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Preface

The main goal of this book is to introduce the reader to the use of R as a tool for
performing data mining. R is a freely downloadable1 language and environment
for statistical computing and graphics. Its capabilities and the large set of
available packages make this tool an excellent alternative to the existing (and
expensive!) data mining tools.

One of the key issues in data mining is size. A typical data mining problem
involves a large database from where one seeks to extract useful knowledge. In
this book we will use MySQL as the core database management system. MySQL
is also freely available2 for several computer platforms. This means that you
will be able to perform “serious” data mining without having to pay any money
at all. Moreover, we hope to show you that this comes with no compromise in
the quality of the obtained solutions. Expensive tools do not necessarily mean
better tools! R together with MySQL form a pair very hard to beat as long as
you are willing to spend some time learning how to use them. We think that it
is worthwhile, and we hope that you are convinced as well at the end of reading
this book.

The goal of this book is not to describe all facets of data mining processes.
Many books exist that cover this area. Instead we propose to introduce the
reader to the power of R and data mining by means of several case studies.
Obviously, these case studies do not represent all possible data mining problems
that one can face in the real world. Moreover, the solutions we describe can
not be taken as complete solutions. Our goal is more to introduce the reader
to the world of data mining using R through pratical examples. As such our
analysis of the cases studies has the goal of showing examples of knowledge
extraction using R, instead of presenting complete reports of data mining case
studies. They should be taken as examples of possible paths in any data mining
project and can be used as the basis for developping solutions for the reader’s
data mining projects. Still, we have tried to cover a diverse set of problems
posing different challenges in terms of size, type of data, goals of analysis and
tools that are necessary to carry out this analysis.

We do not assume any prior knowledge about R. Readers that are new to
R and data mining should be able to follow the case studies. We have tried
to make the different case studies self-contained in such a way that the reader
can start anywhere in the document. Still, some basic R functionalities are
introduced in the first, simpler, case studies, and are not repeated, which means
that if you are new to R, then you should at least start with the first case

1Download it from http://www.R-project.org.
2Download it from http://www.mysql.com.
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studies to get acquainted with R. Moreover, the first chapter provides a very
short introduction to R basics, which may facilitate the understanding of the
following chapters. We also do not assume any familiarity with data mining
or statistical techniques. Brief introductions to different modeling approaches
are provided as they are necessary in the case studies. It is not an objective
of this book to provide the reader with full information on the technical and
theoretical details of these techniques. Our descriptions of these models are
given to provide basic understanding on their merits, drawbacks and analysis
objectives. Other existing books should be considered if further theoretical
insights are required. At the end of some sections we provide “Further readings”
pointers for the readers interested in knowing more on the topics. In summary,
our target readers are more users of data analysis tools than researchers or
developers. Still, we hope the latter also find reading this book useful as a form
of entering the “world” of R and data mining.

The book is accompanied by a set of freely available R source files that can
be obtained at the book Web site3. These files include all the code used in the
case studies. They facilitate the “do it yourself” philosophy followed in this
document. We strongly recommend that readers install R and try the code as
they read the book. All data used in the case studies is available at the book
Web site as well.

3http://www.liacc.up.pt/~ltorgo/DataMiningWithR/.
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Chapter 1

Introduction

R is a language and an environment for statistical computing. It is similar to
the S language developed at AT&T Bell Laboratories by Rick Becker, John
Chambers and Allan Wilks. There are versions of R for the Unix, Windows Architectures and

operating systems on

which R runs

and Mac families of operating systems. Moreover, R runs on different computer
architectures like Intel, PowerPC, Alpha systems and Sparc systems. R was
initially developed by Ihaka and Gentleman (1996) both from the University
of Auckland, New Zealand. The current development of R is carried out by a
core team of a dozen people from different institutions around the world. R
development takes advantage of a growing community that cooperates in its
development due to its open source philosophy. In effect, the source code of
every R component is freely available for inspection and/or adaptation. There
are many critics to the open source model. Most of them mention the lack of
support as the main drawback of open source software. It is certainly not the
case with R! There are many excellent documents, books and sites that provide
free information on R. Moreover, the excellent R-help mailing list is a source
of invaluable advice and information, much better then any amount of money
could ever buy! There are also searchable mailing lists archives1 that you can
use before posting a question.

Data Mining has to do with the discovery of useful, valid, unexpected and What is Data

Mining?understandable knowledge from data. These general objectives are obviously
shared by other disciplines like statistics, machine learning or pattern recogni-
tion. One of the most important distinguishing issues in data mining is size.
With the advent of computer technology and information systems, the amount
of data available for exploration has increased exponentially. This poses difficult
challenges to the standard data analysis disciplines: one has to consider issues
like computational efficiency, limited memory resources, interfaces to databases,
etc. All these issues turn data mining into a highly interdisciplinary subject in-
volving tasks not only of typical data analysts but also of people working with
databases, data visualization on high dimensions, etc.

R has limitations with handling enormous datasets because all computation
is carried out in the main memory of the computer. This does not mean that
we will not be able to handle these problems. Taking advantage of the highly
flexible database interfaces available in R, we will be able to perform data mining

1http://maths.newcastle.edu.au/~rking/R/.
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2 INTRODUCTION

on large problems. Being faithful to the Open Source philosophy we will use the
excellent MySQL database management system2. MySQL is also available for aThe MySQL DBMS

quite large set of computer platforms and operating systems. Moreover, R has
a package that enables an easy interface to MySQL (package “RMySQL”).

In summary, we hope that at the end of reading this book you are convinced
that you can do data mining on large problems without having to spend any
money at all! That is only possible due to the generous and invaluable contri-
bution of lots of scientists that build such wonderful tools as R and MySQL.

1.1 How to read this book?

The main spirit behind the book is:

Learn by doing it!

The book is organized as a set of case studies. The “solutions” to these
case studies are obtained using R. All necessary steps to reach the solutions
are described. Using the book Web site3 you may get all code included inCheck the book Web

site! the document, as well as all data of the case studies. This should facilitate
trying them out by yourself. Ideally, you should read this document beside your
computer and try every step as it is presented to you in the document. R code
is shown in the book using the following font,

> R.version

platform i686-pc-linux-gnu
arch i686
os linux-gnu
system i686, linux-gnu
status
major 1
minor 7.0
year 2003
month 04
day 16
language R

R commands are entered at R command prompt, “>”. Whenever you see this
prompt you may interpret it as R being waiting for you to enter a command.
You type in the commands at the prompt and then press the enter key to ask
R to execute them. This usually produces some form of output (the result of
the command) and then a new prompt appears. At the prompt you may use the
up arrow key to browse to previously entered commands. This is handy when
you want to type commands similar to what you have done before as you avoid
typing them again.

Still, you may take advantage of the code provided at the book Web site to
cut and paste between your browser and the R console, thus avoiding having to
type all commands described in the book. This will surely facility your learning,
and improve your understanding of its potential.

2Free download at http://www.mysql.com.
3http://www.liacc.up.pt/~ltorgo/DataMiningWithR/.
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1.2 A short introduction to R 3

1.2 A short introduction to R

The goal of this section is to provide a brief introduction to the key issues of the
R language. We do not assume any familiarity with computer programming.
Every reader should be able to follow the examples presented on this section.
Still, if you feel some lack of motivation for continuing reading this introductory
material do not worry. You may proceed to the case studies and then return to
this introduction as you get more motivated by the concrete applications.

R is a functional language for statistical computation and graphics. It can
be seen as a dialect of the S language (developed at AT&T) for which John
Chambers was awarded the 1998 Association for Computing Machinery (ACM)
Software award which mentioned that this language “forever altered how people
analyze, visualize and manipulate data”.

R can be quite useful just by using it in an interactive fashion. Still more
advanced uses of the system will lead the user to develop his own functions to
systematize repetitive tasks, or even to add or change some functionalities of
the existing add-on packages, taking advantage of being open source.

1.2.1 Starting with R

In order to install R in your system the easiest way is to obtain a binary distri- Downloading R

bution from the R Web site4 where you may follow the link that takes you to the
CRAN (Comprehensive R Archive Network) site to obtain, among other things,
the binary distribution for your particular operating system/architecture. If
you prefer to build R directly from the sources you may get instructions on how
to do it from CRAN.

After downloading the binary distribution for your operating system you just
need to follow the instructions that come with it. In the case of the Windows Installing R

version, you simply execute the downloaded file (rw1061.exe)5 and select the
options you want in the following menus. In the case of Unix-like operating
systems you should contact your system administrator to fulfill the installation
task as you will probably not have permissions for that.

To run R in Windows you simply double click the appropriate icon on your Starting R

desktop, while in Unix versions you should type R at the operating system
prompt. Both will bring up the R console with its prompt “>”.

If you want to quit R you may issue the command q() at the prompt. You Quitting R

will be asked if you want to save the current workspace. You should answer yes
only if you want to resume your current analysis at the point you are leaving it,
later on.

Although the set of tools that comes with R is by itself quite powerful, it
is only natural that you will end up wanting to install some of the large (and Installing add-on

packagesgrowing) set of add-on packages available for R at CRAN. In the Windows
version this is easily done through the “Packages” menu. After connecting
your computer to the Internet you should select the “Install package from
CRAN...” option from this menu. This option will present a list of the packages
available at CRAN. You select the one(s) you want and R will download the
package(s) and self-install it(them) on your system. In Unix versions things

4http://www.R-project.org.
5The actual name of the file may change with newer versions. This is the name for version

1.6.1.
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4 INTRODUCTION

are slightly different as R is a console program without any menus. Still the
operation is simple. Suppose you want to download the package that provides
functions to connect to MySQL databases. This package name is RMySQL6. You
just need to type the following two commands at R prompt:

> options(CRAN=’http://cran.r-project.org’)
> install.package(‘‘RMySQL’’)

The first instruction sets the option that determines the site from where the
packages will be downloaded. Actually, this instruction is not necessary as this
is the default value of the CRAN option. Still, you may use such an instruction
for selecting a nearest CRAN mirror7. The second instruction performs the
actual downloading and installation of the package8.

If you want to known the packages currently installed in your distribution
you may issue,

> installed.packages()

This produces a long output with each line containing a package, its version
information, the packages it depends on, and so on. Another useful command
is the following, which allows you to check whether there are newer versions of
your installed packages at CRAN,

> old.packages()

Moreover, you may use the following command to update all your installed
packages9,

> update.packages()

R has an integrated help system that you can use to know more about theGetting help in R

system and its functionalities. Moreover, you can find extra documentation at
the R site (http://www.r-project.org). R comes with a set of HTML files that
can be read using a Web browser. On Windows versions of R these pages are ac-
cessible through the help menu. Alternatively, you may issue “help.start()”
at the prompt to launch the HTML help pages. Another form of getting help is
to use the help() function. For instance, if you want some help on the plot()
function you can enter the command “help(plot)” (or in alternative ?plot). In
this case, if the HTML viewer is running the help will be shown there, otherwise
it will appear in the R console as text information.

6You can get an idea of the functionalities of each of the R packages in the R FAQ (frequently
asked questions) at CRAN.

7The list of available mirrors can be found at http://cran.r-project.org/mirrors.html.
8Please notice that to carry out these tasks on Unix systems you will most surely need to

have root permissions, so the best is to ask you system administrator to do the installation.
Still, it is also possible to download and install the packages on your personal home directory
(consult the R help facilites to check how).

9You need root permissions in Linux distributions to do this.

(DRAFT - May 22, 2003)
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1.2.2 R objects

R is an object-oriented language. All variables, data, functions, etc. are stored
in the memory of the computer in the form of named objects. By simply typing
the name of an object at the R prompt one can see its contents. For example,
if you have a data object named x with the value 945, typing its name at the
prompt would show you its value,

> x
[1] 945

The rather cryptic “[1]” in front of the number 945 can be read as “this
line is showing values starting from the first element of the object”. This is
particularly useful for objects containing several values like vectors, as we will
see later.

Values may be assigned to objects using the assignment operator. This The assignment

operatorconsists of either an angle bracket followed by a minus sign (<-), or a minus
sign followed by an angle bracket (->). Below you may find two alternative and
equivalent forms of assigning a value to the object y10,

> y <- 39
> y
[1] 39
> 43 -> y
> y
[1] 43

You may also assign numerical expressions to an object. In this case the
object will store the result of the expression,

> z <- 5
> w <- z^2
> w
[1] 25
> i <- (z*2 + 45)/2
> i
[1] 27.5

Whenever, you want to assign an expression to an object and then printout
the result (as in the previous small examples), you may alternatively surround
the assignment statement in parentheses:

> (w <- z^2)
[1] 25

You do not need to assign the result of an expression to an object. In effect,
you may use R prompt as a kind of calculator,

> (34 + 90)/12.5
[1] 9.92

(DRAFT - May 22, 2003)



6 INTRODUCTION

Every object you create will stay in the computer memory until you delete
it. You may list the objects currently in the memory by issuing the ls() or Listing and deleting

objectsobjects() commands at the prompt. If you do not need an object you may
free some memory space by removing it,

> ls()
[1] "i" "w" "y" "z"
> rm(y)
> rm(z,w,i)

Object names may consist of any upper and lower-case letters, the digits 0-9Valid object names

(except in the beginning of the name), and also the period, “.”, which behaves
like a letter but may not appear at the beginning of the name (as digits). Note
that names in R are case sensitive, meaning that Color and color are two
distinct objects.
Important Note: In R you are not allowed to use the underscore character
(“ ”) in object names.11

1.2.3 Vectors

The most basic data object in R is a vector. Even when you assign a single
number to an object (like in x <- 45.3) you are creating a vector containing a
single element. All data objects have a mode and a length. The mode determines
the kind of data stored in the object. It can take the values character, logical,Types of vectors

numeric or complex. Thus you may have vectors of characters, logical values
(T or F or FALSE or TRUE)12, numbers, and complex numbers. The length of an
object is the number of elements in it, and can be obtained with the function
length().

Most of the times you will be using vectors with length larger than 1. You
may create a vector in R , using the c() function,Creating vectors

> v <- c(4,7,23.5,76.2,80)
> v
[1] 4.0 7.0 23.5 76.2 80.0
> length(v)
[1] 5
> mode(v)
[1] "numeric"

All elements of a vector must belong to the same mode. If that is not true
R will force it by type coercion. The following is an example of this,Type coercion

> v <- c(4,7,23.5,76.2,80,"rrt")
> v
[1] "4" "7" "23.5" "76.2" "80" "rrt"

10Notice how the assignment is a destructive operation (previous stored values in an object
are discarded by new assignments).

11This is a common cause of frustration for experienced programmers as this is a character
commonly used in other languages.

12Recall that R is case-sensitive, thus, for instance, True is not a valid logical value.

(DRAFT - May 22, 2003)
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All elements of the vector have been converted to character mode. Character
values are strings of characters surrounded by either single or double quotes.

All vectors may contain a special value named NA. This represents a missing
value, Missing values

> v <- c(NA,"rrr")
> v
[1] NA "rrr"
> u <- c(4,6,NA,2)
> u
[1] 4 6 NA 2
> k <- c(T,F,NA,TRUE)
> k
[1] TRUE FALSE NA TRUE

You may access a particular element of a vector through an index, Accessing individual

elements

> v[2]
[1] "rrr"

You will learn in Section 1.2.7 that we may use vectors of indexes to obtain
more powerful indexing schemes.

You may also change the value of one particular vector element, Changing an element

> v[1] <- ’hello’
> v
[1] "hello" "rrr"

R allows you to create empty vectors like this, Empty vectors

> v <- vector()

The length of a vector may be changed by simply adding more elements to it Adding more

elementsusing a previously nonexistent index. For instance, after creating empty vector
v you could type,

> v[3] <- 45
> v
[1] NA NA 45

Notice how the first two elements have an unknown value, NA.
To shrink the size of a vector you can use the assignment operation. For Removing elements

instance,

> v <- c(45,243,78,343,445,645,2,44,56,77)
> v
[1] 45 243 78 343 445 645 2 44 56 77
> v <- c(v[5],v[7])
> v
[1] 445 2

Through the use of more powerful indexing schemes to be explored in Section
1.2.7 you will be able delete particular elements of a vector in an easier way.

(DRAFT - May 22, 2003)



8 INTRODUCTION

1.2.4 Vectorization

One of the most powerful aspects of the R language is the vectorization of several
of its available functions. These functions operate directly on each element of a
vector. For instance,

> v <- c(4,7,23.5,76.2,80)
> x <- sqrt(v)
> x
[1] 2.000000 2.645751 4.847680 8.729261 8.944272

The function sqrt() calculates the square root of its argument. In this
case we have used a vector of numbers as its argument. Vectorization leads the
function to produce a vector of the same length, with each element resulting
from applying the function to every element of the original vector.

You may also use this feature of R to carry out vector arithmetic,Vector arithmetic

> v1 <- c(4,6,87)
> v2 <- c(34,32.4,12)
> v1+v2
[1] 38.0 38.4 99.0

What if the vectors do not have the same length? R will use a recycling ruleThe recycling rule

by repeating the shorter vector till it fills in the size of the larger. For example,

> v1 <- c(4,6,8,24)
> v2 <- c(10,2)
> v1+v2
[1] 14 8 18 26

It is just as if the vector c(10,2) was c(10,2,10,2). If the lengths are not
multiples than a warning is issued,

> v1 <- c(4,6,8,24)
> v2 <- c(10,2,4)
> v1+v2
[1] 14 8 12 34
Warning message:
longer object length

is not a multiple of shorter object length in: v1 + v2

Still, the recycling rule has been used, and the operation is carried out (it is
a warning, not an error!).

As mentioned before single numbers are represented in R as vectors of length
1. This is very handy for operations like the one shown below,

> v1 <- c(4,6,8,24)
> 2*v1
[1] 8 12 16 48

Notice how the number 2 (actually the vector c(2)!) was recycled, resulting
in multiplying all elements of v1 by 2. As we will see, this recycling rule is also
applied with other objects, like arrays and matrices.

(DRAFT - May 22, 2003)



1.2 A short introduction to R 9

1.2.5 Factors

Factors provide an easy and compact form of handling categorical (nominal)
data. Factors have levels which are the possible values they may take. A factor
is stored internally by R as a numeric vector with values 1,2,. . . ,k, where k is the
number of levels of the factor. Factors are particularly useful in datasets where
you have nominal variables with a fixed number of possible values. Several
graphical and summarization functions that we will explore in later chapters
take advantage of this information.

Let us see how to create factors in R. Suppose you have a vector with the
sex of 10 individuals,

> g <- c(’f’,’m’,’m’,’m’,’f’,’m’,’f’,’m’,’f’,’f’)
> g
[1] "f" "m" "m" "m" "f" "m" "f" "m" "f" "f"

You can transform this vector into a factor by entering, Creating a factor

> g <- factor(g)
> g
[1] f m m m f m f m f f
Levels: f m

Notice that you do not have a character vector anymore. Actually, as men-
tioned above, factors are represented internally as numeric vectors13. In this
example, we have two levels, ’f’ and ’m’, which are represented internally as 1
and 2, respectively.

Suppose you have 4 extra individuals whose sex information you want to
store in another factor object. Suppose that they are all males. If you still want
the factor object to have the same two levels as object g, you may issue the
following,

> other.g <- factor(c(’m’,’m’,’m’,’m’,’m’),levels=c(’f’,’m’))
> other.g
[1] m m m m m
Levels: f m

Without the levels argument the factor other.g would have a single level
(’m’).

One of the many things you can do with factors is to count the occurrence Frequency tables for

factorsof each possible value. Try this,

> table(g)
g
f m
5 5
> table(other.g)
other.g
f m
0 5

13You may confirm it by typing mode(g).

(DRAFT - May 22, 2003)
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The table() function can also be used to obtain cross-tabulation of several
factors. Suppose that we have in another vector the age category of the 10
individuals stored in vector g. You could cross tabulate these two vectors as
follows,

> a <- factor(c(’adult’,’adult’,’juvenile’,’juvenile’,’adult’,’adult’,

+ ’adult’,’juvenile’,’adult’,’juvenile’))

> table(a,g)

g

a f m

adult 4 2

juvenile 1 3

Notice how we have introduced a long command in several lines. If you
hit the “return” key before ending some command, R presents a continuation
prompt (the “+” sign) for you to complete the instruction.

Sometimes we wish to calculate the marginal and relative frequencies for this
type of tables. The following gives you the totals for both the sex and the age
factors of this data,

> t <- table(a,g)
> margin.table(t,1)
a

adult juvenile
6 4

> margin.table(t,2)
g
f m
5 5

For relative frequencies with respect to each margin and overall we do,

> prop.table(t,1)
g

a f m
adult 0.6666667 0.3333333
juvenile 0.2500000 0.7500000

> prop.table(t,2)
g

a f m
adult 0.8 0.4
juvenile 0.2 0.6

> prop.table(t)
g

a f m
adult 0.4 0.2
juvenile 0.1 0.3

Notice that if we wanted percentages instead we could simply multiply these
function calls by 100.
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1.2.6 Generating sequences

R has several facilities to generate different types of sequences. For instance,
if you want to create a vector containing the integers between 1 and 1000, youInteger sequences

can simply type,

> x <- 1:1000

which creates a vector x containing 1000 elements, the integers from 1 to 1000.
You should be careful with the precedence of the operator “:”. The following

examples illustrate this danger,

> 10:15-1
[1] 9 10 11 12 13 14
> 10:(15-1)
[1] 10 11 12 13 14

Please make sure you understand what happened in the first command (re-
member the recycling rule!).

You may also generate decreasing sequences like the following,

> 5:0
[1] 5 4 3 2 1 0

To generate sequences of real numbers you can use the function seq(). The Sequences of real

numbersinstruction

> seq(-4,1,0.5)
[1] -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

generates a sequence of real numbers between -4 and 1 in increments of 0.5.
Here are a few other examples of the use of the function seq()14,

> seq(from=1,to=5,length=4)
[1] 1.000000 2.333333 3.666667 5.000000
> seq(from=1,to=5,length=2)
[1] 1 5
> seq(length=10,from=-2,by=.2)
[1] -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2

Another very useful function to generate sequences is the function rep(), Sequences with

repeated elements
> rep(5,10)
[1] 5 5 5 5 5 5 5 5 5 5
> rep(’hi’,3)
[1] "hi" "hi" "hi"
> rep(1:3,2)
[1] 1 2 3 1 2 3

The function gl() can be used to generate sequences involving factors. The Factor sequences

syntax of this function is gl(k,n), where k is the number of levels of the factor,
and n the number of repetitions of each level. Here are two examples,

14You may want to have a look at the help page of the function (typing for instance ’?seq’),
to better understand its arguments and variants.
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> gl(3,5)

[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Levels: 1 2 3

> gl(2,5,labels=c(’female’,’male’))

[1] female female female female female male male male male male

Levels: female male

Finally, R has several functions that can be used to generate random se-
quences according to a large set of probability density functions. The func-Random sequences

tions have the generic structure rfunc(n, par1, par2, ...), where func is
the name of the density function, n is the number of data to generate, and
par1, par2, ... are the values of some parameters of the density function
that may be necessary. For instance, if you want 10 randomly generated num-
bers from a normal distribution with zero mean and unit standard deviation,
type

> rnorm(10)

[1] -0.306202028 0.335295844 1.199523068 2.034668704 0.273439339

[6] -0.001529852 1.351941008 1.643033230 -0.927847816 -0.163297158

while if you prefer a mean of 10 and a standard deviation of 3, you should use

> rnorm(10,mean=10,sd=3)

[1] 7.491544 12.360160 12.879259 5.307659 11.103252 18.431678 9.554603

[8] 9.590276 7.133595 5.498858

To get 5 numbers drawn randomly from a Student t distribution with 10
degrees of freedom, type

> rt(5,df=10)
[1] -0.46608438 -0.44270650 -0.03921861 0.18618004 2.23085412

R has many more probability functions, as well as other functions for ob-
taining the probability densities, the cumulative probability densities and the
quantiles of these distributions.

1.2.7 Indexing

We have already seen examples on how to get one element of a vector by in-
dicating its position between square brackets. R also allows you to use vectors
within the brackets. There are several types of index vectors. Logical index
vectors extract the elements corresponding to true values. Let us see a concreteLogical index vectors

example.

> x <- c(0,-3,4,-1,45,90,-5)
> x
[1] 0 -3 4 -1 45 90 -5
> x > 0
[1] FALSE FALSE TRUE FALSE TRUE TRUE FALSE
> y <- x>0

The third instruction of the code shown above is a logical condition. As x is
a vector, the comparison is carried out for all elements of the vector (remember
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the famous recycling rule!), thus producing a vector with as many logical values
as there are elements in x. We then store this logical vector in object y. You
can now obtain the positive elements in x using this vector y as a logical index
vector,

> x[y]
[1] 4 45 90

As the truth elements of vector y are in the 3rd, 5th and 6th positions, this
corresponds to extracting these elements from x.

Incidentally, you could achieve the same result by just issuing,

> x[x>0]
[1] 4 45 90

Taking advantage of the logical operators available in R you may use more
complex logical index vectors, as for instance,

> x[x <= -2 | x > 5]
[1] -3 45 90 -5
> x[x > 40 & x < 100]
[1] 45 90

As you may have guessed, the “|” operator performs logical disjunction,
while the “&” operator is used for logical conjunction. This means that the first
instruction shows us the elements of x that are either less or equal to -2, or
greater than 5. The second example presents the elements of x that are both
greater than 40 and less than 100.

R also allows you to use a vector of integers to extract elements from a vector. Integer index vectors

The numbers in this vector indicate the positions in the original vector to be
extracted,

> x[c(4,6)]
[1] -1 90
> x[1:3]
[1] 0 -3 4

Alternatively, you may use a vector with negative indexes, to indicate which Negative integer

index vectorselements are to be excluded from the selection,

> x[-1]
[1] -3 4 -1 45 90 -5
> x[-c(4,6)]
[1] 0 -3 4 45 -5
> x[-(1:3)]
[1] -1 45 90 -5

Note the need for parentheses in the last example due to the precedence of
the “:” operator.

Indexes may also be formed by a vector of character strings taking advantage Character string

index vectorsof the fact that R allows you to name the elements of a vector, through the func-
tion names(). Named elements are sometimes preferable because their positions
are easier to memorize. For instance, imagine you have a vector of measure-
ments of a chemical parameter obtained on 5 different places. You could create
a named vector as follows,
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> pH <- c(4.5,7,7.3,8.2,6.3)
> names(pH) <- c(’area1’,’area2’,’mud’,’dam’,’middle’)
> pH
area1 area2 mud dam middle
4.5 7.0 7.3 8.2 6.3

The vector pH can now be indexed by using these names,

> pH[’mud’]
mud
7.3
> pH[c(’area1’,’dam’)]
area1 dam
4.5 8.2

Finally, indexes may be empty, meaning that all elements are selected.Empty indexes

For instance, if you want to fill in a vector with zeros you could simply do
“x[] <- 0”. Please notice that this is different from doing “x <- 0”. This
latter case would assign to x a vector with one single element (zero), while the
former (assuming that x exists before of course!) will fill in all current elements
of x with zeros. Try both!

