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Preface

The main goal of this book is to introduce the reader to the use of R as a tool for
performing data mining. R is a freely downloadable! language and environment
for statistical computing and graphics. Its capabilities and the large set of
available packages make this tool an excellent alternative to the existing (and
expensive!) data mining tools.

One of the key issues in data mining is size. A typical data mining problem
involves a large database from where one seeks to extract useful knowledge. In
this book we will use MySQL as the core database management system. MySQL
is also freely available? for several computer platforms. This means that you
will be able to perform “serious” data mining without having to pay any money
at all. Moreover, we hope to show you that this comes with no compromise in
the quality of the obtained solutions. Expensive tools do not necessarily mean
better tools! R together with MySQL form a pair very hard to beat as long as
you are willing to spend some time learning how to use them. We think that it
is worthwhile, and we hope that you are convinced as well at the end of reading
this book.

The goal of this book is not to describe all facets of data mining processes.
Many books exist that cover this area. Instead we propose to introduce the
reader to the power of R and data mining by means of several case studies.
Obviously, these case studies do not represent all possible data mining problems
that one can face in the real world. Moreover, the solutions we describe can
not be taken as complete solutions. Our goal is more to introduce the reader
to the world of data mining using R through pratical examples. As such our
analysis of the cases studies has the goal of showing examples of knowledge
extraction using R, instead of presenting complete reports of data mining case
studies. They should be taken as examples of possible paths in any data mining
project and can be used as the basis for developping solutions for the reader’s
data mining projects. Still, we have tried to cover a diverse set of problems
posing different challenges in terms of size, type of data, goals of analysis and
tools that are necessary to carry out this analysis.

We do not assume any prior knowledge about R. Readers that are new to
R and data mining should be able to follow the case studies. We have tried
to make the different case studies self-contained in such a way that the reader
can start anywhere in the document. Still, some basic R functionalities are
introduced in the first, simpler, case studies, and are not repeated, which means
that if you are new to R, then you should at least start with the first case

IDownload it from http://www.R-project.org.
2Download it from http://www.mysql.com.
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studies to get acquainted with R. Moreover, the first chapter provides a very
short introduction to R basics, which may facilitate the understanding of the
following chapters. We also do not assume any familiarity with data mining
or statistical techniques. Brief introductions to different modeling approaches
are provided as they are necessary in the case studies. It is not an objective
of this book to provide the reader with full information on the technical and
theoretical details of these techniques. Our descriptions of these models are
given to provide basic understanding on their merits, drawbacks and analysis
objectives. Other existing books should be considered if further theoretical
insights are required. At the end of some sections we provide “Further readings”
pointers for the readers interested in knowing more on the topics. In summary,
our target readers are more users of data analysis tools than researchers or
developers. Still, we hope the latter also find reading this book useful as a form
of entering the “world” of R and data mining.

The book is accompanied by a set of freely available R source files that can
be obtained at the book Web site®. These files include all the code used in the
case studies. They facilitate the “do it yourself” philosophy followed in this
document. We strongly recommend that readers install R and try the code as
they read the book. All data used in the case studies is available at the book
Web site as well.

Shttp://www.liacc.up.pt/ ltorgo/DataMiningWithR/.
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Chapter 1

Introduction

R is a language and an environment for statistical computing. It is similar to
the S language developed at AT&T Bell Laboratories by Rick Becker, John
Chambers and Allan Wilks. There are versions of R for the Unix, Windows
and Mac families of operating systems. Moreover, R runs on different computer
architectures like Intel, PowerPC, Alpha systems and Sparc systems. R was
initially developed by ( ) both from the University
of Auckland, New Zealand. The current development of R is carried out by a
core team of a dozen people from different institutions around the world. R
development takes advantage of a growing community that cooperates in its
development due to its open source philosophy. In effect, the source code of
every R component is freely available for inspection and/or adaptation. There
are many critics to the open source model. Most of them mention the lack of
support as the main drawback of open source software. It is certainly not the
case with R! There are many excellent documents, books and sites that provide
free information on R. Moreover, the excellent R-help mailing list is a source
of invaluable advice and information, much better then any amount of money
could ever buy! There are also searchable mailing lists archives' that you can
use before posting a question.

