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Abstract—Monitoring a user’s mobility during daily life is an essential requirement in providing advanced mobile services. While

extensive attempts have been made to monitor user mobility, previous work has rarely addressed issues with predictions of temporal

behavior in real deployment. In this paper, we introduce SmartDC, a mobility prediction-based adaptive duty cycling scheme to
provide contextual information about a user’s mobility: time-resolved places and paths. Unlike previous approaches that focused on

minimizing energy consumption for tracking raw coordinates, we propose efficient techniques to maximize the accuracy of monitoring
meaningful places with a given energy constraint. SmartDC comprises unsupervised mobility learner, mobility predictor, and Markov

decision process-based adaptive duty cycling. SmartDC estimates the regularity of individual mobility and predicts residence time at
places to determine efficient sensing schedules. Our experiment results show that SmartDC consumes 81 percent less energy than

the periodic sensing schemes, and 87 percent less energy than a scheme employing context-aware sensing, yet it still correctly
monitors 90 percent of a user’s location changes within a 160-second delay.

Index Terms—Location, mobility learning, mobility prediction, adaptive sensing, energy efficient

Ç

1 INTRODUCTION

UNDERSTANDING and predicting human mobility is a
fundamental resource for broad-domain applications.

For instance, service providers predict a user’s behavior
(e.g., having lunch or going home) and provide appropriate
services in a timely manner (e.g., sending lunch coupons or
home preheating). Understanding human mobility, in
general, provides useful information for traffic engineering,
urban planning, predicting the spread of human and
electronic viruses, and resource management in mobile
communications [2], [3], [4], [5]. All these applications
benefit from understanding and predicting human mobi-
lity: time-resolved places and paths.

Mobile phones are widely used for tracing human
mobility since mobile phones 1) have almost 100 percent
penetration, 2) are closely tied to daily life, and 3) are
capable of locating themselves using various approaches.
The global positioning system (GPS) and wireless position-
ing system (WPS) using cell tower and Wi-Fi access points
(AP) are common technologies that provide a user’s raw
coordinates (i.e., latitude and longitude) [6], [7]. Ambient
fingerprints are often constructed to recognize semantic
places with room-level accuracy using radio beacons (e.g.,
cell towers, Wi-Fi APs, and Bluetooth) and surrounding
factors (e.g., light, color, texture, and sound patterns) [8],
[9]. A simple choice for monitoring mobility is to
periodically sense a user’s location context. Such a scheme,
however, significantly reduces the battery’s lifetime in

mobile devices. To optimize energy consumption for
continuous sensing, various approaches have been pro-
posed. These include sensor selection by movement
detector using accelerometers [9], [10], [11], [12], minimiz-
ing energy consumption within accuracy requirements [13],
[11], minimizing location error for a given energy budget
[14], [10], [12], and utilizing a prediction-based approach
[14], [15], [16]. While extensive attempts have been made to
continuously examine a user’s mobility with less energy
consumption, we argue that previous work did not fully
consider regular patterns in human mobility to reduce
energy consumption in real deployments.

Our research goal is to develop a framework that
continuously provides location context with minimum
energy consumption. The key motivations of our work are
as follows: 1) finding meaningful places is a key target of
human-centric mobile services, since people spend approxi-
mately 87 percent of their time indoors [17]; and 2) human
mobility is amenable to prediction because of habitual time-
resolved movements with reasonably small variation
[2]. Thus, we focus on monitoring meaningful places (i.e.,
points of interest, or POIs) using the regularity of individual
mobility pattern. The main idea is that the system senses
location context based on a predicted schedule; that is,
when the movement to the next location will take place. In
other words, when a user visits a place our system makes
predictions on departure times (i.e., residence time in the
place). The key technical challenges are 1) simultaneous
learning and predicting a user’s mobility, 2) adaptive duty
cycling that covers both the regularity and the randomness
in human mobility, and 3) minimizing energy consumption.

In this context, this paper proposes SmartDC: mobility
prediction-based adaptive duty cycling for everyday loca-
tion monitoring. SmartDC comprises three components:
mobility learner, mobility predictor, and adaptive duty cycling.
Mobility learner uses unsupervised learning to incrementally
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collect mobility patterns in colloquial terms. Based on our
previous work [18], [19], we developed a personalized
scheme that collects POI’s raw coordinates and also
recognizes POIs with room-level accuracy. Mobility predictor
uses a location predictor to predict departure time to the
next location. We implemented both location-dependent
and location-independent predictors, and compared their
cost and performance. Adaptive duty cycling uses a Markov
decision process (MDP) to determine the efficient sensing
moment for a given energy budget. The proposed scheme
maximizes the accuracy of mobility monitoring based on
the regularity in individual mobility. The primary contribu-
tions of our work are:

. Designing simultaneous and incremental mobility
learning and prediction components (Section 4).

. An extensive performance analysis of several loca-
tion predictors for the estimation of predictable
regularity in human mobility (Section 5).

. Evaluating a real system for everyday location
monitoring using traces of 57 users (Section 5).

We implemented SmartDC on the Android framework
as a service, and evaluated the system using traces of users
for over four weeks in real environments. While the
performance depended on a given energy budget, our
extensive evaluation showed that SmartDC simultaneously
performed mobility learning and prediction, and out-
performed previous systems in terms of accuracy versus
energy consumption.

2 RELATED WORK

We first discuss the previous work on energy-efficient
sensing, then describe the related studies on human
mobility prediction. Table 1 summarizes the key features
of related systems. According to the target context, we
categorized context-monitoring systems into two groups:
raw coordinates and meaningful places. To reduce energy
consumption, most systems use a movement detector to
activate different sensors in both moving and stationary
states [9], [10], [11], [12], [16]. The user’s speed estimated by

GPS is also commonly used to switch around localization
techniques [9], [11].

To track a user’s raw coordinates, many approaches have
been proposed to minimize energy consumption with
adaptive sensor scheduling [10], [11], [12], [13], [14]. EnLoc
[14] uses a dynamic programming technique to minimize
location error for a given energy budget. A heuristic
approach with a mobility tree is used to predict the next
sensing time. The system, however, does not implement
incremental learning, but instead uses a manually con-
structed mobility tree. Jigsaw [10] recognizes a user’s
activity using an accelerometer signal and uses MDP
process to adjust the GPS sampling rate. Zhuang et al.
[12] use location profiles and battery levels to adjust the
GPS sampling rate. With these schemes, however, none
uses an unsupervised prediction module or recognizes a
place with room-level accuracy. Works in [11], [13]
minimize energy consumption by adaptively using a GPS,
only if the estimated location error exceeds an accuracy
threshold. To estimate uncertainty in a location, each
system uses different approaches. RAPS [11] uses moving
distance, space-time history, and cell tower-based black-
listing. CAPS [13] uses cell-sequence matching to minimize
the GPS sampling at revisited paths. In contrast to these
systems, SmartDC uses an individual mobility pattern to
estimate the uncertainty of a user’s behavior without
powering up the sensors. Additionally, we focus on
detecting meaningful places, which is an essential compo-
nent in advanced mobile services.