1.2.8 Matrices and arrays

Data elements can be stored in an object with more than one dimension. This
may be useful in several situations. Arrays arrange data elements in several
dimensions. Matrices are a special case of arrays with two single dimensions.
Arrays and matrices in R are nothing more than vectors with a particular at-
tribute which is the dimension. Let us see an example. Suppose you have the
vector of numbers c(45,23,66,77,33,44,56,12,78,23). The following would
“organize” these 10 numbers as a matrix,

> m <- c(45,23,66,77,33,44,56,12,78,23)
> m
[1] 45 23 66 77 33 44 56 12 78 23
> dim(m) <- c(2,5)
> m

[,1] [,2] [,3] [,4] [,5]
[1,] 45 66 33 56 78
[2,] 23 77 44 12 23

Notice how the numbers were “spread” through a matrix with 2 rows and
5 columns (the dimension we have assigned to m using the dim() function).
Actually, you could simply create the matrix using the simpler instruction,Creating a matrix

> m <- matrix(c(45,23,66,77,33,44,56,12,78,23),2,5)

You may have noticed that the vector of numbers was spread in the matrix
by columns, i.e. first fill in the first column, then the second, and so on. You
may fill the matrix by rows using the following command,

(DRAFT - May 22, 2003)



1.2 A short introduction to R 15

> m <- matrix(c(45,23,66,77,33,44,56,12,78,23),2,5,byrow=T)
> m

[,1] [,2] [,3] [,4] [,5]
[1,] 45 23 66 77 33
[2,] 44 56 12 78 23

As the visual display of matrices suggests you may access the elements of a Accessing matrix

elementsmatrix through a similar indexing schema as in vectors, but this time with two
indexes (the dimensions of a matrix),

> m[2,2]
[1] 56

You may take advantage of the indexing schemes described in Section 1.2.7
to extract elements of a matrix, as the following examples show,

> m[-2,2]
[1] 23
> m[1,-c(3,5)]
[1] 45 23 77

Moreover, if you omit any dimension you obtain full columns or rows of the
matrix,

> m[1,]
[1] 45 23 66 77 33
> m[,4]
[1] 77 78

Functions cbind() and rbind() may be used to join together two or more Joining vectors and

matricesvectors or matrices, by columns or by rows, respectively. The following examples
should illustrate this,

> m1 <- matrix(c(45,23,66,77,33,44,56,12,78,23),2,5)

> m1

[,1] [,2] [,3] [,4] [,5]

[1,] 45 66 33 56 78

[2,] 23 77 44 12 23

> cbind(c(4,76),m1[,4])

[,1] [,2]

[1,] 4 56

[2,] 76 12

> m2 <- matrix(rep(10,50),10,5)

> m2

[,1] [,2] [,3] [,4] [,5]

[1,] 10 10 10 10 10

[2,] 10 10 10 10 10

[3,] 10 10 10 10 10

[4,] 10 10 10 10 10

[5,] 10 10 10 10 10

[6,] 10 10 10 10 10

[7,] 10 10 10 10 10

[8,] 10 10 10 10 10

[9,] 10 10 10 10 10

[10,] 10 10 10 10 10

> m3 <- rbind(m1[1,],m2[5,])
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> m3

[,1] [,2] [,3] [,4] [,5]

[1,] 45 66 33 56 78

[2,] 10 10 10 10 10

Arrays are extensions of matrices to more than two dimensions. This means
that they have more than two indexes. Apart from this they are similar to
matrices, and can be used in the same way. Similar to the matrix() function
there is a array() function to facilitate the creation of arrays. The following isCreating an array

an example of its use,

> a <- array(1:50,dim=c(2,5,5))

> a

, , 1

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

, , 2

[,1] [,2] [,3] [,4] [,5]

[1,] 11 13 15 17 19

[2,] 12 14 16 18 20

, , 3

[,1] [,2] [,3] [,4] [,5]

[1,] 21 23 25 27 29

[2,] 22 24 26 28 30

, , 4

[,1] [,2] [,3] [,4] [,5]

[1,] 31 33 35 37 39

[2,] 32 34 36 38 40

, , 5

[,1] [,2] [,3] [,4] [,5]

[1,] 41 43 45 47 49

[2,] 42 44 46 48 50

You may use the usual indexing schemes to access elements of an array.Accessing elements

of arrays Make sure you understand the following examples,

> a[1,5,2]

[1] 19

> a[1,,4]

[1] 31 33 35 37 39

> a[1,3,]

[1] 5 15 25 35 45

> a[,c(3,4),-4]

, , 1

[,1] [,2]

[1,] 5 7

[2,] 6 8

, , 2
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[,1] [,2]

[1,] 15 17

[2,] 16 18

, , 3

[,1] [,2]

[1,] 25 27

[2,] 26 28

, , 4

[,1] [,2]

[1,] 45 47

[2,] 46 48

> a[1,c(1,5),-c(4,5)]

[,1] [,2] [,3]

[1,] 1 11 21

[2,] 9 19 29

The recycling and arithmetic rules also apply to matrices and arrays. See
the following small examples of this,

> m <- matrix(c(45,23,66,77,33,44,56,12,78,23),2,5)

> m

[,1] [,2] [,3] [,4] [,5]

[1,] 45 66 33 56 78

[2,] 23 77 44 12 23

> m*3

[,1] [,2] [,3] [,4] [,5]

[1,] 135 198 99 168 234

[2,] 69 231 132 36 69

> m1 <- matrix(c(45,23,66,77,33,44),2,3)

> m1

[,1] [,2] [,3]

[1,] 45 66 33

[2,] 23 77 44

> m2 <- matrix(c(12,65,32,7,4,78),2,3)

> m2

[,1] [,2] [,3]

[1,] 12 32 4

[2,] 65 7 78

> m1+m2

[,1] [,2] [,3]

[1,] 57 98 37

[2,] 88 84 122

Vectorization works in an element by element fashion as mentioned before.
If some of the operands is shorter than the others, it is recycled. Still, R also
includes operators and functions for standard matrix algebra that has different
rules. You may obtain more information on this by looking at Section 5 of the
document “An Introduction to R” that comes with R.

1.2.9 Lists

R lists consist of an ordered collection of other objects known as its components.
These components do not need to be of the same type, mode or length. The
components of a list are always numbered and may also have a name attached
to them. Let us start by seeing a simple example of creating a list, Creating a list
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> my.lst <- list(stud.id=34453,
+ stud.name="John",
+ stud.marks=c(14.3,12,15,19))

The object my.lst is formed by three components. One is a number and
has the name stud.id, other is a string character having the name stud.name,
and the third is a vector of numbers with name stud.marks.

To show the contents of a list you simply type is name as any other object,

> my.lst
$stud.id
[1] 34453

$stud.name
[1] "John"

$stud.marks
[1] 14.3 12.0 15.0 19.0

You may extract individual elements of lists using the following indexingExtracting elements

of a list schema,

> my.lst[[1]]
[1] 34453
> my.lst[[3]]
[1] 14.3 12.0 15.0 19.0

You may have noticed that we have used double square brackets. If we have
used my.lst[1] instead, we would obtain a different result,

> my.lst[1]
$stud.id
[1] 34453

This latter notation extracts a sub-list formed by the first component of
my.lst. On the contrary, my.lst[[1]] extracts the value of the first component
(in this case a number), which is not a list anymore!

In the case of lists with named components (as the previous example), we
may use an alternative way of extracting the value of a component of a list,

> my.lst$stud.id
[1] 34453

The names of the components of a list are, in effect, an attribute of the list,
and can be manipulated as we did with the names of elements of vectors,

> names(my.lst)
[1] "stud.id" "stud.name" "stud.marks"
> names(my.lst) <- c(’id’,’name’,’marks’)
> my.lst
$id
[1] 34453
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$name
[1] "John"

$marks
[1] 14.3 12.0 15.0 19.0

Lists may be extended by adding further components to them, Extending lists

> my.lst$parents.names <- c("Ana","Mike")
> my.lst
$id
[1] 34453

$name
[1] "John"

$marks
[1] 14.3 12.0 15.0 19.0

$parents.names
[1] "Ana" "Mike"

You may check the number of components of a list using the function
length(),

> length(my.lst)
[1] 4

You can concatenate lists using the c() function, Concatenating lists

> other <- list(age=19,sex=’male’)
> lst <- c(my.lst,other)
> lst
$id
[1] 34453

$name
[1] "John"

$marks
[1] 14.3 12.0 15.0 19.0

$parents.names
[1] "Ana" "Mike"

$age
[1] 19

$sex
[1] "male"
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Finally, you may unflatten all data in a list using the function unlist().
This will create a vector with as many elements as there are data objects in a list.
By default this will coerce different data types to a common data type15, which
means that most of the time you will end up with everything being character
strings. Moreover, each element of this vector will have a name generated from
the name of the list component which originated it,
> unlist(my.lst)

id name marks1 marks2 marks3

"34453" "John" "14.3" "12" "15"

marks4 parents.names1 parents.names2

"19" "Ana" "Mike"

1.2.10 Data frames

A data frame is similar to a matrix but with named columns. However, contrary
to matrices data frames may include data of different type on each column. In
this sense they are more similar to lists, and in effect, for R data frames are a
special class of lists.

Each row of a data frame is an observation (or case), being described by a
set of variables (the named columns of the data frame).

You can create a data frame like this,Creating a data

frame
> my.dataset <- data.frame(site=c(’A’,’B’,’A’,’A’,’B’),
+ season=c(’Winter’,’Summer’,’Summer’,’Spring’,’Fall’),
+ pH = c(7.4,6.3,8.6,7.2,8.9))
> my.dataset
site season pH

1 A Winter 7.4
2 B Summer 6.3
3 A Summer 8.6
4 A Spring 7.2
5 B Fall 8.9

Elements of data frames can be accessed like a matrix,

> my.dataset[3,2]
[1] Summer
Levels: Fall Spring Summer Winter

Note that the “season” column has been coerced into a factor, because all
its elements are character strings. Similarly, the “site” column is also a factor.
This is the default behavior of the data.frame() function16.

You may use the indexing schemes described in Section 1.2.7 with data
frames. Moreover, you may use the column names for accessing full columns of
a data frame,

> my.dataset$pH
[1] 7.4 6.3 8.6 7.2 8.9

You can perform some simple querying of the data in the data frame takingQuerying data

frames advantage of the indexing possibilities of R, as shown on these examples,
15Because vector elements must have the same type (c.f. Section 1.2.3).
16Check the help information on the data.frame() function to see examples on how you

may use the I() function to avoid this coercion.
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> my.dataset[my.dataset$pH > 7,]
site season pH

1 A Winter 7.4
3 A Summer 8.6
4 A Spring 7.2
5 B Fall 8.9
> my.dataset[my.dataset$site == ’A’,’pH’]
[1] 7.4 8.6 7.2
> my.dataset[my.dataset$season == ’Summer’,c(’site’,’pH’)]
site pH

2 B 6.3
3 A 8.6

You can simplify the typing of these queries by using the function attach()
which allows you to access the columns of a data frame directly without having
to use the name of the respective data frame. Let us see some examples of this,

> attach(my.dataset)
> my.dataset[pH > 8,]
site season pH

3 A Summer 8.6
5 B Fall 8.9
> season
[1] Winter Summer Summer Spring Fall
Levels: Fall Spring Summer Winter

The inverse of the function attach() is the function detach() that disables
these facilities,

> detach(my.dataset)
> season
Error: Object "season" not found

Because data frames are lists, you may add new columns to a data frame in Adding columns to a

data framethe same way you did with lists,

> my.dataset$NO3 <- c(234.5,256.6,654.1,356.7,776.4)
> my.dataset
site season pH NO3

1 A Winter 7.4 234.5
2 B Summer 6.3 256.6
3 A Summer 8.6 654.1
4 A Spring 7.2 356.7
5 B Fall 8.9 776.4

The only restriction to this addition is that new columns must have the same
number of rows as the existing data frame, otherwise R will complain. You may
check the number of rows or columns of a data frame with these two functions, Number of rows and

columns
> nrow(my.dataset)
[1] 5
> ncol(my.dataset)
[1] 4
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Usually you will be reading our data sets into a data frame, either from some
file or from a database. You will seldom type the data using the data.frame()
function as above, particularly in a typical data mining scenario. In the next
chapters describing our data mining case studies you will see how to import this
type of data into data frames. In any case, you may want to browse the “R
Data Import/Export” manual that comes with R, to check all different types of
possibilities R has.

R has a simple spreadsheet-like interface that can be used to enter small
data frames. You can edit an existent data frame by typing,

> my.dataset <- edit(my.dataset)

or you may create a new data frame with,

> new.data <- edit(data.frame())

You can use the names vector to change the name of the columns of a dataChanging the name

of columns frame,

> names(my.dataset)
[1] "site" "season" "pH" "NO3"
> names(my.dataset) <- c("area","season","pH","NO3" )
> my.dataset
area season pH NO3

1 A Winter 7.0 234.5
2 B Summer 6.9 256.6
3 A Summer 8.6 654.1
4 A Spring 7.2 356.7
5 B Fall 8.9 776.4

As the names attribute is a vector, if you just want to change the name of
one particular column you can type,

> names(my.dataset)[4] <- "PO4"
> my.dataset
area season pH PO4

1 A Winter 7.0 234.5
2 B Summer 6.9 256.6
3 A Summer 8.6 654.1
4 A Spring 7.2 356.7
5 B Fall 8.9 776.4

Finally, R comes with some “built-in” data sets that you can use to exploreBuilt-in data sets

some of its potentialities. Most of the add-on packages also come with data sets.
To obtain information on the available data sets type,

> data()

To use any of the available data sets you can use its name with the same
function,

> data(USArrests)

This instruction creates a data frame named USArrests containing the data
of this problem that comes with R.
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1.2.11 Some useful functions

This section provides very brief descriptions of some useful functions. This list
is far from being exhaustive! It is just a personal sample of different types of
functions. You may wish to use R help facilities to get more information on
these functions, because we do not describe all their arguments.

Reading and writing data

read.table(file) Reads a table from a file and creates a data
frame from the contents of this file, where each
row corresponds to a line of the file and each
column corresponds to a field in the file.

write.table(obj,file) Converts obj into a data frame, and writes the
result to file.

Some basic statistics

sum(x) Sum of the elements of x.
max(x) Largest value of the elements in x.
min(x) Smallest value of the elements in x.
which.max(x) The index of the largest value in x.
which.min(x) The index of the smallest value in x.
range(x) The range of values in x (has the same result

as c(min(x),max(x))).
length(x) The number of elements of x.
mean(x) The mean value of the elements of x.
median(x) The median value of the elements of x.
sd(x) The standard deviation of the elements of x.
var(x) The variance of the elements of x.
quantile(x) The quantiles of x.
scale(x) Standardizes the elements of x, i.e. subtracts

the mean and divides by the standard devia-
tion. Results in a vector with zero mean and
unit standard deviation. Also works with data
frames (column-wise and only with numeric
data!).

(DRAFT - May 22, 2003)



24 INTRODUCTION

Some vector and mathematical functions

sort(x) Sort the elements of x.
rev(x) Reverse the order of the elements of x.
rank(x) Ranks of the elements of x.
log(x,base) The logarithms of all elements of x in base

base.
exp(x) The exponentials of the elements of x.
sqrt(x) The square roots of the elements of x.
abs(x) The absolute value of the elements of x.
round(x,n) Rounds all elements of x to n decimal places.
cumsum(x) Returns a vector where the ith element is the

sum from x[1] to x[i].
cumprod(x) The same for the product.
match(x,s) Returns a vector with the same length as x,

with the elements of x that are contained in
s. The ones that do not belong to s have the
value NA.

union(x,y) Returns a vector with the union of vectors x
and y.

intersect(x,y) Returns a vector with the intersection of vec-
tors x and y.

setdiff(x,y) Returns a vector resulting from removing the
elements of y from x.

is.element(x,y) Return TRUE if x is contained in vector y.
choose(n,k) Calculates the number of combinations of k n

to n.

Matrix algebra

diag(x,nrow,ncol) Builds a diagonal matrix with nrow rows and
ncol columns, with the number x. Can also
be used to extract or replace the diagonal ele-
ments of a matrix (see Help).

t(x) The transpose of x.
nrow(x) Number of rows of x.
ncol(x) The number of columns of x.
A %*% B Matrix multiplication of A by B.
solve(A,b) Solve the system of linear equations Ax =

b. With a single matrix argument (e.g.
solve(A)) it calculates the inverse of matrix
A.

svd(x) Singular value decomposition of matrix x.
qr(x) QR decomposition of matrix x.
eigen(x) Eigen values and vectors of the square matrix

x.
det(x) The determinant of matrix x.
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Meta-functions

apply(x,margin,fun) Applies the function fun to all rows or
columns of matrix x. If the parameter margin
is 1 then the function is applied to each row,
if it is 2 it is applied to each column.

sapply(x,fun) Applies the function fun to all elements of vec-
tor x.

lapply(x,fun) The same as previous but the function is ap-
plied to all elements of a list x.

aggregate(x,by,fun) Applies a summarization function fun to all
subsets of rows of the data frame x. The sub-
sets are formed by the using all combinations
of the factors in the list by.

by(x,by,fun) Applies a function fun to all subsets of rows
of the data frame x. The subsets are formed
by the using all combinations of the factors in
the list by.

1.2.12 Creating new functions

R allows the user to create new functions. This is a useful feature particularly
when you want to automate certain tasks that you have to repeat over and over.
Instead of writing the instructions that perform this task every time you want
to execute it, it is better to create a new function containing these instructions,
and then simply using it whenever necessary.

R functions are objects similar to the structures that you have seen in pre-
vious sections. As an object, a function can store a value. The ’value’ stored
in a function is the set of instructions that R will execute when you call this
function. Thus, to create a new function one uses the assignment operator to
store the contents of the function in an object name (the name of the function).

Let us start with a simple example. Suppose you often want to calculate
the standard error of a mean associated to a set of values. By definition the
standard error of a mean is given by,

standard error =

√
s2

n

where s2 is the variance and n the sample size.
Given a vector of values we want a function to calculate the respective stan-

dard error. Let us call this function se. Before we proceed to create the function
we should check whether there is already a function with this name in R. If that
was the case, and we insisted in creating our new function with that name, the
side-effect would be to override the R function which is not probably what you
want! To check the existence of that function it is sufficient to type its name at
the prompt,

> se
Error: Object "se" not found
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The error printed by R indicates that we are safe to use that name. If a
function (or any other object) existed with the name “se” R would have printed
its content instead of the error.

The following is a possible way to create our function,

> se <- function(x) {
+ v <- var(x)
+ n <- length(x)
+ return(sqrt(v/n))
+ }

Thus, to create a function object you assign to its name something with the
general form,

function(<list of parameters>) { <list of R instructions> }

After creating this function you can use it as follows,

> se(c(45,2,3,5,76,2,4))
[1] 11.10310

The body of a function can be written either in different lines (like the
example above) or in the same line by separating each instruction by the ’;’
character.17

The value returned by any function can be “decided” using the function
return() or alternatively R returns the result of the last expression that was
evaluated within the function. The following function illustrates this and also
the use of parameters with default values,

> basic.stats <- function(x,more=F) {

+ stats <- list()

+

+ clean.x <- x[!is.na(x)]

+

+ stats$n <- length(x)

+ stats$nNAs <- stats$n-length(clean.x)

+

+ stats$mean <- mean(clean.x)

+ stats$std <- sd(clean.x)

+ stats$med <- median(clean.x)

+ if (more) {

+ stats$skew <- sum(((clean.x-stats$mean)/stats$std)^3)/length(clean.x)

+ stats$kurt <- sum(((clean.x-stats$mean)/stats$std)^4)/length(clean.x) - 3

+ }

+ stats

+ }

This function has a parameter (more) that has a default value (F). ThisParameters with

default values means that you can call the function with or without setting this parameter. If
you call it without a value for the second parameter, the default value will be
used. Below are examples of these two alternatives,

17This separator also applies to any instructions that you issue on the R command prompt.
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> basic.stats(c(45,2,4,46,43,65,NA,6,-213,-3,-45))

$n

[1] 11

$nNAs

[1] 1

$mean

[1] -5

$std

[1] 79.87768

$med

[1] 5

> basic.stats(c(45,2,4,46,43,65,NA,6,-213,-3,-45),more=T)

$n

[1] 11

$nNAs

[1] 1

$mean

[1] -5

$std

[1] 79.87768

$med

[1] 5

$skew

[1] -1.638217

$kurt

[1] 1.708149

The function basic.stats() also introduces a new instruction of R: the
instruction if. As the name indicates this instruction allows us to condition The if instruction

the execution of certain instructions to the truth value of a logical test. In
the case of this function the two instructions that calculate the kurtosis and
skewness of the vector of values are only executed if the variable more is true.
Otherwise they are skipped.

Another important instruction is the for. This instruction allows us to The for instruction

repeat a set of instructions several times. Below you have an example of the use
of this instruction,

> f <- function(x) {
+ for(i in 1:10) {
+ res <- x*i
+ cat(x,’*’,i,’=’,res,’\n’)
+ }
+ }

Try to call f() with some number (e.g. f(5)). The instruction for in this
function says to R that the instructions “inside of it” (delimited by the curly
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braces) are to be executed several times. Namely, they should be executed with
the variable “i” taking different values at each repetition. In this example, “i”
should take the values in the set 1:10, that is 1, 2, 3, . . . , 10. This means that
the two instructions inside the for are executed 10 times, each time with i set
to a different value.

The function cat can be used to output the contents of several objects to theOutput to the screen

screen. Namely, characters strings are written as themselves (try cat(’hello!’)),
while other objects are written as their content (try y <- 45; cat(y)). The
string ’\n’ makes R change to the next line.

1.2.13 Managing your sessions

When you are using R for more complex tasks, the command line typing style
of interaction becomes a bit limited. In these situations it is more practical to
write all your code in a text file and then ask R to execute it. To produce such
file you can use your favorite text editor (like Notepad, Emacs, etc.). After
creating and saving the file, you may issue the following command at R prompt
to execute all commands in the file,

> source(’mycode.R’)

This assumes that you have a text file named “mycode.R”18 on the current
working directory of R. In Windows versions the easiest way to change this
directory is through the option “Change directory” of the “File” menu. In Unix
versions you may use the functions getwd() and setwd(<directory path>) to,
respectively, check and change the current working directory.

When you are using the R prompt in an interactive fashion you may wish to
save some of the objects you create for later use (like for instance some function
you have typed in). The following example saves the objects named f and
my.dataset in a file named “mysession.R”,

> save(f,my.dataset,file=’mysession.R’)

Later, for instance in a new R session, you can load in these objects by
issuing,

> load(’mysession.R’)

You can also save all objects currently in R workspace19, by issuing,

> save.image()

This command will save the workspace in a file named “.RData” in the
current working directory. This file is automatically loaded when you run R
again from this directory. This kind of effect can also be achieved by answering
Yes when quiting R (c.f. Section 1.2.1).

Further readings on R

The online manual An Introduction to R that comes with every distribution of R is an excelent
source of information on R. The “Contributed” sub-section of the “Documentation” section at R
Web site, includes several free books on different facets of R.

18The extension “.R” is not mandatory.
19These can be listed issuing ls(), as mentioned before.
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1.3 A short introduction to MySQL

This section provides a very brief introduction to MySQL. MySQL is not nec-
essary to carry out all case studies in this book. Still, for larger data mining
projects the use a database management system like MySQL can be crucial.

MySQL can be freely downloaded from the Web site http://www.mysql.com.
As R, MySQL is available for different operating systems, like for instance Linux
and Windows. If you wish to install MySQL on your computer you should
download it from MySQL Web site and follow its installation instructions. Al-
ternatively, you may use your local computer network to access a computer
server that has MySQL installed.

Assuming you have access to a MySQL server you can use a client program
to access MySQL. There are many different MySQL client programs at MySQL
Web site. MySQL comes with a MS-DOS console-type client program, which
works in a command by command fashion. Alternatively, you have graphical
client programs that you may install to use MySQL. In particular, MyCC is a
freely available and quite nice example of such programs that you may consider
installing on your computer.

To access the server using the console-type client you can use the following
statement at your operating system prompt,

$> mysql -u myuser -p
Password: ********
mysql>

or, in case of a remote server, something like,

$> mysql -h myserver.xpto.pt -u myuser -p
Password: ********
mysql>

We are assuming that you have a user named “myuser” that has access to
the MySQL server, and that the server is password protected. If all this sounds
strange to you, you should either talk with your system administrator about
MySQL, or learn a bit more about this software using for instance the user
manual that comes with every installation, or by reading a book (e.g. DuBois,
2000).

After entering MySQL you can either use and existent database or create a
new one. The latter can be done as follows in the MySQL console-type client, Creating a database

in MySQL
mysql> create database contacts;
Query OK, 1 row affected (0.09 sec)

To use this newly created database or any other existing database you issue,

mysql> use contacts;
Database changed

If you are using the graphical client MyCC, you need to open a SQL console
and then you can type, and execute, all SQL commands we are describing here.20

A database is formed by a set of tables containing the data concerning some
entities. You can create a table as follows,

20At MyCC you do not need the “;” at the end of each statement.
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mysql> create table people(
-> id INT primary key,
-> name CHAR(30),
-> address CHAR(60));

Query OK, 1 row affected (0.09 sec)

Note the continuation prompt of MySQL (“− >”).
To populate a table with data you can either insert each record by hand or

use one of the MySQL import statements to read in data contained for instance
in a text file.

A record can be insert in a table as follows,

mysql> insert into people
-> values(1,’John Smith’,’Strange Street, 34, Unknown City’);

Query OK, 1 row affected (0.35 sec)

You can check which records are in a given table using the select statement,
of which we provide a few examples below,

mysql> select * from people;
+----+------------+----------------------------------+
| id | name | address |
+----+------------+----------------------------------+
| 1 | John Smith | Strange Street, 34, Unknown City |
+----+------------+----------------------------------+
1 row in set (0.04 sec)

mysql> select name, address from people;
+------------+----------------------------------+
| name | address |
+------------+----------------------------------+
| John Smith | Strange Street, 34, Unknown City |
+------------+----------------------------------+
1 row in set (0.00 sec)

mysql> select name from people where id >= 1 and id < 10;
+------------+
| name |
+------------+
| John Smith |
+------------+
1 row in set (0.00 sec)

After you finish working with MySQL, you can leave the console-type client
issuing the “quit” statement.

Further readings on MySQL
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Further information on MySQL can be obtained from the free user’s manual coming with MySQL.

This manual illustrates all aspects of MySQL, from installation to the technical specifications

of the SQL language used in MySQL. The book MySQL by (DuBois, 2000), one of the active

developers of MySQL, is also a good general reference on this DBMS.
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Chapter 2

Case Study 1:
Predicting Algae Blooms

This case study will introduce you to some of the basic tasks of any data mining
problem: data pre-processing, exploratory data analysis, and predictive model
construction. For this initial case study we have selected a small problem by
data mining standards. If you are not familiar with the R language and you
have not read the small introduction provided in Section 1.2 of Chapter 1, you
may feel the need to review that section as you work through this case study.

2.1 Problem description and objectives

High concentrations of certain harmful algae in rivers is a serious ecological
problem with a strong impact not only on river lifeforms, but also on water
quality. Bein able to monitor and perform an early forecast of algae blooms is
essential to improve the quality of rivers.

With the goal of addressing this prediction problem several water samples
were collected in different European rivers at different times during a period of
approximately one year. For each water sample, different chemical properties
were measured as well as the frequency of occurrence of 7 harmful algae. Some
other characteristics of the water collection process were also stored, such as the
season of the year, the river size, and the river speed.

One of the main motivations behind this application lies in the fact that
chemical monitoring is cheap and easily automated, while the biological anal-
ysis of the samples to identify the algae that are present in the water involves
microscopic examination, requires trained manpower and is therefore both ex-
pensive and slow. As such, obtaining models that are able to accurately predict
the algae frequencies based on chemical properties would facilitate the creation
of cheap and automated systems for monitoring harmful algae blooms.

Another objective of this study is to provide a better understanding of the
factors influencing the algae frequencies. Namely, we want to understand how
these frequencies are related to certain chemical attributes of water samples as
well as other characteristics of the samples (like season of the year, type of river,
etc.).

33
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2.2 Data Description

The data available for this problem consists of two separate text files (“Anal-
ysis.txt” and “Eval.txt”). Each file contains a set of water samples. The first
file contains data regarding 200 water samples collected at different European
rivers1. Each water sample is described by 11 variables. Three of these variables
are nominal and describe the season of the year when the sample was collected,
the size of the river, and the water speed of the river. The 8 remaining vari-
ables are values of different chemical parameters measured in the water sample.
Namely, the measured parameters were:

• Maximum pH value2

• Minimum value of O2 (Oxygen)

• Mean value of Cl (Chloride)

• Mean value of NO−3 (Nitrates)

• Mean value of NH+
4 (Ammonium)

• Mean of PO3−
4 (Orthophosphate)

• Mean of total PO4 (Phosphate)

• Mean of Chlorophyll

Associated with each of these water samples are 7 frequency numbers of
different harmful algae found in the water samples. No information is given
regarding which algae were identified.

The second data file contains other 140 water samples described by the
same variables. These samples can be regarded as a kind of test set. As such,
the information concerning the values of the concentrations of the 7 algae was
omitted. The main goal of our study is to predict the frequencies of the 7 algae
for these 140 water samples.

2.3 Loading the data into R

The two data files are available at the book Web site on the Data section. The
“Training data” link contains the 200 water samples of the “Analysis.txt” file,
while the “Test data” link points to the “Eval.txt” file that contains the 140
test samples. There is an additional link that points to a file (“Sols.txt”) that
contains the algae frequencies of the 140 test samples. This latter file will be
used to check the performance of our predictive models and will be taken as
unknown information at the time of model construction. The files have the
values for each water sample in a different line. Each line of the training and
test files contains the variable values (according to the description given on

1Actually, each observation in the data files is an aggregation of several water samples
carried out over a period of three months, on the same river, and during the same season of
the year.

2Please recall that each line corresponds to an aggregation of several water samples taken
in the same river during the same period of the year (i.e. same season).
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Section 2.2) separated by spaces. Unknown values are indicated with the string
“XXXXXXX”.

The first thing to do in order to follow this case study is to download the
three files from the book Web site and store them in some directory of your
hard disk.

After downloading the data files into a local directory, we can start by loading Reading data from

text filesinto R the data from the “Analysis.txt” file (the training data,i.e the data that
will be used to obtain the predictive models). To read in the data in the file it
is sufficient to issue the following command:3

> algae <- read.table(’Analysis.txt’,

+ header=F,

+ dec=’.’,

+ col.names=c(’season’,’size’,’speed’,’mxPH’,’mnO2’,’Cl’,

+ ’NO3’,’NH4’,’oPO4’,’PO4’,’Chla’,’a1’,’a2’,’a3’,’a4’,

+ ’a5’,’a6’,’a7’),

+ na.strings=c(’XXXXXXX’))

The parameter header=F indicates that the file to be read does not include
a first line with the variables names. dec=’.’ states that the numbers use
the ’.’ character to separate decimal places. Both these two previous parameter
settings could have been omitted as we are using their default values. col.names
allows us to provide a vector with the names to give to the variables whose values
are being read. Finally, na.strings serves to indicate a vector of strings that
are to be interpreted as unknown values. These values are represented internally
in R by the value na, as mentioned in Section 1.2.3.

R has several other functions that can be used to read data contained in Reading from other

types of filestext files. You may wish to type “?read.table” to obtain further information
on this and other related functions. Moreover, R has a manual that you may
want to browse named ’R Data Import/Export’, that describes the different
possibilities R includes for reading data from other applications.

The result of this instruction is a data frame, which can be seen as a kind of
matrix or table with named columns (in this example with the names we have
indicated in the col.names parameter). Each line of this data frame contains a
water sample. For instance, we can see the first 5 samples using the instruction
algae[1:5,]. In Section 1.2.7 (page 12) we have described other alternative
ways of extracting particular elements of R objects like data frames. If you did
not read this introductory material, maybe now it is a good time to browse
these sections.

2.4 Data Visualization and Summarization

Given the lack of further information on the problem domain it is wise to inves-
tigate some of the statistical properties of the data, so as to get a better grasp
of the problem. Even if that was not the case it is always a good idea to start
our analysis by some kind of exploratory data analysis similar to the one we will
show below.