Data Mining has to do with the discovery of useful, valid, unexpected and
understandable knowledge from data. These general objectives are obviously
shared by other disciplines like statistics, machine learning or pattern recogni-
tion. One of the most important distinguishing issues in data mining is size.
With the advent of computer technology and information systems, the amount
of data available for exploration has increased exponentially. This poses difficult
challenges to the standard data analysis disciplines: one has to consider issues
like computational efficiency, limited memory resources, interfaces to databases,
etc. All these issues turn data mining into a highly interdisciplinary subject in-
volving tasks not only of typical data analysts but also of people working with
databases, data visualization on high dimensions, etc.

R has limitations with handling enormous datasets because all computation
is carried out in the main memory of the computer. This does not mean that
we will not be able to handle these problems. Taking advantage of the highly
flexible database interfaces available in R, we will be able to perform data mining

Thttp://maths.newcastle.edu.au/ rking/R/.
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2 INTRODUCTION

on large problems. Being faithful to the Open Source philosophy we will use the
excellent MySQL database management system?. MySQL is also available for a
quite large set of computer platforms and operating systems. Moreover, R has
a package that enables an easy interface to MySQL (package “RMySQL”).

In summary, we hope that at the end of reading this book you are convinced
that you can do data mining on large problems without having to spend any
money at alll That is only possible due to the generous and invaluable contri-
bution of lots of scientists that build such wonderful tools as R and MySQL.

1.1 How to read this book?

The main spirit behind the book is:
Learn by doing it!

The book is organized as a set of case studies. The “solutions” to these
case studies are obtained using R. All necessary steps to reach the solutions
are described. Using the book Web site® you may get all code included in
the document, as well as all data of the case studies. This should facilitate
trying them out by yourself. Ideally, you should read this document beside your
computer and try every step as it is presented to you in the document. R code
is shown in the book using the following font,

> R.version

platform i686-pc-linux-gnu

arch i686

os linux-gnu
system 1686, linux-gnu
status

major 1

minor 7.0

year 2003

month 04

day 16

language R

R commands are entered at R command prompt, “>”. Whenever you see this
prompt you may interpret it as R being waiting for you to enter a command.
You type in the commands at the prompt and then press the ENTER key to ask
R to execute them. This usually produces some form of output (the result of
the command) and then a new prompt appears. At the prompt you may use the
up arrow key to browse to previously entered commands. This is handy when
you want to type commands similar to what you have done before as you avoid
typing them again.

Still, you may take advantage of the code provided at the book Web site to
cut and paste between your browser and the R console, thus avoiding having to
type all commands described in the book. This will surely facility your learning,
and improve your understanding of its potential.

2Free download at http://www.mysql.com.
Shttp://www.liacc.up.pt/ ltorgo/DataMiningWithR/.
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1.2 A short introduction to R

The goal of this section is to provide a brief introduction to the key issues of the
R language. We do not assume any familiarity with computer programming.
Every reader should be able to follow the examples presented on this section.
Still, if you feel some lack of motivation for continuing reading this introductory
material do not worry. You may proceed to the case studies and then return to
this introduction as you get more motivated by the concrete applications.

R is a functional language for statistical computation and graphics. It can
be seen as a dialect of the S language (developed at AT&T) for which John
Chambers was awarded the 1998 Association for Computing Machinery (ACM)
Software award which mentioned that this language “forever altered how people
analyze, visualize and manipulate data”.

R can be quite useful just by using it in an interactive fashion. Still more
advanced uses of the system will lead the user to develop his own functions to
systematize repetitive tasks, or even to add or change some functionalities of
the existing add-on packages, taking advantage of being open source.

1.2.1 Starting with R

In order to install R in your system the easiest way is to obtain a binary distri-
bution from the R Web site* where you may follow the link that takes you to the
CRAN (Comprehensive R Archive Network) site to obtain, among other things,
the binary distribution for your particular operating system/architecture. If
you prefer to build R directly from the sources you may get instructions on how
to do it from CRAN.

After downloading the binary distribution for your operating system you just
need to follow the instructions that come with it. In the case of the Windows
version, you simply execute the downloaded file (rw1061.exe)® and select the
options you want in the following menus. In the case of Unix-like operating
systems you should contact your system administrator to fulfill the installation
task as you will probably not have permissions for that.