To recognize meaningful places, ambient fingerprints
have been proposed to provide POIs with room-level
accuracy. SensLoc [9] uses the Tanimoto coefficient of the
Wi-Fi vector to detect the entrance and departure time. The
system reduces energy consumption based on sensor
selection, but the scheme does not use mobility prediction
to optimize the sensing schedule. iLoc [16] uses the cosine
similarity of GSM and Wi-Fi vectors to detect movement
and meaningful places. The system uses the Viterbi
algorithm to predict future location, but sensor scheduling
is not considered in reducing the energy consumption.
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Isaacman et al. [20] use cell tower connections to monitor
human mobility. The cell tower-based approach generates
places with coarse granularity (i.e., a few hundred meters),
and certainly has limits in capturing mobility at a fine-
grained level. We analyzed these approaches to design a
mobility learner, and to develop an adaptive sensor
scheduling based on mobility prediction.

Extensive researches have been made on mobility
prediction, especially in networking communities [4], [21].
The key concept is to compare the current pattern with
historical data, and to extract similar patterns to predict next
location. Works in [4] using a two-year trace on campus-
wide wireless network found that the complex predictors
were at best only negligibly better than the simple Markov
predictor in practice. In addition, the simple predictor is
appropriate for use on resource-constrained devices, such
as smartphones, because of low computation overheads and
modest storage requirements [21]. Considering that our goal
is to minimize energy consumption on mobile devices, we
implemented and compared simple predictors: we chose a
Markov-based model [22], [23] as a location-dependent
predictor, and nonlinear time series analysis [24] as a
location-independent predictor. We also apply time-aided
scheme and fallback mechanism to filter out redundant
information in history data.

To the best of our knowledge, SmartDC is the first
system that applies a simultaneous mobility learning and
prediction scheme to mobile phones. The proposed system
gradually learns a user’s mobility pattern, and optimizes
sensing schedule using the predictable regularity of
individual behavior.

3 PRELIMINARY STUDY

Continuous mobility learning without duty cycling is not a
viable scheme because of the significant energy usage. We
measured the average power consumption of each sensor to
estimate the energy cost of mobility learning. To maintain
the measurement consistency, we used the Monsoon Power
Monitor to deliver a constant voltage of 3.7 V and halted
all applications except for a system service. Fig. 1 shows the
energy profile of HTC Desire. The idle state consumes
34.5 mW. Sensors are listed in the order of energy
consumption: GPS, accelerometer, Wi-Fi, and GSM. The

mobile phone performs GSM scans without additional
energy cost because it always maintains a cell tower
connection for voice communications. The duty cycle of
the accelerometer should be carefully designed, since
operating the accelerometer can incur significant energy
usage. The application should lock the CPU to continuously
use the accelerometer and prevent sleep state for contin-
uous sensing. Although the accelerometer itself uses very
little power, the continuous use of accelerometer needs to
keep the CPU as well as associated high-power components
active to access the sensor data [25]. Thus, computing the
accelerometer signal with a 50 percent duty cycle at the
lowest sampling rate (4-6 Hz) for 10 minutes consumes
more energy than turning on a GPS with 1-minute intervals
for 5 minutes. For this reason, most of the mobile platforms
(e.g., Android, iPhone, and Nokia Maemo) restrict contin-
uous sampling of acceleration while the screen is turned off
[26]. Although a dedicated microcontroller may reduce
sensing energy [25], even the latest smartphones do not
employ such additional processor for sensing purpose. The
proposed scheme, therefore, does not use an accelerometer
for the pragmatic reason.

Based on the energy profile, we estimated the energy
consumption of various mobility learning schemes. We
made two assumptions: 1) A user spends 3 hours to move
around outdoors each day [17]; and 2) the movement
detector always recognizes user movements correctly. For
example, SensLoc uses GPS and Wi-Fi every 10 seconds
while a user moves, and the system activates an accel-
erometer with a 50 percent duty cycle when a user is
stationary. Thus, the stationary state consumes 67.8 mW,
and the moving state consumes 447.8 mW, which is derived
from the sum of the idle state (34.5 mW), the GPS reading
every 10 seconds outdoors (333.2 mW), and the Wi-Fi
scanning every 10 seconds (80.1 mW). The average power
consumption is 447:8 mW! 3

24þ 67:8 mW! 21
24 ¼ 115:3 mW.

Fig. 2 presents the power consumption of several
schemes. The expected battery lifetime is 29 to 48 hours if
a smartphone runs only mobility learning schemes. A
previous study showed that, without mobility learning,
60 percent of people used their smartphone from 14 to
41 hours with a single battery charge [27]. This means that
mobility learning may reduce battery lifetime by at least
16 percent, and by 53 percent at most. Such energy
consumption is a burden to users, since mobility learning
is not a primary function of smartphones. Considering that
the expected lifetime of idle state is 150 hours, previous
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Fig. 1. HTC desire energy profile. We measured power consumption of
several sensors, such as (a) GSM, Wi-Fi, and GPS with periodic
sampling; and (b) accelerometer with duty cycle. The profile data and
test software are downloadable from our website (http://lifemap.
yonsei.ac.kr).

Fig. 2. Power consumption analysis on work related to mobility learning.
We used proposed parameters of related works as shown in Table 1.
The fixed scheme uses a fixed time interval. We assumed that the GPS
is turned on only if a user is moving.



learning schemes have room for lifetime improvement. The
optimal scenario is that the system turns on sensors only
when a user changes her states (i.e., entrance and departure
moments). Our main idea is to adaptively sense the moment
that includes a considerable possibility of state change. We
predict the state change using the regularity of individual
mobility patterns. The proposed system uses an energy
budget as a constraint to customize sensing schedules to
diverse usage.

