
MobileInsight: Extracting and Analyzing Cellular Network
Information on Smartphones

Yuanjie Li1 Chunyi Peng2 Zengwen Yuan1 Jiayao Li1 Haotian Deng2 Tao Wang3

1University of California, Los Angeles 2The Ohio State University 3Peking University

ABSTRACT
We design and implement MOBILEINSIGHT, a software tool that
collects, analyzes and exploits runtime network information from
operational cellular networks. MOBILEINSIGHT runs on commer-
cial off-the-shelf phones without extra hardware or additional sup-
port from operators. It exposes protocol messages on both con-
trol plane and (below IP) data plane from the 3G/4G chipset. It
provides in-device protocol analysis and operation logic inference.
It further offers a simple API, through which developers and re-
searchers obtain access to low-level network information for their
mobile applications. We have built three showcases to illustrate
how MOBILEINSIGHT is applied to cellular network research.

1 Introduction
The cellular network is a “closed” yet critical infrastructure. On
one hand, mobile users are increasingly accessing online services
through their 3G/4G networks on their smart devices (e.g., smart-
phones and tablets). The resulting data volume has contributed to
88% of global mobile traffic now, and is projected to reach 97% by
2019, with a tenfold traffic growth [1]. On the other hand, users
and devices have very limited access to their runtime operations on
all cellular protocols. Mobile applications transfer data through the
cellular interface via the socket API. Beyond that, the network itself
largely remains a blackbox to users.

The lack of open access into fine-grained runtime network op-
erations creates barriers for researchers and developers to accu-
rately understand and refine how cellular protocols operate at the
device and inside the network. For example, the device experi-
ences a handoff on the go but has no clue on why it is triggered and
whether it is a good decision. In reality, the device has been ob-
served to hand over and get stuck in 2G even when 4G is available.
Another real-life instance is that it is not uncommon to take long
time to upload a photo or experience a failed call via 4G. It is not
clear whether it is caused by poor radio quality or network protocol
issues. The list goes on and long.

For a rather closed, large-scale cellular network system, we need
both data and analytics to identify problems and renovate the de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MobiCom’16, October 03-07, 2016, New York City, NY, USA
c©2016 ACM. ISBN 978-1-4503-4226-1/16/10 $15.00

DOI: http://dx.doi.org/10.1145/2973750.2973751.

sign. This calls for a community tool suite that can be built and
shared together. Such tool could stimulate research on the 3G/4G
mobile networks. Ideally, the tool should possess three features
simultaneously: (1) It can collect runtime operation traces using
commercial off-the-shelf (COTS) devices without extra hardware
support; (2) Given the data traces, it provides analytics to extract
dynamic protocol behaviors for both common usage settings and
abnormal failure cases; (3) The tool offers simple APIs to build
applications and the framework can be readily extended. Unfor-
tunately, no such community software tools are available to date.
The existing ones cannot meet all three requirements [2–7] (see
Table 14 for a comparison summary). Furthermore, operators are
reluctant to release the traces collected from the infrastructure side.
They also have limited access to the device-side operations.

In this paper, we take the first step to develop MOBILEINSIGHT1,
a software toolwhich enables runtime cellular network monitoring
and analytics on COTS smartphones. It aims to satisfy three fea-
tures above; We seek to overcome the barrier by providing open
access (in software) to fine-grained cellular information on 3G/4G
protocols; We empower in-device analytics, which not only dis-
close what happens but also shed light on why and how. The tool
is intended as an open platform that is extensible. The goal is to
facilitate researchers and developers to readily and quickly obtain
the low-level network information through easy-to-use APIs.

In a nutshell, MOBILEINSIGHT runs as a user-space service on
COTS smartphones (root access required for some phone models).
It does not require any extra support from operators, or additional
hardware (USRP, PC or testing equipments). MOBILEINSIGHT
leverages a side channel inside the COTS smartphones, and ex-
tracts cellular operations from signaling messages between the de-
vice and the network. These control-plane messages regulate es-
sential utility functions of radio access, mobility management, se-
curity, data/voice service quality, to name a few. Given these mes-
sages, it further enables in-device analytics for cellular protocols.
We not only infer runtime protocol state machines and dynamics on
the device side, but also infer protocol operation logic (e.g., handoff
policy from the carrier) from the network. MOBILEINSIGHT offers
a simple API for use and extension. With its simple API, we fur-
ther describe three example cases to show how MOBILEINSIGHT
can be used. These showcases demonstrate how MOBILEINSIGHT
benefits end devices in a variety of scenarios, including failure diag-
nosis, performance improvement, and security loophole detection.

We have implemented MOBILEINSIGHT on Android phones
with Qualcomm chipsets (feasibility on iPhones and non-
Qualcomm chipsets has been also validated). It currently sup-
ports all 3G/4G control-plane protocols for radio resource control,
mobility management and session management, as well as certain

1http://metro.cs.ucla.edu/mobile_insight/

202

H
ar

dw
ar

e
So

ftw
ar

e

NAS
(MM, SM)

IP

PDCP/RLC/MAC
PHY

RRC
Cellular interface

Telephony service

Mobile apps

RIL APIs

Android APIs

AT commands

System viewProtocol view

Control-plane
User-space (SW)
Kernel-space (SW)
Chipset (HW)

User-plane

Cellular
core

Radio interface layer

Cellular chipset

Cellular network

TCP/UDP,
…

HTTP, FTP,
VoIP, …

User-plane Control-plane

O
S

ke
rn

el

Internet

Figure 1: Network architecture (left), protocol stack (middle), and in-
formation access at device (right).

Name Description Category System Standard
CM Connectivity Management Data/voice

control in
NAS

3G CS TS24.008 [9]
SM Session Management 3G PS TS24.008 [9]
ESM 4G EPS Session Management 4G TS24.301 [10]
MM Mobility Management Mobility

mgmt. in
NAS

3G CS TS24.008 [9]
GMM GPRS Mobility Management 3G PS TS24.008 [9]
EMM EPS Mobility Management 4G TS24.301 [10]
3G-RRC Radio Resource Control RRC in

AS
3G TS25.331 [11]

4G-RRC Radio Resource Control 4G TS36.331 [12]
PHY Physical Layer Layer 1 4G TS36.211 [13]

TS36.212 [14]
TS36.213 [15]

MAC Medium Access Control
Layer 2

4Ga TS36.321 [16]
RLC Radio Link Control 4Ga TS36.322 [17]
PDCP Packet Data Convergence Protocol 4Ga TS36.323 [18]

Table 1: Cellular network protocols and used acronyms.

4G below-IP protocols that convey control information. We have
tested MOBILEINSIGHT with 8 carriers: four US carriers (Verizon,
AT&T, T-Mobile, Sprint) plus Project Fi [8], and three Chinese op-
erators, using 30 phones from 11 phone models. Our evaluation
shows that, MOBILEINSIGHT works well on both high-end and
low-end phones using different cellular chipsets and OSes. It logs
cellular events and executes analysis with acceptable overhead. It
can accurately infer protocol state-machines and operation logics
and process 99% of cellular signaling messages in less than 0.8 ms
in most cases. The tool itself consumes 1–7% CPU usage, 30MB
memory and 3–4% extra energy at maximum. The code and appli-
cation, as well as the traces we collect through MOBILEINSIGHT,
are available to the research community1.

This work has three main contributions.
1. We present MOBILEINSIGHT, an in-device software tool to

monitor, analyze and exploit runtime cellular protocol infor-
mation on COTS smartphones;

2. We devise side-channel techniques to collect signaling mes-
sages for 3G/4G protocols, and design inference techniques
to analyze protocol state dynamics and operation logic;

3. We conduct extensive tests to assess its effectiveness, and
build three showcase examples to demonstrate its potential
of wide applicability.

2 Cellular Network Primer
Figure 1 (left) illustrates a simplified cellular network architecture.
The mobile device (i.e., smartphone) connects to the Internet or
telephony network through the base stations and the cellular core
network. Both control-plane and data-plane (i.e., user plane) op-
erations are needed to receive data/voice services. The data plane
delivers user content (data/voice), whereas the control plane ex-
changes signaling messages to facilitate content delivery.
Cellular network protocol stack. Figure 1 (middle) shows the
cellular protocol stack at the device, which has three parts. The first
is to enable radio access between the device and the base station.

Category Description
Network status get current radio state, signal strength, time changed
Network setting barring, forwarding, selection ...
Call/SMS/Data call status&handling (e.g., dial, answer, mute), SMS, ...
Miscellaneous power, reset, vendor-defined support

Table 2: Solicited commands supported by RIL (Android) [22].

Physical (L1) and link (L2) functionalities, including PHY, MAC,
RLC (Radio Link Control) and PDCP (Packet Data Convergence
Protocol), are implemented. The second part is the control-plane
protocols, which are split into access stratum (AS) and non-access
stratum (NAS). The AS protocols regulate radio access through Ra-
dio Resource Control (RRC). RRC is mainly for radio resource al-
location and radio connection management; it also helps to transfer
signaling messages over the air. NAS is responsible for conveying
non-radio signaling messages between the device and the core net-
work. Two protocols of mobility management (MM) and session
management (SM) also belong to the control plane. MM offers
location updates and mobility support for call/data sessions, while
SM is to create and mandate voice calls and data sessions. The last
piece is the data-plane protocols above IP, which are not cellular
specific but use the standard TCP/IP suite.

Table 1 lists the protocols studied in this work. Multiple vari-
ants exist for a common function (like RRC and NAS) in 3G and
4G. 3G also has variants for its circuit-switched (CS) and packet-
switched (PS) domains for voice and data, respectively. L1/L2 pro-
tocols and control-plane protocols are generally cellular specific.
Limited in-device access through APIs. In commodity phones,
the OS and mobile apps have limited access to low-level, cellular-
specific information at runtime. As shown in Figure 1 (right),
cellular-specific protocols (say, control-plane and L1/L2 protocols)
are implemented within the chipset (e.g., Qualcomm Snapdragon
and Samsung Exynos). As a result, cellular-specific information
is mostly inaccessible to the software (for both kernel-space and
user-space) in usual scenarios. The OS gets access to basic cellu-
lar functions and states (e.g., registration, dialing a voice call and
enabling/disabling data) through the de facto radio interface layer
(RIL) library which interacts with the cellular interface exposed
by the chipset. The RIL implementation is vendor-specific, and
relies on the standardized AT commands [19]. For ease of app de-
velopment and permission control, the OS further encapsulates a
subset of RIL library to APIs, e.g., TelephonyManager class
for Android [6, 7]. Some system services on specific phone mod-
els (e.g., FieldTestMode in Nexus 5 [20] and iPhone [21]) may di-
rectly access some, but not all cellular information from the RIL
interface. Table 2 offers a sample of RIL commands [22], which
exposes coarse-grained information (call/data/cell level) only.

Debugging tools, such as QXDM [2], XCAL [3], MTK
Catcher [4], xgoldmon [23], can collect cellular network messages
and offer fine-grained information. However, they all work with
PCs, and do not offer in-device collection or protocol analytics (see
§9 for more discussions).

