Wang, 2016 ) 

Sparse Autoencoder Introduce sparsity penalty to Autoencoder 

hidden units to extract robust and 

compressed features from the visible units 

Extract high-level features from 

high-dimensional sensor data and select 

the most suitable feature by sparsity 

penalty to the reconstructed inputs sensor 

( Bhattacharya et al . , 2014; J. Guo et al . , 

2014 ; Zhang & Sawchuk, 2013; Q. Zhu 

et al . , 2015; Y. Zhu et al . , 2010 ) 

Sparse Coding The techniques help to extract salient 

features and convert feature vectors for 

human activity recognition from raw 

sensor data into linear vectors 

Enable location of optimal feature, reduce 

computational complexity and time, and 

speed up data annotation from unlabelled 

data 

( Feng et al . , 2017; Jänicke, Tomforde, & 

Sick, 2016; L. Liu, Cheng, Liu, Jia, & 

Rosenblum, 2016; X. M. Wang et al . , 2016 ) 

Stacked Deep Gaussian 

models 

Deep fusion of generative and probabilistic 

models for nonlinear transformation and 

adaptive extraction of salient and robust 

features from sensor data. 

Reduce number of parameters and model 

complexity during feature extraction. 

Furthermore, helps to convert high 

dimensional vectors to enhance complex 

activity detection 
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age is then transferred to the deep convolutional neural network

to extract discriminative features. They noted that to reduce com-

putational complexity, there is a need to adopt carefully chosen

techniques such as feature selection and extraction, sensor selec-

tion and use of frequency reduction. 

For full implement of automate activity recognition techniques

for wearable, Vepakomma, De, Das, and Bhansali (2015) proposed

“A-Aristocracy ”, a wristband platform to recognise simple and com-

plex activity using a Deep Neural Network (DNN) classifier for the

elderly health monitoring. The propose platform was tested for its

performance on detection of daily living and instrumental activity

of daily living (cooking, washing plates, doing laundry) (ADL/IADL).

The use of wearable sensors ensures the privacy of the elderly are

maintained, which is a big issue when camera-based sensors are

deployed for activity recognition. Moreover, the work employed af-

fordable wearable devices and multimodal information such as lo-

comotion sensing, environmental condition and contextual location

signal sensing to achieve high recognition accuracy. However, the

study only used a Deep Neural Network with two layers for classi-

fication and extracted statistical and manual features defeating the

purpose of automatic feature extraction. Sheng et al. (2016) pro-

posed quick and short time activity recognition using convolutional

neural network for wearable devices. Long time activities comprise

series of short-term activity which is segmented using short win-

dow length. Therefore, by constructing an over-complete pattern

library of long time activities into short time activities using slid-

ing window techniques, feature extraction was implemented of-

fline and learning for recognition was performed online to ensure

real-time and continuous activity description. However, the use of

short time window length may result in loss of vital information

for complex activity recognition ( O. Banos et al . , 2015 ). 

Autism Spectrum Disorder can affect the functional ability and

activity performance by individuals, social interaction and com-

munication ability. Recognition of such activities can help seam-

less management of the condition. However, detection of stereo-
ypical motor movement (SMM) is challenging due to intra-subject

nd inter-subject variability, and may portray different degree of

ental and physical health behaviour. For this, the convolutional

eural network has been utilised to learn movement such as hand

apping, body rocking or simultaneous combination of body move-

ent to detect stereotypical motor movement ( Rad et al . , 2015;

ad & Furlanello, 2016 ). In the same way, studies conducted by

astro et al . (2015) and Singh, Arora, and Jawahar (2016) developed

he first person and egocentric activity recognition using the wear-

ble sensor. They combined contextual information and egocentric

ues to capture human motion and extract robust and discrimina-

ive features using the convolutional neural network. The incorpo-

ation of cues and contextual information enable the techniques to

apture time-dependent activities and variation in viewpoints. 

Conversely, J. Zhu, Pande, Mohapatra, and Han (2015) exam-

ned how features extracted by a convolutional neural network

an lead to the high estimation of energy expenditure during in-

ensive physical exercises. Energy expenditure estimations enable

racking of personal activity to prevent chronic diseases common

n individuals living a sedentary lifestyle. Combining accelerom-

ter sensor and heart rate data, they developed online mecha-

isms to track daily living activity. Energy expenditure prediction

as done on the feature extracted using a backpropagation neu-

al network. However, the dataset used for prediction were col-

ected from sensors placed at the waist which does not indicate

ovement location. Therefore, there is need to test data collected

rom sensors placed on the wrist, chest or ankle that accurately de-

ect and monitor total body movements. G. Liu et al. (2016) mod-

lled binary sensor based human activity recognition by converting

he sensor value into a binary number and extracting discrimina-

ive features with convolutional neural network. The far-reaching

ffect of the study is the ability to reduce computational time

sing fewer binary values during feature extraction from sensor

ata. Gait assessment based Convolutional Neural Network in a pa-

ient with Sclerosis was presented by J. Q. Gong, Goldman, and
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ach (2016) with body-worn sensors. Convolutional Neural Net-

orks were implemented to learn the temporal and spectral asso-

iation among the multichannel time series motion data and learn

olistic gait patterns for robust and efficient feature representation.

n related study, Eskofier et al. (2016) propose deep learning al-

orithm for assessment of movement disorders for patients with

diopathic Parkinson diseases. Patients were attached with inertial

easurement unit sensor nodes to collect accelerometer data and

xtract salient features with two convolutional neural network lay-

rs and achieved 90.9% accuracy. However, due to the limited num-

er of sensor data used for training the Convolutional Neural net-

ork, it may be challenging to generalise the performances accu-

acy achieved. 

In some cases, convolutional neural network are optimised with

lassical machine learning techniques such as meta-heuristic al-

orithms to model hyper-parameter tuning to obtain higher ac-

uracy. This techniques were recently implemented for detection

f Parkinson disease and measurement of calories consumption to

ombat obesity and recommend physical activities ( Pereira, Pereira,

apa, Rosa, & Yang, 2016; Pouladzadeh, Kuhad, Peddi, Yassine,

 Shirmohammadi, 2016 ). In a related research for the elderly,

in, Yang, Zhang, and Oki (2016) proposed the cascade convolu-

ional neural network for monitoring of heart-related diseases us-

ng impulse radio ultra-wideband radar data. Different convolu-

ional neural network modules were implemented to extract ro-

ust ECG features and impulse radio ultra-wideband radar feature,

hich are then combined to form a cascade to distinguish normal

eart bits from abnormal ones. The essence of the cascade is to

ake care of the different sampling rate and dimensionality of the

arious data source. Also, Zhang and Wu (2017) proposed the use

f the convolutional neural network for automatic stage sleep clas-

ification using electrocardiography data. 

Other similar Convolutional Neural networks approach were

ately implemented for automatic data labelling, variable sliding

indow segmentation and multi-sensor and multi-channel time

eries fusion. For instance, Zebin, Scully, and Ozanyan (2016) intro-

uce multichannel sensor time series to acquire sensor data from

ody-worn inertial sensors. The authors modelled feature extrac-

ion using a convolutional neural network and monitored different

yperparameter setting at the pooling layer, rectified linear units

nd max pooling to achieve high accuracy. R. Yao et al. (2017) pro-

osed the use of CNN for dense labelling in human activity recog-

ition. The use of dense labelling provides an approach to avoid

issing information, and the algorithm was implemented us-

ng publicly available datasets with an overall accuracy of 91.2%.

nother important applications of convolutional neural network

s in multi-sensor fusion for human activity detection. Fusion

f multiple sensor are essential for enhanced activity recogni-

ion rate ( Gravina, Alinia, et al . , 2017 ). However, many issues

re yet unresolved, such as imprecision and uncertainty in mea-

urement, noise and conflicting correlation, high data dimensions

nd the best techniques to select the fusion level. To that effect,

ing et al. (2017) propose adaptive multi-sensor fusion using the

eep convolutional neural network. The proposed techniques learn

eatures and optimise the combination of sensor fusion level such

s extraction, selection, data, features, and decision fusion levels to

uild complex recognition patterns for higher activity detections.

hese processes go through from the lower layer of the network to

he higher layer and implement the robust feature extraction pro-

ess. 

Automatic feature extraction in wearable sensors with the con-

olutional neural network provide means to monitor beach vol-

ey ball players’ skills from a tri-axial accelerometer ( Kautz et al . ,

017 ). To achieve that, the authors deploy data collected from 30

ubjects wearing sensors attached to the right hand with a thin

ristband. However, the proposed architecture of the CNN suffered
rom overfitting as it performed better on training data than on

esting data. Therefore, the use improve regularisation techniques,

ncrease the training datasets and use batch normalisation ( Ioffe

 Szegedy, 2015 ) may enhance the performance of the proposed

odel. Moreover, adding artificial noise to the data may also im-

rove the prediction accuracy ( G. E. Hinton et al . , 2012 ). 