3We assume that the data files are in the current working directory of R. If not, use the
command “setwd()” to change this, or use the “Change dir...” option in the ’File’ menu of
Windows versions.
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A first idea of the statistical properties of the data can be obtained through
a summary of its descriptive statistics,Getting basic

descriptive statistics

> summary(algae)

season size speed mxPH mnO2

autumn:40 large :45 high :84 Min. :5.600 Min. : 1.500

spring:53 medium:84 low :33 1st Qu.:7.700 1st Qu.: 7.725

summer:45 small :71 medium:83 Median :8.060 Median : 9.800

winter:62 Mean :8.012 Mean : 9.118

3rd Qu.:8.400 3rd Qu.:10.800

Max. :9.700 Max. :13.400

NA’s :1.000 NA’s : 2.000

Cl NO3 NH4 oPO4

Min. : 0.222 Min. : 0.050 Min. : 5.00 Min. : 1.00

1st Qu.: 10.981 1st Qu.: 1.296 1st Qu.: 38.33 1st Qu.: 15.70

Median : 32.730 Median : 2.675 Median : 103.17 Median : 40.15

Mean : 43.636 Mean : 3.282 Mean : 501.30 Mean : 73.59

3rd Qu.: 57.824 3rd Qu.: 4.446 3rd Qu.: 226.95 3rd Qu.: 99.33

Max. :391.500 Max. :45.650 Max. :24064.00 Max. :564.60

NA’s : 10.000 NA’s : 2.000 NA’s : 2.00 NA’s : 2.00

PO4 Chla a1 a2

Min. : 1.00 Min. : 0.200 Min. : 0.00 Min. : 0.000

1st Qu.: 41.38 1st Qu.: 2.000 1st Qu.: 1.50 1st Qu.: 0.000

Median :103.29 Median : 5.475 Median : 6.95 Median : 3.000

Mean :137.88 Mean : 13.971 Mean :16.92 Mean : 7.458

3rd Qu.:213.75 3rd Qu.: 18.308 3rd Qu.:24.80 3rd Qu.:11.375

Max. :771.60 Max. :110.456 Max. :89.80 Max. :72.600

NA’s : 2.00 NA’s : 12.000

a3 a4 a5 a6

Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000

1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000

Median : 1.550 Median : 0.000 Median : 1.900 Median : 0.000

Mean : 4.309 Mean : 1.992 Mean : 5.064 Mean : 5.964

3rd Qu.: 4.925 3rd Qu.: 2.400 3rd Qu.: 7.500 3rd Qu.: 6.925

Max. :42.800 Max. :44.600 Max. :44.400 Max. :77.600

a7

Min. : 0.000

1st Qu.: 0.000

Median : 1.000

Mean : 2.495

3rd Qu.: 2.400

Max. :31.600

This simple instruction immediately gives us a first overview of the statistical
properties of the data. In the case of nominal variables (that are represented by
factors in R data frames), it provides frequency counts for each possible value
4. For instance, we can observe that there are more water samples collected
in winter than in other seasons. For numeric variables, R gives us a series
of statistics like their mean, median, quartiles information and extreme values.
These statistics provide a first idea on the distribution of the variable values (we
will return to this issue later on). In the event of a variable having some unknown
values, their number is also shown following the string na’s. By observing the
difference between medians and means, as well as the interquartile range (3rd
quartile minus the 1st quartile)5, we can have an idea of the skewness of the

4Actually, if there are too many, only the most frequent are shown.
5If we order the values of a variable, the 1st quartile is the value below which there are

25% of the data points, while the 3rd quartile is the value below which there are 75% of the
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distribution and also its spread. Still, most of the times this information is
better captured graphically. Let us see an example:

> hist(algae$mxPH, prob=T)

This instruction shows us the histogram of the variable mxPH. The result is Histograms

shown in Figure 2.1. With the parameter prob=T we get probabilities instead
of frequency counts for each interval of values. Omitting this parameter setting
would give us frequency counts of each bar of the histogram.

Histogram of algae$mxPH
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Figure 2.1: The histogram of variable mxPH.

Figure 2.1 tells us that the values of variable ’mxPH’ follow a distribution
very near to the normal distribution, with the values nicely clustered around
the mean value. We can get further information by using instead the following
instructions ( the result is in Figure 2.2),

> hist(algae$mxPH, prob=T, xlab=’’,
+ main=’Histogram of maximum pH value’,ylim=0:1)
> lines(density(algae$mxPH,na.rm=T))
> rug(jitter(algae$mxPH))

The first instruction is basically the same as previous, except that we omit
the X axis label, we change the title of the graph, and we provide sensible limits
for the Y axis. The second instruction plots a smooth version of the histogram
(a kernel density estimate6 of the distribution of the variable), while the third

cases, thus meaning that between these two values we have 50% of our data. The interquartile
range is defined as the 3rd quartile minus the 1st quartile, thus being a measure of the spread
of the variable around its central value (larger values indicate larger spread).

6The na.rm=T parameter setting is used in several functions as a way of indicating that
na values should not be considered in the function calculation. This is necessary in several
functions because it is not their default behavior, and otherwise an error would be generated.

(DRAFT - May 22, 2003)



38 PREDICTING ALGAE BLOOMS
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Figure 2.2: An “enriched” version of the histogram of variable MxPH.

plots the real values of the variable near the X axis, thus allowing easy spotting
of outliers. For instance, we can observe that there are two values significantly
lower than all others. This kind of data inspection is very important as it may
identify possible errors in the data sample, or even help to locate values that
are so awkward that they may only be errors or at least we would be better off
by disregarding them in posterior analysis.

Another example (Figure 2.3) showing this kind of data inspection can be
achieved with the following instructions, this time for variable oPO4 :

> boxplot(algae$oPO4,boxwex=0.15,ylab=’Orthophosphate (oPO4)’)
> rug(jitter(algae$oPO4),side=2)
> abline(h=mean(algae$oPO4,na.rm=T),lty=2)

The first instruction draws a box plot of variable oPO4. Box plots pro-Box plots

vide a quick summarization of some key properties of the variable distribution.
Namely, there is a box whose limits are the 1st and 3rd quantiles of the variable.
This box has an horizontal line inside that represents the median value of the
variable. Let r be the interquartile range. The small horizontal dash above
the box is the largest observation that is less or equal to the 3rd quartile plus
1.5r. The small horizontal dash below the box is the smallest observation that
is greater than or equal to the 1st quartile minus 1.5r. The circles below or
above these small dashes represent observations that are extremely low (high)
compared to all others, and are usually considered outliers. This means that
box plots give us plenty of information regarding not only the central value and
spread of the variable but also on eventual outliers.

The second instruction was already described before (the only difference
being the place were the data is plotted), while the third uses the function
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Figure 2.3: An ’enriched’ box plot for Orthophosphate.

abline() to draw an horizontal line7 at the mean value of the variable, which is
obtained using the function mean(). By comparing this line with the line inside
the box indicating the median we can conclude that the presence of several
outliers has distorted the value of the mean.

The analysis of Figure 2.3 shows us that the variable oPO4 has a distribution
of the observed values clearly skeweed to the right (high values). In most of the
water samples the value of oPO4 is low, but there are several observations of
high values, and even of extremely high values.

Sometimes when we encounter outliers, we are interested in identifying the Identifying outlier

casesobservations that have these “strange” values. We will show two ways of doing
this. First, let us do it graphically. If we plot the values of variable NH4 we
notice a very large value. We can identify the respective water sample by doing:

> plot(algae$NH4,xlab=’’)
> abline(h=mean(algae$NH4,na.rm=T),lty=1)
> abline(h=mean(algae$NH4,na.rm=T)+sd(algae$NH4,na.rm=T),lty=2)
> abline(h=median(algae$NH4,na.rm=T),lty=3)
> identify(algae$NH4)

The first instruction plots all values of the variable. The calls to the abline()
function draw three informative lines, one with the mean value, another with
the mean+standard deviation, and the other with the median. The last instruc-
tion is interactive, and allows the user to click on the plotted dots with the left
mouse button. For every clicked dot, R will write the respective row number in
the algae data frame.8 The user can finish the interaction by clicking the right
mouse button.

7The parameter lty=2 is used to obtain a dashed line.
8The position where you click relatively to the point determines the side where R writes
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We can also perform this inspection without graphics, as shown below:9

> algae[algae$NH4 > 19000,]

This instruction illustrates another form of indexing a data frame, by using
a logical expression as a row selector (c.f. Section 1.2.7 for more examples on
this). The result is showing the rows of the data frame for which the logical
expression is true.

Finally, we will explore a few examples of another type of data inspection.
These examples use the “lattice” graphics package of R, that provides a set of
impressive graphics tools. Suppose that we would like to study the distribution
of the values of say algal a1. We could use any of the possibilities discussed
before. However, if we wanted to study how this distribution depends on other
variables new tools are required.

Conditioned plots are graphical representations that depend on a certain
factor. A factor is a nominal variable with a set of finite values. For instance,
we can obtain a set of box plots for the variable a1, each for different valuesConditioned box

plots of the variable size (c.f. Figure 2.4). Each of the box plots was obtained
using the subset of water samples that have a certain value of the variable size.
These graphs allow us to study how this nominal variable may influence the
distribution of the values of a1. The code to obtain the box plots is,

> library(lattice)
> bwplot(size ~ a1, data=algae,ylab=’River Size’,xlab=’Alga A1’)

The first instruction loads in the ’lattice’ package10. The second obtains a
box plot using the ’lattice’ version of these plots. The first argument of this
instruction can be read as ’plot a1 for each value of size’. The remaining
arguments have obvious meanings.

Figure 2.4 allows us to observe that higher frequencies of alga a1 are expected
in smaller rivers, which can be valuable knowledge.

This type of conditioned plots is not restricted to nominal variables, neither
to a single factor. You can carry out the same kind of conditioning study with
continuous variables as long as you previously “discretize” them. Let us seeConditioning on

continuous variables an example by observing the behavior of the frequency of alga a3 conditioned
by season and mnO2, this latter being a continuous variable. Figure 2.5 shows
such a graph and the code to obtain it is the following:

> minO2 <- equal.count(na.omit(algae$mnO2),number=4,overlap=1/5)

> stripplot(season ~ a3|minO2,data=algae[!is.na(algae$mnO2),])

the row number. For instance, if you click on the right of the dot, the row number will be
written on the right.

9The output of this instruction may seem a bit strange. This results from the fact that
there are some observations with na values in variable NH4, which ”puzzles” R. We may
avoid this behavior by issuing instead the instruction algae[!is.na(algae$NH4) & algae$NH4

> 19000,]. The ’ !’ operator performs the logical negation, the ’&’ operator the logical
conjunction, while the function is.na() is true whenever its argument has the value na.

10A word of warning on the use of the function library() to load packages. This is only
possible if the package is installed on your computer. Otherwise a error will be issued by R.
If that is the case you will need to install the package using any of the methods described in
the Section 1.2.1 of Chapter 1.
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Figure 2.4: A conditioned box plot of Alga a1.
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Figure 2.5: A conditioned stripplot plot of Alga a3 using a continuous variable.
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The first instruction, uses function equal.count() to create a factorized
version of the continuous variable mnO2. The parameter number sets the num-
ber of desired bins, while the parameter overlap sets the overlap between the
bins near their respective boundaries (this means that certain observations will
be assigned to adjacent bins). The bins are created such that they contain
an equal number of observations. You may have noticed that we did not use
algae$mnO2 directly. The reason is the presence of na values in this variable.
This would cause problems in the subsequent graphics function. We have used
the function na.omit() that removes any na value from a vector.11

The second line contains the call to the graphics function stripplot(). ThisStrip plots

is another graphical function of the ’lattice’ package. It creates a graph con-
taining the actual values of a variable, in different strips depending on another
variable (in this case the season). Different graphs are them drawn for each bin
of the variable mnO2. The bins are ordered from left to right and from bottom
up. This means that the bottom left plot corresponds to lower values of mnO2
(lower than 25, approximately). The existence of na values in mnO2 also has
some impact on the data to be used for drawing the graph. Instead of using
the parameter data=algae (as for creating Figure 2.4), we had to ’eliminate’
the rows corresponding to samples with na values in mnO2. This was achieved
using the function is.na(), which produces a vector of boolean values (true or
false). An element of this vector is true when mnO2 is na. This vector has
as many elements as there are rows in the data frame algae. The construction
!is.na(mnO2) thus returns a vector of boolean values that are true in elements
corresponding to rows where mnO2 is known, because ’ !’ is the logical negation
operator. Given the way R handles bolean index vectors (c.f. Section 1.2.7) this
means we are using the rows of the algae data frame, corresponding to water
samples not having na in the value of variable mnO2. na values cause problems
to several methods. The next session addresses this issue and suggests forms of
overcoming these problems.

Further readings on data summarization and visualization

Most standard statistics books will include some sections on providing summaries of data. A simple
and well-written book is Statistics for technology by Chatfield (1983). This book has simple exam-
ples and is quite informal. Another good source of information is the book Introductory Statistics
with R by Dalgaard (2002). For data visualization, the book Visualizing Data by Cleveland (1993)
is definitely a must. This is an outstanding book that is clearly worth its value. A more formal
follow-up of this work is the book The Elements of Graphing Data (Cleveland, 1995) by the same
author.

2.5 Unknown values

There are several water samples with unknown variable values. This situation,
rather common in real problems, may preclude the use of certain techniques
that are not able to handle missing values.

Whenever we are handling a data set with missing values we can follow
several strategies. The most common are:

• Remove the cases with unknowns
11Later, in Section 2.5 we shall see a better solution to this.
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• Fill in the unknown values by exploring the correlations between variables

• Fill in the unknown values by exploring the similarity between cases

• Use tools that are able to handle these values.

The last alternative is the most restrictive, as it limits the set of tools one
can use. Still, it may be a good option whenever we are confident on the merit
of the strategies used by the data mining tools to handle missing values.

In the following sub-sections we will show examples of how to use these
methods in R. If you decide to try the code given in these sections you should
be aware that they are not complementary. This means that as you go into
another method of dealing with missing values you should read in again the
original data (c.f. Section 2.3) to have all the unknown cases again, as each
section handles them in a different way.

2.5.1 Removing the observations with unknown values

The option of removing the cases with unknown values is, not only an easy
approach to implement, but can also be a reasonable choice when the proportion
of cases with unknowns is small with respect to the size of the available data
set. This alternative can be easily implemented in R as we will see below.

Before eliminating all observations with at least one unknown value in some
variable, it is always wise to have a look, or at least count them, Inspecting the cases

with unknowns

> algae[!complete.cases(algae),]
...
...
> nrow(algae[!complete.cases(algae),])
[1] 16

The function complete.cases() produces a vector of boolean values with
as many elements as there are rows in the algae data frame, where an element
is true if the respective row is ’clean’ of na values (i.e. is a complete observa-
tion). Thus the above instruction shows the water samples with some na values
because the ’ !’ operator performs logical negation as it was mentioned before.

In order to remove these 16 water samples from our data frame we can do, Eliminating all cases

with unknowns

> algae <- na.omit(algae)

Even if we decide not to use this drastic method of removing all cases with
some unknown value, we may remove some observations because the number
of unknown values is so high that they are almost useless, and even complex
methods of filling in these values will fail on them. Note that if you have executed
the previous command you should read in the data again (c.f. Section 2.3), as
this instruction has removed all unknowns, so the next statements would not
make sense! Looking at the cases with unknowns we can see that both the
samples 62 and 199 have 6 of the 11 explanatory variables with unknown values.
In such cases, it is wise to simply ignore these observations by removing them,

> algae <- algae[-c(62,199),]
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2.5.2 Filling in the unknowns with the most frequent val-
ues

An alternative to eliminating the cases with unknown values is to try to find the
most probable value for each of these unknowns. Again several strategies can
be followed, with different trade-offs between the level of approximation and the
computational complexity of the method.

The simplest and fastest way of filling in the unknown values is to use some
central value. Central values reflect the most frequent value of a variable dis-
tribution, thus they are a natural choice for this strategy. Several statistics of
centrality exist, like the mean, the median, etc. The choice of the most adequate
value depends on the distribution of the variable. For approximately normal
distributions, where all observations are nicely clustered around the mean, this
statistic is the best choice. However, for skewed distributions, or for variables
with outliers, the mean can be disastrous. Skewed distributions have most val-
ues clustered near one of the sides of the range of values of the variable, thus
the mean is clearly not representative of the most common value. On the other
hand, the presence of outliers (extreme values) may distort the calculation of
the mean12, thus leading to similar representativeness problems. Thus it is not
wise to use the mean without a previous inspection of the distribution of the
variable using, for instance, some of the graphicall tools of R (e.g. Figure 2.2).
For skewed distributions or for variables with outliers, the median is a better
statistic of centrality.

For instance, the sample algae[48,] does not have a value in the variable
mxPH. As the distribution of this variable is nearly normal (c.f. Figure 2.2) we
could use its mean value to fill in the “hole”. This could be done by,Filling a single value

> algae[48,’mxPH’] <- mean(algae$mxPH,na.rm=T)

where the function mean() gives the mean value of any vector of numbers, and
na.rm=T disregards any na values in this vector from the calculation.13

Most of the times we will be interested in filling in all unknowns of a columnFilling a full column

instead of working on a case-by-case basis as above. Let us see an example
of this with the variable Chla. This variable is unknown on 12 water samples.
Moreover, this is a situation were the mean is a very poor representative of the
most frequent value of the variable. In effect, the distribution of Chla is skewed
to higher values, and there are a few extreme values that make the mean value
(13.971) highly unrepresentative of the most frequent value. Therefore, we will
use the median to fill in all unknowns of this column,

> algae[is.na(algae$Chla),’Chla’] <- median(algae$Chla,na.rm=T)

While the presence of unknown values may impair the use of some methods,
filling in their values using a strategy as above is usually considered a bad idea.
This simple strategy although extremely fast, and thus appealing for large data
sets, may introduce a large bias in the data, which can influence our posterior
analysis. However, unbiased methods that find the optimal value to fill in an
unknown, are extremely complex and may not be adequate for some large data
mining problems.

12The mean of the vector c(1.2,1.3,0.4,0.6,3,15) is 3.583.
13Without this ’detail’ the result of the call would be na because of the presence of na

values in this column.
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2.5.3 Filling in the unknown values by exploring correla-
tions

An alternative to getting less biased estimators of the unknown values is to
explore the relationship between variables. For instance, using the correlation Filling unknowns by

exploring

correlations

between the variable values we could discover that a certain variable is highly
correlated with mxPH, which would enable us to obtain other more probable
value for the sample number 48, which has an unknown on this variable. This
could be preferable to the use the mean as we did above.

To obtain the variables correlation we can issue the command, Correlations between

numerical variables
> cor(algae[,4:18],use="complete.obs")

The function cor() produces a matrix with the correlation values between
the variables (we have avoided the first 3 variables because they are nominal).
The use="complete.obs" setting tells R to disregard observations with na val-
ues in this calculation. Values near 1 (or -1) indicate a strong positive (negative)
linear correlation between the values of the two respective variables. Other R
functions could then be used to obtain the functional form of this linear corre-
lation, which in turn would allow us to calculate the values of one variable from
the values of the correlated variable.

The result of this cor() function is not very legible, but we can put it
through the function symnum to improve this,

> symnum(cor(algae[,4:18],use="complete.obs"))

mP mO Cl NO NH o P Ch a1 a2 a3 a4 a5 a6 a7

mxPH 1

mnO2 1

Cl 1

NO3 1

NH4 , 1

oPO4 . . 1

PO4 . . * 1

Chla . 1

a1 . . . 1

a2 . . 1

a3 1

a4 . . . 1

a5 1

a6 . . . 1

a7 1

attr(,"legend")

[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1

This symbolic representation of the correlation values is more legible, par-
ticularly for large correlation matrices.

The correlations are most of the times irrelevant. However, there are two
exceptions: between variables NH4 and NO3 ; and between PO4 and oPO4.
These two latter variables are very strongly correlated (above 0.9). The correla-
tion between NH4 and NO3 is less evident and thus it is risky to take advantage
of it to fill in the unknowns. Moreover, assuming that you have removed the
samples 62 and 199 because they have too many unknowns, there will be no
water sample with unknown values on NH4 and NO3. With respect to PO4
and oPO4 the discovery of this correlation14 allows us to fill in the unknowns

14According to domain experts this was expected because the value of total phosphates
(PO4 ) includes the value of orthophosphate (oPO4 ).
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on these variables. In order to achieve this we need to find the form of the linear
correlation between these variables. This can be done as follows,

> lm(oPO4 ~ PO4,data=algae)

Call:
lm(formula = oPO4 ~ PO4, data = algae)

Coefficients:
(Intercept) PO4

-15.6142 0.6466

The function lm() can be used to obtain linear models of the form Y = β0 +
β1X1 + . . .+βnXn. We will describe this function in detail on Section 2.6. The
linear model we have obtained tells us that oPO4 = −15.6142 + 0.6466 ∗ PO4.
With this formula we can fill in the unknown values of these variables, provided
they are not both unknown.

After removing the sample 62 and 199, we are left with a single observation
with an unknown value on the variable PO4 (sample 28), thus we could simply
use the discovered relation to do the following,

> algae[28,’PO4’] <- (algae[28,’oPO4’]+15.6142)/0.6466

However, for illustration purposes, let us assume that there were several
samples with unknown values on the variable PO4. How could we use the above
linear relationship to fill all the unknowns? The best would be to create a
function that would return the value of PO4 given the value of oPO4, and then
apply this function to all unknown values15,

> fillPO4 <- function(oP) {

+ if (is.na(oP)) return(NA)

+ else return((oP+15.6142)/0.6466)

+ }

> algae[is.na(algae$PO4),’PO4’] <-

+ sapply(algae[is.na(algae$PO4),’oPO4’],fillPO4)

The first instruction creates a function named fillPO4 with one argument,
which is assumed to be the value of oPO4. Given a value of oPO4, this function
returns the value of PO4 according to the discovered linear relation (try issuing
“fillPO4(6.5)”). This function is then applied to all samples with unknown
value on the variable PO4. This is done using the function sapply(). This
function has a vector as the first argument and a function as the second. The
result is another vector with the same length, with the elements being the result
of applying the function in the second argument to each element of the given
vector.16 This means that the result of this call to sapply() will be a vector
with the values to fill in the unknowns of the variable PO4.

15Because there was a single case with unknown in ’PO4’, if you have tried the previous
instruction that filled in this unknown, R will complain with these following instructions. If
you want to avoid this before trying the code set the 28th observation ’PO4’ value back to
unknown using for instance algae[28,’PO4’] <- NA.

16Try, for instance, sapply(1:10,sqrt), where “sqrt” calculates the square root of a number.
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The study of the linear correlations enabled us to fill in some new unknown
values. Still, there are several observations left with unknown values. We may
try to explore the correlations between the variables with unknowns and the
nominal variables of this problem. We can use conditioned histograms that are Correlation with

nominal variablesavailable through the ’lattice’ R package with this objective. For instance Figure
2.6, shows an example of such graph. This graph was produced as follows,
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Figure 2.6: An histogram of variable mxPH conditioned by season.

> histogram(~ mxPH | season,data=algae)

This instruction obtains an histogram of the values of mxPH for the different Conditioned

histogramsvalues of season. Each histogram is built using only the subset of observations
with a certain season value. Notice that the histograms are rather similar thus
leading us to conclude that the values of mxPH are not very influenced by the
season of the year when the samples were collected. If we try the same using
the size of the river, with histogram(∼ mxPH | size,data=algae), we can
observe a tendency for smaller rivers showing lower values of mxPH. We may
extend our study of these dependencies using several nominal variables. For
instance,

> histogram(~ mxPH | size*speed,data=algae)

shows the variation of mxPH for all combinations of size and speed of the rivers.
It is curious to note that there is no information regarding small rivers with low
speed.17 The single sample that has these properties is exactly sample 48, the
one for which we do not know the value of mxPH !

Another alternative to obtain similar information but now with the concrete
values of the variable is,

17Actually, if you have executed the instruction given before, to fill in the value of mxPH
with the mean value of this variable, this is not true anymore!
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Figure 2.7: The values of variable mxPH by river size and speed.

> stripplot(size ~ mxPH | speed, data=algae, jitter=T)

The result of this instruction is shown in Figure 2.7. The jitter=T param-
eter setting is used to perform a small random permutation of the values in the
Y direction to avoid plotting observations with the same values over each other,
thus loosing some information on the concentration of observations with some
particular value.

This type of analysis could be carried out for the other variables with un-
known values. Still, this is a tedious process because there are too many com-
binations to be analyzed. Nevertheless, this is a method that can be applied in
small data sets with few nominal variables.

2.5.4 Filling in the unknown values by exploring similari-
ties between cases

Instead of exploring the correlation between the columns (variables) of a data
set, we can try to use the similarities between the rows (observations) to fill in
the unknown values. We will illustrate this method to fill in all unknowns with
the exception of the two samples with too many NA’s. Let us read in again the
data to override the code of the previous sections (assuming you have tried it).

> algae <- read.table(’Analysis.txt’,

+ header=F,

+ dec=’.’,

+ col.names=c(’season’,’size’,’speed’,’mxPH’,’mnO2’,’Cl’,’NO3’,

+ ’NH4’,’oPO4’,’PO4’,’Chla’,’a1’,’a2’,’a3’,’a4’,’a5’,’a6’,’a7’),

+ na.strings=c(’XXXXXXX’))

> algae <- algae[-c(62,199),]
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The approach described in this section assumes that if two water samples
are similar, and one of them has an unknown value in some variable, there is a
high probability that this value is similar to the value of the other sample. In
order to use this intuitively appealing method we need to define the notion of
similarity. This notion is usually defined by using a metric over the multivariate
space of the variables used to describe the observations. Many metrics exist in
the literature, but a common choice is the euclidean distance. This distance can
be informally defined as the sum of the squared differences between the values
of any two cases. The method we will describe below will use this metric to
find the 10 most similar cases of any water sample with some unknown value
in a variable. With these 10 cases, we will calculate their median value on this
variable and use this to fill in the unknown. Let us see how to implement this
in R.

R has several packages with functions for calculating distances between cases.
Most of them assume that the cases are described by numeric variables (e.g. the
dist() function in the mva package). That is not the case of our problem where
we have three nominal variables. As such we will use the package cluster that
includes functions able to calculate distances using mixed mode variables.

Any distance function over a multivariate space will suffer from the exis-
tence of different scales of values among the variables. These differences can
overweight the differences between the values on some variable over the dif-
ferences on other variables. To avoid this, we will re-scale all variables to a
“normalized” interval where every variable has a zero mean and unit standard
deviation. The distance between all water samples can be obtained as follows,

> library(cluster)
> dist.mtx <- as.matrix(daisy(algae,stand=T))

The second instruction uses the function daisy() from the cluster package
to calculate the distances. We have used the parameter stand to indicate that
the data should be normalized before the distances are calculated. Moreover,
we have transformed the output, which includes several information that we are
not interested in this case, into a matrix of distances, using the as.matrix()
function.

Let us remember which water samples have some unknown values and thus
will need to be processed,

> which(!complete.cases(algae))
[1] 28 38 48 55 56 57 58 59 60 61 62 115 160 183

Let us play a bit with sample number 38. Line 38 of the matrix dist.mtx
has the distances between this water sample and all others. We can sort these
distances and check the 10 most similar,

> sort(dist.mtx[38,])[1:10]

38 54 22 64 11 30 25

0.00000000 0.02126003 0.05711782 0.05790530 0.06047142 0.06427236 0.06668811

53 37 24

0.06677694 0.06983926 0.07609126

Notice how R has named the columns of the distance matrix so that we know
which are the most similar water samples in the original data frame. The most

(DRAFT - May 22, 2003)



50 PREDICTING ALGAE BLOOMS

similar observation to the sample 38 is . . . the sample 38! After this sample
come the samples 54, 22, 64, etc. We can get a vector with the numbers of the
10 most similar water samples as follows,

> as.integer(names(sort(dist.mtx[38,])[2:11]))
[1] 54 22 64 11 30 25 53 37 24 18

Now that we know the most similar water samples let us see which variable(s)
we need to fill in,

> algae[38,]

season size speed mxPH mnO2 Cl NO3 NH4 oPO4 PO4 Chla a1 a2 a3 a4 a5 a6

38 spring small high 8 NA 1.45 0.81 10 2.5 3 0.3 75.8 0 0 0 0 0

a7

38 0

Thus, we want a value for mnO2 for this water sample. According to the
method we have outlined before we can use the median value on this variable
in the 10 most similar samples,

> median(algae[c(as.integer(names(sort(dist.mtx[38,])[2:11]))),’mnO2’])

[1] 10

This means that according to this method we should fill in the value of mnO2
of the water sample 38 with the value 10, which we can do by,

> algae[38,’mnO2’] <-

+ median(algae[c(as.integer(names(sort(dist.mtx[38,])[2:11]))),’mnO2’],

+ na.rm=T)

You may check the result with algae[38,]!
What if the water sample has more than one unknown value? We can use

the function apply() to obtain the medians for each of the columns that are
unknown. For instance, that is the case of the water sample 55 that has two
unknown values,

> apply(algae[c(as.integer(names(sort(dist.mtx[55,])[2:11]))),
+ which(is.na(algae[55,]))],
+ 2,
+ median,na.rm=T)

Cl Chla
6.5835 0.8000

The function apply() can be used to apply a function to all columns (or
rows) of a data frame. The first argument is the data frame. If the second
argument has value 2 the function in the third argument is applied to all columns
of the data frame. If it is 1, it is applied to all rows. Any argument after the third
is passed to the function being applied. Notice that we have used na.rm=T as a
fourth parameter to avoid problems with unknown values when calculating the
medians. We should also remark that this will not work if there are unknowns in
the nominal variables of the data frame because you would then try to calculate
medians on discrete columns. In that case the best is to create a new function
for obtaining the central value to be used, that will depend on whether the
column is numeric or a factor,
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> central.value <- function(x) {
+ if (is.numeric(x)) median(x,na.rm=T)
+ else if (is.factor(x)) levels(x)[which.max(table(x))]
+ else {
+ f <- as.factor(x)
+ levels(f)[which.max(table(f))]
+ }
+ }

The function central.value() will return the median for any numeric col-
umn, while for other type of columns it will transform them into factors and
return the value that occurs more frequently. We can use this function instead
of the median in the apply call mentioned before. Let us now automate this for
all samples with some unknown value. The main problem in doing this is that
we will mix observations with a single unknown value with others with several
missing values. For the latter we need to use apply() that generates a data
frame as result. The apply() function can only be applied to objects with more
than one dimension which is not the case of the objects resulting from a water
sample with a single NA value.18 This results in a bit more complex solution,

> for(r in which(!complete.cases(algae)))

+ algae[r,which(is.na(algae[r,]))] <-

+ apply(data.frame(algae[c(as.integer(names(sort(dist.mtx[r,])[2:11]))),

+ which(is.na(algae[r,]))]),

+ 2,central.value)

We use a for statement to go through all cases which have some missing
value. This is an iterative statement that allows us to repeat the assignment
statement for different values of the r variable.19 With this for cycle consisting
of a single assignment we are able to fill in all unknown values of our data frame,
using the 10 most similar water samples to help finding the most probable value.