3 MOBILEINSIGHT Overview
MOBILEINSIGHT offers a pure software-based solution for in-
device collection and analytics of cellular protocol information.
It runs as a user-space service. It infers protocol operations and
key configurations by exploiting messages exchanged between the
device and the network at the hardware chipset. It supports fine-
grained, per-message information retrieval and analysis from a set
of cellular-specific protocols on the control plane and at lower lay-
ers. It not only unveils what is going on with cellular-specific op-

C
hi

ps
et

App#1

MobileInsight

User spaceOS

APIs App#2

App#n
...

Monitor

Parser Analyzer

Analyzers

Figure 2: MOBILEINSIGHT architecture.

erations, but also sheds light on why and how. Specifically, MO-
BILEINSIGHT seeks to achieve three concrete goals.
• In-device deployability. It should be readily deployable in
COTS phones without extra hardware or changes on the existing
infrastructure or the device OS.
• Protocol analytics. In addition to archiving protocol messages,
MOBILEINSIGHT should supplement analytics for standardized
cellular protocols, including their state dynamics and operation
logics. Ideally, the analysis is done at runtime, so that it can be
used for various usages such as performance improvement and
failure diagnosis.
• Fine granularity and wide coverage. It should provide fine-
grained information to runtime protocol operations. Moreover,
it should support protocols across layers and on both control and
data planes.

Figure 2 illustrates the architecture of MOBILEINSIGHT, which
has two main components.

(i) Monitor (§4). It first exposes raw cellular logs from the cel-
lular interface to the device user-space at runtime, and then parses
them into protocol messages and extracts their carried information
elements. It builds an extensible modular framework, where each
parser works on a per-protocol basis. The parsed messages are then
fed to the analyzer.

(ii) Analyzer (§5). Given the extracted messages, the analyzer
aims to unveil protocol dynamics and operation logics. Based on
the observed messages and the anticipated behavior model (from
cellular domain knowledge), the analyzer infers protocol states,
triggering conditions for state transitions, and protocol’s taken ac-
tions. Moreover, it infers certain protocol operation logics (say,
handoff) that uses the operator-defined policies and configurations.
It offers built-in abstraction per protocol and allows for mobile OS-
/app developers to customize their analyzers.

4 In-Device Runtime Monitor
To enable in-device runtime monitoring, we need to address three
issues: (1) How to expose raw cellular information from the hard-
ware to the software (§4.1)? (2) How to decode the information into
valid messages, given rich types and inter-dependency of protocol
messages (§4.2)? (3) How to meet the requirement for low latency
and reduce the system overhead (§4.3)? We next elaborate on each.

4.1 Exposing Raw Logs from Side Channel
The first issue is that ordinary in-device schemes cannot expose
message-level cellular information to the user space (see §2). We
thus leverage an alternative side channel between the chipset and
the software. We find that the chipset supports an external diag-
nostic mode, which exposes the cellular interface to the USB port.
In fact, this diagnostic mode exists for major cellular chipsets (in-
cluding Qualcomm, MediaTek and Intel series) and mobile OSes
(including Android and iOS). However, no public documents are
available for this mode. We have to learn its details from the open-
source code of diagnostic drivers (summarized in Table 3).

Mobile OS Chipset Virtual device Driver code
Android Qualcomm /dev/diag [25]
Android MediaTek /dev/ccci_md_log_ctrl [26]
Android Intel XMM /dev/mdmTrace [23]

iOS Apple A6 /dev/tty.debug [27]

Table 3: Summary of virtual devices for external diagnostic mode.

Figure 3a illustrates the USB-based diagnostic mode on Android
for Qualcomm chipsets. The cellular interface maps itself to a vir-
tual device (e.g., /dev/diag) in the OS. Different from RIL, this
virtual device exposes all raw cellular messages as binary streams.
When the USB is connected to the external collector (e.g., a PC),
the OS uses USB tethering [24] to bind the virtual device with
a USB port (e.g., /dev/ttyUSB). The external collector thus
fetches the cellular messages from the hardware interface. This is
how the debuggers (Qualcomm QXDM [2], MediaTek Catcher [4],
Intel xgoldmon [23], XCAL [3]) collect logs from USB. Similar
virtual devices also exist on other chipsets and mobile OSes (sum-
marized in Table 3), with slightly different implementations2.

MOBILEINSIGHT emulates an external logger at the mobile de-
vice to collect raw cellular logs. We issue commands directly to
the virtual device (e.g., via ioctl or AT command AT+TRACE,
depending on the chipset and mobile OS types). These commands
include activation/deactivation of cellular message types, and call-
back registrations to receive hex logs. We then pull the hex log
streams from the virtual device, and pass them to the in-device mes-
sage parser. This ensures that, for each cellular message accessible
to external debuggers, it is also available from MOBILEINSIGHT.

4.2 Parsing Cellular Network Messages
Given the raw cellular logs, we next parse each message. The is-
sue is to decode a variety of message types (see Table 4) in their
rich formats. Figure 3 exemplifies the structure of the 4G RRC
message from the side channel. It carries a metadata header and
the payload, plus configurable and message-specific information
elements. The metadata headers’ formats are specific to cellular
chipsets. We infer them based on the raw binary logs from the diag-
nostic virtual device, and the publicly available open-source driver
code [23, 25–27]. The message-specific information elements are
standardized in the 3GPP standards [9–12, 16, 17, 17, 18, 28].

MOBILEINSIGHT parses such rich messages in two steps, as
shown in Figure 3a. During the first step, a metadata parser is
applied to the raw hex logs to extract the message type ID and
release version. It then selects the corresponding message parser
with a switch branch over the (type-ID, release) tuple. To develop
message parser for each signaling message, we extract the message
formats from the standards of each protocol. Some formats can be
automatically extracted. For instance, the 3G/4G RRC standards
provide abstract message notations under ASN.1 [29], which can
be readily compiled into message decoders. For other messages,
we manually convert them to machine-readable formats.

Handling protocol dependency. Certain messages are inter-
dependent even at the parsing level. L1/L2 protocols (PDCP/RL-
2It is possible that some phone models do not have the virtual
device. For example, we find several LG Nexus 5 and Motorola
Nexus 6 models delete it on startup. In this case, neither external
debuggers (e.g., QXDM) nor MOBILEINSIGHT can extract runtime
cellular function. MOBILEINSIGHT can detect the inaccessibility
of the side-channel, and stop any tasks if it is inaccessible. In re-
ality, we observe that for each phone model, the sidechannel ac-
cessibility is highly stable: it either always exists (for most phone
models), or is removed by some phone vendors permanently.

Android
OS kernel

/dev/diag

Metadata
Parser

Proxy

Protocol analysis

MobileInsight
Monitor

RRC

Message Parser

Protocol
configRRC

EMMEMM

Message Pg
ESM

MACMAC

RLCRLC

PDCP

MAC
PHY

1. Raw hex logs

2. Metadata + Payload

0. On-demand
log config

3. Cellular message

Cellular Interface

External
logger

/dev/ttyUSB

(a) Monitor information flow

Reserved
0 16

Msg len
31

Msg len (dup) Msg type
Timestamp (from hardware)

Pkt
ver.

RRC
release

Serving cell identifier

Message payload

General

Msg Type
specific

8 24

Reserved Radio
bearer

Metadata header

1000 9300 9300 c0b0 0000 8c8a
f211 ce00 070a 7101 8200 9416
7206 0600 0000 0076 0022 …

Raw hex log

Cellular message payload (parsed)

<packet>
<field name=“4G-RRC-ConnectionReconfiguration">

<field name="measConfig">
<field name="measObjectToAddModList">

<field name="Freq" value="4360”/>
<field name=“measID” value=“1”/>
…

</field>
<field name="reportConfigToRemoveList" >

…
</field>

…
</field>

</packet>

Info
element

Info
element

(b) An example of cellular message format (4G RRC)
Figure 3: MOBILEINSIGHT’s in-device runtime monitor.

Protocol Message Types # Msg # Element
4G-PHY PDSCH signal; Cell Measurement 2a N/Ab

4G-MAC Uplink/downlink transport blocks; MAC con-
fig; Buffer status report

5a 54

4G-RLC Control/data packet data unit 2a N/Ab

4G-PDCP Control packet data unit 1a N/Ab

4G-RRC System info blocks; Connection
setup/release/re-establish/reconfig; Han-
dover command; Measurement control/report;
Radio capability equerry; Paging; Security
model command

45 185

3G-RRC Same as 4G-RRC 32 108
3G-
MM/GMM

Attach/detach; Authentication request/re-
sponse; Location update; Security mode
control; Identification request/response;
Service request; Paging

41 63

4G-EMM Same as 3G-MM/GMM 32 108
3G-CM/SM Session (EPS bearer/PDP context) setup/modi-

fy/release; PDN connect/release/modify
58 54

4G-ESM Same as 3G-CM/SM 22 71
CDMA/EvDo Paging information; connectivity establishmen-

t/release; radio link protocol status
5a N/Ab

Table 4: Cellular messages in current MOBILEINSIGHT monitor.

aNot all the message types supported.
bNo information elements are defined.

C/MAC/PHY) may need control parameters from RRC for correct
parsing. For example, the PDCP packet headers might be com-
pressed with RoHC [30], whose parameters are carried in the RRC
Reconfiguration message. Without these RoHC parameters,
these packets cannot be decompressed or decoded. We thus im-
plement a protocol configuration repository. Upon receiving RRC
reconfiguration, MOBILEINSIGHT extracts related informa-
tion elements for PDCP/RLC/MAC/PHY, such as the compression
parameters (for PDCP), acknowledgement mode configuration (for
RLC), DRX timers (for MAC), modulation support (for PHY), etc.
They are used to parse upcoming messages accordingly.

4.3 Optimization
We apply several optimizations to reduce message collection/pro-
cessing latency and system overhead. First, MOBILEINSIGHT uses
on-demand collection to only archive those logs required by the
device-specified analyzers. It asks each protocol analyzer to de-
clare its needed cellular messages (§5), and dynamically configures
the cellular interface to record only those messages of interests. In
§7.3, we will show that it can help reduce the storage overhead
by up to two orders of magnitude. Second, it invokes on-demand
parsing to only decode those necessary fields. For example, the an-

alyzer may only want to learn the connectivity state in RRC. It thus
parses the metadata only, and then passes the message to the ana-
lyzer with an annotation of the message parsers needed. Then the
analyzer can parse it on demand by calling the decode(), which
reads the annotation and calls the correct message parser. Last, we
parallelize log collection and parsing. The trace collection proxy
and the parser are two separate daemons, and the proxy passes the
raw logs via an in-memory queue. This prevents that the analysis
is blocked by log collection.

Table 4 summarizes the supported messages by the time of sub-
mission. For raw log collection, it supports the same types of mes-
sages as the state-of-art external debuggers. For message parsing,
it currently supports 240 message types, encapsulated in 68 type-
specific metadata headers and 3GPP releases 7-12. It decodes all
signaling messages on radio resource control, mobility manage-
ment and session management for 3G and 4G. It partially supports
4G PHY, MAC, RLC, and PDCP messages, mainly those convey-
ing control information. It also supports CDMA/EvDO messages
partially, including the paging and radio link protocols. We have
realized full support for Qualcomm Snapdragon processors, and
validated the feasibility on MediaTek/Intel chipsets and iOS.