.2.2. Recurrent Neural Networks 

Human activity recognition is a classical time series classifi-

ation problem made up of complex motor movements and vary

ith time. Capturing the temporal dynamic in movement pattern

ill help to model complex activity details and enhance the per-

ormance of recognition algorithms. Convolutional neural network

rchitecture can only extract translational invariant local features

ut become ineffective when modelling global temporal dependen-

ies in sensor data. However, Recurrent Neural Network (RNN) is

aturally designed for time series data in which sensor data is a

rominent part. 

Recently various studies have explored different recurrent neu-

al network models for modelling human activity recognition. For

nstance, studies such as ( Chen, Zhong, Zhang, Sun, & Zhao, 2016;

. Ma, Tao, Wang, Yu, & Wang, 2015 ) proposed long short term

emory (LSTM) for feature extraction to recognise activity of daily

iving using WISDM data, a publicly available dataset by Wire-

ess Sensor Data Mining Lab ( Kwapisz, Weiss, & Moore, 2011 )

nd achieved a classification accuracy of 95.1%. Despite the high

erformance obtained, the result cannot be generalised due to

he simplicity of the specified activities and small sample sizes

f the dataset. Therefore, larger datasets are required to improve

he robustness of the algorithm. Large-scale study on the pre-

iction of activity of daily living was examined by Moon and

amm (2016) with Long Short Term Memory to capture the ran-

omness in activity patterns and model the temporal dependencies

sing multi-step look ahead approach. Long short memory pro-

ides the possibility to automatically detect and characterise eat-

ng pattern using the wearable necklace, and early or progressive

etection of activities ( S. Ma, Sigal, & Sclaroff, 2016; Nguyen, Co-

en, Pourhomayoun, & Alshurafa, 2016 ). However, issues on the

odelling of motion movement of head and neck are difficult

s piezoelectric sensors do not detect such motions. Furthermore,

ong short term memory methods provide technique to rank activ-

ty progression and penalise incorrect activity prediction that may

ead to serious consequence especially for detection of fall in el-

erly ( S. Ma et al . , 2016 ). 

Inoue et al. (2016) investigated the use of the deep recurrent

eural network for human activity recognition in real time sce-

ario. They looked at the best combination of architecture and

ptimal parameter values for increased performance. The authors

oted that, increasing the layer of deep RNN will greatly increase

omputational time and memory usage and recommend a three-

ayer architecture for optimal performance. To reduce memory us-

ge, ( Edel & Köppe, 2016 ) developed optimised binary version of

idirectional LSTM for human activity recognition in a resource

onstrained environment such as mobile or wearable devices.

he extended version of Bidirectional LSTM ( Graves & Schmidhu-

er, 2005 ) achieved real-time and online activity recognition by

pplying binary values to the network weight and activation pa-

ameters. 

Subsequent studies introduced other aspects of the recur-

ent neural network. Notably, Palumbo, Gallicchio, Pucci, and

icheli (2016) proposed the Recurrent Neural Network for real-

ime human activity recognition trained with echo state network

everaging smartphones and Reciprocal Received Signal Strength

RSS). Echo State Network is a Recurrent Neural Network with a

on-trainable reservoir and linear readout in which the weights

re randomly generated during training ( Rodan & Tino, 2011 ).
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However, a number of issues have deterred the practical applica-

tion of the Echo State Network. These include the unclear prop-

erties of the reservoir and lack of training strategies to achieve

optimal performance but rely on a game of chance. Furthermore,

Choi, Schuetz, Stewart, and Sun (2016) develop the Gated Recur-

rent Unit Model ( Cho et al . , 2014 ) to detect heart failure from clin-

ical time series data. Gated recurrent unit is an RNN model that

is similar in structure to LSTM but with simple parameter update

and recently achieved superior results in similar classification tasks

( Zaremba, 2015 ). 

4.2.3. Other discriminative deep learning models 

Various studies have also proposed other discriminative feature

extraction methods for human activity recognition. For instance,

studies in Ponce, de Lourdes Martínez-Villaseñor, and Miralles-

Pechúan (2015) and Ponce, Martínez-Villaseñor, and Miralles-

Pechuán (2016) proposed and analysed the use of Artificial Hy-

drocarbon Network (AHN) for human activity recognition. Arti-

ficial Hydrocarbon Network is an algorithm inspired by an or-

ganic chemistry that use heuristic mechanism to generate or-

ganise structure to ensure modularity and stability in activity

recognition. The algorithm is tolerant to noisy sensor data. How-

ever, it needs to be combined with heuristic feature extraction

and selection techniques to increase recognition time. Similarly,

Rogers, Kelleher, and Ross (2016) exploited deep neural language

model for the discovery of interleaved and overlapping activities.

The model builds hierarchical activities and captures the inher-

ent complexities in activity details. Similarly, Hongqing Fang, He,

Si, Liu, and Xie (2014) initiated backpropagation techniques to

train feedforward neural for complex human activity recognition

in smart home environment. Although the algorithm outperformed

the Hidden Markov Model and Naïve Bayes, it requires combined

handcrafted feature extraction for high-performance accuracy. Y.-

L. Chen et al. (2016) proposed manifold elastic network for feature

extraction and dimensionality reduction by mapping motion sensor

data from high dimensional to low dimensional subspace through

minimization algorithm. Table 4 summarises recently discrimina-

tive model for human activity recognition and their advantages. 

4.3. Hybrid deep learning methods 

Various research efforts have been geared toward obtaining ro-

bust and effective f eatures for human activity recognition by com-

bining generative, discriminative or both methods. From the avail-

able literature on hybrid implementation, the convolutional neural

network seems to be the best choice method for many studies to

be hybridised with other generative or discriminative models for

human activity recognition. For instance, Convolutional Neural Net-

work and Denoising Autoencoder ( G. Ma, Yang, Zhang, & Shi, 2016 ),

Convolutional Neural Network and Sparse Coding ( Bhattacharya &

Lane, 2016 ), Convolutional Neural Network and Recurrent Neural

Network ( Ordóñez & Roggen, 2016; Sathyanarayana et al., 2016b ),

Convolutional Neural Network and Restricted Boltzmann Machine

(J. Gao, Yang, Wang, & Li, 2016 ). 

In most of these studies, the convolutional neural network is

incorporated to produce hierarchical and translational invariant

features. To reduce the source of instability and extract transla-

tional invariant features, J. Gao et al. (2016) introduce the cen-

tred factor Convolutional Restricted Boltzmann Machine (CRBM)

while in Sarkar et al. (2016) , a combination of Deep Belief Net-

work and convolutional neural network were examined for activity

recognition in prognostic and health monitoring related services.

The authors compare the performance using electroencephalogram

sensor data with deep learning outperforming handcrafted fea-

tures. However, the result deteriorated when it was tested on four
ecognition tasks due to the limited amount of training and test-

ng data. Recently, other studies incorporated the convolutional

eural network and sparse coding to produce sparse representa-

ion and reduce computational time. This can be seen in recent

ork by Bhattacharya and Lane (2016) , which proposed sparse

oding-based convolutional neural network for mobile based ac-

ivity recognition. To reduce computation time, memory and pro-

essor usage, they introduced sparsification of the fully connected

ayer and separation of the convolutional kernel. The techniques

nsure full optimisation of CNN to be implemented for mobile de-

ices. 

Another work for hybridization of deep learning methods for

obust features extraction was reported in G. Ma et al . , (2016) . In

he work, the authors proposed the fusion of features extracted

ith deep autoencoder to obtain more abstract features. While

han and Taati (2017) proposed a channel-wise ensemble of au-

oencoder to detect unseen falls using wearable devices. In the

tudy, stacked autoencoder was used to learn accelerometer and

yroscope data separately, using interquartile range and then train-

ng a new autoencoder on data with no outliers to accurately iden-

ify unseen fall. Ijjina and Mohan (2016) developed ensemble deep

earning approach based on Convolutional Neural network by al-

ering the inputs and weights of network of each convolutional

eural network to create network structures variabilities and then

ombined the results with different ensemble fusion techniques.

ecently, an ensemble of diverse long short term memory ( Guan

 Ploetz, 2017 ) was evaluated on publicly available datasets for

uman activity recognition. The proposed method outperformed

ther methods in real life activity prediction. 

To recognise and detect complex activity details, there is a need

o capture spatial and temporal dependencies involve in human ac-

ivity recognition. The convolutional neural network and recurrent

eural network are important deep learning methods in this re-

ard. The techniques are common in multimodal and multi-sensor

ctivity recognition frameworks. X. Li et al. (2017) investigated the

se of CNN and LSTM for recognition of concurrent activities. The

uthors introduced encoder to output binary code prediction that

enotes whether the activity is in progress or not in progress. Fur-

hermore, the architecture can accept input from the sensor of dif-

erent modalities. Similarly, Ordóñez and Roggen (2016) proposed a

onvolutional neural network and long short term memory to au-

omatically learn translational invariant features and model tem-

oral dependencies in multimodal sensor comprise of accelerom-

ter and gyroscope sensor. The pooling layer in the network was

eplaced with a recurrent layer (LSTM) that models the temporal

equence, whereas the final layer is the SoftMax regression that

roduces the class prediction. The technique was compared with

aseline CNN using OPPORTUNITY and Skoda datasets with 0.61F 1 
core performance. The ensemble of Convolutional neural network

nd bidirectional long short term memory (BLSTM) were proposed

or health monitoring using the accelerometer and acoustic emis-

ion data. CNN extract local features, and while BLSTM encodes

emporal dependencies and model sequential structure, past and

resent contextual information ( R. Zhao, Yan, Wang, & Mao, 2017 ). 