In summary, after these simple instructions we have the data frame free of
na values, and are better prepared to take full advantage of several R func-
tions. Regarding which method should be used from the alternatives we have
described, the answer is most of the times domain dependent. The method of
exploring the similarities between cases seems to be more rational, although it
suffers from some problems. These include possible existence of irrelevant vari-
ables which may distort the notion of similarity, or even excessive computational
complexity for extremely large data sets. Still, for these large problems we can
always use random samples to calculate the similarities.

Further readings on handling unknown values

The book Data preparation for data mining by Pyle (1999) is an extensive source of information
on all issues of preparing data for data mining, which includes handling missing values. The book
Predictive data mining by Weiss and Indurkhya (1999) is another good source of information on
data preparation in general and unknown values in particular.
Hong (1997) and Wilson and Martinez (1997) are good references on distance measures involving
variables with different types. Further references can also be found in Torgo (1999a).

18For instance, while algae[38,which(is.na(algae[38,]))] is a vector with a single ele-
ment, algae[55,which(is.na(algae[55,]))] is a data frame.

19If you are not familiar with this programming constructs maybe it is a good time to review
the material presented at Section 1.2.12.
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2.6 Obtaining prediction models

The main goal of this case study is to obtain predictions for the frequency
values of the 7 algae in a set of 140 water samples. Given that these frequencies
are numbers, we are facing a regression problem20. In simple words, this taskRegression problems

consists of trying to obtain a model relating a numerical variable with a set of
other explanatory variables. This model can be used either to predict the value
of the target variable for future observations of the explanatory variables, or to
provide a better understanding of the interactions among the variables in our
problem.

In this section we explore two different predictive models that could be
applied to the algae domain: linear regression and regression trees. Our choice
was mainly guided by illustrative purposes in the context of this book, and not
as a consequence of some model selection data mining step. Still, these models
are two good alternatives for regression problems as they are quite different
in terms of their assumptions regarding the “shape” of the regression function
being approximated, they are easy to interpret, and fast to run on any computer.
This does not mean that in a real data mining scenario we should not try other
alternatives and then use some form of model selection (c.f. Section 2.7) to
select one or more of them for the final predictions on our 140 test samples.

The models we are going to try handle missing values in a different way.
While linear regression is not able to use data sets with unknown values, regres-
sion trees handle these values naturally21. As such, we will follow a different
path concerning the preparation of the data before model construction. For
linear regression we will use one of the techniques described in Section 2.5 for
pre-processing the data so that we can use these models. Regarding regression
trees we will use the original 200 water samples.22

In the analysis we are going to carry out we will assume that we do not know
the true values of the target variables for the 140 test samples. As we have
mentioned before, the book Web page also includes a file with these solutions.
Still, they are given just for you to get a final opinion on the value of the models
we are going to obtain.

2.6.1 Multiple linear regression

Multiple linear regression is among the most used statistical data analysis tech-
niques. These models obtain an additive function relating a target variable with
a set of predictor variables. This additive function is a sum of terms of the form
βi ×Xi, where Xi is a predictor variable and βi is a number.

As we have mentioned before, there is no predefined way of handling missing
values for this type of modeling techniques. As such we will use the data result-
ing from applying the method of exploring the similarities among the training
cases to fill in the unknowns (c.f. Section 2.5.4). Nevertheless, before we apply
this method, we will remove the water samples number 62 and 199 because, as
mentioned before, they have 6 from the 11 predictor variables missing, which

20Actually, as we want to predict 7 values for each water sample, one can handle this
problem as 7 different regression problems.

21Obviously, we are referring to the implementations of these methods available in R.
22Actually, we will remove two of them because they have too many missing values.
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makes the task of filling them by exploring similarities too unreliable. The
following code obtains a data frame without missing values,23

> algae <- read.table(’Analysis.txt’,

+ header=F,

+ dec=’.’,

+ col.names=c(’season’,’size’,’speed’,’mxPH’,’mnO2’,’Cl’,’NO3’,

+ ’NH4’,’oPO4’,’PO4’,’Chla’,’a1’,’a2’,’a3’,’a4’,’a5’,’a6’,’a7’),

+ na.strings=c(’XXXXXXX’))

> algae <- algae[-c(62,199),]

> clean.algae <- algae

> for(r in which(!complete.cases(algae)))

+ clean.algae[r,which(is.na(algae[r,]))] <-

+ apply(data.frame(algae[c(as.integer(names(sort(dist.mtx[r,])[2:11]))),

+ which(is.na(algae[r,]))]), 2,central.value)

After this code we have a data frame, clean.algae, that has no missing
variable values.

Let us start by learning how to obtain a linear regression model for predicting Obtaining a linear

regression modelthe frequency of one of the algae.

> lm.a1 <- lm(a1 ~ .,data=clean.algae[,1:12])

The function lm() obtains a linear regression model. The first argument
of this function24 indicates the functional form of the model. In this example,
it states that we want a model that predicts the variable a1 using all other
variables present in the data, which is the meaning of the dot character. For
instance, if we wanted a model to predict a1 as a function of the variables mxPH
and NH4, we should have indicated the model as “a1 ∼ mxPH + NH4”. There
are other variants of this model language that we will introduce as necessary.
The data parameter sets the data sample to be used to obtain the model.

We may obtain more information about the linear model with the following
instruction,

> summary(lm.a1)

Call:

lm(formula = a1 ~ ., data = clean.algae[, 1:12])

Residuals:

Min 1Q Median 3Q Max

-37.582 -11.882 -2.741 7.090 62.143

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 43.210622 24.042849 1.797 0.07396 .

seasonspring 3.575474 4.135308 0.865 0.38838

seasonsummer 0.645459 4.020423 0.161 0.87263

seasonwinter 3.572084 3.863941 0.924 0.35647

sizemedium 3.321935 3.797755 0.875 0.38288

sizesmall 9.732162 4.175616 2.331 0.02086 *

speedlow 3.965153 4.709314 0.842 0.40090

speedmedium 0.304232 3.243204 0.094 0.92537

mxPH -3.570995 2.706612 -1.319 0.18871

23Reading in again the data is included only because you have probably tried the code of
the previous sections that has changed the original data.

24Actually, of most functions used to obtain models in R.
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mnO2 1.018514 0.704875 1.445 0.15019

Cl -0.042551 0.033646 -1.265 0.20761

NO3 -1.494145 0.551200 -2.711 0.00736 **

NH4 0.001608 0.001003 1.603 0.11072

oPO4 -0.005235 0.039864 -0.131 0.89566

PO4 -0.052247 0.030737 -1.700 0.09087 .

Chla -0.090800 0.080015 -1.135 0.25796

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 17.64 on 182 degrees of freedom

Multiple R-Squared: 0.3737, Adjusted R-squared: 0.3221

F-statistic: 7.24 on 15 and 182 DF, p-value: 2.273e-12

Before we analyze the information provided by the function summary() when
applied to linear models, let us say something on how R handled the three
nominal variables. When using them as shown above, R will create a set ofNominal variables on

linear models auxiliary variables25. Namely, for each factor variable with k levels, R will
create k− 1 auxiliary variables. These variables have the values 0 or 1. A value
of 1 means that the associated value of the factor is “present”, and that will
also mean that the other auxiliary variables will have the value 0. If all k − 1
variables are 0 then it means that the factor variable has the remaining kth
value. Looking at the summary presented above, we can see that R has created
three auxiliary variables for the factor season (seasonspring, seasonsummer
and seasonwinter). This means that if we have a water sample with the value
“autumn” in the variable season, all these three auxiliary variables will be set
to zero.

The application of the function summary() to a linear model gives some
diagnostic information concerning the obtained model. First of all, we haveDiagnostic

information

regarding linear

models

information concerning the residuals (i.e. the errors) of the fit of the linear
model to the used data. These residuals should have a mean zero and should
have a normal distribution (and obviously be as small as possible!).

For each coefficient (variable) of the multiple regression equation, R will
show its value and also its standard error (an estimate of the variation of these
coefficients). In order to check the importance of each coefficient we may testTesting for null

coefficients the hypothesis that each of them is null, i.e. H0 : βi = 0. To test this hypothesis
the t test is normally used. R calculates a t value, which is defined as the ratio
between the coefficient value and its standard error, i.e. βi

sβi
. R will show us a

column (Pr(>|t|)) associated with each coefficient with the level at which the
hypothesis that the coefficient is null is rejected. Thus a value of 0.0001, has the
meaning that we are 99.99% confident that the coefficient is not null. R marks
each test with a symbol corresponding to a set of common confidence levels used
for these tests. In summary, coefficients that do not have any symbol in front
of them, cannot be discarded as possibly null with a minimum confidence of at
least 90%.

Another piece of relevant diagnostics information outputted by R, are the
R2 coefficients (Multiple and Adjusted). These indicate the degree of fit of theProportion of

explained variance model to the data, that is the proportion of variance in the data that is explained
by the model. Values near 1 are better (almost 100% explained variance), while
the smaller the values the larger the lack of fit. The adjusted coefficient is more

25Often named dummy variables.
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demanding as it takes into account the number of parameters of the regression
model.

Finally, we can also test the null hypothesis that there is no dependence of
the target variable on any of the explanatory variables, i.e. H0 : β1 = β2 = Explanation power of

the variables. . . = βm = 0. With this goal we use the F -statistic, which is compared to a
critical value. R provides the confidence level at which we are sure to reject this
null hypothesis. Thus a p-level of 0.0001, means that we are 99.99% confident
that the null hypothesis is not true. Usually, if the model fails this test it makes
no sense to look at the t-tests on the individual coefficients.

Some diagnostics may also be checked by plotting a linear model. In effect, Graphical diagnostics

of linear modelswe may issue a command like plot(lm.a1) to obtain a series of successive plots
that help in understanding the performance of the model. One of the graphs
simply plots each fitted target variable value against the respective residual (er-
ror) of the model. Larger errors are usually marked by adding the corresponding
row number to the dot in the graph, so that you may inspect the observations
if you wish. Another graph shown by R is a normal Q-Q plot of the errors that
helps you to check if they follow a normal distribution26 as they should.

The proportion of variance explained by this model is not very impressive
(around 32.0%). Still, we can reject the hypothesis that the target variable does
not depend on the predictors (the p value of the F test is very small). Looking
at the significance of some of the coefficients we may question the inclusion of
some of them in the model. There are several methods for simplifying regression Simplification of

linear models by

backward elimination

models. In this section we will explore a method usually known as backward
elimination.

We will start our study of simplifying the linear model using the anova()
function. When applied to a single linear model this function will give us a
sequential analysis of variance of the model fit. That is, the reductions in the
residual sum of squares (the total error of the model) as each term of the formula
is added in turn. The result of this analysis for the model obtained above is
shown below,

> anova(lm.a1)

Analysis of Variance Table

Response: a1

Df Sum Sq Mean Sq F value Pr(>F)

season 3 85 28 0.0906 0.9651499

size 2 11401 5701 18.3253 5.613e-08 ***

speed 2 3934 1967 6.3236 0.0022126 **

mxPH 1 1322 1322 4.2499 0.0406740 *

mnO2 1 2218 2218 7.1312 0.0082614 **

Cl 1 4451 4451 14.3073 0.0002105 ***

NO3 1 3399 3399 10.9263 0.0011420 **

NH4 1 385 385 1.2376 0.2674000

oPO4 1 4765 4765 15.3168 0.0001283 ***

PO4 1 1423 1423 4.5738 0.0337981 *

Chla 1 401 401 1.2877 0.2579558

Residuals 182 56617 311

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

These results indicate that the variable season is the variable that least
contributes for the reduction of the fitting error of the model. Let us remove it

26Ideally, all errors would be in a straight line in this graph.
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from the model,

> lm2.a1 <- update(lm.a1, . ~ . - season)

The update() function can be used to perform small changes to an existing
linear model. In this case we use it to obtain a new model by removing the
variable season from the lm.a1 model. The summary information for this new
model is given below,

> summary(lm2.a1)

Call:

lm(formula = a1 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 +

oPO4 + PO4 + Chla, data = clean.algae[, 1:12])

Residuals:

Min 1Q Median 3Q Max

-36.386 -11.899 -2.941 7.338 63.611

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.9587170 23.2659336 1.932 0.05484 .

sizemedium 3.3636189 3.7773655 0.890 0.37437

sizesmall 10.3092317 4.1173665 2.504 0.01315 *

speedlow 3.1460847 4.6155216 0.682 0.49632

speedmedium -0.2146428 3.1839011 -0.067 0.94632

mxPH -3.2377235 2.6587542 -1.218 0.22487

mnO2 0.7741679 0.6578931 1.177 0.24081

Cl -0.0409303 0.0333812 -1.226 0.22170

NO3 -1.5126458 0.5475832 -2.762 0.00632 **

NH4 0.0015525 0.0009946 1.561 0.12027

oPO4 -0.0061577 0.0394710 -0.156 0.87620

PO4 -0.0508845 0.0304911 -1.669 0.09684 .

Chla -0.0879751 0.0794655 -1.107 0.26969

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 17.56 on 185 degrees of freedom

Multiple R-Squared: 0.369, Adjusted R-squared: 0.3281

F-statistic: 9.016 on 12 and 185 DF, p-value: 1.581e-13

The fit has improved a bit (32.8%) but it is still not too impressive. We may
carried out a more formal comparison between the two models by using againComparing two

linear models the anova() function, but this time with both models as arguments,

> anova(lm.a1,lm2.a1)

Analysis of Variance Table

Model 1: a1 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 +

PO4 + Chla

Model 2: a1 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 +

Chla

Res.Df RSS Df Sum of Sq F Pr(>F)

1 182 56617

2 185 57043 -3 -425 0.4559 0.7134

This function performs an analysis of variance of the two models using a
F -test to assert the significance of the differences. In this case, although the
sum of the squared errors has decreased (-425), the comparison shows that the
differences are not significant (a value of 0.7134 tells us that with only around
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29% confidence we can say they are different). Still, we should recall that this
new model is simpler. In order to proceed to check if we can remove more
coefficients we would use again the anova() function, applied to the lm2.a1
model. This process would continue until we have no cadidate coefficients for
removal. However, to simplify our backward elimination process R has a function
that performs all process for us.

The following code creates a linear model that results from applying the
backward elimination method to the initial model we have obtained (lm.a1),27

> final.lm <- step(lm.a1)

Start: AIC= 1151.85

a1 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 +

PO4 + Chla

Df Sum of Sq RSS AIC

- season 3 425 57043 1147

- speed 2 270 56887 1149

- oPO4 1 5 56623 1150

- Chla 1 401 57018 1151

- Cl 1 498 57115 1152

- mxPH 1 542 57159 1152

<none> 56617 1152

- mnO2 1 650 57267 1152

- NH4 1 799 57417 1153

- PO4 1 899 57516 1153

- size 2 1871 58488 1154

- NO3 1 2286 58903 1158

Step: AIC= 1147.33

a1 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 +

Chla

Df Sum of Sq RSS AIC

- speed 2 213 57256 1144

- oPO4 1 8 57050 1145

- Chla 1 378 57421 1147

- mnO2 1 427 57470 1147

- mxPH 1 457 57500 1147

- Cl 1 464 57506 1147

<none> 57043 1147

- NH4 1 751 57794 1148

- PO4 1 859 57902 1148

- size 2 2184 59227 1151

- NO3 1 2353 59396 1153

...

...

Step: AIC= 1140.09

a1 ~ size + mxPH + Cl + NO3 + PO4

Df Sum of Sq RSS AIC

<none> 58432 1140

- mxPH 1 801 59233 1141

- Cl 1 906 59338 1141

- NO3 1 1974 60405 1145

- size 2 2652 61084 1145

- PO4 1 8514 66946 1165

27We have omitted some of the output of the step() function for space reasons.
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The function step() uses the Akaike Information Criterion to perform model
search. The search uses by default backward elimination, but with the param-
eter direction you may use other algorithms (check the help of this function
for further details).

We can obtain the information on the final model by,

> summary(final.lm)

Call:

lm(formula = a1 ~ size + mxPH + Cl + NO3 + PO4, data = clean.algae[,

1:12])

Residuals:

Min 1Q Median 3Q Max

-28.876 -12.681 -3.688 8.393 62.875

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 57.63859 20.93604 2.753 0.00647 **

sizemedium 2.82560 3.39950 0.831 0.40691

sizesmall 10.39431 3.81809 2.722 0.00708 **

mxPH -4.00980 2.47801 -1.618 0.10728

Cl -0.05438 0.03160 -1.721 0.08692 .

NO3 -0.89215 0.35124 -2.540 0.01188 *

PO4 -0.05887 0.01116 -5.276 3.57e-07 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 17.49 on 191 degrees of freedom

Multiple R-Squared: 0.3536, Adjusted R-squared: 0.3333

F-statistic: 17.42 on 6 and 191 DF, p-value: 4.857e-16

The proportion of variance explained by this model is still not very interest-
ing! This kind of proportion is usually considered as a sign that the linearity
assumptions of this model are inadequate for the domain.

Further readings on multiple linear regression models

Linear regression is one of the most used statistics techniques. As such, most statistics books will
include a chapter on this subject. Still, specialized books should be used for deeper analysis. Two
extensive books are the ones by Drapper and Smith (1981) and by Myers (1990). These books
should cover most of the topics you will ever want to know about linear regression.

2.6.2 Regression trees

Let us now look at a different kind of regression model available in R. Namely,
we will learn how obtain a regression tree (e.g. Breiman et al., 1984) to predict
the value of the frequencies of algal a1. As these models handle data sets with
missing values we only need to remove the samples 62 and 199 for the reasons
mentioned before.

The necessary instructions to obtain a regression tree are presented below:Obtaining a

regression tree
> library(rpart)

> algae <- read.table(’Analysis.txt’,

+ header=F,

+ dec=’.’,

+ col.names=c(’season’,’size’,’speed’,’mxPH’,’mnO2’,’Cl’,’NO3’,
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+ ’NH4’,’oPO4’,’PO4’,’Chla’,’a1’,’a2’,’a3’,’a4’,’a5’,’a6’,’a7’),

+ na.strings=c(’XXXXXXX’))

> algae <- algae[-c(62,199),]

> rt.a1 <- rpart(a1 ~ .,data=algae[,1:12])

The first instruction loads the ’rpart’ package that implements regression
trees in R.28 The last instruction obtains the tree. Note that this function uses
the same schema as the lm() function to describe the functional form of the
model. The second argument of rpart indicates which data to use to obtain
the tree.

The content of the object rt.a1 object is the following,

> rt.a1
n= 198

node), split, n, deviance, yval
* denotes terminal node

1) root 198 90401.290 16.996460
2) PO4>=43.818 147 31279.120 8.979592
4) Cl>=7.8065 140 21622.830 7.492857
8) oPO4>=51.118 84 3441.149 3.846429 *
9) oPO4< 51.118 56 15389.430 12.962500
18) mnO2>=10.05 24 1248.673 6.716667 *
19) mnO2< 10.05 32 12502.320 17.646880
38) NO3>=3.1875 9 257.080 7.866667 *
39) NO3< 3.1875 23 11047.500 21.473910
78) mnO2< 8 13 2919.549 13.807690 *
79) mnO2>=8 10 6370.704 31.440000 *

5) Cl< 7.8065 7 3157.769 38.714290 *
3) PO4< 43.818 51 22442.760 40.103920
6) mxPH< 7.87 28 11452.770 33.450000
12) mxPH>=7.045 18 5146.169 26.394440 *
13) mxPH< 7.045 10 3797.645 46.150000 *
7) mxPH>=7.87 23 8241.110 48.204350
14) PO4>=15.177 12 3047.517 38.183330 *
15) PO4< 15.177 11 2673.945 59.136360 *

A regression tree is a hierarchy of logical tests on some of the explanatory How to interpret the

treevariables. Tree-based models automatically select the more relevant variables,
thus not all variables need to appear in the tree. A tree is read from the root
node that is marked by R with the number 1. R provides some information
of the data in this node. Namely, we can observe that we have 198 samples
(the overall training data used to obtain the tree) at this node, that these 198
samples have an average value for the frequency of algal a1 of 16.99, and that the
deviance29 from this average is 90401.29. Each node of a tree has two branches.
These are related to the outcome of a test on one of the predictor variables. For
instance, from the root node we have a branch (tagged by R with “2)”) for the

28Actually, there is another package that also implements tree-based models, the package
tree.

29The sum of squared differences from the average.
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Figure 2.8: A regression tree for predicting algal a1.

cases where the test “PO4≥43.818” is true (147 samples); and also a branch for
the 51 remaining cases not satisfying this test (marked by R with “3)”). From
node 2 we have two other branches leading to nodes 4 and 5, depending on the
outcome of a test on Cl. This testing goes on until a leaf node is reached. These
nodes are marked with asterisks by R. At these leaves we have the predictions
of the tree. This means that if we want to use a tree to obtain a prediction for a
particular water sample, we only need to follow a branch from the root node till
a leaf, according to the outcome of the tests for this test sample. The average
target variable value found at the leaf we have reached is the prediction of the
tree for that sample.

We can also obtain a graphical representation of the tree as follows,Graphical

representation of

trees > plot(rt.a1,uniform=T,branch=1, margin=0.1, cex=0.9)
> text(rt.a1,cex=0.75)

The first instruction draws the tree, while the second labels the nodes of
the tree. The other parameters have to do with graphical details of the tree
presentation (character size, margins, etc.). They are not essential for the tree
visualization, and we may even need to adjust slightly their values to better fit
our presentation requirements.

Figure 2.8 shows the obtained tree. On this representation if the test at
each node is truth you should follow the left branch, otherwise the right branch
should be selected. Manipulating the various parameters of the functions used
to draw trees you can obtain much better looking trees.

The summary() function can also be applied to tree objects. This will pro-
duce a lot of information concerning the tests on the tree, the alternative tests
that could be considered and also the surrogate splits. These splits are part of
the strategy used in R regression trees to handle unknown values.
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Trees are usually obtained in two steps. Initially, a large tree is grown, and
then this tree is pruned by deleting bottom nodes through a process of statistical Pruning trees

estimation. This process has the goal of avoiding overfitting. This has to do
with the fact that an overly grown tree will fit the traning data almost perfectly,
but will be capturing spurious relationships of the sample (overfitting), and thus
will perform badly when faced with a new data sample for which predictions
are necessary. The overfitting problem occurs in many modelling techniques,
particularly when the assumptions regarding the function to aproximate are
more relaxed. These models although having a wider application range (due to
these relaxed criteria), suffer from this overfitting problem, thus demanding for
a statistical estimation step which precludes the overfitting problem.

The function rpart() that we have used to obtain our tree only grows the
tree, stopping when certain criteria are met. Namely, the tree stops growing
whenever the decrease in the deviance goes below a certain threshold; when the
number of samples in the node is less than another threshold; or when the tree
depth exceeds another value. These thresholds are controled by the parameters
cp, minsplit and maxdepth, respectively. Their default values are 0.01, 20 and
30, respectively.

If we want to avoid the overfitting problem we should always check the
validity of these default tree growth stopping criteria. This can be carried out
through a process of post-pruning of the obtained tree. The rpart package
implements a pruning method named cost complexity pruning. This method
uses the values of the parameter cp that R calculates for each node of the tree.
The pruning method tries to estimate the value of cp that ensures the best
compromise between predictive accuracy and tree size. Given a tree obtained
with the rpart() function, R can produce a set of sub-trees of this tree and
estimate their predictive performance. This information can be obtained using
the function printcp(),30

> printcp(rt.a1)

Regression tree:

rpart(formula = a1 ~ ., data = algae[, 1:12])

Variables actually used in tree construction:

[1] Cl mnO2 mxPH NO3 oPO4 PO4

Root node error: 90401/198 = 456.57

n= 198

CP nsplit rel error xerror xstd

1 0.405740 0 1.00000 1.00737 0.13075

2 0.071885 1 0.59426 0.65045 0.10913

3 0.030887 2 0.52237 0.65470 0.10912

4 0.030408 3 0.49149 0.69417 0.11537

5 0.027872 4 0.46108 0.70211 0.11682

6 0.027754 5 0.43321 0.70211 0.11682

7 0.018124 6 0.40545 0.68015 0.11488

8 0.016344 7 0.38733 0.71108 0.11552

9 0.010000 9 0.35464 0.70969 0.11522

The tree produced by the rpart() function is the last tree of this list (tree
9). This tree has a value of cp of 0.01 (the default value of this parameter),

30You may obtain similar information in a graphical form using the function plotcp(rt.a1).

(DRAFT - May 22, 2003)



62 PREDICTING ALGAE BLOOMS

includes 9 tests and has a relative error (compared to the root node) of 0.354.
However, R estimates, using an internal process of 10-fold cross validation, that
this tree will have an average relative error31 0.70969 ± 011522. Using the
information provided by these more reliable estimates of performance, which
avoid the overfitting problem, we can observe that we would theoretically be
better off with the tree number 2, which has a lower estimated relative error
(0.65045). An alternative selection rule is to choose the best tree according to
the 1-SE rule. This consists of looking at the cross validation error estimatesThe 1-SE rule

(“xerror” columns) and their standard deviations (“xstd” column). In this case
the 1-SE tree is the smallest tree with error less than 0.65045 + 0.10913 =
0.75958, which in this case is the same as the tree with lowest estimated error
(the tree at line 2). If we prefer this tree to the one suggested by R, we can
obtain it by using the respective cp value32,

> rt2.a1 <- prune(rt.a1,cp=0.08)
> rt2.a1
n= 198

node), split, n, deviance, yval
* denotes terminal node

1) root 198 90401.29 16.996460
2) PO4>=43.818 147 31279.12 8.979592 *
3) PO4< 43.818 51 22442.76 40.103920 *

We can automate this grow an prune steps using the following functions,

> reliable.rpart <- function(form,data,se=1,cp=0,verbose=T,...) {

+ tree <- rpart(form,data,cp=cp,...)

+ if (verbose & ncol(tree$cptable) < 5)

+ warning("No pruning will be carried out because no estimates were obtained.")

+ rt.prune(tree,se,verbose)

+ }

> rt.prune <- function(tree,se=1,verbose=T,...) {

+ if (ncol(tree$cptable) < 5) tree

+ else {

+ lin.min.err <- which.min(tree$cptable[,4])

+ if (verbose & lin.min.err == nrow(tree$cptable))

+ warning("Minimal Cross Validation Error is obtained

+ at the largest tree.\n Further tree growth

+ (achievable through smaller ’cp’ parameter value),\n

+ could produce more accurate tree.\n")

+ tol.err <- tree$cptable[lin.min.err,4] + se * tree$cptable[lin.min.err,5]

+ se.lin <- which(tree$cptable[,4] <= tol.err)[1]

+ prune.rpart(tree,cp=tree$cptable[se.lin,1]+1e-9)

+ }

+ }

Using this function with its default parameter values we will obtain the 1-SE
tree,

31It is important to note that you may have obtained different numbers on the columns
’xerror’ and ’xstd’. The cross validation estimates are obtained using a random sampling
process, meaning that your samples will probably be different and thus the results will also
differ.

32Actually, a value between the cp’s of the trees in line 1 and 2.
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> (rt.a1 <- reliable.rpart(a1 ~ .,data=algae[,1:12]))
n= 198

node), split, n, deviance, yval
* denotes terminal node

1) root 198 90401.29 16.996460
2) PO4>=43.818 147 31279.12 8.979592 *
3) PO4< 43.818 51 22442.76 40.103920 *

The trees are grown with a cp value of 0, which ensures a very large initial
tree. This avoids stop growing too soon, which has the danger of missing some
interesting tree model. In any case, if the chosen tree is the last of the cp
table obtained with printcp(), our functions will issue a warning, suggesting
to decrease the cp value. You may also add any of the other rpart() function
parameters to the call of our reliable.rpart function, because these will be
passed to the rpart function. That is the goal of the three dots in the arguments
of the function. Their goal is to accept any other parameters apart from the
ones presented in the function description, and in this case to pass them to the
function rpart(). The function also checks whether the user has turned off
cross-validation estimates (which is possible though the xval parameter). In
this case no pruning is carried out and a warning is printed.