5 Cellular Protocol Analytics
With the cellular messages, MOBILEINSIGHT further builds run-
time analytics for protocol behaviors. Table 5 summarizes the pro-
tocol analytics we have developed. For each protocol, we uncover
two dimensions of its behaviors:
• Protocol state dynamics (§5.1): They include the protocol
states, and the state transition events. They are controlled by the
standardized protocol state machines and runtime observation of
protocol messages and configurations.
• Protocol operation logic (§5.2): It decides what parameters
to use and which messages to send/receive. For network-centric
3G/4G design, it is the algorithm or policy used by the network
operator to determine the parameters/messages used by protocols.

5.1 Extraction of Protocol State Dynamics
The cellular protocol states at the device are regulated by the state
machine in 3G/4G networks. The runtime protocol state dynamics
provide direct hints about performance (e.g. high/low-rate connec-
tivity state in RRC) and functional correctness (e.g., failure states

Analyzers Description
LteRrcAnalyzer 4G RRC protocol analyzer that uncovers connection

state, configuration dynamics and base station’s hand-
off decision logic.

LteNasAnalyzer 4G EMM/ESM protocol analyzer that uncovers the mo-
bility management state dynamics

LtePhyAnalyzer 4G physical layer analyzer that reveals the runtime ra-
dio resource allocation and link capacity

WcdmaRrcAnalyzer 3G RRC protocol analyzer that uncovers connection
state, configuration dynamics and base station’s hand-
off decision logic.

UmtsNasAnalyzer 3G GMM/SM protocol analyzer that uncovers the mo-
bility management state dynamics

Table 5: Built-in protocol analyzers.

in mobility management or session management). For each signal-
ing protocol (3G/4G RRC, MM and SM), MOBILEINSIGHT seeks
to capture its runtime state dynamics, including the current state,
the state transitions and the conditions for transitions.

We take a two-phase approach (see Figure 4 for an example). We
first derive a reference state-machine model for each protocol based
on the 3GPP standards [9–12]. This model abstracts the device-side
states and transition conditions as a function of cellular messages.
We then feed runtime cellular messages from our in-device monitor
(§4) to this model. This provides the exact protocol states and state-
related configurations. From those cellular messages, we derive the
transition parameters and track the state transitions by following
the reference state machine. Since both the standardized state ma-
chines and runtime messages are known in MOBILEINSIGHT, the
ground truth on the runtime protocol states can be obtained.

Reference state machine. We focus on the protocol state ma-
chine at the device. For each protocol (RRC/MM/SM), the stan-
dard specifies the protocol states and substates, and the transition
conditions. In RRC, the state represents the radio connectivity be-
tween the device and the base station. For MM, the state denotes
the device’s registration status to the core network. For SM, the
state represents the data session activity and QoS configurations.
Figure 4 exemplifies the 4G-RRC state machine defined in [12].
We extract both the main states (say, RRC_IDLE and RRC_CONN)
and the substates at each state (e.g., Continuous-RX and
Short/Long-DRX in RRC_CONN). Each state transition is mod-
eled as a boolean function of cellular messages: true if the tran-
sition condition is met upon receiving this cellular message. The
transition can be directly triggered upon receiving certain mes-
sages, and/or controlled by parameters inside the message (say,
timers). It can also be activated upon receiving multiple messages
(e.g., five rejection messages from MM lead to the “out-of-service”
state [10]). Note that such a reference model itself does not pro-
vide runtime state dynamics or concrete parameter settings for the
state transition. Instead, it serves as a template to track cellular
messages and states at runtime. Table 6 summarizes the sizes of
the device-side state machines for each protocol, which are inde-
pendent of network carriers and phone models. It can be seen that
all protocols’ state machines are of modest sizes, thus able to be
tracked efficiently at end device.

Runtime message-driven state tracking. Given the reference
model, MOBILEINSIGHT next tracks state transitions based on in-
coming cellular messages from the in-device monitor (§4). It first
reads the reference state machine, and determines the cellular mes-
sages to be monitored. Each observed message is passed to all those
state-transition functions originated from the current protocol state.
If any transition function is satisfied, MOBILEINSIGHT updates the
current state. Figure 4 shows how this works for the 4G-RRC
connectivity dynamics. Between idle and connected states, re-

RRC Connection Setup Accept

RRC Connection Setup Request

RRC Connection Reconfiguration
Parameters: T1=100ms,

TshortDRX=20ms
T2=2 TshortDRX

RRC_IDLE

CRX

Short-DRX
Timer start: T2

CRX
Timer start: T1

Timeout

Downlink data
CRX

Stop timer

……

RRC_IDLE

Conn
Setup

CRX

Short-DRX

T1

T2

Data

RRC_CONN

Data

Conn
Release

Reference
state machine

Runtime
message-driven tracking

State
dynamics

Long-DRX

t

Figure 4: Example for 4G-RRC protocol state dynamics with reference
state machine and runtime signals.

Protocol #State #State transition Standard

Session management
CM 19 44 [9]
SM 7 21 [9]

ESM 4 12 [10]

Mobility management
MM 30 50 [9]

GMM 18 22 [9]
EMM 21 25 [10]

Radio resource control 3G-RRC 5 13 [11]
4G-RRC 4 6 [12]

Table 6: Size of device-side 3G/4G protocol state machines.

ceiving the RRC Connection Setup/Release message immediately
triggers the transition. The transitions between substates within
RRC_CONN rely on timer configurations. In this case, the transi-
tion functions between substates extract timers from the runtime
RRC Connection Reconfiguration message, and use internal timers
to track the potential transitions. In the example, CRX switches to
Short-DRX upon T1 timeout, and moves back to CRX but not
Long-DRX since timer T2 stops. T2 is configured one or multiple
short DRX cycle (here, 2 × 20 ms = 40ms).
Other protocols. We also apply similar techniques to track the
states in 3G/4G MM and SM protocols (Table 6).

• Mobility management: These protocols control the device’s
registration status to the core network, and manage the tracking/lo-
cation/routing area for the device. We track the device’s registration
status based on messages of attach/detach and location/routing/-
tracking area update. In each (de)registration status, the device’s
configurations (e.g., security mode, voice usage preference, net-
work features) are also recorded. Such information can be used for
failure diagnosis and security loophole detection (see §8).

• Session management: These protocols, including 4G ESM,
3G CM/SM, control the device’s data/voice session activities. Each
data session has its own QoS profile (e.g., traffic/delay class, maxi-
mum bitrate) and data billing policy. In MOBILEINSIGHT, we track
the data session activity based on the session setup/modify/release
messages. We extract the QoS profile and the billing policy (in the
form of traffic flow template) from these messages, and use them as
hints for data performance and network failure diagnosis (see §8).
Correctness. MOBILEINSIGHT provides protocol state dynam-
ics identical to those constructed by using messages from external
debuggers (e.g. QXDM and MTK Catcher). This is for two fac-
tors: (1) The protocol state machines are standardized, while the
standards dictate the protocols to follow the runtime parameters;
(2) MOBILEINSIGHT has access to the same cellular information
as those tools. In the RRC protocol context, MOBILEINSIGHT di-
rectly extracts and predicts RRC states with explicit information. It
is thus better than the implicit learning scheme (e.g., through power
measurement [31–33]). Similarly, MOBILEINSIGHT directly ana-

lyzes 4G EMM and ESM protocols, and their 3G variants as well.
Note that, however, the ultimate correctness of our protocol state
tracking at the device depends on two premises: (1) the device
chipset implementation follows the 3GPP standards; (2) the cel-
lular information from the diagnostic mode is accurate. We do not
have any evidence to show that neither premise is invalid now.

Limitations. While MOBILEINSIGHT can accurately re-
construct the device-side protocol state dynamics, it does not have
direct access to the network-side protocol state counterparts (which
can be different from client-side protocol state dynamics). Indeed,
the network-side protocol state dynamics could be inferred based
on the device-side protocol’s state, which has been regulated by the
3GPP standards. We leave this inference to the future work.

5.2 Inference of Protocol Operation Logic
MOBILEINSIGHT can also infer certain protocol operation logic
from the network. The logic is the algorithm or policy by the oper-
ator to determine what configurations the protocol should use and
what messages to send/receive. By analyzing operation logic, the
device can forecast possible performance degradation (e.g., hand-
off to a low-speed cell) and functional incorrectness (e.g., network
failures). We next present our initial effort on inferring the network-
side protocol logic using the case study on handoff.

Handoff switches the device’s serving cell from one to another. It
is critical to end devices, since the target cell to be chosen may have
varying performance. In 3G/4G, when the device is at RRC_CONN
state, the handoff decision is made by the base station and assisted
by the device. Figure 5 (top) depicts a typical handoff procedure
and its signaling between the device and the network. The phone
is initially served by BS1. The serving cell (BS1) asks the phone
to measure and report the radio quality of neighboring cells. Upon
receiving the measurement report from the phone, BS1 runs its de-
cision logic to determine whether handoff should be triggered. It
may reconfigure the device for further measurements (right), or is-
sue the device handoff command (left).

We need to address two challenges when inferring network-side
handoff logic. First, the connected-state handoff decision logic can
be operator specific. The 3GPP standards leave the freedom for
operators to customize their decision logic. Second, the device does
not have full access to all network-side operations. It has to rely on
its observations and interactions with the network to learn the logic.

Fortunately, the operation logic is not arbitrary in reality. It typ-
ically follows well-justified common practices [34–40]. Opera-
tors tend to apply the stable logic to each cell. It remains stable,
and thus predictable in operational 3G/4G networks. Moreover,
we observe that many network-side protocol operations be inter-
active and stateful. The logic is customizable, but regulated by
standardized mechanisms at the protocol level. The network often
relies on device feedback to operate its protocols (e.g., measure-
ment report for handoff). Consider the example of Figure 5. To
make a proper handoff decision, the serving cell needs to know the
device-perceived signal strength of nearby candidate cells. It thus
configures the device to perform measurements and report the sig-
nal strength (via the Meas Control command). This interaction
may take multiple rounds, because the base station may request the
device to measure more candidates based on prior measurements.
According to 3GPP standards [11,12], both the handoff commands
and measurement report criteria are of limited options. Although
the device has no direct access to network-side operations, it may
infer them by pairing control commands and feedbacks.

Consequently, we model network operations as a finite-state ma-
chine and devise an online inference algorithm. Our approach

Sample
Collection

Aggregation

Partial
Recovery

BS2 (4G)

BS1 (4G)

BS3 (3G)

meas control: monitor 4G

handoff command: to BS2

meas report:RSS2 > RSS1 + 3

handoff to 4G

monitor 4G monitor 3G & 4Gmonitor 4G

handoff to 3G

meas control: monitor 4G

meas control: monitor 3G & 4G

meas report:

meas report:

handoff command: to BS3

handoff to 4G

monitor 4G monitor 3G & 4G

handoff to 3G

RSSs(4G) < −110,

BS 1’s internal handoff decision logic:
 • Switch to BS 2 (4G) if
 • Otherwise, switch to BS 3 (3G) if
 and

RSS1(4G) < −110 dBm
RSS3(3G) > −90 dBm

RSS2(4G) > RSS1(4G) + 3 dBm

RSSn(3G) > −90

RSS1 < −110

RSSs(4G) < −110

Sample 1 Sample 2

Sample 3

RSS2 > RSS1 + 3

RSS1 < −110

RSS1 < −110,RSS3 > −90

BS1 BS1

RSSn(4G) > RSSs(4G) + 3

RSS1 < −110,
RSS3 > −90

Figure 5: An example of 4G cell handoff decision logic (top), and how
it is inferred by device at runtime (bottom).

adapts QSM, a state merging algorithm [41, 42] in AI with lever-
aging domain-specific knowledge on cellular networks to improve
inference accuracy.