Furthermore, other authors have also proposed fusion

long multimodal and multi-sensor lines. For instance,

ong et al. (2016) proposed the fusion of the video and accelerom-

ter sensor model using the convolutional neural network and long

hort term memory. CNN extract spatial-temporal features from

ideo data while the LSTM models temporal dependencies fea-

ures from the accelerometer and gyroscope. These feature vectors

ere integrated using a two-level fusion approach for egocentric

ctivity recognition. However, the result obtained in multimodal

usion performed below expectation due to the small number of

raining examples. In Neverova et al. (2016) , the authors proposed

he recurrent neural network and convolutional neural network
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Table 4 

Discriminative deep learning methods for human activity recognition. 

References Methods Description Advantages 

( Castro et al . , 2015; Charalampous & 

Gasteratos, 2016 ; Chen & Xue, 2015; 

Eskofier et al . , 2016; M. Gjoreski et al . , 

2016; J. Q. Gong et al . , 2016; Ha et al . , 

2015; Jiang & Yin, 2015; Jing et al . , 2017; 

Kautz et al . , 2017; G. Liu et al . , 2016; Page 

et al . , 2015; Pereira et al . , 2016; 

Pouladzadeh et al . , 2016; Rad et al . , 2015 ; 

Ravi et al., 2016a,b; C. A. Ronao & S.-B. 

Cho, 2016; Ronaoo & Cho, 2015; 

Sathyanarayana et al., 2016b; Sheng et al . , 

2016; Singh et al . , 2016; Vepakomma et al . , 

2015; Yang et al . , 2015; R. Yao et al . , 2017; 

Yin et al . , 2016 ; Zhang & Wu, 2017; Zheng, 

Ling, & Xue, 2014; J. Zhu et al . , 2015 ) 

Convolutional Neural 

Network 

Multilayer neural network that combines 

convolution and pooling operations to 

extract translation invariant, temporally 

correlated and hierarchical feature vectors 

from sensor data. The architecture use 

convolutional operation to handle and 

extract local features and cancel the effect 

of translation and displacement in sensor 

data 

Extract hierarchical and translational 

invariant features from sensor data with or 

without pre-processing to enhance 

performance and recognition accuracy 

( Y. Chen et al . , 2016; Inoue et al . , 2016; S. 

Ma et al . , 2016; X. Ma et al . , 2015; Moon & 

Hamm, 2016; Nguyen et al . , 2016 ) 

Long Short Term Memory Recurrent neural network (RNN) that 

incorporate memory block to overcome 

backpropagation problem and detect 

activities with long-term temporal 

dependencies 

Capture temporal dependencies and 

complex activities dynamic in raw sensor 

data 

( Edel & Köppe, 2016 ) Binarise-Bidirectional Long 

Short Term Memory 

Recurrent Neural Network in which the 

network parameters are binary values 

trained and evaluated with bits logics 

Has low computational complexity and 

applicable in resource constrained 

environment such as mobile and wearable 

devices with low energy resources. The 

extracted features are invariant to 

distortion and transformation 

( Choi et al . , 2016 ) Gated Recurrent Unit Recurrent Neural Network with reduced 

parameter for detection and recognition of 

time sensitive events 

Gated Recurrent unit has fewer parameters 

and easy to train 

( Ponce, Miralles-Pechuán, & 

Martínez-Villaseñor, 2016 ) 

Artificial Hydrocarbon 

Network 

Nature inspired meta-heuristic and 

chemical organic algorithm that organise 

activity details in modules 

Ability to model noisy and unlabelled data 

and also robust to sensor data 

characteristics and data point 

( Rogers et al . , 2016 ) Deep Neural Model A form of deep learning for modelling 

natural language problem. The algorithm is 

trained to approximate model distribution 

by taking encoding of sensor distribution 

and produce posterior distribution of all 

possible values 

Can handle problem of multiple activities 

occurring in parallel (interleaved activities) 

( Y.-L. Chen et al . , 2016 ) Manifold Elastic Network Dimensionality reduction methods that 

encode local geometry to find best feature 

representation in raw sensor data 

Minimise error mechanisms to select 

appropriate feature subspace 
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d  
o extract feature vectors optimised with shift-invariant dense

echanism to reduce computation complexity. In order to develop

ffective deep learning fusion approach, Hammerla, Halloran, and

loetz (2016) explored the effect of hyper-parameter setting such

s regularisation, learning process, the number of architecture

n the performance of deep learning for human activity recog-

ition. The authors concluded that hyper-parameters have great

mpact on the performance of deep architectures and recommend

xtensive hyper-parameter tuning strategies to obtain enhance

ctivity recognition rate. To develop a multi-fusion architecture

f CNN and LSTM, Morales and Roggen (2016) examined the

ffect of transfer learning at the network kernel between users,

pplications domains, sensor modalities and sensor placements

n human activity recognition. They noted that transfer learning

reatly reduced training time and are sensitive to sensor charac-

eristics, placement and motion dynamic. They utilised the above

utomatic feature representation method to develop a hybrid of

NN and LSTM for extraction of robust features for human activity

ecognition in a wearable device. In Sathyanarayana et al. (2016b) ,

NN-LSTM was used to model the impact of sleep on physical

ctivity detection with actigraphy dataset. CNN models robust

eature extraction while LSTM was used to build sleep prediction.

lternatively, a convolutional neural network with Gated Recur-

ent Unit (GRU) was proposed by S. Yao, Hu, Zhao, Zhang, and

bdelzaher (2016) for activity recognition and car tracking using

ccelerometer, gyroscope and magnetometer data. CNN and GRU

ere integrated to extract local interaction among identical mobile
ensor, merged into global interaction and then extract temporal

nteraction to model signal dynamics. 

Various studies have proposed fusion of deep learning model

nd handcrafted features for human activity recognition. Fusion

f handcrafted features and deep learning are effective for in-

reased recognition accuracy, real time and on-board human ac-

ivity recognition in wearable devices. Furthermore, the techniques

llow extraction of interpretable feature vectors using spectrogram

nd to capture intensity among data points ( Ravì, Wong, Lo, et al . ,

017 ). Interestingly, some studies have also found that such fu-

ion are important means to model lateral and temporal varia-

ion in activity details by adaptively decomposing complex activ-

ty into simpler activity details and then train the algorithm us-

ng radius margin bound for network regularisation and improve

erformance generalisation ( Liang Lin et al . , 2015 ). In recent work,

lzantot, Chakraborty, and Srivastava (2017) explored generation of

rtificial activity data by fusion of mixture density network and

ong short term memory. The approach was proposed to resolve

he issue of lack of training data using mobile phones and discrim-

nate robust feature vectors. Developing protocol to collect large

raining data for human activity recognition project is very tedious

nd may result to privacy violations. Therefore, the study gener-

ted synthetic data to augment the training sensor data generated

sing mobile phone. Moreover, the developed fusion of mixture

ensity networks and long short term memory will help to re-

uce reliance on real training data for evaluation of deep learning.
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Table 5 

Hybrid deep learning methods for human activity recognition. 

References Methods Descriptions Advantages 

( J. Gao et al . , 2016; Sarkar et al . , 2016 ) CNN, RBM Propose integration of Deep Belief Network 

and Convolutional Neural Network for 

real-time multimodal feature extraction in 

unconstrained environment 

Provide automatic feature extraction and 

selection without extensive pre-processing 

procedure 

( Bhattacharya & Lane, 2016 ) Sparse coding and 

Convolutional Neural 

Networks 

Automatically produce compact 

representation of features vectors from raw 

sensor data for mobile based activity 

recognition. 

The use of sparse coding helps to reduce 

computation time and memory usage by 

utilising sparsification approach to separate 

fully connected layer and convolutional 

kernel. 

( Khan & Taati, 2017 ) Ensemble of Channel-wise 

Autoencoder 

Channel-wise autoencoder algorithms 

fusion of autoencoder trained separately 

with accelerometer and gyroscope sensor 

data and combine with reconstruction 

error values 

Automatically learn generic features from 

raw sensor data. 

( Ijjina & Mohan, 2016 ) Ensemble of Deep 

Convolutional Neural 

Networks 

Develop fusion of extracted features of 

homogenous CNN architecture built by 

alternating the initialisation of the network 

parameters. 