To run R in Windows you simply double click the appropriate icon on your
desktop, while in Unix versions you should type R at the operating system
prompt. Both will bring up the R console with its prompt “>”.

If you want to quit R you may issue the command q() at the prompt. You
will be asked if you want to save the current workspace. You should answer yes
only if you want to resume your current analysis at the point you are leaving it,
later on.

Although the set of tools that comes with R is by itself quite powerful, it
is only natural that you will end up wanting to install some of the large (and
growing) set of add-on packages available for R at CRAN. In the Windows
version this is easily done through the “Packages” menu. After connecting
your computer to the Internet you should select the “Install package from
CRAN. ..” option from this menu. This option will present a list of the packages
available at CRAN. You select the one(s) you want and R will download the
package(s) and self-install it(them) on your system. In Unix versions things

4http://www.R-project.org.
5The actual name of the file may change with newer versions. This is the name for version
1.6.1.
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are slightly different as R is a console program without any menus. Still the
operation is simple. Suppose you want to download the package that provides
functions to connect to MySQL databases. This package name is RMySQL®. You
just need to type the following two commands at R prompt:

> options(CRAN=’http://cran.r-project.org’)
> install.package(‘ ‘RMySQL’’)

The first instruction sets the option that determines the site from where the
packages will be downloaded. Actually, this instruction is not necessary as this
is the default value of the CRAN option. Still, you may use such an instruction
for selecting a nearest CRAN mirror’. The second instruction performs the
actual downloading and installation of the package®.

If you want to known the packages currently installed in your distribution

you may issue,
> installed.packages()

This produces a long output with each line containing a package, its version
information, the packages it depends on, and so on. Another useful command
is the following, which allows you to check whether there are newer versions of
your installed packages at CRAN,

> old.packages()

Moreover, you may use the following command to update all your installed
packages’,

> update.packages()

R has an integrated help system that you can use to know more about the
system and its functionalities. Moreover, you can find extra documentation at
the R site (http://www.r-project.org). R comes with a set of HTML files that
can be read using a Web browser. On Windows versions of R these pages are ac-
cessible through the HELP menu. Alternatively, you may issue “help.start()”
at the prompt to launch the HTML help pages. Another form of getting help is
to use the help() function. For instance, if you want some help on the plot ()
function you can enter the command “help(plot)” (or in alternative ?plot). In
this case, if the HTML viewer is running the help will be shown there, otherwise
it will appear in the R console as text information.

5You can get an idea of the functionalities of each of the R packages in the R FAQ (frequently
asked questions) at CRAN.

"The list of available mirrors can be found at http://cran.r-project.org/mirrors.html.

8Please notice that to carry out these tasks on Unix systems you will most surely need to
have root permissions, so the best is to ask you system administrator to do the installation.
Still, it is also possible to download and install the packages on your personal home directory
(consult the R help facilites to check how).

9You need root permissions in Linux distributions to do this.

(DRAFT - May 22, 2003)
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1.2.2 R objects

R is an object-oriented language. All variables, data, functions, etc. are stored
in the memory of the computer in the form of named objects. By simply typing
the name of an object at the R prompt one can see its contents. For example,
if you have a data object named x with the value 945, typing its name at the
prompt would show you its value,

> X
[1] 945

The rather cryptic “[1]” in front of the number 945 can be read as “this
line is showing values starting from the first element of the object”. This is
particularly useful for objects containing several values like vectors, as we will
see later.

Values may be assigned to objects using the assignment operator. This
consists of either an angle bracket followed by a minus sign (<-), or a minus
sign followed by an angle bracket (->). Below you may find two alternative and
equivalent forms of assigning a value to the object y',

>y <= 39
>y

(11 39

> 43 > y
>y

[1] 43

You may also assign numerical expressions to an object. In this case the
object will store the result of the expression,

>z <-5

> w <- z"2

> w

[1] 25

> i <= (zx2 + 45)/2
> i

[1] 27.5

Whenever, you want to assign an expression to an object and then printout
the result (as in the previous small examples), you may alternatively surround
the assignment statement in parentheses:

> (w <= 2z72)
[1] 25

You do not need to assign the result of an expression to an object. In effect,
you may use R prompt as a kind of calculator,

> (34 + 90)/12.5
[1] 9.92

(DRAFT - May 22, 2003)
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Every object you create will stay in the computer memory until you delete
it. You may list the objects currently in the memory by issuing the 1s() or
objects() commands at the prompt. If you do not need an object you may
free some memory space by removing it,

> 1s()

[1] Ilill "W" l|yll |Iz||
> rm(y)

> rm(z,w,i)

Object names may consist of any upper and lower-case letters, the digits 0-9
(except in the beginning of the name), and also the period, “.”, which behaves
like a letter but may not appear at the beginning of the name (as digits). Note
that names in R are case semsitive, meaning that Color and color are two
distinct objects.