Modeling handoff decision logic. We model the handoff logic
as a domain-specific finite-state machine. Our model takes into ac-
count the standardized mechanisms, including measurement con-
trol, measurement report and handoff procedure. Each state denotes
the device’s control state configured by the network (e.g., Meas
Control and Handoff Command). Two states are equivalent
if their control parameters are identical. For Meas Control,
this means identical measurement report criteria (e.g., A3 defined
in [11, 12]). For Handoff Command, we assume that they are
equivalent if the target cells are identical. The state equivalence is
essential for the state merging process. The state transition happens
when a new control command (Meas Control or Handoff
Command) is received by the device. It is invoked upon receiv-
ing the device’s Meas Report message in response to the cur-
rent control state. Following QSM, the state transition is modeled
as a prefix of Meas Report sequence. Any sequence matching
this prefix would trigger the state transition. This model is valid
for handoff, because the base station may make handoff decisions
before receiving all reports from the device.

Online inference. We use an online algorithm to infer the hand-
off decision logic. For each serving cell, it collects runtime hand-
off events and associated measurement controls/reports as samples,
and iteratively updates its inferred state machine by aggregating
a new state with the existing one. Each iteration has three steps:
sample collection, partial recovery, and aggregation.

(a) Sample collection. We collect the training samples at runtime
without active probing of the cellular network. We define a sam-
ple sequence as the tuple of an old control command (e.g., Meas
control), a new control command (e.g., Meas control or
Handoff command) and the Meas Report sequence in be-
tween. To collect a sample sequence, we track all corresponding
messages in the background (via in-device monitor) until the next
control command arrives. In the example, three samples are col-
lected in two cases where the device hands over from 4G BS1 to
4G BS2 (left) and 3G BS3 (right).

(b) Partial recovery. From each sample sequence, we gen-
erate a state transition by converting the old/new control com-
mand into from/to the control state, with the feedback se-

207

Algorithm 1 G = Aggregation(G, Ξ)
Input: G =FSM of handoff logic, Ξ = {e} with all transitions in (b);
for e(vs

r−→ vd) ∈ Ξ do
if vs ∈ G AND vd ∈ G then

Find e′ ∈ G satisfying vs
r′−→ vd and update r′ = r′ ∪ r;

else if vs /∈ G AND vd /∈ G then
Ge = {e}, G = G ∪Ge; //e is the only edge in an isolated Ge

else // vs or vd ∈ G, assume vs ∈ G for simplicity
G = G ∪ e by adding vd and the edge e into G

end if
end for
Return G

quence being the transition condition (the sequence itself is
also a prefix). Use sample sequence 1 as an example: Meas

Control
MeasReport1,...−−−−−−−−−→Handoff Command. We thus de-

rive a transition between the state “monitor other 4G neighbor
cells”→“handoff to another 4G cell” (here, BS2) when the mea-
surement report indicates RSS2 > RSS1 + 3 (event A3 in [12]).
Similarly, we derive the transition of extending the measurement
from 4G to 4G and 3G, and the transition to a 4G→ 3G handoff.

(c) Aggregation. When a new partial transition is created, the
aggregation step merges it to the existing state machine. It works
in three steps. First, it performs symbolic mapping to generalize
the rule. This is feasible because the 3GPP standards define the
measurement control/report parameters in an abstract form [12].
For example, we translate RSS2 > RSS1 + 3 into a general rule
RSSn(4G) > RSSs(4G) + 3 by mapping cells 1 and 2 into their
roles in 4G: the serving cell and the neighboring candidate. Second,
it locates where to merge. For each edge from the partial transition
sample, we search if it exists in the current state machine. We use
a directed acyclic graph G to represent the state machine. Finally,
we merge the new rule into the existing graph by running the union
operation over the graph.

Algorithm 1 shows the pseudo-code for aggregation. There are
three cases: both source and destination states (nodes) exist in the
graph, only one node exists, and no nodes exist. If no nodes are not
found, it is treated as a new edge and added to the existing state ma-
chine as an isolated graph. When only one node exists, we create a
new edge from the existing graph (by adding the non-existing node)
and initialize its transition condition as the measurement sequence
from the sample. When both nodes exist, the transition condition
(prefixes) should be merged. We search for the longest common
prefix in the existing transition and merge it with this new prefix.
In theory, the old and new conditions for the same transition might
differ or even conflict with each other (e.g., RSS > −110 and
RSS < −110). However, it would not occur in practice because
the rules used by the same serving cell are consistent.

Ideally, the above algorithm should be performed over every
serving cell. In practice, however, per-cell inference suffers from
insufficient training samples; otherwise, the user has to wander
around to collect unique samples within one cell coverage. More-
over, it requires more storage for per-cell logic. To tackle this
issue, we observe that operators tend to apply the same logic to
each cell type (e.g., under the same frequency), with minor tun-
ing on parameters (e.g., thresholds). It is thus feasible to aggre-
gate samples from cells of the same type, and infer the decision
logic from each frequency. The above aggregation algorithm still
applies. We merge those samples from the serving cells over the
same frequency. Though this may lead to conflicting decision log-
ics between cells of the same type in theory, it is unlikely to happen
in operational 3G/4G network (§7.2). To handle it, we duplicate

the state transitions and create two branches and mark it as an ex-
ception for further checking.

Correctness and limitations. The correctness of the inferred
handoff logic is generally ensured by the good properties of QSM.
[41–44] prove that, the state machine can be fully recovered if suffi-
cient samples can reach all states and differentiate any pair of non-
equivalent states in the logic. This requires the device to receive all
possible types of Meas Control and Handoff Command from suffi-
cient samples. If the device has not collected enough samples that
meet above conditions, the state machine may be incomplete.

A limitation of our approach is that, the inference may not cap-
ture the internal states on the network-side handoff logic that do
not interact with the device. For instance, even when the radio-
related handoff criterion is met, the network may not invoke the
handoff to the target cell for load balancing; such operations may
remain invisible to the device. The inferred one would then be
the device-perceived handoff logic only. The direct access to these
network-side internal states would be possible only if the cellular
infrastructure is open, which however is unlikely to occur in reality.
Our study shows that our inference typically captures network-side
logic in practice (§7.2).

Operation logic for other protocols. Besides handoff, other
cellular protocols may also use their own logic. For example, oper-
ators may customize their QoS allocation policies in SM. PHY may
customize its radio block allocation and rate adaptation algorithms.
We are exploring to adapt our online inference to these contexts.

6 Implementation
MOBILEINSIGHT seeks to provide an open platform to facilitate
researchers and developers to learn the protocol operations in cel-
lular networks. It thus defines simple APIs for its monitor and
analyzer components. We implement MOBILEINSIGHT on off-
the-shelf smartphones, as a user-space service. We choose the
user-space rather than in-kernel solution for ease of deployabil-
ity. It consists of 29,698 lines of code (12,254 lines of C/C++ and
17,444 lines of Python), excluding the 3rd-party libraries. Our cur-
rent implementation is mainly on Android phones with Qualcomm
chipsets, but porting to other platforms is ongoing.

MOBILEINSIGHT API. We first illustrate how to use the API
via an example (more detailed usage can be found in [45]), which
seeks to analyze the protocol state dynamics of 3G and 4G RRC.

Initialize a in-device monitor
src = Monitor()
#Declare 3G/4G RRC analyzers
lte_rrc_analyzer = LteRrcAnalyzer() #4G RRC
wdcma_rrc_analyzer = WcdmaRrcAnalyzer() #3G RRC
#Bind the analyzers to the monitor
lte_rrc_analyzer.set_source(src)
wcdma_rrc_analyzer.set_source(src)
#Start processing
src.run()

Both monitor and analyzer functions in MOBILEINSIGHT are
encapsulated into classes, for instance, Monitor class and
LteRrcAnalyzer class. MOBILEINSIGHT abstracts the in-
ference per protocol into a module called analyzer. To call a
chosen function, an atop app/service has to initiate an instance
of its corresponding class. For example, src = Monitor()
creates a Monitor instance. Second, the target app/service
declares the needed analyzers, and binds them to the monitor
via set_source(src) method. This lets an analyzer regis-
ter a callback function upon certain cellular events from moni-

208

tor. Finally, we start MOBILEINSIGHT by running the monitor via
src.run(), which logs the events and drives the analysis.
In-device monitor (§4). We implement the monitor using two
daemons: a proxy daemon to extract raw hex logs from the cellu-
lar interface (chipset), and a parser daemon to decode messages.
This allows for pipeline parallelism, thus reducing processing la-
tency. The proxy daemon retrieves raw logs by leveraging An-
droid’s open-source driver for the cellular virtual interface [25].
Specifically, we first open the virtual device /dev/diag, and en-
able the logging mode by sending a command (defined in [25])
via ioctl function. We then register a callback function linked
to the virtual device to be notified whenever raw binaries are gen-
erated. The parser daemon implements the decoding of cellular
messages in Table 4. We also implement optimization techniques
in §4.3, including on-demand collection, on-demand decoding and
in-memory processing. To further speed up processing, both dae-
mons are implemented in C/C++ and compiled with Android NDK.
Built-in Analyzers (§5). We implement each built-in analyzer
as a Python module3. We port the Python-based analyzer frame-
work via python-for-android [46] which allows to compile
the Python code into Android apk. The analyzer framework in-
tegrates all analyzers into a directed acyclic graph. Each node is
an analyzer, and a directed edge v→w denoting the dependency of
w on v. Each analyzer is initiated at most once. It is shared by
multiple callers when needed.
Miscellaneous issues. We discuss two related issues.

◦ Message coverage. The current version has not covered all
cellular messages to date. We only focus on those most useful
ones (control-plane and L1/L2 ones carrying control information).
In principle, the same method is applicable to support all mes-
sages. We are extending MOBILEINSIGHT to data-plane protocols
(below-IP) and their analysis.
◦ Rooted phones. MOBILEINSIGHT currently works with rooted

phones. Studies claim that about 27.4% users have rooted their
phones [47]. Root should not be a big problem at current stage.
MOBILEINSIGHT’s current target is the research community who
does research on cellular networks. In fact, MOBILEINSIGHT only
requires access permission to a specific system folder and the cel-
lular interface. Once it is granted, it does not require other permis-
sions for root privilege. To support more mobile devices, we are
also exploring rootless techniques, such as building MOBILEIN-
SIGHT as a system service, and customizing boot image with mini-
mal modification to grant cellular access privilege to MobileInsight
.