R also allows a kind of interactive pruning of a tree through the function
snip.rpart(). This function can be used to generate a pruned tree in two
ways. The first consists of indicating the number of the nodes (you can obtain
these numbers by printing a tree object) at which you want to prune the tree,

> first.tree <- rpart(a1 ~ .,data=algae[,1:12])
> snip.rpart(first.tree,c(4,7))
n= 198

node), split, n, deviance, yval
* denotes terminal node

1) root 198 90401.290 16.996460
2) PO4>=43.818 147 31279.120 8.979592

4) Cl>=7.8065 140 21622.830 7.492857 *
5) Cl< 7.8065 7 3157.769 38.714290 *

3) PO4< 43.818 51 22442.760 40.103920
6) mxPH< 7.87 28 11452.770 33.450000
12) mxPH>=7.045 18 5146.169 26.394440 *
13) mxPH< 7.045 10 3797.645 46.150000 *
7) mxPH>=7.87 23 8241.110 48.204350 *

Note that the function returns a tree object like the one returned by the
rpart() function, which means that you can store your pruned tree using some-
thing like my.tree <- snip.rpart(first.tree,c(4,7)).

Alternatively, you may use snip.rpart() in a graphical way. First, you plot
the tree, and then you call the function without the second argument. If you
click with the mouse at some node, R prints on its console some information
about the node. If you click again on that node, R prunes the tree at that node.
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You can go on pruning nodes in this graphical way. You finish the interaction
by clicking the right mouse button. The result of the call is again a tree object,

> plot(first.tree)
> text(first.tree)
> snip.rpart(first.tree)
node number: 2 n= 147

response= 8.979592
Error (dev) = 31279.12

node number: 6 n= 28
response= 33.45
Error (dev) = 11452.77

n= 198

node), split, n, deviance, yval
* denotes terminal node

1) root 198 90401.290 16.996460
2) PO4>=43.818 147 31279.120 8.979592 *
3) PO4< 43.818 51 22442.760 40.103920

6) mxPH< 7.87 28 11452.770 33.450000 *
7) mxPH>=7.87 23 8241.110 48.204350
14) PO4>=15.177 12 3047.517 38.183330 *
15) PO4< 15.177 11 2673.945 59.136360 *

In this example, I have clicked and pruned nodes 2 and 6.

Further readings on regression trees

The more complete study on regression trees is probably the book by Breiman et al. (1984). This
is the standard reference on both classification and regression trees. It provides a deep study of
these two types of models. The approach can be seen as a bit formal (at least in some chapters)
for some readers. Nevertheless, it is definitely a good reference although slightly biased towards
statistical literature. The book on the system C4.5 by Quinlan (1993) is a good reference on
classification trees from the machine learning community perspective. My Ph.D thesis (Torgo,
1999a), which you can freely download from my home page, should provide you with a good
introduction, references and advanced topics on regression trees. It will also introduce you to
other types of tree-based models that have the goal of improving the accuracy of regression trees
by using more sophisticated models at the leaves (see also Torgo (2000)).

2.7 Model evaluation and selection

In Section 2.6 we have seen two examples of prediction models that could be
used on this case study. The obvious question is which one should we use for
obtaining the predictions for the 7 algae of the 140 test samples. To answer this
question one needs to specify some preference criteria over the space of possible
models, i.e. we need to specify how we will evaluate the performance of the
models.

Several criteria exist for evaluating (and thus comparing) models. AmongModel selection

criteria the most popular are criteria that calculate the predictive performance of the
models. Still, other criteria exist like for instance the model interpretability, or
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even the model computational efficiency that can be important for very large
data mining problems.

The predictive performance of regression models is obtained by comparing Predictive

performance of

regression models

the predictions of the models with the real values of the target variables, and
calculating some average error measure from this comparison. One of such
measures is the mean absolute error (MAE). Let us see how to obtain this
measure for our two models (linear regression and regression trees). The first
step is to obtain the model predictions for the set of cases where we want to Obtaining model

predictionsevaluate it. To obtain the predictions of any model in R, one uses the function
predict(). This general function peeks a model and a set of data and retrieves
the model predictions,

> lm.predictions.a1 <- predict(final.lm,clean.algae)
> rt.predictions.a1 <- predict(rt.a1,algae)

These two statements collect the predictions of the models obtained in Sec-
tion 2.6 for algal a1. Note that we have used the clean.algae data frame with
linear models, because of the missing values.

Having the predictions of the models we can calculate their mean absolute Mean absolute error

error as follows,

> (mae.a1.lm <- mean(abs(lm.predictions.a1-algae[,’a1’])))
[1] 13.10279
> (mae.a1.rt <- mean(abs(rt.predictions.a1-algae[,’a1’])))
[1] 11.61717

Another popular error measure is the mean squared error (MSE) . This Mean squared error

measure can be obtained as follows,

> (mse.a1.lm <- mean((lm.predictions.a1-algae[,’a1’])^2))
[1] 295.1097
> (mse.a1.rt <- mean((rt.predictions.a1-algae[,’a1’])^2))
[1] 271.3226

This latter statistic has the disadvantage of not being measured in the same
units as the target variable, and thus being less interpretable from the user per-
spective. Even if we use the MAE statistic we can ask ourselves the question
whether the scores obtained by the models are good or bad. An alternative
statistic that provides a reasonable answer to this question is the normalized Normalized mean

squared errormean squared error (NMSE). This statistic calculates a ratio between the per-
formance of our models and that of a baseline predictor, usually taken as the
mean value of the target variable,

> (nmse.a1.lm <- mean((lm.predictions.a1-algae[,’a1’])^2)/

+ mean((mean(algae[,’a1’])-algae[,’a1’])^2))

[1] 0.6463594

> (nmse.a1.rt <- mean((rt.predictions.a1-algae[,’a1’])^2)/

+ mean((mean(algae[,’a1’])-algae[,’a1’])^2))

[1] 0.5942601

The NMSE is a unit-less error measure with values usually ranging from 0
to 1. If your model is performing better than this very simple baseline predictor
then the NMSE should be clearly below 1. The smaller the NMSE, the better.
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Figure 2.9: Visual inspection of the predictions.

Values above 1 mean that your model is performing worse than simply predicting
always the average for all cases!

Occasionally, it may also be interesting to have some kind of visual inspec-Visual inspection of

the predictions tion of the predictions of the models. The following is an example using the
predictions of our two models (c.f. the result in Figure 2.9),

> old.par <- par(mfrow=c(2,1))

> plot(lm.predictions.a1,algae[,’a1’],main="Linear Model",

+ xlab="Predictions",ylab="True Values")

> abline(0,1,lty=2)

> plot(rt.predictions.a1,algae[,’a1’],main="Regression Tree",

+ xlab="Predictions",ylab="True Values")

> abline(0,1,lty=2)

> par(old.par)

The first instruction sets one of the many parameters of the graphics system
of R. The mfrow parameter allows us to divide the figure region in a kind of
matrix of plots, providing means for presenting several plots in the same figure.
In this case we have set it to a matrix with two rows and one column. After
setting this value, any subsequent calls to the plot() function will fill each of
these matrix elements in turn. Finally, the last call to the par() function sets
the graphical parameters to what they were before our changes.

Looking at Figure 2.9 we can observe that the models have a rather poor
performance in several cases. In the ideal scenario that they make correct pre-
dictions for all cases, all the circles in the plots should lie on the dashed lines,
that were obtained with the abline(0,1,lty=2) calls. These lines have a 45
degrees slope. Given that each circle in the plots gets its coordinates from the
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predicted and truth values of the target variable, if these were equal the circles
would all lie on this ideal line. As we can observe that is not the case at all!
We can check which is the sample number where a particularly bad prediction Interactive

identification of

samples

is made with the function identify(),

> plot(lm.predictions.a1,algae[,’a1’],main="Linear Model",
+ xlab="Predictions",ylab="True Values")
> abline(0,1,lty=2)
> identify(lm.predictions.a1,algae[,’a1’])

After the call to the function identify(), R enters in an interactive mode
where the user is allowed to click with the left mouse button on any of the circles
in the plot. For each clicked circle a number appears. This number is the row
number in the algae data frame corresponding to that particular prediction.
Try clicking the worse predictions. To end this interactive mode click on the
right button of your mouse. R returns a vector with the row numbers of the
clicked circles. Taking advantage of this, we could see the complete information
regarding these water samples by issuing the following command instead of the
identify() call used above,

> plot(lm.predictions.a1,algae[,’a1’],main="Linear Model",
+ xlab="Predictions",ylab="True Values")
> abline(0,1,lty=2)
> algae[identify(lm.predictions.a1,algae[,’a1’]),]

Using this alternative, after finishing the interaction with the graphics win-
dow, you should see the rows of the algae data frame corresponding to the
clicked circles, because we are using the vector returned by the identify()
function to index the algae data frame.

Looking at the graph with the predictions of the linear model we can see that
this model predicts negative algae frequencies for some cases. In this application
domain it makes no sense to say that the occurrence of an algal in a water sample
is negative (at most it can be zero). As such, we can take advantage of this
domain knowledge and use this minimum value as a form of improving the linear
model performance,

> sensible.lm.predictions.a1 <- ifelse(lm.predictions.a1 < 0,0,lm.predictions.a1)

> (mae.a1.lm <- mean(abs(sensible.lm.predictions.a1-algae[,’a1’])))

[1] 12.47114

> (nmse.a1.lm <- mean((sensible.lm.predictions.a1-algae[,’a1’])^2)/

+ mean((mean(algae[,’a1’])-algae[,’a1’])^2))

[1] 0.6257973

We have used the function ifelse() to achieve this effect. This function
has 3 arguments. The first is a logical condition, the second is the result of
the function call when the condition is true, while the third argument is the
result when the condition is false. Notice how this small detail has increased
the performance of our model!

According to the performance measures calculated above one should prefer
the regression tree to obtain the predictions for the 140 test samples. However,
there is a trap on this reasoning. Our goal is to choose the best model for
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obtaining the predictions on the 140 test samples. As we do not know the
target variables values for those samples, we have to estimate which of our
models will perform better on these test samples. The key issue here is to
obtain a reliable estimate of a model performance on data for which we do notReliable performance

estimates know the true target value. The measures calculated using the training data
(as the ones obtained above) are unreliable, because they are biased. In effect,
there are models that can easily obtain zero prediction error on the training
data. However, this performance will hardly generalize over new samples for
which the target variable value is unknown. This phenomenon is usually known
as overfitting the training data, as we have mentioned before. Thus to select aOverfitting

model one needs to obtain more reliable estimates of the models performance on
test data. K -fold Cross Validation is among the most frequently used methodsCross validation

of obtaining these reliable estimates for small data sets like our case study. This
method can be briefly described as follows. Obtain K equally sized and random
sub-sets of the training data. For each of these K sub-sets, build a model using
the remaining K -1 sets and evaluate this model on the K th sub-set. Store the
performance of the model and repeat this process for all remaining sub-sets. In
the end we have K performance measures, all obtained by testing a model on
data not used for its construction. The K -fold Cross Validation estimate is the
average of these K measures. A common choice for K is 10. The following code
puts these ideas in practice for our two models,

> cross.validation <- function(all.data,clean.data,n.folds=10) {

+

+ n <- nrow(all.data)

+ idx <- sample(n,n)

+ all.data <- all.data[idx,]

+ clean.data <- clean.data[idx,]

+

+ n.each.part <- as.integer(n/n.folds)

+

+ perf.lm <- vector()

+ perf.rt <- vector()

+

+ for(i in 1:n.folds) {

+ cat(’Fold ’,i,’\n’)

+ out.fold <- ((i-1)*n.each.part+1):(i*n.each.part)

+

+ l.model <- lm(a1 ~ .,clean.data[-out.fold,1:12])

+ l.model <- step(l.model)

+ l.model.preds <- predict(l.model,clean.data[out.fold,1:12])

+ l.model.preds <- ifelse(l.model.preds < 0,0,l.model.preds)

+

+ r.model <- reliable.rpart(a1 ~ .,all.data[-out.fold,1:12])

+ r.model.preds <- predict(r.model,all.data[out.fold,1:12])

+

+ perf.lm[i] <- mean((l.model.preds-all.data[out.fold,’a1’])^2) /

+ mean((mean(all.data[-out.fold,’a1’])-all.data[out.fold,’a1’])^2)

+ perf.rt[i] <- mean((r.model.preds-all.data[out.fold,’a1’])^2) /

+ mean((mean(all.data[-out.fold,’a1’])-all.data[out.fold,’a1’])^2)

+ }

+

+ list(lm=list(avg=mean(perf.lm),std=sd(perf.lm),fold.res=perf.lm),

(DRAFT - May 22, 2003)



2.7 Model evaluation and selection 69

+ rt=list(avg=mean(perf.rt),std=sd(perf.rt),fold.res=perf.rt))

+ }

> cv10.res <- cross.validation(algae,clean.algae)

...

...

> cv10.res

> cv10.res

> cv10.res

$lm

$lm$avg

[1] 0.6615105

$lm$std

[1] 0.1445622

$lm$fold.res

[1] 0.9032081 0.8211061 0.5616579 0.6315887 0.4587398 0.6257729 0.6718084

[8] 0.4720356 0.7806779 0.6885100

$rt

$rt$avg

[1] 0.6420002

$rt$std

[1] 0.1091459

$rt$fold.res

[1] 0.5751316 0.5773694 0.6860172 0.9014692 0.7118805 0.5312575 0.5502557

[8] 0.6258313 0.5903314 0.6704584

The function cross.validation() implements the K -fold Cross Validation
process outlined above, for the two models and for algal a1. The result of the
function is a list with two components that are also lists. Each component
contains the performance of one of the models (linear regression and regression
trees). The performance of the models is described by the average performance
(measured using the NMSE) over the K folds, the standard deviation of this
performance and also a vector containing the performance on each individual
fold.

As we can see from the output of the function, regression trees have a slightly
better score (0.64 against 0.66)33. However, you may also note that there is a
large variation of the scores on the different folds, which is also captured by the
large standard deviations of both methods. We can carry out a formal statistical
test to check whether the difference between the two means is statistically sig-
nificant with some degree of confidence. The appropriate test for this situation
is the paired t test. This test checks the hypothesis that the difference between Paired t tests

the means of the two methods is zero. The following code performs the test for
the results of our methods in the 10 folds,

33You may obtain a different score if you try this code as there is a random component in
the cross validation function (the call to the sample() function).
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> t.test(cv10.res$lm$fold.res,cv10.res$rt$fold.res,paired=T)

Paired t-test

data: cv10.res$lm$fold.res and cv10.res$rt$fold.res
t = 0.2928, df = 9, p-value = 0.7763
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.1312125 0.1702331
sample estimates:
mean of the differences

0.01951031

The average difference between the performance of the linear model and of
the regression tree is positive (0.01951031), meaning that the linear model has
a larger average NMSE. However, the 95% confidence interval of the difference
between the two methods ([−0.1312..0.1702]) includes the zero, meaning that
we can not be confident that there is a significant difference between the two
methods. This is equivalently confirmed by the p-value that is clearly above
the value of 0.05 (the significance level for a 95% confidence test), confirming
that the observed differences between the two mean errors are not statisticaly
significant.

In summary, according to these results we have no reasons to prefer one
model over the other, in the task of predicting the concentrations of algal a1.

2.8 Predictions for the 7 algae

In this section we will see how to obtain the predictions for the 7 algae on the
140 test samples. Section 2.7 described how to proceed to choose a model to
obtain these predictions. A similar procedure can be followed for all 7 algae.
This process would lead us to the choice of a model to obtain the predictions
for each of the 7 algae.

An alternative procedure is to carry out some kind of averaging over the
models, instead of selecting one of them to obtain the predictions. This mixture
of different models is frequently used as a form of reducing the final prediction
error, by incorporating “different views” of the same training data. As such, we
will include this mixture model as a third alternative to obtain the predictions
of each algal.

In summary, for each algal, we will compare three alternative ways of ob-
taining the predictions for the 140 test samples: using a linear model; using a
regression tree; or using a combination of the two models. The comparison will
be carried out using a 10-fold cross validation process designed to estimate the
performance of these alternatives in predicting the frequencies of the 7 algae.
The estimated performance for the two “basic” models (linear models and re-
gression trees) will be used to calculate a weight. This weight will enter the
averaging process of the two models to obtain the predictions of the mixture
model. The idea is to give more weight on this combination to the model which
we estimate to have better performance.

In the end of this comparison process we will have information to decide
which of the 3 models should be used for each of the 7 algae.
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2.8.1 Preparing the test data

In this case study we have a separate file with test data, for which we want to
obtain predictions for the 7 algae frequencies. Let us start by loading the test
data, following a similar procedure as described in Section 2.3,

> test.algae <- read.table(’Eval.txt’,

+ header=F,

+ dec=’.’,

+ col.names=c(’season’,’size’,’speed’,’mxPH’,’mnO2’,’Cl’,

+ ’NO3’,’NH4’,’oPO4’,’PO4’,’Chla’),

+ na.strings=c(’XXXXXXX’))

Note that the test data does not contain the seven columns of the algae
frequencies, which is reflected in the col.names parameter.

The test data does not include samples with lots of missing values. We will
use the same filling method as the one used in Section 2.6.1 to prepare the data
for the linear regression models. As mentioned before, regression trees do not
need any preparation as they handle unknown values.

> data4dist <- rbind(algae[,1:11],test.algae[,1:11])

> dist.mtx <- as.matrix(daisy(data4dist,stand=T))

> clean.test.algae <- test.algae

> for(r in which(!complete.cases(test.algae)))

+ clean.test.algae[r,which(is.na(test.algae[r,]))] <-

+ apply(data.frame(

+ data4dist[c(as.integer(names(sort(dist.mtx[r+198,])[2:11]))),

+ which(is.na(test.algae[r,]))]),

+ 2,central.value)

2.8.2 Comparing the alternative models

In this section we carry out a process of performance estimation for three al-
ternative models: linear regression; a regression tree; and a combination of the
predictions of both models. As mentioned before, we use a 10-fold cross valida-
tion method to estimate the NMSE of these models for the 7 algae. The code
is quite similar to the one given in Section 2.7 with the main difference being
the fact that we are estimating the accuracy for all 7 algae and using a third
alternative model,

> cv.all <- function(all.data,clean.data,n.folds=10) {

+

+ n <- nrow(all.data)

+ idx <- sample(n,n)

+ all.data <- all.data[idx,]

+ clean.data <- clean.data[idx,]

+

+ n.each.part <- as.integer(n/n.folds)

+

+ perf.lm <- matrix(nrow=n.folds,ncol=7)

+ perf.rt <- matrix(nrow=n.folds,ncol=7)

+ perf.comb <- matrix(nrow=n.folds,ncol=7)

+

+ for(i in 1:n.folds) {
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+ cat(’Fold ’,i,’\n’)

+ out.fold <- ((i-1)*n.each.part+1):(i*n.each.part)

+

+ for(a in 1:7) {

+

+ form <- as.formula(paste(names(all.data)[11+a],"~."))

+ l.model <- lm(form,clean.data[-out.fold,c(1:11,11+a)])

+ l.model <- step(l.model)

+ l.model.preds <- predict(l.model,clean.data[out.fold,c(1:11,11+a)])

+ l.model.preds <- ifelse(l.model.preds < 0,0,l.model.preds)

+

+ r.model <- reliable.rpart(form,all.data[-out.fold,c(1:11,11+a)])

+ r.model.preds <- predict(r.model,all.data[out.fold,c(1:11,11+a)])

+

+ perf.lm[i,a] <- mean((l.model.preds-all.data[out.fold,11+a])^2) /

+ mean((mean(all.data[-out.fold,11+a])-all.data[out.fold,11+a])^2)

+ perf.rt[i,a] <- mean((r.model.preds-all.data[out.fold,11+a])^2) /

+ mean((mean(all.data[-out.fold,11+a])-all.data[out.fold,11+a])^2)

+

+ wl <- 1-perf.lm[i,a]/(perf.lm[i,a]+perf.rt[i,a])

+ wr <- 1-wl

+ comb.preds <- wl*l.model.preds + wr*r.model.preds

+ perf.comb[i,a] <- mean((comb.preds-all.data[out.fold,11+a])^2) /

+ mean((mean(all.data[-out.fold,11+a])-all.data[out.fold,11+a])^2)

+

+ cat(paste("Algal a",a,sep=""),"\tlm=",perf.lm[i,a],"\trt=",

+ perf.rt[i,a],"\tcomb=",perf.comb[i,a],"\n")

+ }

+ }

+

+ lm.res <- apply(perf.lm,2,mean)

+ names(lm.res) <- paste("a",1:7,sep="")

+ rt.res <- apply(perf.rt,2,mean)

+ names(rt.res) <- paste("a",1:7,sep="")

+ comb.res <- apply(perf.comb,2,mean)

+ names(comb.res) <- paste("a",1:7,sep="")

+ list(lm=lm.res,rt=rt.res,comb=comb.res)

+ }

> all.res <- cv.all(algae,clean.algae)

...

...

> all.res

$lm

a1 a2 a3 a4 a5 a6 a7

0.8001161 1.0645198 1.0554538 2.7642420 1.1138268 0.8801750 1.1648678

$rt

a1 a2 a3 a4 a5 a6 a7

0.8967313 1.0000000 1.0047853 1.0000000 1.0000000 1.0000000 0.9500312

$comb

a1 a2 a3 a4 a5 a6 a7
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0.7360687 0.8641726 0.9463703 0.8990338 0.8936548 0.8401665 0.9491620

> all.res

$lm

a1 a2 a3 a4 a5 a6 a7

0.7006490 1.0188807 0.9461492 3.2476246 0.9755554 0.8508742 1.2295709

$rt

a1 a2 a3 a4 a5 a6 a7

0.6997513 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0802391

$comb

a1 a2 a3 a4 a5 a6 a7

0.6077761 0.8671840 0.8956491 0.8868241 0.8402844 0.7828258 1.0508497

This may take a little while to run on slower computers and will surely
produce lots of output!

The cv.all() function returns a list containing three vectors: one with
the estimated NMSE of the linear models for all 7 algae; another with the
same estimates for regression trees; and the third with these estimates for the
combination strategy. We will use these estimates to decide which model to use
for obtaining the predictions for the 140 test samples.

The function has already some degree of complexity and it is worth spending
some time trying to understand its functioning. Note how we have built the
formula in the calls to lm() and reliable.rpart(). The cv.all() function
obtains several models for each algal, and for each of the 10 iterations of the
cross validation process. This is accomplished by using two for() cycles inside
each other. The first iterates through the 10 repetitions of the 10-fold cross
validation process. On each of these iterations the i variable takes a different
value leading to a different set of data being left out for testing the models (c.f.
the out.fold variable that depends on i). For each i iteration, the function
obtains different models for each algal. This is accomplished with another for()
cycle. On each repetition of this inner cycle what varies is the target variable,
which is successively the algal 1 to 7. As such, the single difference when calling
the modeling functions is on the target variable, i.e. the formula argument.
This means that on the first model we want the formula model to be “a1 ∼ .”,
on the second model “a2 ∼ .”, and so on. In order to achieve this we have to
“build” the formula at running time as the inner for() iterates from 1 to 7.
This is accomplished with the call to the function as.formula() that can be
used to transform a string into a model formula.

As we can observe from the results of the estimation process, the combination
strategy, in spite of some poor NMSE scores (algae a3 and a7 ), is the alternative
with better estimated predictive accuracy for all algae. One can question the
statistical significance of these observed differences. This could be asserted
through paired t tests as the ones carried out in Section 2.7. However, even
if some of the differences are not statistically significant we need to make a
decision regards which model is going to be used for obtaining the predictions
for the 140 test samples. As such, even on those cases we will choose the model
with better estimated performance (even if the difference to the others is not
statistically significant).

In summary, we will use the mixture model in all algae, when obtaining
predictions for the 140 test samples.
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2.8.3 Obtaining the prediction for the test samples

In this section we will obtain two regression models using the 200 training sam-
ples, for each of the 7 algae. These models will then be used to obtain predic-
tions for the 140 test samples. The predictions of each of the models will then
be weighed using the prediction accuracy estimates obtained in Section 2.8.2.
These weighed predictions will be our final “bets” for the 140 test samples as a
result of our predictive performance estimation process.

The following code obtains 7 different linear models for the algae, construct-
ing a list with several information concerning these models that we may later
inspect or use in any way,

> lm.all <- function(train,test) {

+ results <- list()

+ results$models <- list()

+ results$preds <- list()

+ for (alg in 1:7) {

+ results$models[[alg]] <- step(lm(as.formula(paste(names(train)[11+alg],’~ .’)),

+ data=train[,c(1:11,11+alg)]))

+ p <- predict(results$models[[alg]],test)

+ results$preds[[alg]] <- ifelse(p<0,0,p)

+ }

+ results

+ }

> lm.models <- lm.all(clean.algae,clean.test.algae)

The lm.all() function produces a list containing two sub-lists: one with the
7 linear models; and the other with the respective predictions of these models
for the 140 test samples. This way of working is one of the advantages of R with
respect to other statistical software. All models obtained in R are objects, and
as such can be stored in variables for later inspection. For instance, if we were
curious about the linear model obtained for algae a5, we can check its details
at any time by simply doing,

> summary(lm.models$models[[5]])

Call:

lm(formula = a5 ~ season + size + speed + mnO2 + NO3 + NH4 +

PO4, data = train[, c(1:11, 11 + alg)])

Residuals:

Min 1Q Median 3Q Max

-12.945 -3.503 -0.975 2.143 35.770

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.0245574 3.4407693 -1.460 0.1459

seasonspring -1.9868754 1.5455275 -1.286 0.2002

seasonsummer 0.9967160 1.4982003 0.665 0.5067

seasonwinter -1.6702756 1.4389373 -1.161 0.2472

sizemedium 3.4485731 1.3323818 2.588 0.0104 *

sizesmall 0.1520604 1.4172271 0.107 0.9147

speedlow -3.4456928 1.6615247 -2.074 0.0395 *

speedmedium -0.3032838 1.1892515 -0.255 0.7990

mnO2 0.7030887 0.2622467 2.681 0.0080 **

NO3 0.4885728 0.1949781 2.506 0.0131 *

NH4 -0.0008542 0.0003647 -2.342 0.0202 *

PO4 0.0184992 0.0045891 4.031 8.09e-05 ***
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---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.608 on 186 degrees of freedom

Multiple R-Squared: 0.2695, Adjusted R-squared: 0.2263

F-statistic: 6.238 on 11 and 186 DF, p-value: 1.022e-08

One of the nicest things of having the model construction functions sharing a
similar syntax, is that we can create a similar function to obtain regression trees
by only having to change the function lm() into reliable.rpart()! Everything
else stays the same34 as you can see below,

> rt.all <- function(train,test) {

+ results <- list()

+ results$models <- list()

+ results$preds <- list()

+ for (alg in 1:7) {

+ results$models[[alg]] <- reliable.rpart(as.formula(paste(names(train)[11+alg],’~ .’)),

+ data=train[,c(1:11,11+alg)])

+ results$preds[[alg]] <- predict(results$models[[alg]],test)

+ }

+ results

+ }

> rt.models <- rt.all(algae,test.algae)

Having obtained the predictions from the models considered in this case
study, we are now ready to obtain the weighed average of these predictions that
lead to our final predictions,

> final.preds <- function(lm.preds,rt.preds,ws) {

+ final <- matrix(nrow=140,ncol=7)

+ for (alg in 1:7) {

+ wl <- 1-ws$lm[alg]/(ws$lm[alg]+ws$rt[alg])

+ wr <- 1-wl

+ final[,alg] <- wl*lm.preds[[alg]] + wr*rt.preds[[alg]]

+ }

+ colnames(final) <- paste(’a’,1:7,sep=’’)

+ final

+ }

> final <- final.preds(lm.models$preds,rt.models$preds,all.res)

> final[1:10,]

a1 a2 a3 a4 a5 a6 a7

[1,] 8.010443 7.659476 4.046844 2.968524 6.398159 3.801033 2.481505

[2,] 13.092888 7.929399 3.754411 1.488492 5.184258 8.104343 2.585820

[3,] 15.774637 7.748229 3.544444 2.191713 4.490437 5.437407 1.957751

[4,] 14.933346 6.463206 5.465103 1.788305 3.737262 4.704890 1.709891

[5,] 35.908769 7.717396 2.998125 1.682552 3.995119 2.810936 1.370024

[6,] 36.034865 9.180016 2.220470 1.466830 5.023223 4.380623 1.370024

[7,] 38.045345 4.417147 5.022605 2.240296 3.182154 2.810936 2.288463

[8,] 36.372757 8.082238 2.995262 1.748558 4.695560 4.100239 1.735729

[9,] 35.124901 5.624183 3.198995 1.800770 5.081536 5.398252 1.764130

[10,] 17.638827 5.289090 2.884245 2.051009 5.764570 6.543876 1.711255

The matrix final contains our predictions for the 7 algae of the 140 test
samples (above we are only showing the predictions for the first 10).

We may be curious about how good (or bad) are these predictions. As
mentioned in the beginning of this chapter we have the “solutions” for these

34Actually, we also remove the correction for negative predicted frequencies, as that does
not happen with regression trees.
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140 test samples in a text file at the book web page. We may compare our
predictions with these true values just to check how far we got from the perfect
predictions.