Important Note: In R you are not allowed to use the underscore character
(“") in object names.'!

1.2.3 Vectors

The most basic data object in R is a vector. Even when you assign a single
number to an object (like in x <- 45.3) you are creating a vector containing a
single element. All data objects have a mode and a length. The mode determines
the kind of data stored in the object. It can take the values character, logical,
numeric or complex. Thus you may have vectors of characters, logical values
(T or F or FALSE or TRUE)'?, numbers, and complex numbers. The length of an
object is the number of elements in it, and can be obtained with the function
length().

Most of the times you will be using vectors with length larger than 1. You
may create a vector in R , using the c() function,

> v <- c(4,7,23.5,76.2,80)

> v

[1] 4.0 7.0 23.5 76.2 80.0
> length(v)

[1] 5

> mode (v)

[1] "numeric"

All elements of a vector must belong to the same mode. If that is not true
R will force it by type coercion. The following is an example of this,

> v <- c(4,7,23.5,76.2,80,"rrt")
> v
[1] ngn nyn "3 5" n7g. 2 ngon "rrt"

10Notice how the assignment is a destructive operation (previous stored values in an object
are discarded by new assignments).

11This is a common cause of frustration for experienced programmers as this is a character
commonly used in other languages.

12Recall that R is case-sensitive, thus, for instance, True is not a valid logical value.

(DRAFT - May 22, 2003)
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All elements of the vector have been converted to character mode. Character
values are strings of characters surrounded by either single or double quotes.

All vectors may contain a special value named NA. This represents a missing
value,

> v <- c(NA,"rrr"

> v

[1] NA ‘"rrr"

> u <- c(4,6,NA,2)
>u

[11 4 6 NA 2

> k <- ¢(T,F,NA,TRUE)

> k

[1] TRUE FALSE NA TRUE

You may access a particular element of a vector through an index,

> v[2]
[1] "rrr"

You will learn in Section 1.2.7 that we may use vectors of indexes to obtain
more powerful indexing schemes.
You may also change the value of one particular vector element,

> v[1] <- ’hello’
> v
[1] "hello" '"rrr"

R allows you to create empty vectors like this,
> v <= vector()

The length of a vector may be changed by simply adding more elements to it
using a previously nonexistent index. For instance, after creating empty vector
v you could type,

> v[3] <- 45
> v
[1] NA NA 45

Notice how the first two elements have an unknown value, NA.
To shrink the size of a vector you can use the assignment operation. For
instance,

> v <- c(45,243,78,343,445,645,2,44,56,77)

> v

[1] 45 243 78 343 445 645 2 44 56 77
> v <- c(v[5],v[7])

> v

[1] 445 2

Through the use of more powerful indexing schemes to be explored in Section
1.2.7 you will be able delete particular elements of a vector in an easier way.

(DRAFT - May 22, 2003)
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1.2.4 Vectorization

One of the most powerful aspects of the R language is the vectorization of several
of its available functions. These functions operate directly on each element of a
vector. For instance,

> v <- ¢(4,7,23.5,76.2,80)

> x <- sqrt(v)

> X

[1] 2.000000 2.645751 4.847680 8.729261 8.944272

The function sqrt() calculates the square root of its argument. In this
case we have used a vector of numbers as its argument. Vectorization leads the
function to produce a vector of the same length, with each element resulting
from applying the function to every element of the original vector.