7 Evaluation
We next assess MOBILEINSIGHT to show its (1) in-device sup-
port for diverse phone models, chipsets and operators and wide-
coverage of cellular messages, (2) effectiveness and runtime sup-
port, and (3) tolerable system overhead.

7.1 In-device Support and Wide Coverage
In-device support. We first validate that MOBILEINSIGHT is
readily deployable over various phone models, mobile OSes, and
3We choose Python instead of Java-based Android programming
for two reasons: (1) cross-platform support: MOBILEINSIGHT has
both in-device and desktop versions on Windows/Linux/OS X. Us-
ing Python ensures that the analyzers can run on all platforms with-
out modifications; (2) extensibility: MOBILEINSIGHT aims to sup-
port direct execution of analytics as plugins. Python is more suit-
able for this purpose.

Model CPU RAM Chipset OS
Huawei Nexus 6P Quad-core 2GHz 3GB Snapdragon Android

+ Quad-core 1.55GHz 810 6.0.1
ZTE Nubia Z9 Quad-core 1.5 GHz 4GB 810 5.0.2

Motorola Nexus 6 Quad-core 2.7GHz 3GB 805 5.1.1
Samsung S5 Quad-core 2.5GHz 2GB 801 4.4.2

Sony Xperia Z3 Quad-core 2.5 GHz 3GB 801 4.4.4
Xiaomi Mi 4 Quad-core 2.5 GHz 3GB 801 4.4.3

LG G3 Quad-core 2.5 GHz 2GB 801 4.4.2
Samsung Galaxy Note 3 Quad-core 2.3 GHz 3GB 800 4.3

LG Tribute Quad-core 1.2 GHz 1GB 400 4.4.2
Meizu MX4∗ Quad-core 2.2 GHz 2GB MediaTek MT6595 4.4.4

LG G4 Stylus∗ Octa-core 1.4 GHz 2GB MediaTek MT6592 5.1
Asus Zenfone 2E∗ Dual-core 1.6 GHz 1GB Intel XMM7160 5.0
Apple iPhone 5∗ Dual-core 1.3 GHz 1GB Apple A6 iOS 7

Table 7: MOBILEINSIGHT can run over various phones.

cellular chipsets. We have installed and tested it over 30 phones. It
works over all phones. Table 7 summarizes the phone models, cov-
ering a variety of Qualcomm chipsets and Android OS versions.
We have also validated the feasibility of porting MOBILEINSIGHT
to Intel/Madietek chipsets and Apple chipsets and iOS. Similar cel-
lular messages are collected. We are extending our code to these
phones. MOBILEINSIGHT works well with various operators. We
have run experiments with 8 carriers: four US carriers (AT&T, Ver-
izon, T-Mobile and Sprint), a US virtual operator (Project Fi) and
three Chinese carriers (China Mobile/Telecom/Unicom).

Wide coverage and characteristics of cellular messages. We
validate that MOBILEINSIGHT supports a wide range of signaling
messages and those L1/L2 ones conveying control information. We
conduct both controlled experiments and a small-scale user study
during an 11-month period (July 2015 - Jun 2016). In the con-
trolled experiments, we test MOBILEINSIGHT with representative
usage scenarios: static, walking and driving (local and highway)
under various traffic loads – idle, voice, data with different rates. In
the static test, we use iperf to generate constant UDP traffic. In the
user study, 30 participating phones occasionally collect logs in the
wild over 8 operators, with the total volume being 227.95 GB.

We next characterize their traffic patterns through the controlled
experiments. Figure 6 shows illustrative traces collected by Sam-
sung S5 over T-Mobile; other phones and operators have similar
behaviors. We make three observations. First, the heavier data traf-
fic result in more cellular messages (top two plots for static tests).
The reason is that, more data delivery requires more control sup-
port and triggers more radio link reconfigurations. Second, mo-
bility causes more signaling and dynamics. The third plot shows
a driving test which starts around the 120th second (2nd minute),
turns on mobile data (background) at the 600th second, and adds
ping around the 1200th second. Mobility triggers frequent radio
link reconfigurations at PHY. It also incurs more signaling mes-
sages from RRC and NAS. Peaks are observed for certain control
events (handoff). Third, the lower-layer messages are much heavier
than the higher-layer ones. This is because the device interacts with
the core network much less frequently than with the base station.
We show the message breakdown in the bottom plot ([1200, 1800]
seconds of the 3rd plot) and the CDF in Figure 7a. PHY control
messages are an-order-magnitude higher than MAC, which has an-
other order-of-magnitude higher than RRC and NAS. The control
plane (RRC and NAS) messages yield a bursty pattern. They come
every several seconds, but can reach up to 20-30 messages/s. Note
that MOBILEINSIGHT has not supported a full set of L1/L2 cellular
messages (see Table 4) and the total traffic is underestimated.

Figure 7b shows he statistics from the user-study dataset. We
find that the results are device independent and combine them in
analysis. There are much more 4G messages (91%) than 3G (9%).
This indicates the popularity and wide deployment of 4G. We ob-

209

 0
 500

 1000 10Mbps

 0
 100
 200

 0 20 40 60 80 100 120

1Mbps 100Kbps 10Kbps

 0
 100
 200
 300

 0 300 600 900 1200 1500 1800

5
50

100

200

300

 1200 1320 1440 1560 1680 1800

N
um

be
r

of
 m

es
sa

ge
s

pe
r

se
co

nd

Time (second)

start driving w/ data (background) w/ ping

PHY MAC PDCP RRC NAS

Figure 6: Cellular message traffic patterns in the controlled tests.

 40

 60

 80

 100

 1 10 100 1000

C
D

F
 (

%
)

Number of msgs per second

PHY
MAC

PDCP
RRC
NAS

(a) CDF in a driving test

volume 227.95 GB
msg 67,285,683
4G/3G 4G (91%), 3G (9%)
Release Rel-7, Rel-8, Rel-9 ,

Rel-10, Rel-11, Rel-12
Layers PHY (71.8%),

MAC (9.0%),
PDCP (8.3%),
RRC (10.0%),
NAS (0.6%),

CDMA/EvDo (0.3%)
(b) User-study dataset statistics

Figure 7: Cellular traffic characteristics.

serve control information from various 3GPP releases (from Rel-7
to Rel-12). This implies the hybrid deployment and evolution of
the infrastructure. Moreover, NAS messages are much fewer than
RRC and PHY. This is also because the device interacts with the
core network much less frequently than with the base station. CD-
MA/EvDo messages are also observed in Verizon and Sprint 3G.
They are less observed because of our recent support for them and
thus relatively less logs collected.

7.2 Responsiveness and Effectiveness
Message monitoring rate. We examine how responsive MO-
BILEINSIGHT parses runtime cellular message. We record every
cellular message’s arrival (at monitor) and departure (after being
parsed) timestamps, and calculate the message number every sec-
ond. Ideally to satisfy the realtime requirement, the departure rate
should match with the arrival rate. This corresponds to a line
y = x, with x as the arrival (generation) rate from the hardware
interface, and y as the departure rate from MOBILEINSIGHT’s mon-
itor. In this experiment (and hereafter), we mainly use three phone
models with different capabilities: low-end (LG-Tribute), medium-
end (Samsung S5) and high-end (Nexus 6P) in this test (summa-
rized in Table 7). Figure 8 shows the result using AT&T. The results
are similar for other operators. The results show that MOBILEIN-
SIGHT approximates the ideal line y = x for most phones in most
cases. Only for the low-end one, the processing speed slightly vi-
brates around the line. It implies that the monitoring sometimes
(mainly under heavy load) lags a little bit behinds but is compen-
sated afterwards (see the points below the curve). It does not hurt
the monitoring because two separate processes are used for proxy
and parse daemons (§4.3).

Processing time. We examine how responsive MOBILEIN-
SIGHT parses and analyzes messages. For each message, the pro-
cessing time is defined as the elapsed interval from its arrival to
its completion of all analyses. In this experiment, we run the
in-device logger with all supported signaling messages activated

(Table 4), and all protocol analyzers enabled (Table 5). Figure 9
shows the processing time under light (< 500 msg/s) and heavy
(≥ 500msg/s) loads. MOBILEINSIGHT completes 99% processing
in less than 0.8ms, except the low-end, heavy-load case that it fin-
ishes 90% within 0.8ms. The maximum processing time observed
is 33ms. The low-end one (1.2GHz CPU) performs slightly worse
than the other phones. This validates MOBILEINSIGHT largely
meets the realtime requirement.

Effectiveness in extracting protocol state dynamics. MO-
BILEINSIGHT can correctly track runtime protocol states and key
configurations. For each signaling protocol, we compare the signal-
ing messages from MOBILEINSIGHT and those from QXDM. We
confirm that they are identical, because their data sources are the
same. We use the logs from our user study to retrieve the protocol
state machines. We find that all follow the standard specifications,
and no mismatch is observed. All protocol states summarized in Ta-
ble 6 can be observed under different scenarios. The elapsed time
needed by MOBILEINSIGHT to track the current protocol state is
bounded by the message processing time, which is less than 0.8ms
for 90% messages and 33ms at maximum (Figure 9).

We summarize some key 4G protocol configurations retrieved
from our user study in Table 8. These parameters unveil essen-
tial runtime information for end devices, including RRC connec-
tivity timers (§5.1), ciphering/integrity protection parameters from
mobility management protocol, and QoS profiles from the session
management protocol. We clearly observe diversity among carriers
and even within each carrier. For example, Sprint chooses different
RRC timers from others. In most cases, it does not enable short
DRX (0 means no T2 and a direct jump to long DRX). Its T1 uses
three options (10/100/200 ms); Its short DRX cycle is mainly con-
figured as 80ms (40ms in few samples, 0.3%). We have also seen
diversity in encryption and QoS settings. Note that, China mobile
does not enable encryption, thus exposing itself to attacks (see the
security followup result in §8). EEA (EPS Encryption Algorithm)
and EIA (EPS Integrity Algorithm) are the standardized cipher al-
gorithms for 4G LTE. For QoS, the larger the value, the lower the
QoS. It can be used to troubleshoot performance issues (§8).

Effectiveness in inferring operation logic. We next show that
MOBILEINSIGHT can infer most handoff operation logics defined
by network operators. We first infer handoff policies per cell and
then assemble them per frequency. Figure 10 shows four 4G in-
stances inferred by MOBILEINSIGHT (one for each US carrier). A
frequency band unit is indexed by an EARFCN (E-UTRA Absolute
Radio Frequency Channel Number) [48]. Each carrier has multi-
ple licensed channels for 4G and 3G. For example, channels 5780,
1975, and 825 are three LTE ones used by AT&T, with downlink
center frequencies at 739MHz, 2112.5MHz and 1952.5MHz. Due
to space limit, we do not show the handoff policies inferred for all
channels. They are in a similar form, but parameters and states
may differ. For instance, 3G→4G handoff has distinct rules from
the 4G→3G one. Our inference process validates the hypothesis
that operators do follow well-justified practices [34–36]. All opera-
tors almost use the identical handoff policy per frequency. So each
cell’s state machine over the same channel can be readily aggre-
gated without conflicts; Each observation either coincides or com-
plements another. The aggregated handoff logic merges quickly
within several rounds. It also implies that, the inferred handoff
logic is likely to be correct because it is consistent among the same
type of cells. We also observe that intra-frequency handoff (over
the same frequency) is the most common one with the highest pri-
ority. The handoff logic varies with carriers. Indeed, operators
have freedom to customize their policies. We have also applied the

210

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

D
ep

ar
tu

re
 ra

te
 (p

kt
 /

s)

Arrival rate (pkt / s)

y = x

(a) LG Tribute

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

D
ep

ar
tu

re
 ra

te
 (p

kt
 /

s)

Arrival rate (pkt / s)

y = x

(b) Samsung Galaxy S5

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

D
ep

ar
tu

re
 ra

te
 (p

kt
 /

s)

Arrival rate (pkt / s)

y = x

(c) Huawei Nexus 6P
Figure 8: MOBILEINSIGHT message departure rate as a function of arrival rate from hardware cellular interface.