4 SMARTDC SYSTEM

We first describe SmartDC usage scenario, then present the
technical details. SmartDC runs as a background service in
mobile phones. The energy budget for SmartDC is initially
defined as the percentage of remaining battery charge, but a
user may manually change it. When a user stays at a place
for a certain period of time, SmartDC considers it a
meaningful place and generates a node with place
signatures that include location, Internet connectivity,
visiting time, residence time, and the Wi-Fi fingerprints.
The system incrementally constructs users’ meaningful
places with room-level accuracy in their daily lives, and
recognizes the revisited places using the stored place
signatures. With SmartDC, the mobile phone can always
notify/share the change of places to internal and third-
party applications.

Fig. 3 shows the overall architecture of SmartDC. The
system comprises mobility learner, mobility predictor, and
adaptive duty cycling. In the context of this work, location
is a room-level place. In the mobility learner, we use GSM,
Wi-Fi, and GPS, which are the common components in
current mobile phones. We define three levels of sensing
according to the sensor’s energy consumption. Initially,
SmartDC uses a fixed time interval (e.g., 2 minutes) to
collect a user’s mobility data. Based on the collected
mobility data, the mobility predictor predicts residence
time at locations and rewards for each location sensing.
Finally, adaptive duty cycling makes use of a dynamic
programming technique to determine a sensing schedule.
With the predicted sensing schedule, the system activates
Wi-Fi sensing to monitor the change of locations. When an
exception occurs the system switches to a sensing mode
with a fixed interval for mobility learning. Consequently,
SmartDC simultaneously performs learning and prediction
to minimize energy consumption with robust location
monitoring.

4.1 Problem Definition

The key problem in location monitoring is choosing an
optimal location-sensing interval. We formulated the
location-sensing policy as a MDP. An MDP is a stochastic
process that contains a 4-tuple hSS;AA; P ; IRi. The finite set
of states in which SS ¼ fl1; . . . ; lmg is a set of meaningful
places that were previously visited by the user. Action set
AA is a set of actions taken on states, i.e., the length of time
before the next location sensing. PijðaÞ is the transition
probability from state li to lj, when action a is taken. IR ¼
fRxðaxÞ; Rxþ1ðaxþ1Þ; . . .g is an expected reward at the
transition between the states for the action taken. The
reward is location-monitoring accuracy, and our goal is to
maximize the cumulative function of rewards, defined as
follows:

maximize
X1

x¼0

RxðaxÞ subject to C & E; ð1Þ

where C is the total consumed energy for the location
monitoring process and E is a given energy constraint. The
solution for this problem involves designing an optimal
policy ! that will be explained in Section 4.4. Fig. 4
illustrates the defined problem.

4.2 Mobility Learner

The role of mobility learner is to collect individual mobility
history without impending users. Although the concept of
mobility learner is similar to the previous work [9], [16], we
designed sensing levels to minimize the usage of power-
intensive sensors. The basic idea is that fine-grained sensing
is activated only if coarse-grained sensing fails to obtain
accurate information.

The first level uses GSM to obtain the location area code
(LAC)1 to detect exceptions within the predicted sensing
schedule. The first level continuously monitors the LAC
with minor energy consumption, since a mobile phone
basically updates the LAC for voice communication. The
system does not activate the second level until the next
sensing time, if the observed LAC follows a predicted
pattern. Otherwise, if the first level detects an exception, the
system immediately uses the second level to collect a new
pattern of individual mobility.
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Fig. 3. System architecture of SmartDC.

Fig. 4. The conceptual problem. The sensing rewards are derived using
residence time and sensing cost from the mobility history. The goal is to
allocate energy budget to maximize the rewards within given energy
budget.

1. LAC is a unique number within a cellular radio network. Location area
comprises several radio cells.



The second level uses Wi-Fi scanning to recognize a
change of places and revisited places. The basic operation is
that if a user is stationary, the signal fingerprints of
surrounding Wi-Fi APs are relatively similar to each other.
We use a scan window to perform multiple scans to tolerate
noisy signals [9], [16], [28]. Given a window size w and
sampling interval tw, the Wi-Fi similarity function S is
defined using the Tanimoto Coefficient, which is a widely
used technique for measuring the similarity between two
vectors [9], [29]:

S ¼ different ðmoveÞ; if
~ft1 '~ft2

k~ft1 k
2
þk~ft2 k

2
(~ft1 '~ft2

& ’;

same ðstationaryÞ; else

(

where ~fti is the Wi-Fi vector scanned at ti for duration w, ’
is the similarity threshold, and the output is a similarity
estimated between 0.0 and 1.0. The movement detector uses
Sð~ft(1; ~ftÞ to detect change of places, while place recogni-
tion uses Sð~fi; ~fjÞ to identify a visited place where ~fi and ~fj
is the Wi-Fi vector scanned at place li and lj, respectively.
The system generates meaningful places when it detects the
stationary state. When a user revisits a place, the system
reuses physical location information without the activating
GPS sensor, and aggregates mobility data. The second level
also uses wireless communication to obtain location from
the WPS provided by Android.

The third level activates GPS to acquire fine location, if
the system fails to get accurate location in the level 2.
Algorithm 1 presents pseudocode of mobility learner.

Algorithm 1. Three level sensing in mobility learner.
Input: Previous fingerprint ~ft(1, predicted pattern IP
Output: Current location lt
Notation: LAC ‘t, fingerprint ~ft, movement state st,
similarity threshold ’, location-accuracy threshold "

1: ‘t  getLACðÞ #Level 1 using GSM
2: if IP:containsð‘tÞ then
3: return
4: end if
5: ~ft  scanWiFiðÞ #Level 2 using Wi-Fi
6: if Sð~ft(1; ~ftÞ & ’ then
7: st  Move
8: else
9: st  Stationary

10: end if
11: lt  getCoarseLoctionðÞ #Level 2 using WPS
12: lt

0  makeLocationðst; lt; ~ftÞ #Place Recognition
13: if lt

0:getAccuracyðÞ & " then
14: return lt

0

15: end if
16: lt

0  getFineLocationðÞ #Level 3 using GPS
17: return lt

0

4.3 Mobility Predictor

The role of mobility predictor is to estimate the reward
function R based on action set AA and transition probabilities
P . In other words, when a user visits a place, the system
makes prediction on stay duration in a place.

We use two types of location predictor: Markov predictor
[22], [23] as a location-dependent predictor, and nonlinear

time series [24] analysis as a location-independent pre-
dictor. Previous works found that such predictors were
efficient in accuracy and memory usage aspects in predic-
tions for human mobility [4], [24]. Our scheme contributes
to the prediction of human movements with room-level
accuracy, while previous works [2], [3], [4] used associated
cell-tower or AP for a user’s location.