> algae.sols <- read.table(’Sols.txt’,

+ header=F,dec=’.’,

+ col.names=c(’a1’,’a2’,’a3’,’a4’,’a5’,’a6’,’a7’))

> sq.errs <- (final-algae.sols)^2

> abs.errs <- abs(final-algae.sols)

> apply(sq.errs,2,mean)

a1 a2 a3 a4 a5 a6 a7

229.572679 101.150321 28.111477 5.782261 82.443397 154.842940 21.871590

> apply(abs.errs,2,mean)

a1 a2 a3 a4 a5 a6 a7

11.298151 7.139530 4.078631 1.811488 5.487225 7.543154 2.700523

> baseline.preds <- apply(algae[,paste(’a’,1:7,sep=’’)],2,mean)

> base.sq.errs <- (matrix(rep(baseline.preds,nrow(algae.sols)),byrow=T,ncol=T)

+ - algae.sols)^2

> apply(sq.errs,2,mean)/apply(base.sq.errs,2,mean)

a1 a2 a3 a4 a5 a6 a7

0.4172368 0.7931353 0.5327987 0.1082848 0.7276379 0.7750680 0.3779473

> algae.sols <- read.table(’Sols.txt’,

+ header=F,dec=’.’,

+ col.names=c(’a1’,’a2’,’a3’,’a4’,’a5’,’a6’,’a7’))

> sq.errs <- (final-algae.sols)^2

> abs.errs <- abs(final-algae.sols)

> apply(sq.errs,2,mean)

a1 a2 a3 a4 a5 a6 a7

229.407656 104.186428 29.589980 6.508241 73.238434 149.645554 20.876464

> apply(abs.errs,2,mean)

a1 a2 a3 a4 a5 a6 a7

11.144272 6.918737 3.966268 1.705084 4.706461 7.247290 2.459895

> baseline.preds <- apply(algae[,paste(’a’,1:7,sep=’’)],2,mean)

> base.sq.errs <- (matrix(rep(baseline.preds,nrow(algae.sols)),byrow=T,ncol=T)

+ -algae.sols)^2

> apply(sq.errs,2,mean)/apply(base.sq.errs,2,mean)

a1 a2 a3 a4 a5 a6 a7

0.4169369 0.8169419 0.5608209 0.1218802 0.6463958 0.7490525 0.3607512

The code presented above calculates the MSE, MAD and NMSE for all 7
algae. As we can observe from the NMSE results (the last calculation), the scores
obtained with our models are quite good for some algae, when compared to the
baseline predictor (predicting the average target value on the training data).
Still, we can observe some relatively large average errors in the predictions of
some of the algae (e.g. a1).

Now that we know the true values of the target variables for the 140 test
samples, we can check whether our model selection strategy “did a good job”, by
comparing the accuracy we have obtained with our strategy, with the accuracy
we would have obtained if we used only the linear models or the regression trees,

> rt.preds <- matrix(nrow=140,ncol=7)

> lm.preds <- matrix(nrow=140,ncol=7)

> for(a in 1:7) {rt.preds[,a] <- rt.models$preds[[a]];lm.preds[,a] <- lm.models$preds[[a]]}

> rt.sq.errs <- (rt.preds-algae.sols)^2

> lm.sq.errs <- (lm.preds-algae.sols)^2

> apply(rt.sq.errs,2,mean)/apply(sq.errs,2,mean)

a1 a2 a3 a4 a5 a6 a7

1.0843925 1.0616313 1.1254209 1.3584554 1.1186903 1.1580331 0.9889851

> apply(lm.sq.errs,2,mean)/apply(sq.errs,2,mean)

(DRAFT - May 22, 2003)



2.9 Summary 77

a1 a2 a3 a4 a5 a6 a7

1.1361735 1.0120873 1.0004431 1.2750399 0.9679453 0.9349201 1.0688560

As we can observe, most NMSE’s resulting from comparing the performance
of regression trees and linear models against the combination strategy, are above
1. This means that the model selection strategy based on cross validation es-
timates performed well. Still, there are exceptions to this (algae a5 and a6
for linear models), which means that in these particular cases we would obtain
more accurate predictions if we have used the linear models. This serves as an
alert to the risks we are taking whenever we are relying on processes of accuracy
estimation: as estimates they may be wrong! Still, these methodologies are de-
signed to be right on average, and in any case there is no alternative whenever
we do not know the true value of the target variables of our test cases.

Further readings on combination of models

Combining different models (sometimes known as ensemble learning) is a hot topic in data mining.
Techniques like bagging (Breiman, 1996) or boosting (Freund and Shapire, 1996; Shapire, 1990)
are quite frequently used to increase the performance of base models. A good overview of research
on this topics can be found in Dietterich (2000).

2.9 Summary

The main goal of this first case study was to familiarize the reader with R. With
this purpose we have used a small problem at least by data mining standards.
Our goal in this chapter was to introduce the reader to some of the existing tech-
niques in R, without exploring too deeply all the modeling techniques available
in R.

In case you are interested in knowing more about the international data
analysis competition that was behind the data used in this chapter, you may
browse through the competition Web page35, or read some of the papers of the
winning solutions (Bontempi et al., 1999; Chan, 1999; Devogelaere et al., 1999;
Torgo, 1999b) to compare the data analysis strategies followed by these authors.

We hope that by now you are more acquainted with the interaction with R,
and also familiarized with some of its features. Namely, you should have learned
some techniques for:

• loading data from text files,

• descriptive statistics of data sets,

• basic visualization of data,

• handling data sets with unknown values,

• linear regression models,

• regression trees,

• model selection and comparison,

• and model combination.
35http://www.erudit.de/erudit/competitions/ic-99/.
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Further cases studies will give you more details on these and other data
mining techniques.
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Chapter 3

Case Study 2:
Predicting Stock Market
Returns

The second case study addresses the problem of trying to build a stock trading
system based on prediction models obtained with daily stock quotes data. We
will apply different models to predict the returns of IBM stocks at the New York
Stock Exchange. These predictions will be used together with a trading rule
that will generate buy and sell signals. This chapter addresses several new data
mining issues: (1) how to use R to analyze data stored in a database; (2) how
to handle prediction problems where there is a time ordering among training
cases (usually known as a time series); (3) and the consequences of wanting to
translate model predictions into actions.

3.1 Problem description and objectives

Stock market trading is an application domain with a big potential for data min-
ing. In effect, the existence of an enormous amount of historical data suggests
that data mining can provide a competitive advantage over human inspection of
this data. On the other hand there are authors claiming that the markets adapt
so rapidly in terms of price adjustments that there is no space to obtain profits
in a consistent way. This is usually known as the efficient markets hypothesis.
This theory has been successively replaced by more relaxed versions that leave
some space for trading opportunities.

The general goal of stock trading is to maintain a portfolio of stocks based
on buy and sell orders. The long term objective is to achieve as much profit
as possible from these trading actions. In the context of this chapter we will
constrain a bit more this general scenario. Namely, we will only “trade” a
single stock. Given this security and an initial capital, we will try to maximize
our profit over a future testing period by means of trading actions (Buy, Sell,
Hold). Our trading strategy will use as basis for decision making the indications
provided by the result of a data mining process. This process will consist of
trying to predict the future returns of the stock based on a model obtained
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80 PREDICTING STOCK MARKET RETURNS

with historical quotes data. Thus our prediction model will be incorporated in
a trading system that generates its decisions based on the predictions of the
model. Our overall evaluation criteria will be the performance of this trading
system, i.e. the profit/loss resulting from the actions of the system. This means
that our main evaluation criteria will be the results of applying the knowledge
discovered by our data mining process and not the accuracy of the models
developed during this process.

3.2 The available data

In our case study we will concentrate on trading “IBM” stocks from the New
York Stock Exchange (NYSE) market. Daily data concerning the quotes of this
security are freely available in many places, like for instance the Yahoo finance
site1. Intra-day data2 is not so easy to obtain, thus our case study will focus on
trading at the end of each session which is possible when only the daily quotes
are available.

The data that will be used in this case study is provided in two different
formats at the book Web site3. The first is a comma separated values (CSV)
file that can be read into R in the same way as the data used in Chapter 2.
The book site also provides the data as a MySQL database dump file which we
can use to create a database with the stock quotes in MySQL. In this section,
we will illustrate how to load this data into R for these two alternative ways of
storing it. It is up to you to decide which alternative you will download. The
rest of the chapter (i.e. the analysis after reading the data) is independent of
the storage schema you decide to use.

Whichever the format you choose to download, the daily stock quotes data
includes information regarding the following properties:

• Date of the stock exchange session.

• Open price at the begining of the session.

• Highest price during the session.

• Lowest price.

• Closing price of the session.

• Volume of transactions.

• Ticker (a identifier of the stock).

The reason for the ticker column is the fact that although we will concentrate
on trading IBM stocks, both files include quotes of other companies so that you
can go beyond the analysis described here. The period for which we have quotes
is not identical for all companies. Still, for IBM, we include the quotes from
02-Jan-1970 to 17-May-2002.

1http://finance.yahoo.com.
2Data including the stock quotes during each daily session.
3http://www.liacc.up.pt/~ltorgo/DataMiningWithR
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We will also illustrate a third alternative way of getting this and other stocks
data directly. This alternative consists of taking advantage of R tseries pack-
age that includes a function to get the quotes of many stocks and stock indices
directly from the Yahoo finance site.4

3.2.1 Reading the data from the CSV file

If you decide to use the CSV file, you will download a file whose first lines look
like this,

# Query Results

# Connection: ltorgo@buba.niaad.liacc.up.pt:3306

# Host: buba.niaad.liacc.up.pt

# Saved: 2002-05-20 18:42:50

#

# Query:

# select * from quotes

#

’Date’,’Open’,’High’,’Low’,’Close’,’Volume’,’Ticker’,

’1986-03-13 00:00:00’,’0.18’,’0.2’,’0.18’,’0.19’,’3582600’,’MSFT’,

’1986-03-14 00:00:00’,’0.19’,’0.2’,’0.19’,’0.2’,’1070000’,’MSFT’,

’1986-03-17 00:00:00’,’0.2’,’0.21’,’0.2’,’0.2’,’462400’,’MSFT’,

’1986-03-18 00:00:00’,’0.2’,’0.21’,’0.2’,’0.2’,’235300’,’MSFT’,

’1986-03-19 00:00:00’,’0.2’,’0.2’,’0.19’,’0.2’,’166300’,’MSFT’,

’1986-03-20 00:00:00’,’0.2’,’0.2’,’0.19’,’0.19’,’202900’,’MSFT’,

This CSV file was created from a MySQL database. The software that
generated it has attached a header with some comments regarding the creation
process, which obviously are not of interest to us in R. These comment lines
all start with the character “#”. All data values are within single quotes and
all lines end with an extra comma. Let us see how can we overcome these
“difficulties”, and read in the data in an acceptable format for analysis,

> stocks <- read.csv(’stocks.txt’,
+ col.names=c(’Date’,’Open’,’High’,’Low’,’Close’,
+ ’Volume’,’Ticker’,’X’),
+ quote = "’",
+ as.is=c(1:6),
+ comment.char=’#’,
+ header=T)
> stocks <- stocks[,1:7]
> ibm <- stocks[stocks$Ticker==’IBM’, 1:6]
> ibm$Date <- substr(ibm$Date,1,10)

A few comments on these instructions. First of all we have used the read.csv()
function, which is basically a wrapper for read.table() used in Chapter 2, but
“tunned” for data files with values separated by commas. The fact that the
file has a comma at the end of each line leads R to expect that each line has
one extra field. Because of this we have added another variable to the column
names (’X’). This column will be empty because there are no real values in the
file (just an extra comma), and thus we remove it with the second instruction.

4As long as you have your computer connected to the Internet.
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The quote parameter is used to tell R the character that is used to quote values
(in this case the single quote). The as.is parameter is necessary because by
default R transforms character columns into factors. Because all our values are
quoted in the CSV file, the first 6 columns would be transformed into factors,
which does not make sense for this data. This parameter is used to avoid this
transformation for these 6 columns (notice that the ticker column will be trans-
formed into a factor). The comment.char parameter is used to tell R that every
line starting with a certain character should be disregarded as a comment line.

We then create another data frame with the subset of IBM quotes and with-
out the ticker column. Finally, we truncate the time section of the date column
to contain only the year, month and day. This is achieved with the function
substr() that selects parts of strings given the position of the first and the last
character to extract.

If we do not wish to carry out any further analysis with other companies we
can remove the stocks data frame, thus freeing some memory, by issuing,

> rm(stocks)

3.2.2 Reading the data from a MySQL database

The other alternative form of storing the data used in this case study is in
a MySQL database. At the book Web site you have a file containing SQL
statements that can be downloaded and executed within MySQL to create the
database. Information on the use and creation of MySQL databases can be
found at Section 1.3.

After creating a database to store the stock quotes we are ready to execute
the SQL statements of the file downloaded from the book site. Assuming that
this file is in the same directory from where you have entered MySQL, and that
your database is named stocks, you can type,

mysql> use stocks;
mysql> source stocks_db.sql;

The SQL statements contained in the file “stocks_db.sql” (the file down-
loaded from the book Web site) will create a table named “quotes” and insert
several records in this table containing the available data for our case study.
You may confirm that everything is OK by executing the following statements
at the MySQL prompt,

mysql> show tables;
+------------------+
| Tables_in_stocks |
+------------------+
| quotes |
+------------------+
1 row in set (0.03 sec)

mysql> select * from quotes where Ticker=’IBM’;

The last SQL statement should print a large set of records, namely the quotes
of IBM.
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Loading the data using the RODBC package

If you are running R on a Windows PC, independently of whether the MySQL
database server resides on this same PC or in another computer (eventually
running other operating system), the simplest way to connect to the database
from R is through the ODBC protocol. In order to use this protocol in R you
need to install the RODBC package.

Before you are able to connect to any MySQL database for the first time
using the ODBC protocol a few extra steps are necessary. Namely, you need also
to install the MySQL ODBC driver on your Windows system, which is named
“myodbc” and can be downloaded from the MySQL site. This only needs to be
done the first time you use ODBC to connect to MySQL. After installing this
driver you can create ODBC connections to MySQL databases residing on your
computer or any other system to which you have access through your local net-
work. According to the ODBC protocol every database connection you create
has a name (the Data Source Name, or DSN according to the ODBC jargon).
This name will be used to access the MySQL database from R. To create an
ODBC connection on a Windows PC you have to use a program named “ODBC
data sources” available at the Windows control panel. After running this pro-
gram you have to create a new User Data Source using the MySQL ODBC
driver (myodbc) that you are supposed to have previously installed. During this
creation process you will be asked several things like the MySQL server address
(localhost if it is your own computer, or e.g. myserver.xpto.pt if it is a
remote server), the name of the database to which you wish to establish a con-
nection (stocks in our previous example), and the name you wish to give to this
connection (the DSN). Once you have completed this process, which you only
have to do for the first time, you are ready to connect to this MySQL database
from R.

The following R code establishes a connection to the stocks database from
R, and loads in the stock data into a data frame,

> library(RODBC)
> ch <- odbcConnect("stocksDSN",uid="myuser",pwd="mypassword")
> stocks <- sqlQuery(ch,"select * from quotes")
> odbcClose(ch)
> ibm <- stocks[stocks$Ticker==’IBM’,1:6]
> ibm$Date <- substr(ibm$Date,1,10)

The first instruction loads the RODBC package that provides the functions
allowing R to communicate with the database through the ODBC protocol.
The second instruction creates a communication channel with the data source
named “stocksDSN”5. For this to be successful you need to provide your MySQL
server username and password. The third instruction is the workhorse function
of the RODBC package that allows you to send SQL queries to the database
and store the result in a data frame. After executing the query we can close
the connection to the database. Finally, we create a data frame with the IBM
quotes information and eliminate the time information from the data field, as
before.

5Here you should substitute by whichever name you have used when creating the data
source in the Windows control panel.
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If you do not wish to analyze the quotes data of other companies it would
be easier to load only the IBM quotes from the database, as shown below,

> library(RODBC)
> ch <- odbcConnect("stocksDSN",uid="myuser",pwd="mypassword")
> ibm <- sqlQuery(ch,"select Date, Open, High, Low, Close, Volume
+ from quotes where Ticker=’IBM’")
> odbcClose(ch)
> ibm$Date <- substr(ibm$Date,1,10)

A brief note on working with extremely large databases. If your query gen-
erates a result too large to fit in your computer main memory then you have
to use some other strategy. The database interface packages of R have several
functions that allow you to send the query to the DBMS, but get the results in
smaller chunks. Obviously, this means that you will also need to adjust your
posterior data analysis steps since you will get the data in several steps and not
in a single data frame.

Loading the data using the RMySQL package

In case you are running R from a Linux box the easiest way to communicate to
your MySQL database is through the functions of the RMySQL package. With
this package you do not need any preparatory stages as with ODBC. After
installing the package you can start using it as shown by the following example,

> library(RMySQL)

> ch <- dbConnect(MySQL(),dbname="stocks",

+ user="myuser",password="mypassword")

> ibm <- quickSQL(ch,

+ "select Date, Open, High, Low, Close, Volume from quotes where Ticker=’IBM’")

> close(ch)

> ibm$Date <- substr(ibm$Date,1,10)

After loading the RMySQL package we create a connection to the database!!IMPORTANT:

What if the DB is on

other server,

eventually Windows?

using the dbConnect() function. You need to supply the name of the database,
your MySQL username and password. After establishing the connection you
can send SQL statements to the server and collect the results of the queries in
a data frame using the quickSQL() function. Finally, we close the connection
and do the same post-processing as before.

Using the DBI package

The main idea of the DBI package is database independence. This package
provides a set of functions that lie between the user and the database driver
that will then communicate with the DBMS. The key idea is avoiding learning
different driver-dependent functions and instead use a common set of functions
that will then be translated to driver-specif calls. The only thing the user needs
to specify is the DBMS driver he wants to use. This means that with this
package we would be able to use basically the same code to interface either
to RODBC or RMySQL, which was not the case in the code presented on the
previous two sections.

Let us see how to use the DBI package. Suppose we are running R in a Linux
computer and we want to get our stocks data from a MySQL database. We could
use the code shown on the previous section or alternatively the following code:
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> library(RMySQL)

> library(DBI)

> drv <- dbDriver("MySQL")

> ch <- dbConnect(drv,dbname="stocks",

+ user="myuser",password="mypassword")

> ibm <- dbGetQuery(ch,

+ "select Date, Open, High, Low, Close, Volume from quotes where Ticker=’IBM’")

> dbDisconnect(ch)

> dbUnloadDriver(drv)

> ibm$Date <- substr(ibm$Date,1,10)

If you are working on a Windows machine instead, and you want to use your
ODBC connection to get the data from the MySQL server then the only thing
you would have to change is to load the library RODBC instead of RMySQL,
and then just change the name of the driver in the dbDriver call from “MySQL”
into “RODBC”. All other function calls remain the same and that is the main
advantage of using the DBI package.

3.2.3 Getting the data from the Web

Another alternative way of getting the IBM stock quotes is to use the free service
provided by Yahoo finance, which allows you to download a CSV file with the
quotes you want. The tseries R package has a function (get.hist.quote())
that can be used to download the quotes into a R data structure. This is an
example of the use of this function to get the quotes of IBM:

> library(tseries)
> t.ibm <- get.hist.quote("IBM",start="1970-01-02",end="2002-05-17",
+ quote=c("Open", "High", "Low", "Close","Volume"))

The get.hist.quote() function returns a time series object (or multiple
time series as in this example). Objects of the type time series have several
special methods associated with them. For instance, if we use the function
plot() to graph our t.ibm object, R will recognize it is a time series object and
will use a special time series plotting function, as shown in Figure 3.1, which
was generated by the following code,

> plot(t.ibm[,c(’Close’,’Volume’)],main="IBM stock")

Time series objects are vectors or matrices that have additional time-related
attributes, like the starting time, the end time, etc. An important attribute
is the sampling frequency, which determines the number of times the series is
sampled in each unit of time. For instance, you could have a time series whose
natural time unit is a year but which is sampled every quarter. The following
is an example of such a series,

> ts(rnorm(25), frequency = 4, start = c(1959, 2))

Qtr1 Qtr2 Qtr3 Qtr4

1959 -0.94949037 -0.09679323 0.28514212

1960 -0.28858372 -1.05443436 -0.89808154 0.99313512

1961 -0.52661363 -0.29520804 -2.84444432 -0.04904597

1962 -0.57365502 -0.32814304 1.54520560 -0.35873328

1963 0.33722051 0.01313544 2.98275830 0.22094523

1964 -0.51842271 0.91633143 0.32806589 -0.67932168

1965 1.85276121 2.26321250
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Figure 3.1: The Closing prices and transaction Volumes of IBM stock.

The function ts() can be used to create time series objects. In this example
we create an object from 25 normally distributed random numbers. This time
series starts at the 2nd quarter of 1959, and as it is a quarterly sampled vari-
able we set the frequency to 4. If we had used the value 12 for the frequency
parameter we would get a monthly sampled time series,

> ts(rnorm(25), frequency = 12, start = c(1959, 2))

Jan Feb Mar Apr May Jun

1959 -1.1666875 0.0730924 0.7219297 -0.3368549 -0.3132447

1960 -0.1059628 -0.4633219 -1.2088039 -0.6267457 -0.4261878 -1.0771319

1961 0.9317941 -1.0811400

Jul Aug Sep Oct Nov Dec

1959 -1.0946693 -0.3296631 0.1893661 2.5913124 1.3165223 0.4877449

1960 0.3252741 -0.7814481 -0.8461871 0.2978047 -0.1522421 -0.6137481

1961

In spite of all the advantages of time series objects, in our opinion they lack
an intuitive form of handling dates. In effect, the translation from the frequency,
start and end properties into real dates is not very easy to understand so we will
adopt the standard data frame objects to store our quotes data instead. Our
data frame will include a Date column insuring an easy consultation of the date
property of any quote. Moreover, if we want to take advantage of the special
methods available for time series objects, we can always convert our data frame
into a time series object when calling these functions. For instance, we could
get the same graphs as in Figure 3.1 with our ibm data frame, by issuing,

> plot(as.ts(ibm[,c(’Close’,’Volume’)]),main="IBM stock")

Because we have decided to use data frames instead of time series objects,
we have created a new function (df.get.hist.quote()), which is based on the
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code of the R get.hist.quote() function but produces a data frame like the
ones used on the previous sections. For space reasons we do not include the
function here. The code of the function can be found at the book Web site.
Using this function, we could obtain our ibm data frame for the same period as
in the previous sections, as follows,

> rm(t.ibm)

> ibm <- df.get.hist.quote("IBM",start="1970-01-02",end="2002-05-17")

> ibm[c(1,nrow(ibm)),]

Date Open High Low Close Volume

1 1970-01-02 18.02 18.08 17.99 18.03 15800

8174 2002-05-17 86.25 86.40 85.00 85.69 5874800

3.3 Time series predictions

The type data we have for this case study is usually known as a time series.
The main distinguishing feature of this kind of data is the existence of a time
tag attached to each observation, meaning that order between cases matters.
Generally speaking a time series is a set of observations of a variable Y ,

y1, y2, . . . , yt−1, yt, yt+1, . . . , yn (3.1)

where, yt is the value of the series variable Y at time t.
The main goal of time series analysis is to obtain a model based on past ob-

servations of the variable y1, y2, . . . , yt−1, yt, which allows us to make predictions
regarding future observations of the variable, yt+1, . . . , yn.

In the case of our stocks data we have what is usually known as a multivariate
time series, because we have several variables being recorded at the same time
tags, namely the Open, High, Low, Close and V olume.6 In this chapter we
will use this multivariate data to obtain our models. However, we will start
with simpler models that handle a single time series variable.

The usual approach in financial time series analysis is to focus on predicting
the closing prices of a security. Moreover, to avoid trend effects, it is common
to use the percentage differences of the closing prices (or log transformations)
as the basic time series being modeled, instead of the absolute values. Below
we define these two alternative target variables,

Yt =
Closet − Closet−1

Closet−1
(3.2)

Yt = log
Closet

Closet−1
(3.3)

We will adopt the first alternative because it has a more intuitive interpreta-
tion for the user. Namely, we will concentrate on developing models for a time
series consisting of the h-days returns on closing prices defined as,

Rh(t) =
Closet − Closet−h

Closet−h
(3.4)

6Actually, if we wanted to be more precise we would have to say that we have two time
series, V olume and Price, because the other quotes are actually the same variable (Price)
sampled at different times of a day.

(DRAFT - May 22, 2003)



88 PREDICTING STOCK MARKET RETURNS

Summarizing, our series data (at least in our first approaches to this problem)
will consist of the observations,

Rh(1), Rh(2), . . . , Rh(t− 1), Rh(t), Rh(t + 1), . . . , Rh(n) (3.5)

The following R function obtains the h-days returns of a vector of values (for
instance the closing prices of a stock),

> h.returns <- function(x,h=1) {
+ diff(x,lag=h)/x[1:(length(x)-h)]
+ }
> h.returns(c(45,23,4,56,-45,3),h=2)
[1] -0.9111111 1.4347826 -12.2500000 -0.9464286

To create this function we have used the function diff(). This R function
calculates lagged differences of a vector, i.e. xt − xt−lag.7

We will generate a data set using this function, which will then be used
to obtain a model to predict the future h-days returns of the closing price of
IBM stocks. The most common approach to obtain models for predicting the
future values of a time series variable is to use the most recent past values of the
series as the input variables of the model. Thus our model will try to predict
the h-days returns of the closing price of IBM stocks based on the most recent
values of these returns. This data preparation technique is usually known as
time delay embedding.

The ts package includes several functions that are very useful for time series
analysis. Among other things, this package includes the function embed(), which
can be used to create data frames with time delay embedding of a time series.
The following example illustrates how to use this function:

> library(ts)
> embed(c(45,677,34,2,-76,-23,0,45,-3445),dim=3)

[,1] [,2] [,3]
[1,] 34 677 45
[2,] 2 34 677
[3,] -76 2 34
[4,] -23 -76 2
[5,] 0 -23 -76
[6,] 45 0 -23
[7,] -3445 45 0

As we can observe from this example we can use the parameter dim to set
the size (or dimension) of the embed.

Using this function together with the function h.returns() we have intro-
duced before, we can build a new function to create a data frame storing an
embed of the h-days returns,

> embeded.dataset <- function(data,quote=’Close’,hday=1,emb=10) {

+ ds <- data.frame(embed(h.returns(data[,quote],h=hday),emb+hday))

+ ds <- ds[,c(1,(1+hday):(hday+emb))]

+ names(ds) <- c(paste(’r’,hday,’.f’,hday,sep=""),

+ paste(’r’,hday,’.t’,0:(emb-1),sep=""))

7Try for instance diff(c(4,6,2,4)).
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+ ds$Date <- data[(hday+emb):(nrow(data)-hday),’Date’]

+ ds

+ }

> ibm.data <- embeded.dataset(ibm,hday=1)

> names(ibm.data)

[1] "r1.f1" "r1.t0" "r1.t1" "r1.t2" "r1.t3" "r1.t4" "r1.t5" "r1.t6" "r1.t7"

[10] "r1.t8" "r1.t9" "Date"

> ibm.data[1:2,]

r1.f1 r1.t0 r1.t1 r1.t2 r1.t3 r1.t4

1 -0.05352267 -0.03070408 0.02052944 -0.001079331 0.017572762 -0.003829322

2 0.01904212 -0.05352267 -0.03070408 0.020529444 -0.001079331 0.017572762

r1.t5 r1.t6 r1.t7 r1.t8 r1.t9 Date

1 -0.001092896 0.002190581 0.0005479452 0.0005482456 0.0099667774 1970-01-16

2 -0.003829322 -0.001092896 0.0021905805 0.0005479452 0.0005482456 1970-01-19

The function receives a data frame that must have a structure like the one
we have created when reading our quotes data, meaning that it needs to have
at least a column named Date and if the default value of the parameter quote
is used, we also need a column named Close. The embed.dataset() function
creates a data frame using an embed of the h-days returns of a quote (defaulting
to the closing prices). The data frame will also get “appropriate” column names,
with the first column being the “target”, i.e. the value of the h-days returns h
days ahead, while the other are the previous values of these returns.

Let us see a small example to better understand what the function is doing.
Given a series like the one of Equation (3.5) and a value of h, we need to be
careful when selecting the target variable. For instance if h = 3 and we are using
an embed of 2, the first case obtained by the function embeded.dataset() will
consist of the following elements of the R3(t) time series:

Target(r3.f3) 1stVar.(r3.t0) 2ndVar.(r3.t1)
R3(8) R3(5) R3(4)

This first case is obtained at time 5. At this “date” we want to predict the
returns 3 days ahead, i.e. the value of R3(8). As we are using an embed of 2
we use as predictor variables the current value of the returns (R3(5)) and the
value on the day before (R3(4)). Notice that the first case is obtained at the
time 5 because previous “dates” would imply calculating returns that we can
not obtain (assuming the first closing price quote we have is for time 1). In
effect, if we wanted to obtain a case for time 4, we would need:

Target(r3.f3) 1stVar.(r3.t0) 2ndVar.(r3.t1)
R3(7) R3(4) R3(3)

However, to calculate R3(3) we would need the closing price at time zero
(c.f. Equation (3.4)), which is not feasible assuming the first quote is Close1.

Further readings on time series analysis

A good general reference on time series analysis is the book by Chatfield (1989). Sauer et al.
(1991) is a standard reference on time delay embeded. This technique is used for instance in many
traditional time series modeling methods like the ARMA models (Box and Jenkins, 1976) and it
is theoretically justified by the Takens theorem (Takens, 1981).
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3.3.1 Obtaining time series prediction models

Given a data frame like the one shown previously, we can use a multiple re-
gression method to obtain a model that predicts the value of the future returns
given the past observed returns. Before obtaining such models let us study some
properties of this data set.
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Figure 3.2: The box plot of the 1-day returns.