 0
 5

 10
 15

 0 5000 10000 15000 20000 25000 30000tim
e

(m
s)

Tribute S5 6P

(a) Illustration of 30000 samples with light load: <500 msg/s

 0
 20
 40
 60
 80

 100

 0 0.5 1 1.5 2

C
D

F
(%

)

Proc time (ms)

Tribute
S5
6P

 95

 100

 0 0.5 1

(b) CDF: light traffic

 0
 20
 40
 60
 80

 100

 0 2 4 6 8 10

C
D

F
(%

)

Proc time (ms)

Tribute
S5
6P

 95

 100

 0 5 10 15 20

(c) CDF: heavy traffic
Figure 9: MOBILEINSIGHT’s processing time under light (<500 msg/s)
and heavy (≥500 msg/s) loads.

AT&T T-Mobile Sprint Verizon CMCC

RRC

T1 (ms) 200 (99.9%) 500 (100%) 200 (54.4%) 200 (99.5%) 60 (100%)
100 (0.1%) 100 (31.2%) 10 (0.5%)

10 (14.4%)
TshortDRX (ms) 20 80 0 (85.6%), 80 40 20
T2/TshortDRX 1 1 0 (85.6%), 2 0, 4 2

Conn→ 10 10 4 10 13
idle (s) ±0.9 ±0.6 ±0.5 ±0.8 ±0.5

EMM Encryption EEA2 EEA2 EEA2 EEA2 NULL
Integrity EIA2 EIA2 EIA2 EIA2 EIA2

ESM
QoS class 8 6 9 1 (voice), 5 9
Max dlink 150Mbps 256Mbps 200Mbps 138Mbps (data), 256Mbps

bitrate 80Kbps (voice)

Table 8: 4G protocol state-relevant parameters retrieved in 5 carriers.

same inference to AT&T and T-Mobile 3G, and verified that sim-
ilar per-frequency aggregations are used. One major difference is
that, only intra-frequency handoff is allowed for each 3G frequency
band. This is possibly because that 3G supports soft handoff be-
tween cells under same frequency. So intra-frequency handoff is
more preferred to provide more seamless network service.

Given that carriers do not publicize their operation logics, we
lack the ground truth to directly assess the correctness of our infer-
ence algorithm. We thus devise an indirect approach. The idea is
to predict whether a handoff indeed occurs based on the inferred
handoff logic. If our inferred state machine is entirely identical to
the one used by the operator, we could predict the handoff with-
out errors. The accuracy reflects the completeness and correctness
of prediction. Note that, the inferred one may be incomplete due
to device-based perception only. In a word, the prediction accu-
racy serves as a lower bound of the inference correctness. We run
the 10-fold cross validation [49]. Table 9 shows that MOBILEIN-
SIGHT yields high prediction accuracy (87.5% to 95.3%) for four
US carriers. It is slightly lower for Verizon because of a relatively
smaller dataset. This validates that in practice, MOBILEINSIGHT
is effective in learning the network-side operation logic. There are
only false positive errors (i.e. the handoff does not occur when the
radio measurement meets the trigger conditions). No false nega-
tive errors are observed since the handoff decision indeed considers
radio quality [36]. These results confirm that, our inference is al-
most complete, covering most rules used by operators through the
device-only observations.

AT&T T-Mobile Sprint Verizon
#Samples 11,050 10,178 10,042 2,741
Accuracy 90.7% 91.8% 95.3% 87.5%
Table 9: Accuracy for predicting upcoming handoffs.

Control only Control+data Control+data+PHY
Hex log size (1-hour) 0.36MB 3.89MB 41.40MB

Avg. log growth speed 0.79Kbps 8.64Kbps 92.00Kbps
Avg. log size reduction 115.6x 10.62x N/A

Table 11: Log storage overhead in MOBILEINSIGHT.

7.3 System Overhead
CPU and memory. We assess MOBILEINSIGHT’s CPU and
RAM usage. We enable all the supported messages (Table 4) and
protocol analyzers (Table 5), and record their usage every second
when we export parsed messages and analysis results into a file.
We divide the resource consumption into two parts: by MOBILEIN-
SIGHT service and by other relevant operations (e.g., file I/O). Fig-
ure 11 shows the average CPU and memory usage. Regarding MO-
BILEINSIGHT itself, the CPU consumption for monitor and ana-
lyzer modules is about 1-3% for S5 and 6P, and 6-7% for LG Trib-
ute. For all phone models, the average RAM usage is below 15 MB
(maximum < 30MB).

Energy consumption. We assess the energy cost by measuring
the phone’s power consumption with/without MOBILEINSIGHT,
through a Monsoon power meter [50]. We use only Samsung S5
because their back-covers are easy to remove for power measure-
ment. Due to space limit, we show the results in three typical sce-
narios in Table 10. The results in many other scenarios are similar.
On average, MOBILEINSIGHT consumes 11-58 mW extra power.
The higher the traffic load, the larger the power value. However, its
relative ratio remains within 4%, regardless of traffic variations.

Storage overhead. We last gauge the storage required for MO-
BILEINSIGHT cellular logs. We run MOBILEINSIGHT on Samsung
S5 phone in idle mode for 1-hour, and record the raw log size and
growth speed. We repeat this experiment by enabling different lev-
els of cellular message types. Table 11 shows that, the log growth
and storage consumption depends on the cellular message types
to be collected. When only the control plane messages (3G/4G-
RRC/MM/SM)are enabled, the log growth speed is 0.79Kbps on
average, which is 115.6x slower than the scenario when all mes-
sages are enabled. Note that the data-plane and PHY-layer mes-
sages grow in proportion to the mobile user data volume. With
active user data, the log size would grow even faster. This jus-
tifies our optimization of on-demand log collection (§4.3), which
can help reduce the storage overhead based on app demands.

8 Showcase Applications
We now present three showcase examples to illustrate how MO-
BILEINSIGHT can assist in failure diagnosis, performance improve-

211

handoff to (4G,5780)
(Intra-frequency)

monitor (4G,5780)

monitor (4G,5780), (4G,1975), (4G,825),
(3G,4385), (3G,4360), (3G,562)

handoff to (4G,*)
(Inter-frequency)

handoff to (3G,*)
(Inter-system)

RSRPserv > −116 RSRPserv < −116

RSRPserv + 3

RSRPserv + 3

RSRPserv + 3

RSRP4G,5780 >

RSRP4G,5780 <

RSRP4G,5780 <

RSRPserv < −106
RSRPserv < −118

RSRP4G,∗ > −107
RSRP4G,∗ < −107
RSCP3G,∗ > −105

(a) AT&T, 4G channel 5780

handoff to (4G,2275)
(Intra-frequency)

monitor (4G,2275)

monitor (4G,2275), (3G,637), (3G,662),
(3G,2087), (2G,787-810)

handoff to (3G,*)
(Inter-system)

handoff to (2G,*)
(Inter-system)

EcN03G,∗ > −14
EcN03G,∗ < −14

RSRPserv > −108 RSRPserv < −120

RSRP4G,2275 >
RSRPserv + 4

RSRPserv + 4
RSRP4G,2275 < RSRPserv + 4

RSRP4G,2275 <

RSRPserv < −122
RSRPserv < −124
RSSI2G,∗ > −105

(b) T-Mobile, 4G channel 2275

handoff to (4G,40978)
(Intra-frequency)

monitor (4G,40978), CDMA2000

monitor (4G,40978),
(4G, 41176), (4G, 8665),

CDMA2000

handoff to
(4G,*)

(Inter-freq)

handoff to
CDMA2000

(Inter-system)

RSRP4G,40978 >
RSRPserv + 3± 2

RSRPserv + 3± 2
RSRP4G,40978 <

RSRPserv < −108RSRPserv > −106

RSRPserv < −112
RSRP4G,∗ > −116

CS voice call

(c) Sprint, 4G channel 40978

handoff to (4G,5230)
(Intra-frequency)

monitor (4G,5230)

monitor (4G,5230), (4G,2100)

handoff to (4G,2100)
(Inter-frequency)

(RSRP4G,5230 >

or

RSRQ4G,5230 > −19)

RSRPserv + 3± 3)

(RSRPserv < −118

(RSRQserv < −12

RSRP4G,2100 > −108)

RSRPserv < −116

intra-freq not satisfied

RSRPserv > −100

(d) Verizon, 4G channel 5230
Figure 10: Four instances of device-experienced mobility management policies inferred from MOBILEINSIGHT.

 0

 5

 10

 15

 20

Tribute S5 6P

C
P

U
 (

%
)

MobileInsight
Other

 0

 5

 10

 15

 20

Tribute S5 6P

M
E

M
 (

M
B

)

Figure 11: CPU & memory usage.

idle 10Kbps 10Mbps
off 468 ± 15.0 824 ± 14.2 1792 ± 31.4
on 484 ± 17.1 835 ± 20.1 1850 ± 16.1
Δ 3.4% 1.3% 3.2%

Table 10: Consumed power (avg ±
std) when MOBILEINSIGHT off/on.

Timestamp Protocol Event
17:57:24.814 3G-SM PDP context setup request: QoS class = 1 (voice)
17:57:24.933 3G-SM PDP context setup reject: QoS unsupported
17:57:25.435 3G-SM PDP context setup request: QoS class = 1 (voice)
17:57:24.515 3G-SM PDP context setup reject: QoS unsupported

... 3G-SM ...
Table 12: A network failure due to voice QoS misconfigurations.

ment, and security loophole detection. These examples are not
intended to be complete. Instead, they aim to demonstrate the
feasibility and usefulness of building apps with MOBILEINSIGHT.
Moreover, MOBILEINSIGHT is not restricted to these example sce-
narios; other services/applications that gains from low-level cellu-
lar information may benefit from MOBILEINSIGHT.

Network failure resolution. The first example is NetDiag,
a control-plane diagnosis tool built on top of MOBILEINSIGHT.
In presence of network failures, NetDiag aims to provide end
users reasoning about why they occur. By tracking control-
plane protocol state dynamics and operation logic at runtime,
MOBILEINSIGHT provides direct hints for network failures and
helps to resolve them. NetDiag uses four built-in analyz-
ers (Table 5): LteRrcAnalyzer and WcdmaRrcAnalyzer,
LteNasAnalyzer and UmtsNasAnalyzer. It keeps track of
the runtime protocol states for each protocol (3G/4G RRC, MM
and SM). When an error state (e.g., RRC connection disruption,
MM “out-of-service” state, SM “data session deactivated”) is tra-
versed, it traces back all cellular events that lead to the transition to
this error state from the initial protocol state, and reports the entire
event sequence to the device. By examining the event sequence,
MOBILEINSIGHT provides operation logs on why the error is trig-
gered, and offers suggestions for the device-side fix.