We briefly describe the Markov predictor and nonlinear
time series analysis. The Markov predictor is widely used as
a location-dependent model [4], [22], [23]. The order-k
Markov predictor extracts historical patterns by matching
recent k location sequences. The basic assumption is that
people tend to spend similar residence time at the same
places. Consider a user’s movement history H ¼ ðl1;
ta1; s1Þ; . . . ; ðln; tan; snÞ, in which tai is the arrival time and si
is the stay duration at location li. From H, we extract the
location history L ¼ l1; l2; . . . ; ln, and the finite set of m
visited places. From L, the recent k location context is
Lðn( kþ 1; nÞ ¼ ln(kþ1; . . . ; ln. Then, the order-k (or OðkÞ)
Markov predictor generates the reward function R at the
current location li, defined as follows:

Ri ¼
Xm

j¼1

ðwijPijÞ;

where wij ¼ Prðlxþ1 ¼ lj j Lðx( kþ 1; xÞ ¼ li(kþ1; . . . ; li(1;
liÞ and Pij is the form of a discrete histogram distribution
from the stay-duration set fsx j Lðx( kþ 1; xþ 1Þ ¼
li(kþ1; . . . ; li(1; li; ljg. Indeed, wij is the weight of visit
frequency from location li to lj, and Pij is the residence-
time distribution from li to lj. Here,

Pm
j¼1 wij ¼ 1 andR1

0 RiðtÞdt ¼
R1

0 PijðtÞdt ¼ 0 or 1.
A location-independent model uses temporal features

without location information. The basic assumption is that
people tend to spend similar staying time at similar times of
a day. We used a variant of NextPlace [24] as a location-
independent model. NextPlace uses nonlinear time series
analysis to extract similar patterns from historical data. From
H, NextPlace extracts arrival time history A ¼ ta1; ta2; . . . ; tan
and current context c ¼ Aðn( kþ 1; nÞ ¼ tan(kþ1; . . . ; tan(1; t

a
n.

Then, P is a form of discrete histogram distribution from the
stay-duration set fsx j fðAðx( k þ 1; xÞ; cÞ < #g, where f is
the similarity function of two vectors and # is a given
threshold. We use the maximum norm for f and # ¼ 10% of
deviation, as suggested in [24]. The model considers the
similarity between sequences of arrival time without
location information.

We apply the time-aided scheme and the fallback
mechanism 1) to filter out redundant information from
extensive data, and 2) to compensate the none-prediction
(i.e.,

R1
0 RiðtÞdt ¼ 0). The time-aided scheme uses a pair

state of location and arrival time (lx; tax) with quantized time
buckets (e.g., hour interval) [4]. The assumption of this
scheme is that the stay duration is dependent on the arrival
time of place. To generate residence-time distribution,
the time-aided Markov predictor uses the stay-duration
set fsx j Lðx( kþ 1; xþ 1Þ ¼ li(kþ1; . . . ; li(1; li; lj and Aðx (
kþ 1; xÞ ¼ cg, where A is the history of arrival time and c is
recent k arrival time sequences. The fallback mechanism
uses the low-order predictor if the high-order predictor has
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no prediction result. For example, the Markov model uses
Oðk( 1Þ predictor if

R1
0 RiðtÞdt ¼ 0 in OðkÞ predictor.

Instead of choosing the location with the highest
probability, we extract all locations that have the transit
probability to determine an efficient sensing schedule. To
cover the error from the mobility learning, we add a
Gaussian noise to the generated R. The noise distribution is
empirically found in real trace as described in Section 5.3.
Then, discrete action set in one-minute interval is defined as
AA0 ¼ fai j 0 & i & n;RðaiÞ > 0g, where n is the number of
quantized actions that have positive probability in R.

4.4 Adaptive Duty Cycling

The goal of adaptive duty cycling is to maximize the accuracy
of monitoring mobility, and to optimize a sensing policy on
diverse smartphone usage with a given energy budget.

Randomness is inherent in human movements although
humans tend to move with reasonably small variation. In
other words, a user does not always follow the previously
observed movement patterns. Thus, the accuracy of the
prediction-based adaptive duty cycling may decrease due
to the randomness of human behavior. To overcome this
problem, we split a given energy budget E into two parts:
energy for prediction EPRD (i.e., the case of following
patterns in mobility history), and energy for exception EEXP

(i.e., the case of moving with a new pattern). To split E, we
use potential predictability in individual mobility. The
system automatically measures predictability by comparing
the current pattern with the historical data. For example,
potential predictability is 0.8 if a user follows the previously
observed pattern eight times out of a total of 10 visit counts.
Then, the exception ratio is 0.2 and the system allocates
20 percent of given energy for monitoring exception.

We first present the sensing policy using EPRD. Let
VxðAA0; EÞ be an optimal sensing schedule at state ðAA0; EÞ,
which is also the maximal sensing rewards at the current
location lx within a given energy budget E and action set AA0.
When the system detects entrance at a certain place lx, the
mobility predictor estimates the residence time distribution
P that is used for reward function Rx. The sensing cost ci is
an estimated energy consumption at ai, depending on the
stored accuracy of location information. If the accuracy is
worse than location-accuracy threshold ", the cost is the sum
of sensing levels 2 and 3. Otherwise, the cost is the energy
consumption of level 2. Our goal is to maximize the
cumulative function of rewards, defined as follows:

maximize
XjAA0 j

i¼0

RxðaiÞ subject to CPRD & EPRD;

where CPRD is the total consumed energy for the location
monitoring process and EPRD is a given energy constraint.
The solution for this problem involves designing an optimal
policy ! and computing the value function V ð'Þ, which is
expressed as

! ¼ arg maxa
XjAA0 j

i¼0

PxðaiÞðRxðaiÞ þ Vxðaiþ1; e( ciÞÞ
( )

;

VxðAA0; EPRDÞ ¼
XjAA0 j

i¼0

Pxð!ÞðRxðaiÞ þ Vxðaiþ1; e( ciÞÞ;

where e is the remaining energy budget. In words, optimal
sensing moments are allocated to maximize the rewards of
sensing within a given energy budget. Algorithm 2 presents
the pseudocode of adaptive duty cycling using the dynamic
programming technique. The output of dynamic program-
ming is the set of sensing moment, and inputs are the current
time, energy budget, and generated reward function.