Figure 3.2 shows a box-plot of the 1-day returns of the closing price, obtained
with,

> boxplot(ibm.data$r1.f1,boxwex=0.15,ylab=’1-day returns of Closing price’)
> rug(jitter(ibm.data$r1.f1),side=2)

This graph reveals a symmetric distribution with very large tails (i.e. a
clear presence of rare events). From the 8166 rows of the ibm.data data frame,
only 68 are absolute variations of more than 5%.8 This would not be a problem
if they were not the situations that we are really interested in being accurate!
One of the more interesting features of this domain is that most of the times the
market varies in a way which is not interesting for trading because the changes
are too small to compensate for the trading costs. Thus, the majority of the
data we have is not interesting from a trading perspective. The interesting cases
are exactly those with large variations. We want our models to be extremely ac-
curate at predicting these large movements. The other movements are more or
less irrelevant. The characteristics of this domain are problematic for most mod-
eling tools. Standard regression methods try to minimize some error estimate,
for instance, the mean squared error. While there is nothing wrong with this, in
this domain we would be willing to give up some accuracy on small movements

8Practice your R knowledge by trying to obtain this number.
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in exchange for correct predictions of large market movements. Moreover, we
are not particularly interested in being accurate at the precise value of a large
change, as long as we predict a value that leads us to the correct trading decision
(buy, sell or hold).

If we are interested in obtaining models with the goal of actually trading
(which is our case here), there are at least two alternative paths we can follow:
One is to obtain a regression model that predicts the returns and then use these
predictions to make our trading decisions; the other is to obtain a different type
of models whose goal is to predict the correct trading action directly. The latter
approach would imply that we would have a target variable whose possible values
are ’sell’, ’hold’ and ’buy’, which is usually known as a classification problem.
In this chapter we will give examples of addressing the trading problem from
these two alternative perspectives. We will start with the regression approach.

The discussion presented above is an illustration of the differences between
predictions and their translation into decisions. In effect, we can have a very
accurate prediction model being outperformed in terms of trading results by a
less accurate model (Deboeck, 1994). We will return to this issue in Section 3.4.

Our data set includes the previous values of the h-days returns as the unique
information which will be used to obtain a model to predict the next value of this
time series. We can have an idea of the correlation of the 1-day returns with the
values of these returns on the previous days using the notion of autocorrelation.
This statistical notion captures how the values of a time series variable are
correlated to the values on the previous time steps (different time lags). The
function acf() computes and by default plots the autocorrelation of a variable
along a set of time lags,

> acf(ibm.data$r1.f1,main=’’,ylim=c(-0.1,0.1))

Figure 3.3 shows the autocorrelation plot of the variable ’r1.f1’. The dotted
lines represent a 95% confidence threshold on the significance of the autocorre-
lation values. We have limited the Y-axis to eliminate the scaling effects of an
extremely large correlation value for the lag 0.

As we can see there are few significant autocorrelation values9, which does
not provide good indications on the possibility of predicting the variable ’r1.f1’
using only the lagged returns. However, we should recall that these autocorre-
lations refer to linear correlations and, as we will not use linear models for this
case study, we may still get reasonable results using only this information.

The interpretation of the correlogram of Figure 3.3 provides important infor-
mation (e.g. Chatfield, 1989, sec. 2.7.2) regarding which variables to use in our
modeling task. Still, we should mention that given the linearity assumptions
behind these correlations, this information is mainly useful if we are using linear
models.

Based on this interpretation we will use an embed of the last 24 values of
the 1-day returns time series. We can find two other significant autocorrelation
values but still much lower. We can create a dataset with this embed as follows,

> ibm.data <- embeded.dataset(ibm,hday=1,emb=24)

9The ones above (below) the dotted lines.
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Figure 3.3: The autocorrelation of 5-days returns.

Neural Networks

The first model we will try with the goal of predicting the 1-day ahead returns
of closing prices will be a neural network. Neural networks are among the most
frequently used models in financial predictions experiments (Deboeck, 1994),
because of their ability to deal with highly non-linear problems. The package
nnet implements feed forward neural nets in R. This type of neural networks
are among the most frequently.

A neural network is formed by a network of computing units (the neurons)
linked to each other. Each of these connections has an associated weight. Con-
structing a neural network consists of using an algorithm to find the weights of
the connections between the neurons. A neural network has its neurons orga-
nized in layers. The first layer contains the input neurons of the network. The
cases of the problem we are addressing are presented to the network through
these input neurons. The final layer contains the predictions of the neural net-
work for the case presented at its input neurons. In between we have one or
more “hidden” layers of neurons. The weight updating algorithms, like for in-
stance the back-propagation method, try to obtain the connection weights that
optimize a certain error criterion, that is the weights which ensure that the
network output is in accordance to the cases presented to the model.

We will now illustrate how to obtain a neural network in R, and also how
to use these models to obtain predictions. To achieve these goals we will split
our data set in two time windows, one used to obtain the neural network and
the other to evaluate it, i.e. to test how well the model predicts the target
variable values. In Section 3.3.2 we will address more thoroughly the issue of
evaluating time series models. For now let us simply split our data in two time
windows, one consisting of the first 20 years of quotes data, and the other with
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the remaining 12 years,

> ibm.train <- ibm.data[ibm.data$Date < ’1990-01-01’,]
> ibm.test <- ibm.data[ibm.data$Date > ’1989-12-31’,]

Neural networks usually obtain better results with normalized data. Still,
in this particular application all the variables have the same scale and they
have roughly a normal distribution with zero mean.10 So we will avoid this
normalization step.

To obtain a neural network to predict the 1-day ahead future returns we can
use the function nnet() as follows,

> library(nnet)

> nn <- nnet(r1.f1 ~ .,data=ibm.train[,-ncol(ibm.train)],

+ linout=T,size=10,decay=0.01,maxit=1000)

This function call will build a neural network with a single hidden layer, in
this case formed by 10 hidden units(the parameter size). Moreover, the weights
will be learned with a weight updating rate of 0.01 (the parameter decay). The
parameter linout indicates that the target variable is continuous. The maxit
parameter sets the maximum number of iterations of the weight convergence
algorithm. Notice that we have removed the last column of the ibm.data data
frame which contains the Date information. This type of information is useless
for model construction as its value is different for all cases. Still, we could
eventually consider to use part of this information, like the month number or
the day of the week, to try to capture eventual seasonal effects.

The nnet() function uses the back-propagation algorithm as the basis of
an iterative process of updating the weights of the neural network, up to a
maximum of maxit cycles. This iterative process may take a long time to
compute for large datasets.

The above function call creates a neural network with 24 input units (the
number of predictor variables of this problem) connected to 10 hidden units,
which will then be linked to a single output unit. This leads to a total number
of 261 connections. We can see the final weights of these connections by issuing,

> summary(nn)

This neural net can be used to make predictions for our test period,

> nn.preds <- predict(nn,ibm.test)

The following code gives as a graph with the predictions plotted against the
true values (c.f. Figure 3.4),11

> plot(ibm.test[,1],nn.preds,ylim=c(-0.01,0.01),

+ main=’Neural Net Results’,xlab=’True’,ylab=’NN predictions’)

> abline(h=0,v=0); abline(0,1,lty=2)

10Check this doing summary(ibm.data).
11A word of warning concerning the results you obtain if you are trying this same code.

The nnet() function has a random effect in its starting point (the initial weights) which does
not ensure that we will always obtain the same network even if using the same data. This
means that your results or graphs may be slightly different from the ones presented here.
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Figure 3.4: The 1-day ahead returns predictions of the Neural Network.

In Section 3.3.2 we will address the issue of evaluating time series mod-
els so that we may have an idea of the relative value of these neural network
predictions. Still, ideally all dots in Figure 3.4 should be on the dotted line
(representing zero error), which is clearly not the case.

Further readings on neural networks

The book by Rojas (1996) is a reasonable general reference on Neural Networks. For more
financially-oriented readings the book by Zirilli (1997) is a good and easy reading reference. The
collection of papers entitled ”Artificial neural networks forecasting time series” (Rogers and Ve-
muri, 1994) is another example of a good source of references. Part I of the book by Deboeck
(1994) provides several chapters devoted to the application of neural networks to trading. The
work of McCulloch and Pitts (1943) presents the first model of an artificial neuron. This work was
generalized by Ronsenblatt (1958) and Minsky and Papert (1969). The back-propagation algo-
rithm, the most frequently used weight updating method, although usually attributed to Rumelhart
et al. (1986), was, according to Rojas (1996), invented by Werbos (1974, 1996).

Projection pursuit regression

Let us try another multiple regression technique, namely projection pursuit
regression (Friedman, 1981).

A projection pursuit model can be seen as a kind of additive model (Hastie
and Tibshirani, 1990) where each additive term is a linear combination of the
original variables of the problem. This means that a projection pursuit model
is an addition of terms formed by linear combinations of the original variables.

Projection pursuit regression is implemented in package modreg. We can
obtain such a model with the following code,

> library(modreg)
> pp <- ppr(r1.f1 ~ ., data=ibm.train[,-ncol(ibm.train)],nterms=5)

(DRAFT - May 22, 2003)



3.3 Time series predictions 95

> pp.preds <- predict(pp,ibm.test)

After loading the respective library, we can obtain a projection pursuit model
using the function ppr(). This function has several parameters12. The param-
eter nterms sets the number of linear combinations that will be included in the
projection pursuit model. You may also use the parameter max.terms to set
a maximum number of terms that will be used. After adding this number of
maximum terms the “worse” terms will be iteratively removed until a model
with nterms is reached.

As usual with all models in R, we can use the function predict() to obtain
the predictions of our model.

We can have a look at the coefficients of the linear combinations that form
the terms of the additive model by issuing,

> summary(pp)

Call:

ppr.formula(formula = r1.f1 ~ ., data = ibm.train[, -ncol(ibm.train)],

nterms = 5)

Goodness of fit:

5 terms

0

Projection direction vectors:

term 1 term 2 term 3 term 4 term 5

r1.t0 -0.274593836 -0.003047629 0.000000000 0.000000000 0.000000000

r1.t1 -0.232145592 0.303103072 0.000000000 0.000000000 0.000000000

r1.t2 -0.125882592 0.042927734 0.000000000 0.000000000 0.000000000

r1.t3 -0.277068070 -0.015256559 0.000000000 0.000000000 0.000000000

r1.t4 0.237179308 0.137114309 0.000000000 0.000000000 0.000000000

r1.t5 0.100427485 -0.119630099 0.000000000 0.000000000 0.000000000

r1.t6 0.193712788 -0.255578319 0.000000000 0.000000000 0.000000000

...

...

r1.t20 0.008716963 -0.014020849 0.000000000 0.000000000 0.000000000

r1.t21 -0.287156429 0.138665388 0.000000000 0.000000000 0.000000000

r1.t22 -0.196584111 0.181707111 0.000000000 0.000000000 0.000000000

r1.t23 0.271527937 0.224461896 0.000000000 0.000000000 0.000000000

Coefficients of ridge terms:

term 1 term 2 term 3 term 4 term 5

0.001805114 0.001025505 0.000000000 0.000000000 0.000000000

As we can see from the result of the summary() function, the ppr() routine
obtained a model consisting only of two terms. These terms are linear combina-
tions of the original variables as we can see from this output. This means that
the model we have obtained can be described by the equation,

r1.f1 = 0.001805× (−0.2746× r1.t0 − 0.23215× r1.t1 . . .) +
+0.001026× (−0.00305× r1.t0 + 0.30310× r1.t1 . . .)

Multivariate adaptive regression splines (MARS)

Finally, we will try multivariate adaptive regression splines (Friedman, 1991).
This is another example of an additive regression model (Hastie and Tibshirani,

12You may want to try ’? ppr’ to read more about them.
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1990). This model is a bit complex and it can be seen as the following sum of
sums of functions,

mars (x) = c0+
∑

fm (Xm)+
∑

fm,n (Xm,n)+
∑

fm,n,o (Xm,n,o)+. . . (3.6)

where the first sum is over a set of basis functions that involve a single predictor
variable, the second sum is over basis function involving two variables, and so
on.

MARS models are implemented in R in package mda, which basically is a re-
implementation of the original MARS code done by Trevor Hastie and Robert
Tibshirani. The following code, obtains a MARS model and evaluates it on the
test period,

> library(mda)
> m <- mars(ibm.train[,2:10],ibm.train[,1])
> m.preds <- predict(m,ibm.test[,2:10])

Unfortunately, the mars function does not use the standard R formula syntax.
In effect, the first argument of this function is the data frame containing the
input variables, while the second contains the data referring to the respective
target variable values.13

We can also apply the summary() function to the model produced by the
mars() function. However, the information returned is not very complete. In
the help for the mars() function there is further information on inspecting these
models.

Further readings on multivariate adaptive regression splines

The definitive reference on MARS is the original journal article by Friedman (1991). This is a very
well-written article providing all details concerning the motivation for the development of MARS
as well as the techniques used in the system. The article also includes a quite interesting discussion
section by other scientists that provides other views of this work.

3.3.2 Evaluating time series models

Due to the time dependence between observations the evaluation procedures for
time series prediction models are different from standard methods. The latter
are usually based on resampling strategies (for instance bootstrap or cross vali-
dation), which work by obtaining random samples from the original unordered
data. The use of these methodologies with time series could lead to undesirable
situations like using future observations of the variable for training purposes14

, and evaluating models with past data. In order to avoid these problems we
usually split the available time series data into time windows, obtaining the
models with past data and testing it on subsequent time slices.

The main purpose of any evaluation strategy is to obtain a reliable value of
the expected predictive accuracy of a model. If our estimate is reliable we can
be reasonably confident that the predictive performance of our model will not

13This is known as the matrix syntax and most model functions also accept this syntax
apart from the more convenient formula syntax.

14The data used to obtain the models.
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deviate a lot from our estimate when we apply the model to new data from the
same domain. In Section 2.7 (page 64) we have seen that the key issue to obtain
reliable estimates is to evaluate the models on a sample independent from the
data used to obtain them.

In our case study we have quotes data from 1970 till mid 2002. We will set a
time t as the start of the testing period. Data before t will be used to obtain the
prediction models, while data occurring after t will be used only to test them.

Within the scenario described above there are some alternatives one may
consider. The first is to obtain a single model using the data before time t
and test it on each case occurring after t. Alternatively, we can use windowing
strategies. The first windowing strategy we describe is the growing window, Windowing strategies

1. Given a series Rh(1), Rh(2), . . . , Rh(n) and a time t (< n)

2. Obtain a prediction model with training data Rh(1), Rh(2), . . . , Rh(t− 1)

3. REPEAT

4. Obtain a prediction for observation Rh(t)

5. Record the prediction error

6. Add Rh(t) to the training data

7. Obtain a new model with the new training set

8. Let t = t + 1

9. UNTIL t = n

An alternative is to use a sliding window,

1. Given a series Rh(1), Rh(2), . . . , Rh(n), a time t and a window size w

2. Obtain a prediction model with training data Rh(t−w−1), . . . , Rh(t−1)

3. REPEAT

4. Obtain a prediction for Rh(t)

5. Record the prediction error

6. Add Rh(t) to the training data and remove Rh(t− w − 1)

7. Obtain a new prediction model with the new training data

8. Let t = t + 1

9. UNTIL t = n

The windowing approaches seem more reasonable as they incorporate new
information into the model (by modifying it) as time goes by. Still, they re-
quire obtaining a large number of models.15 Although intermediate alternatives

15This may not be completely true if the techniques we are using are “incremental”, in the
sense that we can perform slight modifications to the model as new data becomes available,
instead of building a new model from scratch.
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exist, we will adopt the single model strategy in this case study to simplify
our experiments. Nevertheless, better results could eventually be obtained with
windowing strategies, thus for real applications these should not be discarded.

Our experiments with this data set consist of obtaining a prediction model
with the data up to 1-Jan-1990, and testing it with the remaining data. This
means that we will obtain our model using around 20 years of quotes data,
and test it on the next 12 years. This large test set (around 3100 sessions)
ensures a reasonable degree of statistical significance for our accuracy estimates.
Moreover, this 12 years period includes a large variety of market conditions,
which increases the confidence of the estimated accuracy.

Having decided on a experimental setup, we still need to choose which error
measures we will use to evaluate our models. In Section 2.6 (page 52) we have
seen a few examples of error measures that can be used in multiple regression
experiments, like for instance the mean squared error. We have also mentioned
the advantages of relative error measures like the normalized mean squared error,
which provides an indication of the relative “value” of the models. Within time
series analysis it is common to use (e.g. Gershenfeld and Weigend, 1994) the
Theil U coefficient(Theil, 1966) with this purpose. This statistic is basicallyThe Theil coefficient

the normalized mean squared error adapted for time series problems. In these
domains we use the following simple model to normalize our model predictions,

Ŷ (t + h) = Y (t) (3.7)

where Ŷ (t + h) represents the predicted value of Y for time t + h.
In our problem this corresponds to predicting that the next value of the

h-days ahead returns will be the same as the value observed today. This leads
to the following definition of the Theil coefficient,

U =

√∑Ntest

t=1

(
Rh(t + h)− R̂h(t + h)

)2

√∑Ntest

t=1 (Rh(t + h)−Rh(t))2
(3.8)

where, R̂h(t + h) is the prediction of our model for time t + h, i.e. the h-days
ahead returns. As with the normalized mean squared error our goal is to have
models with U values significantly lower than 1.

Let us see an example of calculating the Theil coefficient using the predictions
of our neural network (c.f. Section 67),

> naive.returns <- c(ibm.train[nrow(ibm.train),1],

+ ibm.test[1:(nrow(ibm.test)-1),1])

> theil <- function(preds,naive,true) {

+ sqrt(sum((true-preds)^2))/sqrt(sum((true-naive)^2))

+ }

> theil(nn.preds,naive.returns,ibm.test[,1])

[1] 0.7006378

The first instruction obtains the simplest model predictions. We then de-
fine a function to calculate the Theil coefficient according to the definition in
Equation 3.8. Finally, we call this function to obtain the Theil coefficient of the
neural network predictions.

When evaluating financial time series predictions several other statisticsEvaluating financial

time series are of interest to assert the model quality (Hellstrom and Holmstrom, 1998).
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Namely, we are usually interested in looking at the accuracy in predicting the
direction of the market, i.e. whether the next day returns are positive or neg-
ative. We will use the hit rate at predicting the non-zero returns, and also
the positive and negative hit rates (which assess the accuracy of the model at
predicting the raises and falls of the market). The following R code implements
these statistics,

> hit.rate <- function(preds,true) {

+ length(which(preds*true > 0))/length(which(true != 0))

+ }

> positive.hit.rate <- function(preds,true) {

+ length(which(preds > 0 & true > 0))/length(which(true > 0))

+ }

> negative.hit.rate <- function(preds,true) {

+ length(which(preds < 0 & true < 0))/length(which(true < 0))

+ }

> hit.rate(nn.preds,ibm.test[,1])

[1] 0.5051172

> positive.hit.rate(nn.preds,ibm.test[,1])

[1] 0.5753247

> negative.hit.rate(nn.preds,ibm.test[,1])

[1] 0.432505

We can join all these evaluating statistics into a single structure through the
following function,

> timeseries.eval <- function(preds,naive,true) {

+ th <- sqrt(sum((true-preds)^2))/sqrt(sum((true-naive)^2))

+ hr <- length(which(preds*true > 0))/length(which(true != 0))

+ pr <- length(which(preds > 0 & true > 0))/length(which(true > 0))

+ nr <- length(which(preds < 0 & true < 0))/length(which(true < 0))

+ n.sigs <- length(which(preds != 0))

+ perc.up <- length(which(preds > 0)) / n.sigs

+ perc.down <- length(which(preds < 0)) / n.sigs

+ round(data.frame(N=length(true),Theil=th,HitRate=hr,PosRate=pr,NegRate=nr,

+ Perc.Up=perc.up,Perc.Down=perc.down),

+ 3)

+ }

> timeseries.eval(nn.preds,naive.returns,ibm.test[,1])

N Theil HitRate PosRate NegRate Perc.Up Perc.Down

1 3122 0.701 0.505 0.575 0.433 0.573 0.427

This code uses the function round() to set the number of significant digits
used to show the results. Perc.Up and Perc.Down are the percentage of times
the model predicts positive or negative returns, respectively.

In the context of financial time series, it is interesting to consider annualized
results. Our testing period goes over 12 years. We want to obtain not only the
results shown above, but also the same statistics on each of these years. The
following code achieves this,

> annualized.timeseries.eval <- function(preds,naive,test) {

+ res <- timeseries.eval(preds,naive,test[,1])

+

+ years <- unique(substr(test[,’Date’],1,4))

+ for(y in years) {

+ idx <- which(substr(test[,’Date’],1,4)==y)

+ res <- rbind(res,timeseries.eval(preds[idx],naive[idx],test[idx,1]))
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+ }

+

+ row.names(res) <- c(’avg’,years)

+ res

+ }

> annualized.timeseries.eval(nn.preds,naive.returns,ibm.test)

N Theil HitRate PosRate NegRate Perc.Up Perc.Down

avg 3122 0.701 0.505 0.575 0.433 0.573 0.427

1990 253 0.737 0.463 0.550 0.363 0.597 0.403

1991 253 0.713 0.445 0.561 0.344 0.605 0.395

1992 254 0.758 0.559 0.661 0.469 0.587 0.413

1993 253 0.713 0.494 0.535 0.454 0.549 0.451

1994 252 0.674 0.502 0.569 0.437 0.583 0.417

1995 252 0.705 0.485 0.575 0.384 0.583 0.417

1996 254 0.714 0.565 0.642 0.468 0.591 0.409

1997 253 0.712 0.480 0.549 0.402 0.577 0.423

1998 252 0.715 0.500 0.575 0.414 0.579 0.421

1999 252 0.715 0.518 0.540 0.496 0.524 0.476

2000 252 0.642 0.530 0.605 0.462 0.575 0.425

2001 248 0.716 0.500 0.526 0.469 0.528 0.472

2002 94 0.725 0.553 0.628 0.490 0.564 0.436

This function shows us that the performance of the neural network is not
constant over the 12 years. Moreover, with this table of results we can clearly
observe the difference between accuracy from a regression perspective and the
more trading oriented indicators. We have cases where a better score in terms
of Theil coefficient leads to a worse score in terms of hit rate. For instance, the
best score in terms of the Theil coefficient is on 2000, where the hit rate is 53%.
The worst Theil score, is obtained on 1992, but the hit rate is higher (55.9%).

3.3.3 Model selection

In the previous sections we have obtained several regression models that can
be used to predict the returns of the closing price of IBM, 1 day ahead. We
have also shown some measures that can be used to evaluate these models. The
purpose of this section is to answer the question:

What model should I use?

This is usually known as the model selection problem. The candidate models
for selection need not be completely different models. They could be models
obtained with the same data mining technique but using different parameter
settings. For instance, the neural network we have obtained used at least two
parameters: The number of hidden nodes; and the weight decay. Different
settings lead to different neural networks. Deciding which are the best settings
is also a model selection problem.

To address the model selection problem we need to answer two questions:

• Which statistics should be used to evaluate and compare the candidates?

• What experimental setup should be used to ensure the reliability of our
estimates?

In Section 3.3.2 we have already partially answered these questions. We have
described several statistics that can be used to evaluate financial times series
models. Moreover, we have decided upon an experimental setup to evaluate our
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models. This setup consisted of splitting our data in two time windows, one
for obtaining the models and the other for testing them. As mentioned before,
model selection should not be carried out using the test data as this would bias
our choices. Instead, we will divide our training period in two time windows:
One for obtaining the candidate model variants; and the other for selecting the
“best” alternative. Once this selection is done, we can obtain this “best” model
using all training period data so as not to “loose” the data of the selection
period.

In summary, we will divide our 20 years of training data in two parts. The
first part will consist of the initial 12 years (1970-1981) and will be used to
obtain the model variants. The remaining 8 years (1982-1989) will be used to
select the “best” model according to this selection period. Finally, this “best”
model will be obtained again using the full 20 years, leading to the result of our
data mining process.

Let us start by obtaining these time slices,

> first12y <- nrow(ibm.data[ibm.data$Date < ’1982-01-01’,])
> train <- ibm.train[1:first12y,]
> select <- ibm.train[(first12y+1):nrow(ibm.train),]

We will first illustrate this model selection strategy by using it to find the
best settings for a particular data mining technique. Namely, we will consider
the problem of selecting the “best” neural network setup. Tuning the neural

networkThe neural network we have previously obtained used certain parameter
settings. Most data mining tools have some kind of parameters that you may
tune to achieve better results. Some tools are easier to tune than others. There
are even tools that perform this tuning by themselves.16

We will try several setups for the size and decay parameters of our neural
nets. The following code tries 12 different combinations of size and decay, storing
the mean squared error and hit rate results on a data frame,

> res <- expand.grid(Size=c(5,10,15,20),

+ Decay=c(0.01,0.05,0.1),

+ MSE=0,

+ Hit.Rate=0)

> for(i in 1:12) {

+ nn <- nnet(r1.f1 ~ .,data=train[,-ncol(train)],linout=T,

+ size=res[i,’Size’],decay=res[i,’Decay’],maxit=1000)

+ nn.preds <- predict(nn,select)

+ res[i,’MSE’] <- mean((nn.preds-select[,1])^2)

+ res[i,’Hit.Rate’] <- hit.rate(nn.preds,select[,1])

+ }

This experiment may take a while to run on your computer since training of
neural networks is usually computationally intensive.

A few comments on the code given above. The function expand.grid()
can be used to generate all combinations of different factors or vector values.17

For each of the parameter variants we obtain the respective neural net and
evaluate it on the model selection time period. We could have used the function
annualized.timeseries.eval() to carry out this evaluation. However, due to

16As is the case for regression trees in R, which use an internal cross validation process to
“guess” the best tree size.

17You may want to try a few examples with this function to understand its behavior.
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the number of variants that we are trying this would over clutter the output.
As such, we have decided to use two statistics representing the most important
features evaluated by that function, namely the regression accuracy and the
sign of the market accuracy. For the former we have used the mean squared
error. We have not used the Theil coefficient because we are comparing the 12
alternatives and thus the comparison to a baseline predictor (as provided by
this coefficient) is not so interesting.

In the end you may inspect the results by typing,

> res

Size Decay MSE Hit.Rate

1 5 0.01 0.0002167111 0.5005149

2 10 0.01 0.0002167079 0.5025747

3 15 0.01 0.0002167094 0.5025747

4 20 0.01 0.0002167162 0.5036045

5 5 0.05 0.0002171317 0.5087539

6 10 0.05 0.0002171317 0.5087539

7 15 0.05 0.0002171318 0.5087539

8 20 0.05 0.0002171317 0.5087539

9 5 0.10 0.0002171317 0.5087539

10 10 0.10 0.0002171317 0.5087539

11 15 0.10 0.0002171317 0.5087539

12 20 0.10 0.0002171316 0.5087539

The results in terms of regression accuracy are quite similar. Still, we can
observe that for the same decay the best results are usually obtained with a
larger size. Due to the fact that larger values of the decay lead to an increase
in the hit rate we may be inclined to select a network with 20 hidden units and
a decay of 0.1 as the best setting for our data.

We will now illustrate this same selection process to find the “best” modelSelecting the best

regression model from the three alternatives that we have considered. For the neural network we
will use the settings that resulted from our tuning process. For the other models
we will use the same parameter settings as before to simplify our experiments.18

The following code obtains the three models using the first 12 years data,

> nn <- nnet(r1.f1 ~ .,data=train[,-ncol(train)],linout=T,size=20,decay=0.1,maxit=1000)

> nn.preds <- predict(nn,select)

> pp <- ppr(r1.f1 ~ ., data=train[,-ncol(train)],nterms=5)

> pp.preds <- predict(pp,select)

> m <- mars(train[,2:20],train[,1])

> m.preds <- predict(m,select[,2:20])

> naive.returns <- c(train[first12y,1],select[1:(nrow(select)-1),1])

After obtaining the models we can compare their performance on the 8 years
left for model selection,

> annualized.timeseries.eval(nn.preds,naive.returns,select)

N Theil HitRate PosRate NegRate Perc.Up Perc.Down

avg 2022 0.684 0.509 1 0 1 0

1982 253 0.687 0.506 1 0 1 0

1983 253 0.666 0.551 1 0 1 0

1984 253 0.695 0.492 1 0 1 0

1985 252 0.760 0.543 1 0 1 0

1986 253 0.696 0.492 1 0 1 0

18Still, a similar parameter tuning process could have been carried out for these other
models.
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1987 253 0.671 0.528 1 0 1 0

1988 253 0.670 0.490 1 0 1 0

1989 252 0.699 0.467 1 0 1 0

> annualized.timeseries.eval(pp.preds,naive.returns,select)

N Theil HitRate PosRate NegRate Perc.Up Perc.Down

avg 2022 0.713 0.504 0.490 0.519 0.488 0.512

1982 253 0.709 0.506 0.492 0.522 0.498 0.502

1983 253 0.687 0.519 0.500 0.541 0.490 0.510

1984 253 0.727 0.463 0.450 0.476 0.482 0.518

1985 252 0.780 0.490 0.444 0.545 0.452 0.548

1986 253 0.722 0.561 0.521 0.600 0.455 0.545

1987 253 0.703 0.524 0.562 0.483 0.545 0.455

1988 253 0.700 0.485 0.449 0.520 0.474 0.526

1989 252 0.748 0.484 0.500 0.469 0.508 0.492

> annualized.timeseries.eval(m.preds,naive.returns,select)

N Theil HitRate PosRate NegRate Perc.Up Perc.Down

avg 2022 0.745 0.516 0.495 0.539 0.476 0.524

1982 253 0.687 0.545 0.517 0.574 0.482 0.518

1983 253 0.664 0.572 0.545 0.606 0.462 0.538

1984 253 0.699 0.504 0.533 0.476 0.522 0.478

1985 252 0.767 0.465 0.436 0.500 0.456 0.544

1986 253 0.709 0.492 0.455 0.528 0.462 0.538

1987 253 0.828 0.549 0.538 0.560 0.486 0.514

1988 253 0.705 0.519 0.483 0.553 0.470 0.530

1989 252 0.707 0.488 0.447 0.523 0.464 0.536

The neural network model is clearly the best in term of regression predictive
accuracy. However, this regression accuracy is not transposed into a good score
in terms of predicting the sign of the market change for the next day. Actually,
the neural network always predicts positive returns thus leading to 100% accu-
racy on the positive movements of the market. Still, from the perspective of
predicting the sign of the market changes the best performance is achieved by
the MARS model. However, this is not the end in terms of model evaluation.
As we will see in the next section if we translate the prediction of these mod-
els into trading actions we can get further information on the “value” of these
predictions.