Achieve high model diversity and enhance 

performance generalisation 

( Guan & Ploetz, 2017; X. Li et al . , 2017 ; 

Morales & Roggen, 2016; Neverova et al . , 

2016; Ordóñez & Roggen, 2016; 

Sathyanarayana et al., 2016b; Song et al . , 

2016 ; Zhao et al . , 2017 ) 

Convolutional Neural 

Network (CNN) and 

Recurrent Neural Networks 

(RNN) 

Propose multimodal and spatial-temporal 

feature extraction with CNN and LSTM for 

concurrent activity recognition 

Suitable for multimodal, Multi-feature and 

multi-sensory for recognition of complex 

and concurrent activity details 

( S. Yao et al . , 2016 ) CNN, Gated Recurrent Unit 

(GRU) 

Integrate convolutional neural network and 

Gated recurrent unit that exploits local 

interaction within activities and merges 

them into global interaction to extract 

temporal relationship 

Provide low energy consumption and low 

latency services for implementation in 

mobile and wearable devices. Gated 

recurrent unit has expressible terms with 

reduce network complexity for mobile 

based implementation 

( Lin et al . , 2015 ; Ravi et al., 2016a,b CNN, Conventional feature Combine deep feature learned with CNN 

and statistical feature for real-time mobile 

based implementation of activity 

recognition. Also, the fusion provides 

effective means of decomposing complex 

activity into sub activities by modelling 

temporal variation and extract transition 

invariant features. 

Enable real-time on-board implementation 

with reduced feature vectors. The method 

can handle optimal decomposition of 

complex activity details and enhance 

generalisation ability deep learning 

algorithms for human activity recognition. 

( Alzantot et al . , 2017 ) LSTM, Mixture Density 

Network 

Deep stacked long short term memory for 

generation and discriminating artificial 

sensory data in human activity recognition 

Distinguish between real and synthetic 

data set to improve privacy in data 

collection 
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Table 5 summarises the different hybrid deep learning based fea-

ture extraction techniques for human activity recognition. 

5. Classification algorithms and performance evaluation of 

human activities 

Classification is a vital part of human activity recognition pro-

cesses. Classification involves training, testing and use of evalua-

tion metrics to measure the performance of the proposed algo-

rithms. Over the years, different classifiers have been implemented

in human activity recognition to categorise activity details dur-

ing training and testing. The commonly used classifiers are the

Support Vector Machine (SVM), Hidden Markov Model (HMM),

K-Nearest Neighbour (KNN), and Decision Tress, Neural Network

(NN). In deep learning based human activity recognition, most

studies favour multinomial logistic regression (SoftMax) ( Ordóñez

& Roggen, 2016 ; Ravi et al., 2016a,b; Song et al., 2016 ) or Hidden

Markov Model ( Alsheikh et al., 2015 ) trained with the deep neu-

ral network for activity recognition. The training process extracts

the feature vectors that are fed to the classifiers through fully con-

nected layers to yield probability distribution classes for every sin-

gle time step of the sensor data ( Ravi et al., 2016a,b ). The perfor-

mance of the extracted feature vectors is evaluated with pre-set

evaluation metrics and access the recognition accuracy and com-

putational complexity. Performance metrics such as accuracy, pre-

cision, recall and F-measure provide essential information to access

recognition ability of the features vectors. In this section, training,

classifiers and performance evaluation metrics of human activity
ecognition system with deep learning methods are explained. We

egin by presenting the training of both deep learning methods

nd classification inference algorithm and then the performance

valuation metrics for human activity recognition. 

.1. Training 

Early works using deep neural networks were trained with gra-

ient descent optimisation where the weights and biases are ad-

usted to obtain low-cost function. However, training neural net-

ork with such strategies will cause its output to get stuck in lo-

al minima due to the high number of parameters involve. To solve

he problem, Hinton et al. (2006) introduced the greedy layer-wise

nsupervised pre-training techniques in which the neural network

lgorithm is trained one layer at a time then the deep architecture

s fine-tuned in a supervised way with gradient optimisation. In

is work, Hinton (2010) showed how to train deep learning algo-

ithm and set the different hyperparameter settings. Deep learning

esearchers adopt these strategies when validating their methods. 

In training deep learning algorithms, the main aim is to find

etwork parameters that minimise reconstruction errors between

nputs and outputs ( Erfani et al . , 2016 ). Using the pre-training and

ne-tuning, the networks will learn to extract salient features from

ensor data which is then passed to multi-linear logistic regression

SoftMax Regression) or any other classifiers to discriminate the

ctivity details. Therefore, numerous regularisation methods have

een proposed to modify the learning algorithm to reduce gen-

ralisation errors by applying hyper-parameter settings to control



H.F. Nweke et al. / Expert Systems With Applications 105 (2018) 233–261 251 

Table 6 

Sample hyper-parameter setting and optimisation for deep learning training for human activity recognition. 

Settings ( Ordóñez & 

Roggen, 2016 ) 

( C. A. Ronao & S.-B. 

Cho, 2016 ) 

( Castro et al . , 

2015 ) 

( Jing et al . , 

2017 ) 

( Eskofier et al . , 

2016 ) 

( Kautz et al . , 

2017 ) 

( S. Ma et al . , 

2016 ) 

Learning Rate 0.001 0.01 0.0 0 01 0.05 0.01 0.01 0.1 

Momentum 0.9 0.5-0.99 0.9 0.5 0.9-0.999 0.9-0.999 0.9 

Size of Mini-batch 100 128 100 20 500 200 100 

Dropout 
√ √ √ √ √ √ 

Activation Function ReLU, Tanh ReLU ReLU ReLU ReLU ReLU Tanh 

Decay Rate 0.9 0.0 0 0 05 0.0 0 05 0.04 1E-8 1E-8 0.05 

Optimisation RMSProp SGD SGD SGD ADAM SGD 

Training Epoch 50 0 0 10 0 0 0 0 200 30 

Method CNN-LSTM CNN CNN CNN CNN CNN LSTM 

t  

p  

d  

O  

s  

i  

t  

m  

o  

t  

r  

m  

e  

s

 

w  

l  

t  

t  

r  

m  

f  

e  

(

 

t  

i  

o  

&  

t  

i  

g  

t  

r  

l  

s  

p  

a  

o

 

u  

l  

l  

t  

i  

d  

K  

h  

i  

t  

F  

t  

t  

v  

2

 

r  

l  

u  

w  

n  

t  

b  

w  

(  

a  

c  

a  

W

 

d  

S  

e  

(  

t  

o  

H  

&  

t  

s  

t  

r  

t  

a  

t  

b  

s  

l  

o  

m  

e  

n

5

 

t  

p  

p  

n  

c  

(  

G  
he network behaviour. According to Hinton (2010) , these hyper-

arameters include the values of learning rate, momentum, weight

ecay, initial values of the weight and weight update mechanism.

thers are pre-training and fine-tuning parameter values, optimi-

ation procedures, activation functions, sizes of mini-batch, train-

ng epochs, network depth and pooling procedure to use when

raining convolutional neural networks. In deep learning based hu-

an activity recognition, different studies specify varying values

f these hyper-parameters relying on the network and size of the

raining sensor data. Different hyper-parameter settings that were

ecently implemented for mobile and wearable sensor based hu-

an activity recognition is shown in Table 6 . Here we present brief

xplanations of these hyper-parameters with examples of value

ettings in recent works. 

Learning rate provides the value that shows how much the net-

ork has learned during neural network training iterations. The

earning rates need to be initialised in such a way that it is not

oo large or small. A large value will cause the network weight

o explode; a value between 0.0 0 01 multiplied by the weight is

ecommended. Past studies in human activity recognition using

obile and wearable sensor implement varying values that range

rom 0.0 0 01 ( Castro et al . , 2015 ), 0.001 ( Alsheikh et al . , 2015; Kautz

t al . , 2017 ), 0.01 ( Eskofier et al . , 2016; Ronao & Cho, 2016 ), 0.0 5

 Jing et al . , 2017 ) to as high as 0.1 ( S. Ma et al . , 2016 ). 

Momentum ( Qian, 1999 ) increases the velocity of learning and

he rate of convergence of deep neural networks. Previous studies

n deep learning based human activity recognition adopted the rec-

mmended values between 0.5 and 0.99 ( Kautz et al . , 2017; Ronao

 Cho, 2016 ). The size of mini-batch is another important parame-

er used to avoid overfitting. The mini-batch size divides the train-

ng data into small size of 10 to 100 training set, and then total

radients are computed using these sizes. When the network is

rained with stochastic gradient descent, there is need to maintain

elative sizes to reduce sampling bias. In activity recognition, too

arge mini-batches will be the equivalent of using large window

ize, and therefore may increase computation time and miss im-

ortant activity details. Therefore, factors such as the size of data

nd implementation platform play vital roles in choosing the size

f mini-batch ( Ronao & Cho, 2016 ). 

Another key insight for improving deep learning model is the

se of weight regularisation. Regularising large weight in deep

earning to avoid overfitting is imperative during training due to

arge parameter updates. Overfitting is monitored by measuring

he free energy of training data ( Hinton, 2010 ). Previous stud-

es have proposed various regularisation techniques for training

eep neural networks. For instance, Dropout ( Srivastava, Hinton,

rizhevsky, Sutskever, & Salakhutdinov, 2014 ) randomly deletes

alf of the feature values to prevent complex co-adaptation and

ncrease generalisation ability of the model. Dropout regularisation

echnique were recently improved by Wan, Zeiler, Zhang, Cun, and

ergus (2013) into DropConnect by randomly dropping weight vec-

ors instead of the activation function. However, Dropout is still
 S  
he most popular and is utilised by the majority of the studies re-

iewed ( Alsheikh et al . , 2015; Jing et al . , 2017; Ordóñez & Roggen,

016 ) with a probability of dropout ranging from 0.5 to 0.8. 