We show how NetDiag helps to identify two real-world failure
cases that have not been reported before. The first one arises from
the device-side QoS misconfiguration of voice over LTE (VoLTE).
Table 12 shows the traceback logs in 3G session management layer
from NetDiag. It is observed on a Samsung S5 phone over T-
Mobile, with the VoLTE capability enabled. The failure occurs
when the phone migrates to 3G and attempts to activate its data
session (i.e., the PDP context). The device keeps on receiving re-
jected session requests from the network, and is stuck at the in-
activity state of the 3G-SM protocol. By tracing the log, we find
that the problem results from the QoS specified by the device in the
request message. It requires the QoS profile optimized for the low-

Timestamp Protocol Event
15:20:34.525 3G-SM PDP context setup request
15:20:35.633 3G-SM PDP context setup accept: dlink peak tput=2Mbps
15:20:35.753 3G-SM PDP context deactivation request: QoS unsupported
15:20:35.754 3G-SM PDP context deactivation accept
15:20:42.123 3G-SM PDP context setup request
15:20:43.278 3G-SM PDP context setup accept: dlink peak tput=2Mbps

... 3G-SM ...
Table 13: A network failure due to unsupported prepaid QoS configu-
ration (maximum downlink peak throughput throttled to 128Kbps).

latency voice service. This request is accepted by T-Mobile 4G,
but is rejected by T-Mobile 3G (probably due to network resource
constraints). This is caused by the phone’s problematic implemen-
tation. To support VoLTE, it improperly uses the low-latency QoS
profile in each request, even using 3G. Given this hint, we have
fixed this problem at the device by disabling the VoLTE feature
when the device is in 3G.

The second observed instance is a prepaid data plan violation
in AT&T. According to AT&T’s contract [51], when the prepaid
user runs out of its high-speed data, (s)he can still retain the low-
speed data connectivity (throttled to 128Kbps). But NetDiag re-
ports that, this policy can be violated if the prepaid user is associ-
ated with a 3G private Femtocell; i.e., (s)he cannot gain low-speed
data connectivity after running out of its high-speed data. Table 13
shows the traceback logs in this scenario. This failure is caused
by the network-side misconfiguration for prepaid user QoS throt-
tling. The phone in 3G Femtocell first attempts to activate its data
session. The network accepts this request, and guarantees to pro-
vide 2Mbps downlink peak throughput. However, this guarantee
exceeds the maximum speed (128Kbps) when running out of high-
speed data. Upon detecting this violation, the core network deac-
tivates the data session immediately. But the next time the device
requests for data session activation, the core network still assigns
unsupported downlink peak throughput to it. The device thus keeps
on receiving deactivation session requests from the network, and is
stuck at the inactivity state of the 3G-SM protocol. With this hint,
the mobile device can report these issues to network operators, and
help them resolve the network failures at fine-granularity.

Security loophole detection. This case leverages MO-
BILEINSIGHT to detect security loopholes over cellular net-
works. We built a security checker with 3G/4G MM analyz-
ers of LteNasAnalyzer and UmtsNasAnalyzer. It aims
to detect if the signaling/data communication between mobile de-
vice and the cellular base stations are encrypted and integrity pro-
tected. To this end, it tracks the authentication and key agreement
(AKA) procedure [10], and the security mode activation in 3G/4G.
Both procedures are carried over the 3G/4G mobility management
(MM/EMM) layer. It checks the authentication status in the reg-
istration process, and the ciphering/integrity protection algorithms
specified in the security mode commands. If the authentication fails
or the ciphering/integrity algorithms are not activated, the user’s

212

Category Examples In-Device COTS Coverage Granularity Analysis Runtime API
Our approach: MOBILEINSIGHT

√ √
Almost full Fine-grained (msg-level)

√ √
(ms-level)

√
OS API [6, 7, 52–54]

√ √
Limited (mainly service states) coarse (aggregated) × √ √

RIL Analyzer [55]
√ √

Limited (depending on AT cmds) coarse
√

(partially)
√ ×

PC-side Debugger [2–4, 23] × (PC)
√

Full fine (msg-level) × √ ×
Radio analytics [5, 56] × (USRP) × Limited (partial PHY) Selected PHY fields

√
(partial PHY)

√
N/A

RRC inference e.g., [31–33, 55]
√ √

Limited Selected (RRC states)
√

(RRC only)
√

(mainly offline) N/A
SnoopSnitch [57]

√ √
Limited (IMSI catcher detection) Selected

√
(Security only)

√ ×
Table 14: Comparison of device-side solutions to retrieve and infer cellular network information.

Timestamp Protocol Event
02:21:24.064 4G-EMM Attach req: support {EEA0,EEA2}
02:21:24.469 4G-EMM Security mode command: use EEA0
02:21:24.470 4G-EMM Security mode complete
02:21:24.519 4G-EMM Attach accept

Table 15: Null signaling encryption loophole in China Mobile.

Timestamp Protocol Event
00:45:13.818 3G-RRC Meas control: monitor 3G and 2G
00:45:14.140 3G-RRC Meas report: 2G ARFCN=401, RSSI=-80dB
17:57:15.130 3G-RRC Handoff command: to 2G ARFCN=401
17:57:15.410 3G-SM Meas report: 3G Freq=4360, RSCP=-90dBm

Table 16: Event log of an FCFS handoff strategy in a AT&T’s 3G cell.

signaling or data may not be well protected over the air. In this
case, a vulnerability would be reported.

We have applied our tool and found a new security loophole in
China Mobile on its 4G mobility management protocol (EMM). As
shown in Table 15, after registration (attach) to the network, EMM
configures the device to not encrypt the signaling messages (EEA0
algorithm). This results in the man-in-the-middle sniffing on user
behaviors and privacy intrusion. Our tool provides warnings to the
device. We are contacting the operator to fix this vulnerability.

Performance boost. The next showcase is a handoff advisor that
advises whether a better-performing cell is available for handoffs.
It is built with LteRrcAnalyzer and WcdmaRrcAnalyzer,
which implement our handoff decision logic inference algorithms
(§5.2). By inferring the protocol operation logic, this tool helps to
forecast the potential sub-optimal handoff behaviors from the net-
work and reconfigure the device to work them around. To this end,
it leverages the current control state and measurement reports. If
the measurement reports indicate that a faster cell (e.g. 4G) exists,
but the predicted target cell for handoff is slower (e.g. 3G), it alerts
the device with a suboptimal handoff.

We show a real instance on how the tool helps the device to pre-
vent suboptimal handoffs. The instance occurs when certain AT&T
3G cell makes a handoff decision too early so that it migrates the
device to a low-performance cell (2G here). Table 16 shows this
scenario. The device is initially served by a 3G cell. To initiate a
handoff, the 3G cell asks the device to measure both 2G and 3G
cells. The problem occurs when both 2G and 3G cells have good
signal strengths. Moreover, the 3G cell uses the first-come-first-
serve (FCFS) handoff strategy. Consequently, the serving cell may
immediately hand over the device to 2G upon receiving the 2G re-
port first, without waiting for the 3G measurement report. It thus
misses the desired handoff to 3G. Our tool captures this issue by
inferring this 3G cell’s decision logic, and reports the suboptimal
handoff before it is triggered. Given this advice, we eliminate this
suboptimal handoff by disabling 2G (via secret codes) at the device.

9 Related Work
We first compare MOBILEINSIGHT with other approaches to learn-
ing cellular information from the device. Table 14 summarizes the

features and limitations of each scheme. It shows that MOBILEIN-
SIGHT is the only software-only in-device cellular network ana-
lyzer, which covers more 3G/4G control-plane and low-layer pro-
tocols, supports both fine-grained information collection and pro-
tocol analytics at runtime, operates on COTS phones , and offers
APIs for mobile applications. There are also in-device analyz-
ers [58–60], but they focus on application and transport layers, not
cellular-specific lower-layers.

Meanwhile, extensive research has been conducted to improve
device-side performance over cellular networks, including video
adaptation [56], energy saving [61–63], and cellular congestion
control [64, 65], etc. They could also benefit from MOBILEIN-
SIGHT with further access to the fine-grained, runtime informa-
tion. Finally, there are ongoing efforts on optimizations for hand-
off [37–40], software-defined LTE [66–70] and backend cellular
infrastructure [71–73]. The insights from MOBILEINSIGHT over
operational networks (e.g., signaling protocols and handoff poli-
cies), can help to better design the future network infrastructure.

10 Conclusion
The cellular network provides more control utilities than the wired
Internet, including radio resource control, security, mobility sup-
port, and carrier-grade services, to name a few. Understanding
these functions and their protocol operations will be important for
refining the design and optimizing application performance. How-
ever, such fine-grained protocol operations have remained inacces-
sible to the research community.

MOBILEINSIGHT represents our first effort to build a software
tool to open up the blackbox operations. It enables open access to
the low-level protocol operations in 3G/4G from the device side. It
runs on the COTS phone, but leverages its increasing capability. It
directly extracts the signaling and/or low-layer messages from the
side channel toward 3G/4G hardware interface, decodes the proto-
col messages, and infers the protocol state dynamics and decision
logic at runtime through analyzers. Through MOBILEINSIGHT’s
APIs, applications can benefit from accessing such low-level do-
main knowledge. In presence of network failures, security loop-
holes, or performance degrade, MOBILEINSIGHT helps to detect
the problematic instances, infer the root causes, and suggest fixes.

In the broader context, MOBILEINSIGHT is designated to be an
open, extensible tool for the community and by the community. It
may help us to examine cellular networks in the large-scale setting
via crowdsourcing. More community efforts are clearly needed to
enhance and extend every aspect, particularly analyzers and appli-
cations atop. The collected datasets can further be shared within
the community. Our own experience so far has confirmed that such
tool-building efforts are quite worthwhile and can be rewarding.

Acknowledgments: We thank the anonymous reviewers and shep-
herd for their constructive comments. This work is supported in
part by NSF awards (CNS-1526456, CNS-1526985, CNS-1423576
and CNS-1421440).

213

11 References

[1] Cisco Visual Networking Index. Global Mobile Data Traffic
Forecast Update, 2014–2019, 2015.

[2] Qualcomm. QxDM Professional - QUALCOMM eXtensible
Diagnostic Monitor.
http://www.qualcomm.com/media/documents/tags/qxdm.

[3] Xcal-mobile. http://www.accuver.com.
[4] MTK Catcher. http:

//www.finetopix.com/showthread.php/40844-MTK-Catcher.
[5] S. Kumar, E. Hamed, D. Katabi, and L. Erran Li. LTE Radio

Analytics Made Easy and Accessible. In ACM SIGCOMM,
2014.

[6] Android.telephony. http://developer.android.com/reference/
android/telephony/package-summary.html.