You may also use this feature of R to carry out vector arithmetic,

> vl <- c(4,6,87)

> v2 <- ¢(34,32.4,12)
> vi+v2

[1] 38.0 38.4 99.0

What if the vectors do not have the same length? R will use a recycling rule
by repeating the shorter vector till it fills in the size of the larger. For example,

> vl <- c(4,6,8,24)
> v2 <- ¢(10,2)

> vi+v2

[1] 14 8 18 26

It is just as if the vector c(10,2) was c(10,2,10,2). If the lengths are not
multiples than a warning is issued,

> vl <- c(4,6,8,24)
> v2 <- c(10,2,4)
> vi+v2
[1] 14 8 12 34
Warning message:
longer object length
is not a multiple of shorter object length in: vl + v2

Still, the recycling rule has been used, and the operation is carried out (it is
a warning, not an error!).

As mentioned before single numbers are represented in R as vectors of length
1. This is very handy for operations like the one shown below,

> vl <- c(4,6,8,24)
> 2xv1l
[1] 8 12 16 48

Notice how the number 2 (actually the vector c(2)!) was recycled, resulting
in multiplying all elements of v1 by 2. As we will see, this recycling rule is also
applied with other objects, like arrays and matrices.

(DRAFT - May 22, 2003)
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1.2.5 Factors

Factors provide an easy and compact form of handling categorical (nominal)
data. Factors have levels which are the possible values they may take. A factor
is stored internally by R as a numeric vector with values 1,2,... k, where k is the
number of levels of the factor. Factors are particularly useful in datasets where
you have nominal variables with a fixed number of possible values. Several
graphical and summarization functions that we will explore in later chapters
take advantage of this information.

Let us see how to create factors in R. Suppose you have a vector with the
sex of 10 individuals,

> g <- C(’f’,’m’,’m’,’m’,,f’,’m’,’f’,’m’,’f’,,f,)

> g
[1] IlflI Ilmll llmII llmll llfll |Iml| Ilfll Ilmll llfll llfll

You can transform this vector into a factor by entering,

> g <- factor(g)

> g

[1] fmmmefmfmff
Levels: f m

Notice that you do not have a character vector anymore. Actually, as men-
tioned above, factors are represented internally as numeric vectors'®. In this
example, we have two levels, ’f” and 'm’, which are represented internally as 1
and 2, respectively.

Suppose you have 4 extra individuals whose sex information you want to
store in another factor object. Suppose that they are all males. If you still want
the factor object to have the same two levels as object g, you may issue the
following,

> other.g <- factor(c(’m’,’m’,’m’,’m’,’m’),levels=c(’f’,’m’))
> other.g

[1] mmmmm

Levels: f m

Without the levels argument the factor other.g would have a single level
(7m7>'

One of the many things you can do with factors is to count the occurrence
of each possible value. Try this,

> table(g)

g

fm

55

> table(other.g)
other.g

fm

05

13You may confirm it by typing mode (g).

(DRAFT - May 22, 2003)
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The table() function can also be used to obtain cross-tabulation of several
factors. Suppose that we have in another vector the age category of the 10
individuals stored in vector g. You could cross tabulate these two vectors as
follows,

> a <- factor(c(’adult’,’adult’,’juvenile’,’juvenile’,’adult’,’adult’,
+ ’adult’,’juvenile’,’adult’,’juvenile’))
> table(a,g)

g
a

fm
adult 4 2
juvenile 1 3

Notice how we have introduced a long command in several lines. If you
hit the “return” key before ending some command, R presents a continuation
prompt (the “+” sign) for you to complete the instruction.

Sometimes we wish to calculate the marginal and relative frequencies for this
type of tables. The following gives you the totals for both the sex and the age
factors of this data,

\4

t <- table(a,g)
> margin.table(t,1)

adult juvenile
6 4
margin.table(t,2)

m
5

O Hh0Q VvV

For relative frequencies with respect to each margin and overall we do,

> prop.table(t,1)
g
a f m
adult 0.6666667 0.3333333
juvenile 0.2500000 0.7500000
> prop.table(t,2)
g

£
adult 0.8 0.
juvenile 0.2 O.
> prop.table(t)
g

m
4
6

f m
adult 0.4 0.2
juvenile 0.1 0.3

Notice that if we wanted percentages instead we could simply multiply these
function calls by 100.