In addition to dropout, weight decay techniques such as L1/L2

egularisations prevent overfitting by introducing penalty term for

arge weights and this help to improve generalisation and shrink

seless weights. Studies apply different weight decaying terms

ith varying values. Also, optimisation techniques such as batch

ormalisation that compute gradients on whole datasets, stochas-

ic gradient descent (SGD) using each training examples or mini-

atch gradient descent that compute update on every mini-batch

ill further help to reduce invariance of the parameter update

 Ruder, 2016 ). However, batch normalisation is slow and does not

llow online weight update. Stochastic gradient provides faster

onvergence and helps to choose proper learning rate. It is widely

pplied in deep learning based human activity recognition ( Ravì,

ong, Lo, et al . , 2017; Vepakomma et al . , 2015 ; Wang, 2016 ). 

Other optimisation algorithms have also been implemented for

eep learning training. For instance, Adagrad ( Duchi, Hazan, &

inger, 2011 ) apply adaptive learning rate to the network param-

ter to improve robustness to Stochastic gradient descent, while

 Zeiler, 2012 ) proposed ADADelta that applied adaptive methods

o decrease the learning rate. Furthermore, to solve the problem

f diminishing weights, algorithms such as RMSProp ( Tieleman &

inton, 2012 ) and Adaptive Moment Estimation (ADAM) ( Kingma

 Ba, 2014 ) were proposed. RMSProp adopts adaptive learning rate

o solve the diminishing weights issues by adapting different step

ize for each neural network weights. ADAM applies an exponen-

ially decaying average of past square gradient with default values

anging from 0.9 to 0.999 and momentum of 8E-10. Adaptive op-

imisation is important and widely used because of its ability to

dapt to learning rate and momentum without manual interven-

ion. Furthermore, Q. Song et al. (2017) proposed an evolutionary

ased optimisation algorithm called Ecogeography Based Optimi-

ation (EBO) that adaptively optimises the autoencoder algorithm

ayer by layer to achieve optimal performance. Another important

ptimisation technique is the use of early stopping criteria that

onitor errors on each validation set and stop when the validation

rror stops increasing. Table 6 shows some of the training tech-

iques in some of reviewed studies with their value settings. 

.2. Classification 

Deep learning algorithms are applied on sensor data to ex-

ract discriminative and salient features and then flattened and

ass to an inference engine to recognise activities classes. The out-

uts of the deep neural network model feature at the fully con-

ected layer of the model are connected with classifiers. The most

ommonly used classifiers are Multinomial Regression (SoftMax)

 Alvear-Sandoval & Figueiras-Vidal, 2018; Alzantot et al . , 2017;

uan & Ploetz, 2017; Ordóñez & Roggen, 2016; Ronao & Cho, 2016 ),

upport Vector Machine ( Erfani et al . , 2016 ) or Hidden Markov
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Model ( Alsheikh et al . , 2015 ) and provide probability distribution

classes over activity details. Most of the studies reviewed use Soft-

Max to model the probability of the activity classes. 

SoftMax is a variant of logistic regression that model Multi-

class classification ( J. Gao et al . , 2016; O’Donoghue & Roantree,

2015 ) using cost minimization approach. Therefore, given training

sets {( x ( i ) , y ( i ) ), ( x ( i ) , y ( i ) ), ...............( x ( m ) , y ( m ) )} with corresponding m la-

bel examples, where y ( i ) ∈ {1, 2, 3......, k } and x is the input feature

space. The SoftMax parameters are trained by minimising the cost

function and then fine-tuned to minimise the likelihood function

and improve adaptability. The cost function with the decay terms

is as stated below. 

J ( θ ) = 

1 

m 

[ 

m ∑ 

i =1 

k ∑ 

j=1 

1 { y ( y − j ) } log 
� 
θ T 

j 
x ( i ) ∑ k 

i =1 � 
T 
i 

x (i ) 

] 

+ 

λ

2 

k ∑ 

i =1 

n ∑ 

j=0 

θ2 
jk ( λ > 0 )

(1)

The fine-tuned algorithm through backpropagation to improve

performance is given as: 

p 
(
y ( i ) = k/ x ( i ) ; θ

)
= 

exp 

(
θ ( k ) T x ( i ) 

)
∑ k 

j=1 exp 

(
θ ( j ) T x ( i ) 

) (2)

The above equation provides the probability of the activity

classes with possible values of labels ( Yan et al . , 2015 ). Also, ( Ronao

& Cho, 2016 ) noted that the last layer of the convolutional neural

network that infers activity classes is given as: 

p ( c/p ) = arg max 
c= C 

exp 

exp 

(
p L −1 w 

L + b L 
)

∑ NC 
k =1 exp 

(
p L −1 w 

k 
) (3)

Where c is the activity class, L is the last layer index of the con-

volutional neural network (CNN), and NC is the total number of

activity classes. 

5.3. Evaluation metrics 

The performance of features representation for human activity

recognition using mobile and wearable sensors is evaluated with

pre-set evaluation techniques. Criteria such as accuracy, compu-

tation time and complexity, robustness, diversity, data size, scal-

ability, types of sensor, users and storage requirements are used

to evaluate how the features extracted, and classifiers perform

in relation to other studies. Alternatively, deep learning meth-

ods can also be evaluated on how varying the hyper-parameters

affect their performances during training, filter size, pre-training

and fine-tuning, pooling layers and number of temporal sequences

( Alsheikh et al . , 2015; Ordóñez & Roggen, 2016; Ronao & Cho,

2016 ). These parameters evaluation is still an open research chal-

lenge to establish their effects on deep learning network per-

formance ( Erfani et al . , 2016; Munoz-Organero & Ruiz-Blazquez,

2017 ). 

Like the handcrafted features based human activity recogni-

tion methods, deep learning features are evaluated with differ-

ent performance metrics. Hold-out cross-validation techniques are

utilised to test the performance of features representation on dif-

ferent datasets. Hold-out cross-validation techniques include leave-

one-out, leave one person out when testing the performance of

single-user, 10-fold cross validation, or leave one day out when us-

ing data collected for a specific number of days for activity details

( Hammerla et al . , 2015 ). These different hold-outs cross-validation

techniques allow the deep learning training to be repeated a num-

ber of times to ensure generalisation across datasets. Different per-

formance evaluation metrics used in the studies review is pre-

sented in Table 7 below. 

The most common performance metrics are accuracy, precision,

recall, confusion matrices and Receiver Operating Characteristics
ROC) curve. Therefore, the activity can be classified as True Pos-

tive (TP), True Negative (TN) when correctly recognised or False

ositive (FP) or False Negative (FN) when incorrectly classified.

ther performance metrics are derived with True positive or True

egative. These metrics are discussed below: 

Accuracy provides the overall correctly classified instances. It is

he sum of correct classification divide by the total number of clas-

ification. 

T P + T N 

T P + F P + T N + F N 

(4)

Precision (Specificity) measures the accuracy and provides the

alue based on the fraction of the negative instance that are clas-

ified as negative. 

T P 

T P + F P 
(5)

Recall measures the performance of correctly predicted in-

tances as positive instances. 

T P 

T P + F N 

(6)

F-Measure (Score), F-Measure is mainly applied in unbalanced

atasets and provides a geometric mean of sensitivity and speci-

city. F-measure 

 . 
Pr ecison. Re call 

Pr ecision + Re call 
(7)

Confusion Matrices: Confusion matrices are important perfor-

ance measure, and the matrix provide the overall misclassifica-

ions rate in human activity recognition ( Hammerla, 2015 ). The

nown classes are represented with rows while the columns corre-

pond to the predicted classes made by the classifiers. The use of

onfusion matrices allows the analysis of Null class which is com-

on in Human Activity Recognition and further enables visualisa-

ion of the recognition performance of the system. 

Receiver Operating Characteristics (ROC) Curve : The ROC curve

s also known as precision-recall rate and provides mechanism to

nalyse the true positive rate against the true negative rate give as

FPR). However, the ROC curve is only suitable for detection model

s it depends on the number of True Negative classes and may not

e used in imbalance dataset which is common in deep learning

ased human activity recognition. Metrics such as Equal Error Rate

hat show the values at which precision is equal to recall, aver-

ge precision and Area Under the Curve (AUC) the show the over-

ll performance of classifiers and probability that chosen positive

nstances will be ranked higher than negative instances ( Bulling

t al . , 2014b ; Hammerla, 2015 ). 

Accuracy, precision and recall are suitable for two classes and

alance datasets. For imbalance data, average accuracy, precision

nd recall are computed for the overall activities. These values are

verages of the summation of their individual values. 

verage accuracy = 

1 

N 

N ∑ 

i =1 

T P i 

( T P + F P ) i 
(8)

recision = 

1 

N 

N ∑ 

i =1 

T P i 
T I i 

(9)

verage Recall = 

1 

N 

N ∑ 

i =1 

T P i 
T T i 

(10)

here N is the number of classes, TI , the total number of inferred

abel and TT is the ground truth label. However, it has become an

ssue of contention in deep learning as most of the data are un-

abelled data and ground truth labels are missing in most cases.

he use of average precision and recall require manual annotation
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Table 7 

Evaluation metrics of deep learning methods for human activity recognition. 