[7] Android telephonymanager class. http://developer.android.co
m/reference/android/telephony/TelephonyManager.html.

[8] Google. Project fi, 2015. https://fi.google.com/about/.
[9] 3GPP. TS24.008: Mobile Radio Interface Layer 3, 2012.

[10] 3GPP. TS24.301: Non-Access-Stratum (NAS) for EPS; , Jun.
2013.

[11] 3GPP. TS25.331: Radio Resource Control (RRC), 2006.
[12] 3GPP. TS36.331: Radio Resource Control (RRC), 2012.
[13] 3GPP. TS36.211: Evolved Universal Terrestrial Radio

Access (E-UTRA); Physical channels and modulation.
[14] 3GPP. TS36.212: Evolved Universal Terrestrial Radio

Access (E-UTRA); Multiplexing and channel coding.
[15] 3GPP. TS36.213: Evolved Universal Terrestrial Radio

Access (E-UTRA); Physical layer procedures.
[16] 3GPP. TS36.321: Evolved Universal Terrestrial Radio

Access (E-UTRA); Medium Access Control (MAC) protocol
specification, Mar. 2014.

[17] 3GPP. TS36.322: Evolved Universal Terrestrial Radio
Access (E-UTRA); Radio Link Control (RLC) protocol
specification, Sep. 2012.

[18] 3GPP. TS36.321: Evolved Universal Terrestrial Radio
Access (E-UTRA); Packet Data Convergence Protocol
(PDCP) specification, Jun. 2014.

[19] 3GPP. TS27.007: AT command set for User Equipment
(UE), 2011.

[20] Nexus 5 field test mode. https://play.google.com/store/apps/d
etails?id=com.cellmapper.nexus5fieldtestmode&hl=en.

[21] Field test mode: What it is and how to enable it on your
phone. http://www.ubersignal.com/field-test-mode.

[22] Android platform development kit: Radio layer interface.
http://www.netmite.com/android/mydroid/development/pdk/
docs/telephony.html.

[23] xgoldmon. https://github.com/2b-as/xgoldmon.
[24] Android source code for usb tethering.

https://android.googlesource.com/kernel/msm.git/+/androi
d-6.0.0_r0.9/drivers/usb/gadget/android.c.

[25] Android source code for qualcomm cellular diagnostic mode.
https://android.googlesource.com/kernel/msm.git/+/androi
d-6.0.0_r0.9/drivers/char/diag/.

[26] Android source code for meadiatek cellular diagnostic mode.
https://android.googlesource.com/kernel/mediatek/+/android
-4.4.4_r3/drivers/misc/mediatek/.

[27] ios baseband commands. https:
//www.theiphonewiki.com/wiki/Talk:Baseband_Commands.

[28] 3GPP. TS36.300: E-UTRA and E-UTRAN; Overall

description; Stage 2, 2011.
[29] Wikipedia: Abstract syntax notation one (asn.1). https:

//en.wikipedia.org/wiki/Abstract_Syntax_Notation_One.
[30] K. Sandlund, G. Pelletier, and L. Jonsson. The robust header

compression (rohc) framework, 2010. RFC 5795.
[31] S. Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui, A. Drake,

and K. Lau. Discovering fine-grained rrc state dynamics and
performance impacts in cellular networks. In MobiCom,
2014.

[32] J. Huang, F. Qian, A. Gerber, Z. Mao, S. Sen, and
O. Spatscheck. A Close Examination of Performance and
Power Characteristics of 4G LTE Networks. In ACM
MobiSys, 2012.

[33] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and
O. Spatscheck. Characterizing Radio Resource Allocation
for 3G Networks. In IMC, 2010.

[34] ZTE UMTS Handover Description. http://www.slideshare.n
et/quyetnguyenhong/zte-umtshandoverdescription.

[35] Netmanias. Overview of LTE handover. http://www.netman
ias.com/en/post/techdocs/6224/emm-procedure-6-handove
r-without-tau-part-1-overview-of-lte-handover.

[36] Blind handover. https://www.linkedin.com/groups/Can-any
body-explain-what-exactly-1180727.S.158571676.

[37] K. Dimou, M. Wang, Y. Yang, M. Kazmi, A. Larmo,
J. Pettersson, W. Muller, and Y. Timner. Handover within
3gpp lte: design principles and performance. In Vehicular
Technology Conference Fall (VTC 2009-Fall), 2009 IEEE
70th, pages 1–5. IEEE, 2009.

[38] T. Jansen, I. Balan, J. Turk, I. Moerman, and T. Kurner.
Handover parameter optimization in lte self-organizing
networks. In Vehicular Technology Conference Fall (VTC
2010-Fall), 2010 IEEE 72nd, pages 1–5. IEEE, 2010.

[39] A. Lobinger, S. Stefanski, T. Jansen, and I. Balan.
Coordinating handover parameter optimization and load
balancing in lte self-optimizing networks. In Vehicular
Technology Conference (VTC Spring), 2011 IEEE 73rd,
pages 1–5. IEEE, 2011.

[40] L. Korowajczuk. LTE, WiMAX and WLAN network design,
optimization and performance analysis. John Wiley & Sons,
2011.

[41] P. Dupont, B. Lambeau, C. Damas, and A. v. Lamsweerde.
The qsm algorithm and its application to software behavior
model induction. Applied Artificial Intelligence,
22(1-2):77–115, 2008.

[42] N. Walkinshaw, K. Bogdanov, M. Holcombe, and
S. Salahuddin. Reverse engineering state machines by
interactive grammar inference. In Reverse Engineering,
2007. WCRE 2007. 14th Working Conference on, pages
209–218. IEEE, 2007.

[43] C. Damas, B. Lambeau, P. Dupont, and A. Van Lamsweerde.
Generating annotated behavior models from end-user
scenarios. Software Engineering, IEEE Transactions on,
31(12):1056–1073, 2005.

[44] J. Oncina and P. Garcia. Inferring regular languages in
polynomial update time. 1992.

[45] Mobileinsight. http://metro.cs.ucla.edu/mobile_insight.
[46] Python-for-android project.

https://python-for-android.readthedocs.org/en/latest/.
[47] AndroidHeadlines. Over 27.44% users root their phone(s) in

order to remove built-in apps.
http://www.androidheadlines.com/2014/11/50-users-root-

214

phones-order-remove-built-apps-one.html.
[48] 3GPP. TS36.508: Evolved Universal Terrestrial Radio

Access (E-UTRA) and Evolved Packet Core (EPC);
Common test environments for User Equipment (UE)
conformance testing, Dec 2015.

[49] Cross-validation (statistics).
https://en.wikipedia.org/wiki/Cross-validation_(statistics).

[50] Monsoon power meter.
https://www.msoon.com/LabEquipment/PowerMonitor/.

[51] At&t’s prepaid data plan policy. https:
//www.att.com/shop/wireless/plans/voice/sku7420265.html.

[52] ios developer library: Core telephony framework reference.
https://developer.apple.com/library/prerelease/ios/documenta
tion/NetworkingInternet/Reference/CoreTelephonyFramewo
rkReference/index.html.

[53] Connection manager.
https://msdn.microsoft.com/en-us/library/bb416435.aspx.

[54] Windows phone: Telephony api.
https://msdn.microsoft.com/en-us/library/aa922068.aspx.

[55] N. Vallina-Rodriguez, A. Auçinas, M. Almeida,
Y. Grunenberger, K. Papagiannaki, and J. Crowcroft.
Rilanalyzer: a comprehensive 3g monitor on your phone. In
IMC, 2013.

[56] X. Xie, X. Zhang, S. Kumar, and L. E. Li. pistream: Physical
layer informed adaptive video streaming over lte. In
MobiCom, 2015.

[57] Snoopsnitch.
https://opensource.srlabs.de/projects/snoopsnitch.

[58] N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich,
N. Weaver, and V. Paxson. Beyond the radio: Illuminating
the higher layers of mobile networks. In Mobisys’15, pages
375–387. ACM, 2015.

[59] A. Nikravesh, H. Yao, S. Xu, D. Choffnes, and Z. M. Mao.
Mobilyzer: An open platform for controllable mobile
network measurements. In Mobisys’15, pages 389–404.
ACM, 2015.

[60] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and
P. Kortum. Livelab: measuring wireless networks and
smartphone users in the field. ACM SIGMETRICS
Performance Evaluation Review, 38(3):15–20, 2011.

[61] C. Shi, K. Joshi, R. K. Panta, M. H. Ammar, and E. W.
Zegura. Coast: collaborative application-aware scheduling of
last-mile cellular traffic. In Mobisys’14, pages 245–258.
ACM, 2014.

[62] X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta, and
R. Vannithamby. Smartphone background activities in the
wild: Origin, energy drain, and optimization. In Proceedings
of the 21st Annual International Conference on Mobile
Computing and Networking, pages 40–52. ACM, 2015.

[63] D. H. Bui, Y. Liu, H. Kim, I. Shin, and F. Zhao. Rethinking
energy-performance trade-off in mobile web page loading. In
Proceedings of the 21st Annual International Conference on
Mobile Computing and Networking, pages 14–26. ACM,
2015.

[64] F. Lu, H. Du, A. Jain, G. M. Voelker, A. C. Snoeren, and
A. Terzis. Cqic: Revisiting cross-layer congestion control for
cellular networks. In Proceedings of the 16th International
Workshop on Mobile Computing Systems and Applications,
pages 45–50. ACM, 2015.

[65] K. Winstein, A. Sivaraman, H. Balakrishnan, et al. Stochastic
forecasts achieve high throughput and low delay over cellular

networks. In NSDI, pages 459–471, 2013.
[66] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson,

R. Knopp, and C. Bonnet. Openairinterface: A flexible
platform for 5g research. ACM SIGCOMM Computer
Communication Review, 44(5):33–38, 2014.

[67] Openlte implementation.
http://sourceforge.net/projects/openlte/.

[68] L. E. Li, Z. M. Mao, and J. Rexford. Toward
software-defined cellular networks. In Software Defined
Networking (EWSDN), 2012 European Workshop on, pages
7–12, 2012.

[69] X. Jin, L. E. Li, L. Vanbever, and J. Rexford. Softcell:
scalable and flexible cellular core network architecture. In
CoNEXT, 2013.

[70] M. Arslan, K. Sundaresan, and S. Rangarajan.
Software-defined networking in cellular radio access
networks: potential and challenges. Communications
Magazine, IEEE, 53(1):150–156, 2015.

[71] A. Iyer, L. E. Li, and I. Stoica. Celliq: real-time cellular
network analytics at scale. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15),
pages 309–322, 2015.

[72] A. Banerjee, J. Cho, E. Eide, J. Duerig, B. Nguyen, R. Ricci,
J. Van der Merwe, K. Webb, and G. Wong. Phantomnet:
Research infrastructure for mobile networking, cloud
computing and software-defined networking. GetMobile:
Mobile Computing and Communications, 19(2):28–33, 2015.

[73] Z. Li, W. Wang, T. Xu, X. Zhong, X.-Y. Li, Y. Liu,
C. Wilson, and B. Y. Zhao. Exploring cross-application
cellular traffic optimization with baidu trafficguard. 2016.

215