(DRAFT - May 22, 2003)
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1.2.6 Generating sequences

R has several facilities to generate different types of sequences. For instance,
if you want to create a vector containing the integers between 1 and 1000, you
can simply type,

> x <= 1:1000

which creates a vector x containing 1000 elements, the integers from 1 to 1000.
You should be careful with the precedence of the operator “:”. The following
examples illustrate this danger,

> 10:15-1

[1] 9 10 11 12 13 14
> 10:(15-1)

[1] 10 11 12 13 14

Please make sure you understand what happened in the first command (re-
member the recycling rule!).
You may also generate decreasing sequences like the following,

> 5:0
[1] 543210

To generate sequences of real numbers you can use the function seq(). The
instruction

> seq(-4,1,0.5)
[1] -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

generates a sequence of real numbers between -4 and 1 in increments of 0.5.
Here are a few other examples of the use of the function seq() ',

> seq(from=1,to=5,length=4)
[1] 1.000000 2.333333 3.666667 5.000000
> seq(from=1,to=5,length=2)
[1] 1 5
> seq(length=10,from=-2,by=.2)
[1] -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2

Another very useful function to generate sequences is the function rep(),

> rep(5,10)
[11 5555555555
> rep(’hi’,3)
[1] "hi"™ "hi" "hi"
> rep(1:3,2)
[11 123123

The function gl () can be used to generate sequences involving factors. The
syntax of this function is gl (k,n), where k is the number of levels of the factor,
and n the number of repetitions of each level. Here are two examples,

14You may want to have a look at the help page of the function (typing for instance '?seq’),
to better understand its arguments and variants.
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> gl(3,5)
[1]111112222233333
Levels: 1 2 3
> gl(2,5,1labels=c(’female’,’male’))
[1] female female female female female male male male male male
Levels: female male

Finally, R has several functions that can be used to generate random se-
quences according to a large set of probability density functions. The func-
tions have the generic structure rfunc(n, parl, par2, ...), where func is
the name of the density function, n is the number of data to generate, and
parl, par2, ... are the values of some parameters of the density function
that may be necessary. For instance, if you want 10 randomly generated num-
bers from a normal distribution with zero mean and unit standard deviation,

type

> rnorm(10)
[1] -0.306202028 0.335295844 1.199523068 2.034668704 0.273439339
[6] -0.001529852 1.351941008 1.643033230 -0.927847816 -0.163297158

while if you prefer a mean of 10 and a standard deviation of 3, you should use

> rnorm(10,mean=10,sd=3)
[1] 7.491544 12.360160 12.879259 5.307659 11.103252 18.431678 9.554603
[8] 9.590276 7.133595 5.498858

To get 5 numbers drawn randomly from a Student ¢ distribution with 10
degrees of freedom, type

> rt(5,df=10)
[1] -0.46608438 -0.44270650 -0.03921861 0.18618004 2.23085412

R has many more probability functions, as well as other functions for ob-
taining the probability densities, the cumulative probability densities and the
quantiles of these distributions.

1.2.7 Indexing

We have already seen examples on how to get one element of a vector by in-
dicating its position between square brackets. R also allows you to use vectors
within the brackets. There are several types of index vectors. Logical index
vectors extract the elements corresponding to true values. Let us see a concrete
example.

> x <- ¢(0,-3,4,-1,45,90,-5)

> X

[1] 0 -3 4 -1 45 90 -5

>x >0

[1] FALSE FALSE TRUE FALSE TRUE TRUE FALSE
>y <= x>0

The third instruction of the code shown above is a logical condition. As x is
a vector, the comparison is carried out for all elements of the vector (remember
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the famous recycling rule!), thus producing a vector with as many logical values
as there are elements in x. We then store this logical vector in object y. You
can now obtain the positive elements in x using this vector y as a logical index
vector,

> x[y]
[11 4 45 90

As the truth elements of vector y are in the 3rd, 5th and 6th positions, this
corresponds to extracting these elements from x.
Incidentally, you could achieve the same result by just issuing,

> x[x>0]
[1] 4 45 90

Taking advantage of the logical operators available in R you may use more
complex logical index vectors, as for instance,

> x[x <= -2 | x > 5]
[1] -3 45 90 -5

> x[x > 40 & x < 100]
[1] 45 90

As you may have guessed, the “|” operator performs logical disjunction,

while the “&” operator is used for logical conjunction. This means that the first
instruction shows us the elements of x that are either less or equal to -2, or
greater than 5. The second example presents the elements of x that are both
greater than 40 and less than 100.