Algorithm 2. Allocation policy of energy for prediction.
Input: Sensing moment i, remaining energy budget e
Output: Set of sensing moments derived from V ð'Þ

1: if e < 0 then # Boundary condition 1
2: return invalid
3: end if
4: if i > jAA0j then # Boundary condition 2
5: return 0
6: end if
7: if Vtðai; eÞ is valid then # Memoization
8: return Vtðai; eÞ
9: end if

10: Vtðai; eÞ invalid
11: for k is iþ 1 to jAA0j do
12: Vtðai; eÞ ¼ maxðVtðai; eÞ; RtðakÞ þ Vtðakþ1; e( ckÞÞ
13: end for
14: return Vtðai; eÞ

The system allocates EEXP to minimize the longest
blank-term (i.e., continuous duration without location
sensing). Let B ¼ fb0; b1; . . . ; bkg be a set of blank terms,
and bi the length of the ith blank term in minutes. Given j
location sensing opportunities, we allocate it to B to
minimize the longest blank term. For example, we assume
that bi is an 8-length blank term (oooooooo). Then it can be
divided into three shorter blank terms ðbi; biþ1; biþ2Þ if two
location sensing is allocated to bi (ooxooxoo). The goal is to
minimize the longest length of blank term, defined as

minimize max
0&i&k

bi subject to CEXP & EEXP ; ð7Þ

where CEXP is the total consumed energy for dividing all
blank terms. Let r be a maximum length in B, we find the
optimal r by using a binary search between 0 to max0&i&k bi.
When r is fixed, the required energy CEXP for reducing all
elements in B to less than r can be calculated in OðkÞ. Then,
we decrease r if CEXP is smaller than EEXP , otherwise we
increase r. Algorithm 3 presents the pseudocode of the
allocation policy.

Algorithm 3. Allocation policy of energy for exception.
Input: Set of blank term B, energy budget for exception
EEXP
Output: Optimal length of blank term r

1: low ¼ 0; high ¼ maxðBÞ; r ¼ maxðBÞ
2: while low < high do

3: mid ¼ lowþ high(low
2 #Fix blank term

4: CEXP ¼
PjBj

i¼0
bi

midþ1 #Required energy
5: if CEXP > EEXP then #Energy exceed EEXP
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6: low ¼ midþ 1
7: else
8: high ¼ mid
9: r ¼ minðr;midÞ

10: end if
11: end while
12: return r

Fig. 5 illustrates the overall process of prediction-based
adaptive duty cycling.

5 EVALUATION

We evaluate SmartDC in three aspects: mobility learning,
mobility prediction, and adaptive duty cycling. We mainly
focus on the performance of prediction-based adaptive duty
cycling, which is our major objective.

5.1 Implementation

To evaluate the proposed scheme, we implemented SmartDC
on the Android SDK 2.1 running on commercial mobile
phones equipped with GPS, GSM/CDMA, and Wi-Fi. Our
implementation specifically focused on tracing a user’s
mobility based on intuitive UI design. Fig. 6 shows a screen
capture of the UI running on an HTC Desire. The system
indicates a user’s meaningful places on the Google map and
the list to confirm/modify the place signatures, such as
residence time, place name, and mobility history.

In our experiment, we omitted the analysis of some of
the parameters for the learning scheme, since our mobility

learner uses a scheme similar to that of previous studies.
The time interval tw is set to two minutes, as suggested by
Ma et al. [16]. The Wi-Fi scanning intervals and window
size are 10 and 30 seconds, respectively, and the similarity
threshold ’ of the Wi-Fi vector is set to 0.7 [9]. The accuracy
threshold " for the WPS is set to 500 meters [15]. The GPS is
activated for 30 seconds for single positioning, which is
common in GPS usage.

To reduce computation overheads in adaptive duty
cycling, we 1) converted the float value to an integer value
with 10(3 precision, 2) used discrete time intervals in
minutes, and 3) scaled down the energy budget, dividing it
by the energy consumption of Wi-Fi scanning, which is the
minimum cost in our scheme.

We set the energy budget E and the sensing cost c as
follows: The maximum energy budget is (1;400 mA !
3:7 V( 34:5 mWÞ ! 3; 600 s ¼ 18:5 kJ, which is the available
battery capacity excluding the energy cost of idle state.
If the battery level and energy constraints are 30 and
10 percent, the allowed energy budget is 18:5 kJ! 0:3 !
0:1 ¼ 555 J. Based on the energy profile in Section 2, the
level 2 sensing cost is the energy consumption of Wi-Fi
scanning: 114:5 mW! 30 s ¼ 3:5 J. The level 3 sensing
consumes 3:5 Jþ 440:8 mW! 30 s ¼ 16:7 J: the energy of
level-2 sensing and reading GPS for 30 seconds.

5.2 Data Collection

We collected real traces from 57 users (26 students and 31
office workers) over four weeks in Seoul, Korea. SmartDC
was running as a background service to automatically
collect the user’s mobility and to trace sensor usage time.
Participants installed SmartDC on their primary phones. To
collect the ground truth, the participants explicitly labeled
the place names and kept a diary of places they had visited
with the entrance and departure times. Fig. 7a shows the
description of data set. In the data traces, participants
visited altogether 6,600 meaningful places with 30,700 stays,
and spent 74,000 hours in places. On average, a participant
collected traces for 77.1 days and visited 155.5 places. A
subset of data set is available in CrawDad research
communities [30].

We measured the entropy of collected data traces. The
proposed system is ineffective when a user is located in
regions that do not have Wi-Fi coverage because the key
scheme of our movement detector uses Wi-Fi scanning.
Thus, we defined ineffectivity rate as the ratio of time spent
by a user in regions without Wi-Fi coverage to the total
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Fig. 6. User interface of SmartDC. The application displays a user’s
meaningful places on (a) the Google map, and (b) the list. It also
visualizes (c) place information, including place name and mobility
history. The application called LifeMap is available in android market.

Fig. 5. The process of prediction-based adaptive duty cycling. 1) Location predictor generates residence-time distribution and sensing cost using
collected data. 2) Gaussian noise is derived from the empirical error of mobility learner. 3) The system makes quantized rewards and cost functions
in minutes. 4) MDP outputs predicted sensing schedule. 5) Energy for exception is used to minimize longest blank term.



spent time. The collected traces show that the ineffectivity
rate is trivial. The median of ineffectivity rate is about
5.2 percent, as illustrated in Fig. 7b. In other words,
participants spent about 5.2 percent of their time in non-
Wi-Fi regions. They spent 76 percent of their time in places
for staying behavior and 71 percent of staying behavior is
less than 2 hours, as shown in Figs. 7b and 7c. This means
that the system could reduce about 76 percent of energy
consumption for location sensing if it could accurately
predict the residence time at each place.