References Accuracy Precision Recall Confusion Matrix F 1 -Score ROC/AUC 

( Plötz et al . , 2011 ) 
√ 

– – – – –

( Bhattacharya et al . , 2014 ) – – –
√ √ 

–

( Al Rahhal et al . , 2016 ) 
√ √ √ 

– – –

( Jokanovic et al . , 2016 ) – – –
√ 

– –

( Munoz-Organero & Ruiz-Blazquez, 2017 ) –
√ √ 

–
√ 

–

( Jing et al . , 2017 ) 
√ 

– – – – –

( Alsheikh et al . , 2015 ) 
√ 

– – – – –

( Erfani et al . , 2016 ) – – – – –
√ 

( Ravi et al., 2016a,b ) 
√ 

– – – – –

( Zhang et al., 2015a,c ) 
√ √ √ 

– – –

( Ravì, Wong, Lo, et al . , 2017 ) 
√ √ √ 

– – –

( Q. Song et al . , 2017 ) 
√ 

– – – – –

( Wang, 2016 ) – – –
√ 

– –

( Kautz, et al . , 2017 ) 
√ √ √ √ 

– –

( Guan & Ploetz, 2017 ) – – – –
√ 

( Ronao & Cho, 2016 ) 
√ 

– – – – –

( Sathyanarayana et al., 2016b ) 
√ √ √ 

–
√ √ 

( X. Li et al . , 2017 ) 
√ √ 

– –
√ 

–

( Ordóñez & Roggen, 2016 ) – – –
√ √ 

–

( Song et al . , 2016 ) 
√ 

– –
√ 

– –

( Yang et al . , 2015 ) 
√ 

– –
√ √ 

–
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f data which is tedious and laborious especially for mobile based

nd real time human activity recognition ( Ravi et al., 2016a,b;

avì, Wong, Lo, et al . , 2017 ). Studies adopting deep learning meth-

ds test for precision and recall instead. 

. Common datasets for deep learning based human activity 

ecognition 

Benchmark datasets are important for human activity recogni-

ion with deep learning methods. With benchmark datasets, re-

earchers can test the performance of their proposed methods and

ow the results compare with previous studies. Some studies used

atasets collected purposely for their research while others rely on

ublic datasets to evaluate and validate their methods which are

he most popular procedure among researchers in human activity

ecognition. 

The main advantages of benchmark dataset are the ability to

rovide varieties of activity details both ambulatory, ambient liv-

ng, daily, gesture and skill assessment activities ( Hammerla, et al . ,

015 ). The most widely used benchmark datasets and the number

f sensors, activities and subjects are shown in Table 8 . 

OPPORTUNITY Dataset ( Roggen et al . , 2010 ) is a set of com-

lex, hierarchical and interleaved dataset for activity of daily liv-

ng (ADL) collected with multiple sensors of different modalities

n naturalistic environments. During the data collection, the sen-

ors were integrated into objects, environments and on-body that

nsure multimodal data fusion and activity modelling. The OPPOR-

UNITY dataset is composed of sessions, daily living activities and

rills. In the daily living activity section, the subjects were asked to

erform different kitchen-related activities such as preparing and

rinking coffee, eating sandwich, cleaning up, etc. while in the drill

ession, the subjects were asked to perform 20 set of repeated ac-

ivities like “Opening and close the fridge”, “Open and close the

ishwasher”, “Open and close the door”, “Clean the table” etc. for

 period of 6 hours. All the datasets were gathered with Inertia

easurement Unit (IMU) sensors with different modalities inform

f accelerometers, gyroscope and magnetometer. In a total of sev-

nteen (17) activities were performed with twelve (12) subjects. 

The Skoda Mini Checkpoint Dataset ( Zappi et al . , 2008 ) was col-

ected to check quality assurance checkpoint among assembly lines

orkers in car production environment. In the study, one subject

ore twenty (20) 3D sensors on both arms and performed dif-

erent manipulative gestures recorded for 3hours for seventy (70)
epetitions in each gesture. The activities considered are “Write on

otepad”, “Open hood”, “Close hood”, Check steering wheel” etc.

sing on-body sensors placed on the right and left arms. 

Daily and Sports Activity ( Barshan & Yüksek, 2014 ) was collected

t Bilkent University in Turkey for human activity classification us-

ng on-body sensors placed on different parts of the body. The

ataset involved five inertial measurement unit sensors by eight

 (8) subjects and performed nineteen (19) different ambulatory ac-

ivities. The IMU collected multimodal data: accelerometers, gyro-

cope and magnetometer for activities involving walking, climbing

tairs, standing, walking on the treadmill etc. It was made public

fter their research with intra-subject variability. It is a challeng-

ng dataset for human activity recognition. 

WISDM dataset ( Kwapisz et al . , 2011 ) by Wireless Sensor Data

ining Lab Fordham University describes a dataset collected for

uman activity recognition using Android based mobile phone ac-

elerometer sensors. The data was collected from twenty-nine (29)

sers with single mobile phones doing simple ambulatory activi-

ies such as working, jogging, sitting, standing, etc. 

PAMAP2 Reiss & Stricker, 2012 ), Physical Activity monitoring for

ging People comprises daily activity dataset collected with three

nertial measurement (IMU) and heart rate monitor sensors for a

0 hour period using nine (9) subjects. The sensors were placed

t different body positions (dominant arm, ankle and chest region)

nd measured activities ranging sitting, jogging, watching TV to us-

ng the computers. 

mHealth (Oresti Banos et al . , 2014 ) comprises 12 daily activ-

ty dataset collected using accelerometer, gyroscope, magnetometer

nd electrocardiogram sensor for health monitoring applications.

t uses diverse mobile and wearable biomedical devices to collect

ensor data. The architecture of the mobile app includes compo-

ents such as data collection, storage, data processing and classi-

cation, data visualisation and service enablers that provide com-

lete health monitoring systems. 

. Deep learning implementation frameworks 

Deep learning has come a long way and has become an im-

ortant area of research. A number of software and hardware im-

lementation platforms have been developed that exploit high-

erformance computing platforms to extract discriminative fea-

ures for activity recognitions and other application areas. Some

f these deep learning frameworks are open source, and others are
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Table 8 

Benchmark dataset for human activity recognition methods evaluation. 

Authors Dataset Sensor modalities Number of 

sensors 

# 

Participant 

Activities 

( Roggen et al . , 

2010 ) 

OPPORTUNITY Accelerometer, 

gyroscope, 

magnetometer 

19 4 Open and close door, open and close fridge, open and close 

dishwasher, open and close drawer, clean table, drink from cup, Toggle 

switch, Groom, prepare coffee, Drink coffee, prepare Sandwich, eat 

sandwich, Clean up 

( Zappi et al . , 2008 ) Skoda Accelerometer, 

gyroscope, 

magnetometer 

20 1 Write on Notepad, open hood, close hood, check Gap door, open door, 

check steering wheel, open and close trunk, close both doors, close 

doors, check trunks 

( Barshan & 

Yüksek, 2014 ) 

Daily and Sports 

Activities 

Accelerometer, 

gyroscope, 

magnetometer 

5 8 Sitting, standing, lying on back, lying on right side, ascending stair 

descending stairs, standing in an elevator still, moving around in an 

elevator, walking in a parking lot, walking on a treadmill with a speed 

of 4 km/h in flat, walking on a treadmill with a speed of 4 km/h and 15 

degree inclined positions, running on a treadmill with a speed of 

8 km/h, exercising on a stepper, exercising on a cross trainer, cycling on 

an exercise bike in horizontal positions, cycling on an exercise bike in 

vertical position, rowing, jumping and playing basketball 

( Kwapisz et al . , 

2011 ) 

WISDM v2 Accelerometer 1 29 Walking, Jogging, Upstairs, Downstairs, Sitting, Standing 

PAMAP2 Accelerometer, 

gyroscope and 

magnetometer 

4 18 Lying, sitting, standing, walking, running, cycling, Nordic walking, 

Watching TV, Computer work, Car driving, Ascending stairs, Vacuum 

cleaning, descending stairs, ironing, folding laundry, house cleaning, 

playing soccer, rope jumping 

(Oresti Banos et al . , 

2014 ) 

mHealth Accelerometer, 

gyroscope, 

magnetometer, 

electrocardiogram 

4 10 Standing still, sitting and relaxing, lying down, walking, climbing stairs, 

waist bends forward, frontal elevation of arms, knees bending, cycling, 

jogging, running, jumping front and back 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

proprietary developed by different organisations for use in cutting-

edge technological development. NVidia 1 has become a driving

force in the development of hardware technologies such as Graph-

ical Processing Unit (GPU) and other processors that accelerate

learning and improve the performance of deep learning meth-

ods. Recently, the organisation developed deep learning purpose-

built microprocessors such as NVidia Tesla 40 GPU acceleration,

Tesla M4 Hyperscale Accelerator and DGX-1 deep learning sys-

tem ( NVidia-Corps, 2017 ). Other companies like Mathematica, Wol-

fram, Nervana Systems, IBM and Intel Curie have followed suit in

the development of deep learning implementation hardware ( Ravì,

Wong, Deligianni, et al . , 2017 ). 