R also allows you to use a vector of integers to extract elements from a vector.
The numbers in this vector indicate the positions in the original vector to be
extracted,

> x[c(4,6)]

[1] -1 90
> x[1:3]
[1] 0 -3 4

Alternatively, you may use a vector with negative indexes, to indicate which
elements are to be excluded from the selection,

> x[-1]

[1] -3 4 -1 45 90 -5
> x[-c(4,6)]

[1] 0 -3 4 45 -5

> x[-(1:3)]

[1] -1 45 90 -5

Note the need for parentheses in the last example due to the precedence of
the “” operator.

Indexes may also be formed by a vector of character strings taking advantage
of the fact that R allows you to name the elements of a vector, through the func-
tion names (). Named elements are sometimes preferable because their positions
are easier to memorize. For instance, imagine you have a vector of measure-
ments of a chemical parameter obtained on 5 different places. You could create
a named vector as follows,
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> pH <- c(4.5,7,7.3,8.2,6.3)
> names(pH) <- c(’areal’,’area2’,’mud’,’dam’,’middle’)
> pH
areal area?2 mud dam middle
4.5 7.0 7.3 8.2 6.3

The vector pH can now be indexed by using these names,

> pH[’mud’]
mud
7.3
> pHlc(’areal’,’dam’)]
areal dam
4.5 8.2

Finally, indexes may be empty, meaning that all elements are selected.
For instance, if you want to fill in a vector with zeros you could simply do
“x[1 <= 0”. Please notice that this is different from doing “x <- 0”7. This
latter case would assign to x a vector with one single element (zero), while the
former (assuming that x exists before of course!) will fill in all current elements
of x with zeros. Try both!

1.2.8 Matrices and arrays

Data elements can be stored in an object with more than one dimension. This
may be useful in several situations. Arrays arrange data elements in several
dimensions. Matrices are a special case of arrays with two single dimensions.
Arrays and matrices in R are nothing more than vectors with a particular at-
tribute which is the dimension. Let us see an example. Suppose you have the
vector of numbers c(45,23,66,77,33,44,56,12,78,23). The following would
“organize” these 10 numbers as a matrix,

> m <- c(45,23,66,77,33,44,56,12,78,23)
>m
[1] 45 23 66 77 33 44 56 12 78 23
> dim(m) <- c(2,5)
>m
[,11 [,2]1 [,3] [,4] [,5]
[1,] 45 66 33 56 78
[2,] 23 77 44 12 23

Notice how the numbers were “spread” through a matrix with 2 rows and
5 columns (the dimension we have assigned to m using the dim() function).
Actually, you could simply create the matrix using the simpler instruction,
> m <- matrix(c(45,23,66,77,33,44,56,12,78,23),2,5)

You may have noticed that the vector of numbers was spread in the matrix

by columns, i.e. first fill in the first column, then the second, and so on. You
may fill the matrix by rows using the following command,
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> m <- matrix(c(45,23,66,77,33,44,56,12,78,23),2,5,byrow=T)
>m
[,11 [,2]1 [,3]1 [,4] [,5]
[1,] 45 23 66 77 33
[2,] 44 56 12 78 23

As the visual display of matrices suggests you may access the elements of a  Accessing matrix
matrix through a similar indexing schema as in vectors, but this time with two  elements
indexes (the dimensions of a matrix),

> m[2,2]
[1] 56

You may take advantage of the indexing schemes described in Section 1.2.7
to extract elements of a matrix, as the following examples show,

> m[-2,2]

[1] 23

> m[1,-c(3,5)]
[1] 45 23 77

Moreover, if you omit any dimension you obtain full columns or rows of the
matrix,

> m[1,]

[1] 45 23 66 77 33
> m[,4]

[1] 77 78

Functions cbind () and rbind() may be used to join together two or more  Joining vectors and
vectors or matrices, by columns or by rows, respectively. The following examples  matrices
should illustrate this,