5.3 Mobility Learning

We evaluate the performance of mobility learning in two
ways: place detection and energy consumption. We briefly
described the performance of mobility learner because the
component uses simple fixed time interval (The detail is
available in [1]). We defined the accuracy of place learning
as a measure of meaningful places correctly discovered by
the system. The accuracy is 0.76 for the number of places
and 0.93 for the number of visits. The result indicates that
collected data are sufficient to use as a mobility history for
prediction. In addition, 80 percent of the visits are detected
within a 139-second delay in entering the places, and a
161-second delay in departing the places, as illustrated in
Fig. 8a. Fig. 8b indicates that the error in mobility learning
is represented as an approximated Gaussian distribution.
We applied this distribution as a noise to mobility
predictor to cover the error in learning.

We present each sensor’s energy consumption for
mobility learning. Fig. 9 shows the daily usage time of
sensors. The usage time of GSM is negligible (i.e., less than
20 seconds), because the computation time to update an
LAC takes only a few milliseconds. GPS is typically
activated in transit, since we turn on the GPS only if the
system cannot obtain accurate location information from
both the WPS and historical mobility. The active time of
Wi-Fi is uniformly distributed due to the fixed time
interval. The average usage times of Wi-Fi and GPS are
300) 12 minutes and 16) 7 minutes. The GPS usage time
is trivial because WPS provides accurate location informa-
tion in Seoul, Korea. Such usage time would be increased if
a user lives in regions that do not provide sufficient WPS
data. Although WPS has poor coverage, the GPS usage
time would be gradually decreased because the proposed
system reuses location information in historical data by
matching Wi-Fi fingerprints of places. The average energy
consumption is 1; 831) 228 J, which would reduce battery
lifetime by 12) 4% in real deployments. In the following
section, we present the potential predictability of human
mobility, and the effectiveness of prediction-based adaptive
duty cycling to minimize such energy consumption.

5.4 Potential Predictability

We investigate the upper bound of predictability in
individual mobility patterns to estimate the optimal
performance of mobility prediction. To measure maximal
probability, we consider that the current pattern is
predictable if it is a previously observed one, since we use
a history-based predictor. We defined two metrics: revisit
ratio U , and predictable movement ratio Um. U indicates the
maximal predictability of location prediction, which is
defined as

U ¼ No: of revisits

No: of visits
:

Since our system determines the efficient sensing sche-
dule, predictable residence time at a revisited place is a
more important factor than the next location. Thus, we
further measured each user’s predictable movement ratio
defined as

Um ¼
Sum: of previously observed residence time

Sum: of residence time
:

Um indicates the maximal predictability of mobility
prediction. We consider current residence time to be
predictable if the difference to historical data is within a
)3 deviation (68-second) of error in mobility learner.
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Fig. 8. Detection delay of departure time and entrance time in
(a) cumulative probability, and (b) probability distribution.

Fig. 9. The daily usage time of sensors in mobility learner.

Fig. 7. The description of data set: (a) collection days and number of
places, (b) the ratio of residence time and no Wi-Fi coverage time, and
(c) the distribution of stay duration at each visit.



Fig. 10 represents the daily predictability of all partici-
pants. Higher probability means that higher predictability
is inherent in the individual mobility pattern. The result
indicates that residence time prediction Um is less pre-
dictable than location prediction U . U rapidly increased to
78) 8% after one week, but Um slowly increased and
required about three month to reach around 72) 9%
predictability, as illustrated in Fig. 10a. In other words,
humans tend to revisit frequently visited places, but their
staying behavior contains relatively more randomness.

Predictability about movement behavior Um shows that
50 percent of days contain more than 56 percent predict-
ability, as shown in Fig. 10b. Both the location-dependent
and location-independent predictors show similar predict-
ability. This indicates that the system could, at most, reduce
56 percent of energy for location sensing if the predictor
algorithm is 100 percent accurate. The predictability,
however, did not change significantly, even though we
considered only weekday mobility.

To understand potential regularity with temporal fea-
tures, we segmented each week into 7 days! 24 hours!
60 minutes ¼ 10; 080 minute intervals. We measured the
number of visits at the most visited locations in every
minute. Fig. 11 shows the average predictability of all
participants. During night time (0-7 am), high predictability
is shown as 64) 4%, while the predictability of mealtime
(12-1 pm and 6-7 pm) shows low predictability as 39) 4%.
The result reveals the behavior tendency of human; that is,
human tends to return home at evening and spend night
time at home. Thus, the system may reduce relatively more
energy usage in night time than work hour.

In the remainder of this paper, we omit the analysis on U .
Instead, we focus on Um because our goal is to determine a

sensing schedule that is strictly connected to prediction
about residence time.

5.5 Mobility Prediction

We evaluated the performance of location-dependent and
location-independent predictors with time-aided scheme
and fallback mechanism. Here, we set the energy budget
infinite to eliminate the effect of energy constraints. We
defined three metrics: accuracy, energy reduction, and
efficiency. The predictor generates three outcomes: 1) The
predicted schedule correctly senses the change of location
within the error of mobility learning (correct prediction);
2) The predicted schedule misses the moment of location
change beyond the error range of mobility learning
(incorrect prediction); and 3) The predicted schedule is none,
since the current pattern has not been seen before (none-
prediction). The accuracy is defined as: ð1Þ

ð1Þþð2Þþð3Þ , and the
energy reduction is defined as

energy reduction ¼ 1( No: of sensing with prediction

No: of sensing in fixed interval
:

Since we assume that energy budget is infinite, accuracy
indicates the maximal accuracy of predictors, and the
energy reduction indicates the number of observed patterns
using each predictor. Energy reduction converges to zero as
the number of observed pattern increases. Finally, efficiency
is defined as

efficiency ¼ accuracy

1( energy reduction
:

The optimal way derives high accuracy and efficiency,
which means the predictor precisely senses a user’s
mobility with a minimum number of sensings.

Under the condition of an infinite energy budget, order-1
predictor uses all observed patterns at current location, while
high-order predictors use a sequential pattern of visited
locations. We found that, counterintuitively, using more
context (i.e., sequential patterns) is not efficient in predic-
tions about residence time at current place, as illustrated in
Fig. 12. Although high-order predictors used less energy
than order-1 predictors, they failed to predict many cases,
and their efficiency is also not significantly outperformed.
The result indicates that context about previously visited
locations (e.g., workplace or restaurant) does not help to
predict residence time at current places (e.g., home).