One important aspect of the NVidia GPU is their support for the

majority of the Machine learning and deep learning implementa-

tion tools and packages. Below, we discussed some of these tools

and frameworks for implementation of deep learning and their var-

ious characteristics as shown in Table 9 . Although the parameters

used in the discussion were presented in Ravì, Wong, Deligianni,

et al. (2017) , the frameworks were updated to reflect the current

development in the area. 

• TensorFlow ( Abadi et al . , 2016 ) is an open source framework de-

veloped by Google Research Team for Numerical computation

using data flow graph. TensorFlow has the highest number of

community support for implementation of deep learning mod-

els. TensorFlow is very popular in deep learning research due to

its flexibility for a variety of algorithms, portability and can run

inference on mobile phones devices. Furthermore, it provides

support for low level and high-level network training with mul-

tiple GPU, robust and provides consistency of parameter up-

dates. 
• Theano ( Bergstra et al . , 2010 ) is a Python library used to define,

optimise and evaluate the mathematical expression for multi-

dimensional array. Theano provides high network modelling ca-

pability, dynamic code generation and speed with multiple GPU

support. However, Theano provides low-level API and involves

a lot of complex compilations that are often slow. Meanwhile,
1 www.nvidia.co.uk 

 

Theano has a wide range of learning resources and is still used

by many researchers and developers. 
• Caffe ( Y. Jia et al . , 2014 ) is a framework for expressing algo-

rithms in modular form. It provides C ++ core language and

binding support in Python and MATLAB. Caffe provides a com-

plete architecture for training, testing and deployment of the

deep learning model. Moreover, NVidia GPU provides Caffe sup-

port for accelerated learning of deep learning. 
• Pylearn2 ( Goodfellow et al . , 2013 ) Pylearn2 was proposed in

2013 as machine learning library composed of several compo-

nents that can be combined to form complete machine learn-

ing algorithms with deep learning models such as Autoencoder,

Deep Belief Network, Deep Boltzmann machine implementation

module. It is built on top of Theano and provides CPU and

GPU support for intensive machine learning implementation.

The major drawback of Pylearn is its low-level API that requires

expert knowledge to implement any deep learning method. 
• Torch ( Collobert, Kavukcuoglu, & Farabet, 2011 ), scientific com-

puting framework that provides model for machine learning

implementation. The framework was developed to extend Lua

programming Language and provide the flexibility needed to

design and train machine learning algorithms. It is equipped

with tensor; standard MATLAB and Neural Network model

functionalities that describe neural network architectures. 
• Cognitive Network Toolkit ( Microsoft, 2017 ) was developed by

Microsoft Research to provide a unified framework for well-

known deep learning algorithms. It provides multi-GPU paral-

lelisation of learning techniques and implements stochastic gra-

dient descent and automatic differentiation. The toolkit was re-

leased in 2015 and still has high community contribution in

GitHub. 
• Lasagne ( Dieleman et al., 2015 ) provides a light library for im-

plementation of deep learning algorithms such as convolutional

neural network and recurrent neural network in Theano. It al-

lows multiple input architectures with many popular optimi-

sation techniques such as RMSprop and ADAM. The algorithm

also provides CPU and Multiple GPU support for the implemen-

tation of deep learning methods. 

http://www.nvidia.co.uk
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Table 9 

Software frameworks for deep learning implementation. 

Name Organisation Licence Platform Language Support OpenMP 

Support 

Support Techniques Cloud 

Computing 

Support 

RNN CNN DBN 

Theano Universite de Montreal BSD Cross Platform Python –
√ √ √ 

–

TensorFlow Google Research Apache 2.0 Linux, OSX Python 
√ 

–
√ √ 

–

Caffe Berkeley Vision and 

Learning Centre 

FreeBSD Linux, Win, OSX, 

Android, 

C ++ ,Python, MATLAB – –
√ 

– –

Torch Ronan Collobert et al. BSD Linux, Win, OSX, 

Android, iOS 

Lua, LuaJIT, C 
√ 

–
√ √ 

–

CNTK Microsoft MIT Linux, Window C ++ , Python, C#, 

Command Line 

√ √ √ 

– –

Deeplearning4jK Skymind Apache 2.0 Linux, Win, OSX, 

Android 

Java, Scala, Clojure, 

Spark 

√ √ √ √ 

–

Keras Francois Chollet MIT Licence Linux, Win, OSX Python –
√ √ 

Neon Nervana Systems Apache 2.0 OSX, Linux Python 
√ √ √ √ √ 

Lasagne Universite de Montreal BSD Linux, Win, OSX, 

Android 

Python 
√ √ √ √ 

–

MXNet Chen et al Apache 2.0 Linux, Win, Andriod Python, R, C ++ , Julia –
√ √ 

– –

Pylearn LISA Lab Universite de 

Montreal 

BSD Cross Platform Python 
√ √ √ √ 

–

PyTorch Facebook BSD Linux Python 
√ √ √ √ 

CuDNN NVIDIA Free BSD Linux, Win, Android, 

OSX 

C 
√ √ √ 

–
√ 
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• Keras ( Chollet, 2015 ) was developed for deep learning imple-

mentation in Theano and TensorFlow written in Python pro-

gramming language. It enables high-level neural network API

for speedy implementation of deep learning algorithms. The

main key point of Keras is its support for Theano and Tensor-

Flow, popular deep learning implementation framework and al-

lows modular, extensible and user platform using Python. 
• MXNet ( T. Chen et al . , 2015 ) combines symbolic and imperative

programming to enable deep neural network implementation

on heterogeneous devices (Mobile or GPU clusters). It automat-

ically derives neural network gradients and graph optimisation

layer to provide fast and memory efficient execution. 
• Deeplearning4j ( Nicholson and Gibson, 2017 ) developed by Sky-

mind is an open source, distributed and commercial machine

learning toolkits for deep learning implementation. The frame-

work integrates Hadoop and Spark, with CPU and GPU-enabled

for easy and quick prototyping of deep neural network imple-

mentation. 
• Neon ( Nervana-Systems, 2017 ) is developed for cross-platform

implementation in all hardware with support for popular deep

learning methods, convolutional neural network and recurrent

neural network. Once codes are written in Neon, it can be de-

ployed on different hardware platforms, and it provides the

best performance among deep learning libraries. 
• Pytorch ( Erickson, Korfiatis, Akkus, Kline, & Philbrick, 2017 ) was

recently developed at Facebook and is a front-end integra-

tion of Torch for high performance deep learning development

with excellent GPU support. It provides Python front-end that

enables dynamic neural network construction. However, the

toolkit was recently released and does not have a lot of com-

munity support, learning resources and evaluation for its per-

formance. 
• CuDNN ( Chetlur et al . , 2014 ) was developed as GPU-accelerated

library for implementation of common deep learning meth-

ods. The framework with developing with the same intent

as BLAS for optimised high-performance computing, to ease

development, training and implementation of deep learning

such as convolutional layer, recurrent neural network and back-

propagation techniques. CuDNN supports both GPU and other

platforms and provides straightforward integration with other

frameworks such as TensorFlow, Caffe, Theano and Keras. Also,
 t  

s

the context based API of CuDNN allows for multithreading and

evaluation of complete deep learning algorithms. 

Various other frameworks are still being developed that will

implify deep learning implementation across platforms and het-

rogeneous devices. For instance, frameworks such as DIGIT, Con-

net and MATLAB based CNN toolbox for feature extraction, Cud-

net, CUDA and C ++ implementation of CNN and others are being

ne-tuned to enable deep learning development. There are a num-

er of evaluations of these frameworks that were reported recently

 Bahrampour, Ramakrishnan, Schott, & Shah, 2015a, 2015b; Erick-

on et al . , 2017 ) using parameters such as language support, doc-

mentation, development environment, extension speed, training

peed, GPU support, maturity level, model library, etc. From these,

ensorFlow has the highest GitHub interest and contribution, sur-

assing Caffe and CNTK. Also, some of the frameworks support

PU or have limited support in which the GPU has to be resident

n the workstation (e.g., MXNet). 

With the development of deep learning based human activity

ecognition, these frameworks have become dominant choices for

evelopers and researcher for mobile and wearable sensor based

pplications. With different implementation frameworks and vary-

ng programming support, the choice of the framework depends

n the programming and technical ability of the users. The soft-

are frameworks recently used for mobile-based human activity

ecognition are TensorFlow ( Eskofier et al . , 2016; Kautz et al . , 2017 ),

heano ( Ordóñez & Roggen, 2016; C. A. Ronao & S.-B. Cho, 2016 ),

affe ( Yin et al . , 2016 ), Keras ( X. Li et al . , 2017 ), Torch ( Ravi et al.,

016a,b ) and Lasagne ( Guan & Ploetz, 2017 ). Other studies de-

elop the algorithm using programming platforms such as MATLAB

 Bhattacharya & Lane, 2016; Erfani et al . , 2016; Sheng et al . , 2016;

ebin et al . , 2016 ) and C ++ ( Ding et al . , 2016 ). 