3.4 From predictions into trading actions

As mentioned at the beginning of this chapter our overall goal in this case study
is to build a trading system based on the predictions of our data mining models.
Thus our final evaluation criterion will be the trading results obtained by this
system.

The first step to obtain such a system is to transform the predictions of our
models into trading actions. There are three possible actions: buy, sell, or hold
(do nothing). We will use the predictions of our models as the sole information
for deciding which action to take. Given the type of data we are using to obtain
our models it does not make sense to use an intra-day trading strategy. Thus,
our decisions will be made at the end of each market session, and our eventual
orders will be posted after this session but before the next day opening.

Ideally we would be using several predictive models with different forecasting
scenarios (1 day ahead, 5 days ahead, etc.). This could give us a mid-term
prediction of the evolution of the market and thus allow for more informed
decisions concerning the best action at the end of each day. In our case study
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we will simplify this approach, and will use only our 1 day ahead predictions
for generating the signals. Still, some decisions have to be made given a set of
predictions of 1 day ahead returns. Namely, we have to decide when to buy or
sell. The following R function is a simple approach that uses some thresholds
on the predicted market variations to generate a vector of trading signals,

> buy.signals <- function(pred.ret,buy=0.05,sell=-0.05) {
+ sig <- ifelse(pred.ret < sell,’sell’,
+ ifelse(pred.ret > buy,’buy’,’hold’))
+ factor(sig,levels=c(’sell’,’hold’,’buy’))
+ }

With this simple function we can generate a set of trading signals from the
predictions of any of the models obtained in Section 3.3.1.

3.4.1 Evaluating trading signals

Having a set of trading signals we can compare them to the effective market
movements to check the performance of our actions when compared to the re-
ality. The following is a small example of this comparison with the MARS
predictions for the selection period,

> mars.actions <- buy.signals(m.preds,buy=0.01,sell=-0.01)
> market.moves <- buy.signals(select[,1],buy=0.01,sell=-0.01)
> table(mars.actions,market.moves)

market.moves
mars.actions sell hold buy

sell 7 3 7
hold 377 1200 415
buy 3 8 2

In this small example we have decided to generate a buy signal whenever our
model predicts a 1-day ahead returns larger than 1%, while sell signals where
generated for a decrease of 1%. We have used the function table() to obtain
a contingency table that shows the results of our actions when compared to
the effective market movements. We can see that from the 17 (=7+3+7) sell
actions generated by our model, only 7 corresponded to an effective down move
of the market.19 On 3 occasions the market closed at the same price, while on
7 occasions the market even closed at a higher price, meaning that if we have
posted the sell order we would be loosing money! Obviously these numbers only
give us half of the picture, because it is also relevant to observe the amount
of money corresponding to each correct (or incorrect) guess. This means that
even if our hit rate regarding market movements is not very good we could be
earning money. The following two functions provide us further information on
the results of our trading signals,

> signals.eval <- function(pred.sig,true.sig,true.ret) {

+ t <- table(pred.sig,true.sig)

+ n.buy <- sum(t[’buy’,])

+ n.sell <- sum(t[’sell’,])

19Actually the market could have been falling more often but at least not below 1%.
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+ n.sign <- n.buy+n.sell

+ hit.buy <- round(100*t[’buy’,’buy’]/n.buy,2)

+ hit.sell <- round(100*t[’sell’,’sell’]/n.sell,2)

+ hit.rate <- round(100*(t[’sell’,’sell’]+t[’buy’,’buy’])/n.sign,2)

+ ret.buy <- round(100*mean(as.vector(true.ret[which(pred.sig==’buy’)])),4)

+ ret.sell <- round(100*mean(as.vector(true.ret[which(pred.sig==’sell’)])),4)

+ data.frame(n.sess=sum(t),acc=hit.rate,acc.buy=hit.buy,acc.sell=hit.sell,

+ n.buy=n.buy,n.sell=n.sell,ret.buy=ret.buy,ret.sell=ret.sell)

+ }

> annualized.signals.results <- function(pred.sig,test) {

+ true.signals <- buy.signals(test[,1],buy=0,sell=0)

+ res <- signals.eval(pred.sig,true.signals,test[,1])

+ years <- unique(substr(test[,’Date’],1,4))

+ for(y in years) {

+ idx <- which(substr(test[,’Date’],1,4)==y)

+ res <- rbind(res,signals.eval(pred.sig[idx],true.signals[idx],test[idx,1]))

+ }

+ row.names(res) <- c(’avg’,years)

+ res

+ }

> annualized.signals.results(mars.actions,select)

n.sess acc acc.buy acc.sell n.buy n.sell ret.buy ret.sell

avg 2022 46.67 46.15 47.06 13 17 -0.0926 0.9472

1982 253 0.00 0.00 NaN 1 0 -1.0062 NaN

1983 253 NaN NaN NaN 0 0 NaN NaN

1984 253 NaN NaN NaN 0 0 NaN NaN

1985 252 NaN NaN NaN 0 0 NaN NaN

1986 253 NaN NaN NaN 0 0 NaN NaN

1987 253 40.00 42.86 37.50 7 8 -0.2367 2.2839

1988 253 50.00 33.33 60.00 3 5 0.0254 0.4773

1989 252 66.67 100.00 50.00 2 4 0.6917 -1.1390

The function signals.eval() calculates the hit rates of our trading actions,
the number of different types of actions, and also the average percentage return
for our buy and sell signals. The function annualized.signals.results()
provides average an annualized results for these statistics. When applying this
function to our MARS-based actions we observe a very poor performance. The
accuracy of the signals is rather disappointing and the average returns are even
worse (negative values for the buy actions and positive for the sell signals!).
Moreover, there are very few signals generated each year. The only acceptable
performance was achieved in 1989, in spite of the low number of signals.

If we apply this evaluation function to the signals generated with the same
thresholds from the projection pursuit and neural network predictions, we get
the following results,

> annualized.signals.results(buy.signals(pp.preds,buy=0.01,sell=-0.01),select)

n.sess acc acc.buy acc.sell n.buy n.sell ret.buy ret.sell

avg 2022 45.61 44.12 47.83 34 23 -0.4024 -0.2334

1982 253 42.86 50.00 0.00 6 1 -0.4786 1.4364

1983 253 100.00 NaN 100.00 0 1 NaN -1.8998

1984 253 100.00 NaN 100.00 0 1 NaN -1.8222

1985 252 NaN NaN NaN 0 0 NaN NaN

1986 253 0.00 0.00 0.00 4 2 -0.7692 0.1847

1987 253 48.00 47.37 50.00 19 6 -0.7321 -0.1576

1988 253 70.00 75.00 66.67 4 6 1.7642 -0.7143

1989 252 28.57 0.00 33.33 1 6 -0.8811 0.2966

> annualized.signals.results(buy.signals(nn.preds,buy=0.01,sell=-0.01),select)

n.sess acc acc.buy acc.sell n.buy n.sell ret.buy ret.sell

avg 2022 NaN NaN NaN 0 0 NaN NaN

1982 253 NaN NaN NaN 0 0 NaN NaN
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1983 253 NaN NaN NaN 0 0 NaN NaN

1984 253 NaN NaN NaN 0 0 NaN NaN

1985 252 NaN NaN NaN 0 0 NaN NaN

1986 253 NaN NaN NaN 0 0 NaN NaN

1987 253 NaN NaN NaN 0 0 NaN NaN

1988 253 NaN NaN NaN 0 0 NaN NaN

1989 252 NaN NaN NaN 0 0 NaN NaN

Once again, the results are quite bad. Neural networks do not generate
any signal at all. These models are making predictions which never go above
(or below) our trading thresholds. This should not be a surprise because these
situations are quite rare on the training data (c.f. Figure 3.2, page 90).

Before we try to improve our results let us see how to use these signals to
perform real trading.

3.4.2 A simulated trader

In order to assess the value of a set of trading signals, we need to use these signals
for real trading. Many possible trading strategies exist. In this section we will
select a particular strategy. No assertions are made regarding the question
whether this is the best way to trade in a market. Still, this will serve to
evaluate the signals of our models in a more realistic setup.

Our trading strategy will follow a certain number of rules and will haveOur trading strategy

a set of constraints. A first constraint is the capital available at the start of
the trading period. In our experiments we will start with a capital of 10000
monetary units. An important issue when designing a trading policy is the
timing of the orders submitted to the market. We will post our buy orders at
the end of each session every time a buy signal is generated by our model. The
amount of capital that will be invested is a percentage (we will use as default
20%) of our equity (defined as the available money plus the value of our current
stock portfolio). We will assume that this buy order will always be carried out
when the market opens (we assume there are always stocks to sell). This means
that our order will be fulfilled at the next day’s open price. Immediately after
posting this buy order we will post a sell order of the stocks just bought. This
order will be posted with a target sell price, which will be set as a percentage
(we will use 3% as default) above the todays’ closing price of the stock. This
can be seen as our target profit. The sell order will also be accompanied by a
due date (defaulting to 10 days). If the stock reaches the target sell price till
the due date the stocks are sold at that price. Otherwise, the stocks are sold at
the closing price of the due date session. Finally, we will set a transaction cost
of 5 Euros for each order. Notice that this strategy is using only the buy signals
of our models, because as soon as we buy we automatically post an associated
sell order.

We will now implement this trading strategy. Our goal is to build a function
that given the market evolution and our predicted signals, will automatically
simulate the trading according to the rules described above, returning as a result
a series of statistics that evaluate the trading performance of our signals during
a certain period. The function we provide (trader.eval()) to implement this
artificial trader is a bit long, so we only include it at the book Web site for space
reasons.

The simulated trader function produces a list containing several results of
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the actions taken during the trading period using our signals. Before describing
the details of these statistics let us see how to use the function,

> market <- ibm[ibm$Date > ’1981-12-31’ & ibm$Date < ’1990-01-01’,]

> t <- trader.eval(market,mars.actions)

> names(t)

[1] "trading" "N.trades" "N.profit" "Perc.profitable"

[5] "N.obj" "Max.L" "Max.P" "PL"

[9] "Max.DrawDown" "Avg.profit" "Avg.loss" "Avg.PL"

[13] "Sharpe.Ratio"

We started by selecting the quotes data for the trading period. We then used
the trader.eval() function to trade during this period using the signals of the
model that were obtained for that period. We have used all default parameter
values of our trading policy. The final instruction shows us the names of the
components of the list that the trading function returned.

The trading component is a data frame with as many rows as there are
sessions in the testing period. For each row (session) we store the date, the
closing price of the stocks at the end of the session, the money available at the
end of the day, the number of stocks currently at our portfolio and the equity
(money+value of the stocks). We can use this data frame to inspect more closely
(for instance through graphs) the performance of our trader. The following code
is an example of such a graphical inspection, shown in Figure 3.5

> plot(ts(t$trading[,c(2,4,5)]),main=’MARS Trading Results’)

Notice how we have used the function ts() to transform the results into a
time series object, thus taking advantage of the special plotting methods within
R.

The remaining components summarize the more relevant features of the
trading performance. Namely, we get information on the number of executed
trades20, the number of profitable trades21 and the percentage of profitable
trades. The element N.obj indicates how many of the trades achieved our tar-
get percentage profit (the parameter exp.prof of the trader.eval() function).
The other trades are completed because of the due date constraint, meaning
that the stocks were sold at the closing price of the session at the due date. The
elements Max.L and Max.P show the maximum loss and profit of a trade, respec-
tively, while the element PL shows the overall result at the end of the trading
period (that is the gain or loss from the initial capital). The Max.DrawDown
shows the maximum successive decrease in the value of the Equity that was
experienced during the trading period. The Avg.profit element shows the av-
erage gain in Euros of each profitable trade, while Avg.loss shows the average
loss of the non-profitable trades. The Avg.PL element shows the average result
of the trades carried out. Finally, Sharpe.Ratio is an indicator frequently used
in financial markets whose main goal is to provide an idea of the profit and
associated risk of a trading strategy. It is calculated as the average profit of
the trader over time divided by the standard deviation of this profit. The value
should be as high as possible,for a system with a combined high profit and low
risk.

As before, it is interesting to have a look at the annualized results,
20The full buy-sell cycle.
21We take into account the trading costs in calculating profits.
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Figure 3.5: Some trading results of the actions entailed by the Neural Network
predictions.
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> annualized.trading.results <- function(market,signals,...) {

+

+ res <- data.frame(trader.eval(market,signals,...)[-1])

+

+ years <- unique(substr(market[,’Date’],1,4))

+ for(y in years) {

+ idx <- which(substr(market[,’Date’],1,4)==y)

+ res <- rbind(res,data.frame(trader.eval(market[idx,],signals[idx],...)[-1]))

+ }

+ row.names(res) <- c(’avg’,years)

+ round(res,3)

+ }

If we apply this function to the trading actions of MARS we get the following
results,

> annualized.trading.results(market,mars.actions)

N.trades N.profit Perc.profitable N.obj Max.L Max.P PL Max.DrawDown

avg 13 9 69.231 9 6.857 5.797 211.818 312.075

1982 1 0 0.000 0 0.359 0.000 -7.120 85.440

1983 0 0 NaN 0 0.000 0.000 0.000 0.000

1984 0 0 NaN 0 0.000 0.000 0.000 0.000

1985 0 0 NaN 0 0.000 0.000 0.000 0.000

1986 0 0 NaN 0 0.000 0.000 0.000 0.000

1987 7 5 71.429 5 6.857 5.797 85.087 266.203

1988 3 3 100.000 3 0.000 2.875 149.341 38.580

1989 2 1 50.000 1 3.462 2.625 -17.029 69.150

Avg.profit Avg.loss Avg.PL Sharpe.Ratio

avg 2.853 3.725 0.829 0.011

1982 NaN 0.359 -0.359 -0.004

1983 NaN NaN NaN NaN

1984 NaN NaN NaN NaN

1985 NaN NaN NaN NaN

1986 NaN NaN NaN NaN

1987 3.100 5.543 0.631 0.014

1988 2.510 NaN 2.510 0.087

1989 2.625 3.462 -0.419 -0.015

This function may take a while to run. You may notice that in some years
there was no trading at all. Moreover, in some years there is a loss (1982 and
1989). The overall results are not impressive. This function uses the trading
simulator to obtain its results. We can give it other trading parameters to check
the effect on the results,

> annualized.trading.results(market,mars.actions,bet=0.1,exp.prof=0.02,hold.time=15)

N.trades N.profit Perc.profitable N.obj Max.L Max.P PL Max.DrawDown

avg 13 9 69.231 10 5.685 4.258 34.672 197.031

1982 1 1 100.000 1 0.000 2.028 20.115 5.000

1983 0 0 NaN 0 0.000 0.000 0.000 0.000

1984 0 0 NaN 0 0.000 0.000 0.000 0.000

1985 0 0 NaN 0 0.000 0.000 0.000 0.000

1986 0 0 NaN 0 0.000 0.000 0.000 0.000

1987 7 4 57.143 5 5.685 4.258 -22.738 197.031

1988 3 3 100.000 3 0.000 1.353 29.594 21.560

1989 2 1 50.000 1 0.321 1.108 7.701 34.160

Avg.profit Avg.loss Avg.PL Sharpe.Ratio

avg 1.553 2.624 0.268 0.004

1982 2.028 NaN 2.028 0.045

1983 NaN NaN NaN NaN

1984 NaN NaN NaN NaN

1985 NaN NaN NaN NaN
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1986 NaN NaN NaN NaN

1987 1.959 3.392 -0.334 -0.006

1988 1.001 NaN 1.001 0.051

1989 1.108 0.321 0.393 0.016

As we can see things got even worse with these settings. Still, these poor
overall results just reinforce our previous concerns on the quality of the pre-
dictions of our models. In the following sections we will try to improve this
performance.

3.5 Going back to data selection

Knowledge discovery is a cyclic process. The results of the different knowledge
discovery steps are usually fed back to try to improve the overall performance.
Motivated by the disappointing trading performance of the experiments of the
previous section, we will try to iterate our knowledge discovery process to im-
prove predictive performance.

The models we have obtained for predicting the next day returns used only
the lagged values of this ratio. It is common knowledge (e.g. Almeida and Torgo,
2001; Deboeck, 1994)) that this is clearly insufficient for accurate predictions
in such a non-linear domain as stock quotes. We will thus try to improve our
performance by enriching our data set through the use of other information
apart from the previous returns.

3.5.1 Enriching the set of predictor variables

In this section we will add input variables that can carry more information than
the returns on the previous days. One possibility is to try to capture some
features of the dynamic behavior of the times series. Alternatively, one can also
try to include some financial information as input to the models. A common
choice is the use of technical indicators. The idea behind Technical Analysis is
to study the evolution of prices over the previous days and use this information
to generate signals. Most of the analysis is usually carried out through charting.
There is a large number of technical indicators22 that can be used to enrich our
set of variables. In this section we will use a few as illustrative examples.

Technical indicators

Moving averages are among the simplest technical indicators. A moving averageMoving averages

is an indicator that shows the average value of a security’s price over a period of
time. The most popular method of using this indicator is to compare the moving
average of the security’s price with the security’s price itself. A buy signal is
generated when the security’s price rises above its moving average and a sell
signal is generated when the security’s price falls below this moving average.

A moving average can be easily obtained with the following function,

> ma <- function(x,lag) {
+ require(’ts’)
+ c(rep(NA,lag),apply(embed(x,lag+1),1,mean))
+ }

22Find a very exhaustive list at http://www.equis.com/free/taaz/.
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As the function needs the embed() function which is made available by the
package ts, we need to ensure that this package is loaded when the user calls
our function. This is accomplished through the function require() which loads
it if it is not loaded yet.

If we want to obtain a moving average of the last 20 days for the closing
prices of our IBM stock, we can type the following command:

> ma20.close <- ma(ibm$Close,lag=20)

We can get a better fell for the use of moving averages as technical indicators
by plotting a few of them with different time lags. An example of such plot is
given in Figure 3.6, which shows the closing prices of IBM together with two
different moving averages for the first 1000 stock sessions. The code to generate
the figure is the following,

> plot(ibm$Close[1:1000],main=’’,type=’l’,ylab=’Value’,xlab=’Day’)

> lines(ma20.close[1:1000],col=’red’,lty=2)

> lines(ma(ibm$Close,lag=100)[1:1000],col=’blue’,lty=3)

> legend(1.18, 22.28, c("Close", "MA(20)", "MA(100)"),

+ col = c(’black’,’red’,’blue’),lty = c(1,2,3))
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Figure 3.6: Two moving averages of the closing prices of IBM.

As it can be seen from Figure 3.6 the larger the moving average window the
smoother the resulting curve.

As mentioned above we can compare the moving average line and the closing
prices to obtain trading signals. Instead of looking at the graph, we can build
a function to obtain the signals,
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> ma.indicator <- function(x,ma.lag=20) {

+ d <- diff(sign(x-c(rep(NA,ma.lag-1),apply(embed(x,ma.lag),1,mean))))

+ factor(c(rep(0,ma.lag),d[!is.na(d)]),

+ levels=c(-2,0,2),labels=c(’sell’,’hold’,’buy’))

+ }

The function sign() is used to obtain the signals of subtracting the closing
prices from the moving average we want to use. We then apply the function
diff() to check for changes of the signals in successive time steps. These
correspond to the places were the closing prices cross the moving average line.
Finally, these differences are used to build a factor with the trading signals.
When the difference between the signs is -2 this means that we changed from a
closing price above the average (a 1 sign) into a closing price below the average
(a -1 sign).23 This is a situation were the interpretation of the moving average
technical indicator says we should sell the stock. When the difference is 2 we
have the case where the closing price goes from a value below the average to
a value above it, which leads to a buy signal. In the begining of the time
series, where we do not have sufficient data to calculate the moving average of
the required length, we generate hold actions. The function produces as many
trading signals as there are values in the vector of closing prices.

Using this function we can obtain the trading actions suggested by some
moving average indicator. The following code shows an example of using a
20-days moving average for trading on the first 1000 sessions, and presents the
dates when the first 10 buy signals are generated by this indicator,

> trading.actions <- data.frame(Date=ibm$Date[1:1000],

+ Signal=ma.indicator(ibm$Close[1:1000]))

> trading.actions[which(trading.actions$Signal==’buy’),][1:10,]

Date Signal

29 1970-02-11 buy

58 1970-03-25 buy

69 1970-04-10 buy

104 1970-05-29 buy

116 1970-06-16 buy

138 1970-07-17 buy

147 1970-07-30 buy

162 1970-08-20 buy

207 1970-10-23 buy

210 1970-10-28 buy

We can evaluate this kind of trading signals with our annualized.trading.results()
function as done before for the signals generated by a MARS model. This is
illustrated with the code shown below, for the signals generated by a 30-days
moving average during the model selection period,

> ma30.actions <- data.frame(Date=ibm[ibm$Date < ’1990-01-01’,’Date’],

+ Signal=ma.indicator(ibm[ibm$Date < ’1990-01-01’,’Close’],ma.lag=30))

> ma30.actions <- ma30.actions[ma30.actions$Date > ’1981-12-31’,’Signal’]

> annualized.trading.results(market,ma30.actions)

N.trades N.profit Perc.profitable N.obj Max.L Max.P PL Max.DrawDown

avg 96 38 39.583 2 9.195 8.608 -1529.285 1820.19

1982 10 5 50.000 2 7.194 8.608 207.665 243.28

23A better grasp of this reasoning can be obtained by trying the sign() function with a
small vector of numbers.
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1983 15 5 33.333 0 4.585 3.563 -300.700 385.66

1984 13 5 38.462 0 4.246 3.222 -375.140 391.56

1985 12 2 16.667 0 9.168 3.520 -399.420 428.33

1986 10 4 40.000 0 6.218 1.895 -223.870 295.71

1987 11 6 54.545 0 4.015 5.043 23.170 179.33

1988 11 5 45.455 0 5.054 1.777 -140.190 226.79

1989 14 7 50.000 0 6.827 4.608 -358.330 481.30

Avg.profit Avg.loss Avg.PL Sharpe.Ratio

avg 2.003 2.738 -0.861 -0.059

1982 5.261 3.112 1.074 0.047

1983 1.594 2.332 -1.023 -0.087

1984 1.389 3.272 -1.479 -0.152

1985 1.932 2.433 -1.706 -0.124

1986 1.475 2.880 -1.138 -0.078

1987 2.180 2.360 0.117 0.007

1988 0.770 1.823 -0.644 -0.038

1989 1.363 3.962 -1.299 -0.111

We have used the data before the start of the model selection period (recall
it was from 1981-12-31 till 1990-01-01), so that we can start calculating the
moving average from the start of that period.24

As expected this very simple indicator does not produce very good overall
trading results. Still, we should recall that our objective when introducing
technical indicators was to use them as input variables for our regression models
as a means to improve their predictive accuracy. We have three alternative ways
of doing this: We can use the value of the moving average as an input variable;
we can use the signals generated by the indicator as an input variable; or we can
use both the value and the signals as input variables. Any of these alternatives
is potentially useful. The same observation applies to the use of any technical
indicator.

Another type of moving average is the exponential moving average. The idea Exponential moving

averageof this variant is to give more weight to the recent values of the series. Formally,
an exponential moving average is recursively defined as,

emaβ(Xt) = βXt + (1− β)× emaβ(Xt−1)
emaβ(X1) = X1 (3.9)

Exponential moving averages can be easily implemented in R with the fol-
lowing code,

> ema <- function (x, beta = 0.1, init = x[1])
+ {
+ require(’ts’)
+ filter(beta*x, filter=1-beta, method="recursive", init=init)
+ }

We have used the function filter() from package ts, which allows the
application of linear filters to time series.

Sometimes people prefer to use the number of days to set the time lag of a
moving average, instead of using this β factor. We can calculate the value of β
corresponding to a given number of days as follows,

24Actually, as we have used a 30-days moving average we would only need the prices of the
previous 30 days.
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β =
2

n.days + 1
(3.10)

Inversely, we can calculate the number of days corresponding to a given value
of β with,

n.days =
2
β
− 1 (3.11)

This means that the default value of β for our ema() function corresponds
to an exponential average of 21 days (= 2/0.1 + 1).

Figure 3.7 shows the difference between a 100-days moving average and an
exponential average over the same time window, which was obtained with the
following code,
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Figure 3.7: 100-days Moving vs. Exponential averages.

> plot(ibm$Close[1:1000],main=’’,type=’l’,ylab=’Value’,xlab=’Day’)

> lines(ma(ibm$Close[1:1000],lag=100),col=’blue’,lty=3)

> lines(ema(ibm$Close[1:1000],beta=0.0198),col=’red’,lty=2)

> legend(1.18, 22.28, c("Close", "MA(100)", "EMA(0.0198)"),

+ col = c(’black’,’blue’,’red’),lty = c(1,3,2),bty=’n’)

As we can see, there is no big difference between these two moving averages,
although we can say that the exponential average is more “reactive” to recent
movements of the closing prices.

Another technical indicator which is frequently used is the Moving Average
Convergence/Divergence (MACD). The MACD was designed to capture trendThe MACD indicator
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effects on a time series. The MACD shows the relationship between two moving
averages of prices. This indicator is usually calculated as the difference between
a 26-days and 12-days exponential moving average.25 It can be obtained with
the following function,

> macd <- function(x,long=26,short=12) {
+ ema(x,lambda=1/(long+1))-ema(x,lambda=1/(short+1))
+ }

There are several ways to interpret the MACD values with the goal of trans-
forming them into trading signals. One way is to use the crossovers of the
indicator against a signal line. The latter is usually a 9-days exponential mov-
ing average. The resulting trading rule is the following: Sell when the MACD
falls below its signal line; and buy when the MACD rises above its signal line.
This can be implemented by the code:

> macd.indicator <- function(x,long=26,short=12,signal=9) {
+ v <- macd(x,long,short)
+ d <- diff(sign(v-ema(v,lambda=1/(signal+1))))
+ factor(c(0,0,d[-1]),levels=c(-2,0,2),labels=c(’sell’,’hold’,’buy’))
+ }

Another popular indicator is the Relative Strength Index (RSI). This is a The RSI indicator

price-following oscillator that ranges between 0 and 100. It is calculated as,

RSI = 100−

(
100

1 +
(

U
D

)) (3.12)

where, U is the percentage of positive returns in a certain time lag, and D is
the percentage of negative returns during that period.

This indicator can be implemented by the following code:

> moving.function <- function(x, lag, FUN, ...) {
+ require(’ts’)
+ FUN <- match.fun(FUN)
+ c(rep(NA,lag),apply(embed(x,lag+1),1,FUN,...))
+ }
> rsi.aux <- function(diffs,lag) {
+ u <- length(which(diffs > 0))/lag
+ d <- length(which(diffs < 0))/lag
+ ifelse(d==0,100,100-(100/(1 + u/d)))
+ }
> rsi <- function(x,lag=20) {
+ d <- c(0,diff(x))
+ moving.function(d,lag,rsi.aux,lag)
+ }

The RSI-based trading rule is usually the following: As the RSI indicator
crosses the value 70 coming from above, generated a sell signal; when the indi-
cator crosses the value 30 coming from below generate a sell signal. This rule
is implemented by the following function,

25The idea is to compare long term and short term averages.
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> rsi.indicator <- function(x,lag=20) {
+ r <- rsi(x,lag)
+ d <- diff(ifelse(r > 70,3,ifelse(r<30,2,1)))
+ f <- cut(c(rep(0,lag),d[!is.na(d)]),breaks=c(-3,-2,-1,10),
+ labels=c(’sell’,’buy’,’hold’),right=T)
+ factor(f,levels=c(’sell’,’hold’,’buy’))
+ }

Finally, we will also use the Chaikin oscillator to generate more information
for our predictive models. This indicator includes information regarding the
volume of transactions besides the stock prices. It can be calculated with the
following two functions,

> ad.line <- function(df) {

+ df$Volume*((df$Close-df$Low) - (df$High-df$Close))/(df$High-df$Low)

+ }

> chaikin.oscillator <- function(df,short=3,long=10) {

+ ad <- ad.line(df)

+ ewma(ad,lambda=1/(short+1))-ewma(ad,lambda=1/(long+1))

+ }

Note that to obtain the values for this indicator you need to provide the
overall data frame since the indicator uses several quotes of the stock. The
following is an example call of the function,

> chaikin <- chaikin.oscillator(ibm[1:first12y,])

[Describe the signal generation from this oscillator]

Other variables

Technical indicators provide some financially-oriented information for model
construction. However, we can also use variables that try to capture other
features of the dynamics of the time series.

For instance, we can use not only 1-day returns but also information on
larger lagged returns, like 5-, 10- and 20-days returns. We can also calculate
the variability of the closing prices over the last sessions.

Another variable which is sometimes useful is a difference of differences. For
instance, we can calculate the differences of the returns (which are by themselves
differences).

Finally, we can also calculate the linear trend of the prices in the recent
sessions.

The following R code implements some of these variables,

> d5.returns <- h.returns(ibm[,’Close’],h=5)
> var.20d <- moving.function(ibm[,’Close’],20,sd)
> dif.returns <- diff(h.returns(ibm[,’Close’],h=1))
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