The none-prediction case also causes performance
deterioration of high-order predictors that contain about
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Fig. 11. The probability of most visited location during the correspond-
ing minute-long period. 0.66 at Tuesday 1 am means that participants
are located 66 percent of days in his/her most visited location at
Tuesday 1 am.

Fig. 12. The performance of Markov and NextPlace under the infinite
energy budget. The leftmost curves indicate better performance in
accuracy, energy reduction, and efficiency.Fig. 10. Potential predictability in participants’ mobility pattern. Higher

probability means that a user follows previously observed mobility
patterns. Prediction about location U contains more predictable
regularity than prediction about movement behavior Um.



35 percent none-prediction cases. To cover the effect of
none-prediction, we applied a fallback mechanism, which
uses the result of the low-order predictor if the high-order
predictor has no prediction [4]. Indeed, fallback improved
the accuracy and efficiency of high-order predictors as
illustrated in Fig. 13. The overall efficiency of high-order
predictors with fallback is higher than order-1 predictors,
but the accuracy of order-1 predictors significantly outper-
forms high-order predictors.

We investigated the accuracy of predictors according to
the type-of-places to explore the reason of incorrect
prediction. We defined three type-of-place according to
the number of visits: Top-2 places are the most visited two
locations (usually home and workplace); major places are
locations where a user visits more than three times; the
rest places are minor places. We found that location-
dependent predictor is robust in top 2 and major places,
and location-independent predictor outperforms location-
dependent one in minor places, as shown in Fig. 14. In case
of top 2 and major places, the location-dependent model
correctly predicts 82 percent of cases, while the location-
independent model generates 1.6 times higher incorrect
predictions. However, the location-independent model
correctly predicts about 5,200 cases of stay behavior in
minor places, which were missed in the Markov model
due to the small number of visits. In other words, the stay
duration in minor places is strongly correlated with arrival
time, but the stay duration in the top-2 places is dependent
on the place. Thus, we use location-independent predictors
as a fallback of location-dependent one to compensate the
none-prediction cases in minor places.

We applied temporal state to predictors to investigate
the correlation between human movement behavior and
temporal features. We quantized time in 24 (24 hour), 48

(24 hour! weekday=weekend), or 168 (24 hour! 7) buckets.
Then, the state of predictor forms location and time pairs.
The fallback mechanism reduces a two-dimensional state
(location, time) to one dimensional (location) if time-aided
Markov fails to predict. The assumption is that humans
tend to move with daily or weekly regularity. Fig. 15 shows
the performance of time-aided Markov predictors. The
accuracy of Oð1Þ Markov with 168-buckets was far from
Oð1Þ due to the insufficient number of observed patterns
(i.e., 49 percent none-prediction cases). Despite the smaller
number of sensings, time-aided predictor’s efficiency was
clearly higher than Oð1Þ. It meant that a time-aided
predictor accurately filtered the redundant patterns for
prediction about residence time. The use of 24 buckets
outperforms 48 buckets case in accuracy. The fallback
slightly increases the accuracy of a time-aided Markov
predictor.

Fig. 16 shows the performance of the best variants of
predictors. The accuracy of Oð1Þ Markov significantly
outperforms other predictors because of the numerous
samples. The time-aided Markov shows high efficiency
because it accurately filtered out redundant information
using temporal features. Considering the accuracy and
efficiency of predictors, we chose Oð1Þ Markov as the
accurate predictor and time-aided Oð1Þ Markov with
24 buckets as the high-efficiency predictor. In the following,
we evaluate the prediction-based adaptive duty cycling
with energy constraints.

5.6 Adaptive Duty Cycling

In this section, we investigate the cost and performance of
prediction-based adaptive duty cycling. We analyze the
sensitivity of parameters and the effectiveness of the
prediction method. We then show the energy consumption
and accuracy of the overall system.
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Fig. 14. Amount of correct prediction and incorrect prediction according
to the type-of-places.

Fig. 15. The performance of time-aided Markov under the infinite energy
budget.

Fig. 16. The performance of best variants of predictors under the infinite
energy budget.

Fig. 13. The performance of Markov and NextPlace predictors with
fallback under the infinite energy budget.



The proposed system splits the energy budget into two
parts: prediction and exception. The system automatically
derives a personalized exception ratio using the average of
daily predictability Um during two recent weeks. Fig. 17
illustrates the measured exception ratio of all participants.
The exception rate gradually decreases as the mobility data
increases. Since the proposed system automatically learns a
user’s mobility, the exception ratio will be adaptively
changed if a user changes her mobility pattern (e.g., change
jobs, or vacation).

We ran the emulation to evaluate the effectiveness of
the adaptive duty cycling with the following assumptions:
1) People use their smartphone for 28 hours with a single
battery charge, which is the average lifetime of typical
users’ smartphones [27]; and 2) the system correctly
recognizes revisited places. Fig. 18 describes two steps in
the emulation and three possible cases:

Case PRD. The predicted sensing schedule contains the
ground truth of a location change moment. Detection delay
is calculated using the first sensing moment after the
ground truth.

Case PRD-LRN. The system uses a fixed interval after the
predicted sensing schedule is finished.

Case LRN. The system uses a fixed interval because a
place does not have mobility history.

We use the following notations to evaluate the perfor-
mance of the prediction-based adaptive duty cycling:
N : Number of sensing events using Wi-Fi (cost).
D: Place detection delay in seconds (accuracy).

We do not explicitly state the number of GPS readings
because it is dependent on the location accuracy obtained in
sensing level 2.

We first present the computation time of core functions
in our algorithm. The computational complexity of adaptive
duty cycling is OðTEPRD þB log2ðEEXP ÞÞ, where T is the

maximal time in minutes among observed residence time,
EPRD is the energy budget for the prediction, EEXP is the
energy budget for the exception, and B is the number of
blank terms. The complexity is equal to the cost of filling a
T !EPRD array for dynamic programming and the cost of
finding a minimum blank term using a binary search. Here,
the complexity of finding entries of a Markov scheme is
Oð1Þ because we use a hash-table for it. Fig. 19 presents the
computation time on a Samsung Galaxy. The computation
time is less than 100 milliseconds in about 95 percent visits.
Such computation time is sufficient to process in real time,
without impeding users.