. Open research challenges 

In this section, we present some research challenges that re-

uire further discussion. Many open research issues in the area of

ensor fusion, real-time and on-board implementation on mobile

nd wearable devices, data pre-processing and evaluation, collec-

ion of large dataset and class imbalance problems are some of

he areas that required further research. Here, we discuss these re-

earch directions in seven important themes: 
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• Real-time and on-board implementation of deep learning algo-

rithm on mobile and wearable devices: On-board implementa-

tion of deep learning algorithms on mobile and wearable de-

vices will help to reduce computation complexity on data stor-

age and transfer. However, this technique is hampered by data

acquisition and memory constrained in the current mobile and

wearable devices. Furthermore, a high number of parameters

tuning and initialisation in deep learning increases computa-

tional time and is not suitable for low energy mobile de-

vices. Therefore, utilising methods such as optimal compression

and use of mobile phone enabled GPU to minimise computa-

tion time and resources consumptions is highly needed. Other

methods that may provide enabling techniques for real-time

implementation is leveraging mobile cloud computing plat-

forms for training to reduce training time and memory usage.

With this type of implementation, the system can become self-

adaptive and require minimal user inputs for a new source of

information. 
• Comprehensive evaluation of pre-processing and hyper-parameter

settings on learning algorithms: Pre-processing and dimension-

ality reduction is an important aspect of the human activity

recognition process. Dimensionality reduction provide mecha-

nism to minimize computational complexity especially in mo-

bile and wearable devices with limited computation powers

and memory by projecting high dimensional sensor data into

lower dimensional vectors. However, the method and extent of

pre-processing on the performance of deep learning is an open

research challenge. A number of pre-processing techniques such

as normalisation, standardisation and different dimensionality

reduction methods need to be experimented with, to know the

effects on performances, computational time and accuracy of

deep-learning methods. Issues such as learning rate optimisa-

tion to accelerate computation and reduce model and data size,

kernel reuse, filter size, computation time, memory analysis and

learning process still require further research as current studies

depend on heuristics method to apply these hyper-parameters.

Moreover, the use of grid search and evolutionary optimisation

methods on mobile based deep learning methods that support

lower energy consumption, dynamic and adaptive applications,

and new techniques that enable mobile GPUs to reduce compu-

tational time are very significant research directions ( Ordonez &

Roggen, 2016 ). 
• A collection of large sensor datasets for evaluation of deep learn-

ing methods: Training and evaluation of deep learning tech-

niques require large datasets that abound through different sen-

sor based Internet of Thing (IoT) devices and technologies. The

current review indicates that most studies on deep learning

implementation of mobile and wearable based human activity

recognition depend on benchmark dataset from conventional

machine learning algorithms such as OPPORTUNITY, Skoda and

WSDM for evaluation. Data collection methods through cyber-

physical systems and mobile crowdsourcing to leverage data

collected through the smart home and mobile location data for

transportation mode, smart home environment for elderly care

and monitoring, GPS data for context aware location recogni-

tion and other important applications. Therefore, collection of

large dataset through the synergy of these technologies are im-

portant for performance improvements. 
• Transfer learning for mobile and wearable devices implementa-

tion of deep learning algorithms: Transfer learning based activity

recognition is a challenging task to accomplish. Transfer learn-

ing leverage experience acquired in different domains to im-

prove the performance of new areas yet to be experienced by

the system. The main vital reasons for application of trans-

fer learning are to reduce training time, provide robust and

versatile activity details and reuse of existing knowledge into
new domains and a critical issue in activity recognition. Further

research in area related to kernel, convolutional layer, inter-

location and inter-modalities transferability will improve im-

plementation of deep learning based human activity recogni-

tion ( Ordonez & Roggen, 2016 ). Moreover, transfer learning in

mobile wearable sensor based human activity recognition will

minimize source, target and environment specific applications

implementation which have not received the needed attention. 
• Implementation of deep learning based decision fusion for human

activity recognition in mobile and wearable devices: Decision fu-

sion is an essential step to improve the performance and diver-

sity of human activity recognition systems by combining sev-

eral architectures, sensors and classifiers into a single decision.

Typical areas that require further researches are heterogeneous

sensor fusion, combining expert knowledge with deep learning

algorithm and combination of different unsupervised feature

learning methods to improve performance of activity recogni-

tion systems. 
• Solving the class imbalance problem for deep learning in mobile

and wearable based human activity recognition: Class imbalance

issues can be found in datasets for human activity recogni-

tion and detection of abnormal activities. Class imbalance prob-

lem is vital in healthcare monitoring especially fall detection

in which what constitute actual fall is difficult. For mobile and

wearable sensor based human activity recognition, class im-

balance maybe as a result of a distortion in the dataset and

sensor data calibration which reduce performance generalisa-

tion ( Edel & Köppe, 2016 ). Existing studies have proposed a

range of solutions such as mixed kernel based weighted ex-

treme learning machine and cost sensitive learning strategies

( D. Wu, Wang, Chen, & Zhao, 2016 ). However, there are no stud-

ies on how class imbalance affect deep learning implementa-

tion especially for mobile wearable sensors. Therefore, strate-

gies to reduce class imbalance will significantly improve human

activity recognition using deep learning methods. 
• Augmentation of mobile and wearable sensor data to enhance

deep learning performance: Another aspect of open research

challenge is the use of data augmentation techniques to im-

prove the performance of deep learning methods for motion

sensors (accelerometer, gyroscopes, etc.) based human activity

recognition with the convolutional neural network. Data aug-

mentation methods exploit limited amount of mobile and wear-

able sensor data by transforming the existing training sensor

data to generate new data. These processes are important as

it help to generate enough training data to avoid overfitting,

improve translation invariance to sensor orientation, distortion

and changes especially in convolutional neural network (CNN)

model. In image classification, data augmentation is a common

training strategy ( Y. Guo et al . , 2016 ). However, there is need to

evaluate the impacts and performances of data augmentation

in mobile and wearable sensor-based human activity recogni-

tion to generate more training examples and prevent overfit-

ting resulting from small datasets. Different data augmentation

approaches such as change of sensor placements, arbitrary rota-

tions, permutation of locations with sensor events, time warp-

ing and scaling will provide effective means to enhance perfor-

mance of deep learning based human activity recognition ( Um

et al . , 2017 ). 

. Conclusion 

Automatic feature learning in human activity recognition is in-

reasing in momentum. This is as results of the steady rise in com-

utation facilities and large datasets available through mobile and

earable sensing, Internet of Things (IoT) and crowd sourcing. In

his paper, we reviewed various deep learning methods that en-
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ble automatic feature extraction in human activity recognition.

eep learning methods such as Restricted Boltzmann Machine, Au-

oencoder, and Convolutional Neural Networks and Recurrent neu-

al network were presented and their characteristics, advantages

nd drawback were equally exposed. Deep learning methods can

e classified as generative, discriminative and hybrid methods. We

tilise the categorisations to review and outline deep learning im-

lementation of human activity recognition. Those in the gener-

tive categories are the Restricted Boltzmann Machine, autoen-

oder, sparse coding and deep mixture model while the discrim-

native approaches include the convolutional neural network, re-

urrent neural network, deep neural model and hydrocarbon. Simi-

arly, hybrid methods combine generative and discriminative model

o enhance feature learning and such combination dominant re-

earch landscape of deep learning for human activity recognition

ately. Hybrid methods incorporate diverse generative model such

s autoencoder, Restricted Boltzmann Machine with the convolu-

ional neural network or combine discriminative models such as

onvolutional neural network and long short term memory. These

pproaches are an important step to achieving automatic feature

earning and enhancing performance generalisation across datasets

nd activities. 

On the other hand, the implementation of deep learning meth-

ds is driven by the availability of high-performance computing

PU and software frameworks. A number of these software frame-

orks were recently released to the research community as open

ources projects. These software frameworks were discussed, tak-

ng into cognizance their characteristics and what inform develop-

rs’ choice in using particular frameworks. Also, training, classifica-

ion and evaluation of deep learning algorithm for human activity

ecognition is not always a trivial case. To provide the best compar-

son and categorisations of recent events in the research commu-

ity, we reviewed the training and optimisation strategies adopted

y different studies recently proposed for mobile and wearable

ased human activity recognition. Furthermore, classification and

erformance metrics with different validation techniques are im-

ortant to ensure generalisation across datasets. These approaches

re adopted to avoid overfitting the model on the training set. Also,

e provide some of the publicly available benchmark datasets for

odelling and testing deep learning algorithms for human activ-

ty recognition. Some of these datasets that are widely used for

valuation are OPPORTUNITY, Skoda, and PAMAP2 which are also

opular with classical machine learning algorithms. 

To provide further insight on the directions of the research

rogress, we presented the open research challenges that require

he attention of researchers. For instance, areas such as deep learn-

ng based decision fusion, implementation of deep learning on-

oard mobile devices, transfer learning and class imbalance prob-

ems that enable implementation of human activity recognition

or enhanced performance accuracy. With further development of

igh computational resources that increase the online and real-

ime deep learning implementation on mobile and wearable de-

ices, such machine learning techniques are projected to improve

uman activity recognition researches. 
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