The energy budget constraint E is a major factor in
determining an optimal sensing schedule. SmartDC limits
the energy usage to less than the given energy budget.
Thus, a smaller E may derive more missed places due to the
limited sensing opportunity. The efficient usage of energy
involves maximizing the number of detected location
changes within smaller sensing delays. Fig. 20 shows the
results according to various energy budgets. We considered
the cases of PRD and PRD-LRN, but not the LRN case, since
the cost and performance of the LRN case is equal to the
learning scheme. Intuitively, a larger energy budget derives
smaller detection delays and more sensing events. In the
case of a 10 percent energy constraint, adaptive duty cycling
consumes only 41) 7% energy of the case using fixed
interval, and still detects 80 percent of location changes
within an additional 80) 12 seconds. In addition, time-
aided Oð1ÞMarkov consumes 72 percent energy of the Oð1Þ
Markov, and the delay of 80 percent of the location change
is negligible (i.e., about 15 seconds). The result reveals that
using temporal features is a more efficient way than using
all historical data for predictions.

The major reason for energy saving is that 1) people tend
to follow the observed pattern in mobility history, and
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Fig. 18. Two steps and three outputs in the emulation.

Fig. 19. The computation time for processing.

Fig. 20. The cost and performance according to various energy budgets.
The detection delay is additional delay compared to learning scheme.
Zero-second delay includes the cases that show less delay than for a
fixed interval of learning scheme (i.e., 2 minute).

Fig. 17. The average exception ratio of all participants. The exception
rate is gradually decreased as the mobility learning is continuous.



2) our system successfully allocates a given energy budget
based on individual mobility pattern. Fig. 21 shows the
correlation between detection delay and detected type (i.e.,
detection using EPRD or EEXP ). The detection using EPRD

derives a smaller delay (i.e., the leftmost curve in Fig. 21a).
In other words, the system detects a user’s movements
within a small delay when a user follows his/her previous
pattern. The result implicitly reveals that the system also
covers the randomness of a user’s movements by using
EEXP . The proposed system gradually decreases detection
delay as the collection period increases, as illustrated in
Fig. 21b. Indeed, the ratio of detection using EPRD increases
as the collection period increases.

Finally, we evaluated the performance of the overall
system including cases PRD, PRD-LRN, and LRN. Fig. 22
presents the energy usage ratio and detection delay.
Compared to a fixed time interval, the proposed system
consumes 46) 6% energy: 30) 5% of energy for adaptive
duty cycling and 15) 11% of energy for learning. The
system detects 90 percent of location change shows less
than about 156-seconds delay. Fig. 22a indicates that the

system reduces energy consumption as the collection period
increases because the system used prediction-based adap-
tive duty cycling instead of fixed time interval. Despite less
energy consumption, the detection delay in the last-half
period is similar to delay in the first-half period, as
illustrated in inset of Fig. 22b. This reveals that our system
successfully detected a user’s mobility using regular
patterns without additional delay. Consequently, the
proposed system is robust to monitor user’s mobility
accurately, regardless of the amount of learning data.

Fig. 23 shows the sensors’ activate time of a day among
collected data. Compared to the results from learning
schemes, the sensor active time is reduced based on the
predicted time of a location change. The sensing schedule
during nighttime specifically reveals that the proposed
system successfully predicts residence time at the revisited
places: it allocates EPRD around the office-going hour while
EEXP covers the nighttime (10 pm to 6 am). The average
usage time of Wi-Fi is 180) 55 minutes. The average energy
consumption for one day is 974) 352 J, which is 47 percent
less energy consumption than learning schemes without
prediction.

Fig. 24 shows the comparison of energy usage among
the related systems. In sensor usage aspects, the proposed
system consumes 81 percent less energy than the periodic
sensing schemes without accelerometer [16], and 87 percent
less energy than a scheme that employs context-aware
sensing [9], while additional detection delay is about
150 seconds. When a user uses a smartphone for 28 hours
with single battery charge [27], the expected battery
lifetime of the proposed system is 26:4) 0:5 hours, which
is 6.6 hours longer than the lifetime of related systems (i.e.,
19:8) 2:1 hours). The major factors for energy saving are
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Fig. 22. (a) The energy usage ratio to fixed time interval and
(b) detection delay. Zero-second delay includes the LRN cases.

Fig. 23. Sensor active time of prediction-based adaptive duty cycling. The diary indicates the ground truth of mobility.

Fig. 24. Daily energy usage. To estimate the energy usage of related
systems, we utilized our energy profile and sensing policy in [9], [16].
The detailed sensing policy is presented in Table 1. The optimal case
uses a manual sensing by a user. Inset indicates the daily energy usage
without GPS.

Fig. 21. The delay and detected type of all participants in (a) CDF and
(b) according to collection period. The detection delay derived from
EPRD is significantly shorter than the delay derived from EEXP .



1) adaptive duty cycling based on mobility prediction, and
2) multiple sensing levels to reuse location information
without activating power-intensive sensors. Without en-
ergy consumption on GPS for path tracking, our approach
still consumes 38 percent less energy than the periodic
sensing schemes, and 70 percent less energy than context-
aware schemes, as shown in the inset of Fig. 24.

In summary, our approach successfully saves energy for
everyday location monitoring, and detects 90 percent of
location changes within a 150-second delay, depending on
given energy constraints and individual mobility patterns.
The effectiveness of such delays depends on the applica-
tion. This delay is viable in applications that use human
mobility patterns, such as social applications, healthcare
applications, environment-related applications, epidemics,
and urban planning. Applications requiring sensitive
delays, such as reminder applications and advertisement
services, are minimally affected by such delays. While the
proposed system uses shorter time intervals for reducing
detection delays, the system still contributes to minimizing
energy consumption through prediction-based adaptive
duty cycling.

6 CONCLUSION

In this paper, we proposed SmartDC to solve the energy
issue of continuous sensing in real deployments. To the best
of our knowledge, we are the first to implement a practical
system that simultaneously performs mobility learning and
prediction for everyday location monitoring, based on off-
the-shelf smartphones. We designed sensing levels and an
adaptive duty cycle using MDP with automatically col-
lected mobility data. We evaluated various mobility
predictors for prediction of residence time in practice. The
experiments show that our approach saves 81 to 87 percent
energy over previous work, while its place detection delay
is increased by approximately 160 seconds. Such energy
saving resulted in about 6-hours-longer lifetime in a day.
We believe that our approach can be used as a building
block toward expanding the domain of mobile services and
to gathering individual human mobility patterns for
research purposes. In addition, our prediction-based ap-
proach is suitable for a wide range of emerging mobile
applications related to the temporal predictability.
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