> ml <- matrix(c(45,23,66,77,33,44,56,12,78,23),2,5)
> ml
(,11 [,21 [,3] [,4] [,5]
[1,] 45 66 33 56 78
[2,] 23 7 44 12 23
> cbind(c(4,76) ,m1[,4])
[,11 [,2]
[1,] 4 56
[2,] 76 12
> m2 <- matrix(rep(10,50),10,5)
> m2
[,11 [,2]1 [,3] [,4] [,5]
[1,] 10 10 10 10 10
[2,] 10 10 10 10 10
[3,] 10 10 10 10 10
[4,] 10 10 10 10 10
[5,] 10 10 10 10 10
[6,] 10 10 10 10 10
[7,] 10 10 10 10 10
[8,] 10 10 10 10 10
9,1 10 10 10 10 10
[10,] 10 10 10 10 10
> m3 <- rbind(m1[1,],m2[5,])
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(.11 [,2]1 [,3] [,4] [,5]
[1,] 45 66 33 56 78
[2,] 10 10 10 10 10

Arrays are extensions of matrices to more than two dimensions. This means
that they have more than two indexes. Apart from this they are similar to
matrices, and can be used in the same way. Similar to the matrix() function
there is a array () function to facilitate the creation of arrays. The following is
an example of its use,

> a <- array(1:50,dim=c(2,5,5))
> a

[,11 [,21 [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

[,11 [,2]1 [,31 [,4]1 [,5]
[1,] 11 13 15 17 19
[2,] 12 14 16 18 20

[,11 [,2]1 [,31 [,4]1 [,s8]
[1,] 21 23 25 27 29
[2,] 22 24 26 28 30

(.11 [,2] [,3] [,4] [,5]
[1,]J 31 33 35 37 39
[2,] 32 34 36 38 40

[,11 [,2]1 [,31 [,4] [,5]
[1,] 41 43 45 47 49
[2,1 42 44 46 48 50

You may use the usual indexing schemes to access elements of an array.
Make sure you understand the following examples,

> a[1,5,2]

[1] 19

> al1,,4]

[1] 31 33 35 37 39
> al1,3,]

[1] 5 15 25 35 45
> al,c(3,4),-4]

s 5 1

[,11 [,2]

[1,] 5 7
[2,] 6 8
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[,11 [,2]
[1,] 15 17
[2,] 16 18

[,11 [,2]
[1,] 25 27
[2,] 26 28

[,11 [,2]
[1,] 45 47
[2,] 46 48
> al1,c(1,5),-c(4,5)]
[,11 [,2] [,3]
[1,] 1 11 21
[2,1 9 19 29

The recycling and arithmetic rules also apply to matrices and arrays. See
the following small examples of this,

> m <- matrix(c(45,23,66,77,33,44,56,12,78,23),2,5)
>m
[,11 [,2]1 [,31 [,4]1 [,5]
[1,] 45 66 33 56 78
[2,] 23 77 44 12 23
> m*3
[,11 [,2]1 [,31 [,4] [,5]
[1,] 135 198 99 168 234
[2,] 69 231 132 36 69
> ml <- matrix(c(45,23,66,77,33,44),2,3)
> ml
[,11 [,2]1 [,3]
[1,] 45 66 33
[2,] 23 77 44
> m2 <- matrix(c(12,65,32,7,4,78),2,3)
> m2
[,11 [,2]1 [,3]
[1,] 12 32 4
[2,] 65 7 78
> ml+m2
[,11 [,2]1 [,3]
[1,] 57 98 37
[2,] 88 84 122

Vectorization works in an element by element fashion as mentioned before.
If some of the operands is shorter than the others, it is recycled. Still, R also
includes operators and functions for standard matrix algebra that has different
rules. You may obtain more information on this by looking at Section 5 of the
document “An Introduction to R” that comes with R.

1.2.9 Lists

R lists consist of an ordered collection of other objects known as its components.
These components do not need to be of the same type, mode or length. The
components of a list are always numbered and may also have a name attached
to them. Let us start by seeing a simple example of creating a list,
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> my.lst <- list(stud.id=34453,
+ stud.name="John",
+ stud.marks=c(14.3,12,15,19))

The object my.1lst is formed by three components. One is a number and
has the name stud. id, other is a string character having the name stud.name,
and the third is a vector of numbers with name stud.marks.

To show the contents of a list you simply type is name as any other object,

> my.lst
$stud.id
[1] 34453

$stud.name
[1] "John"

$stud.marks
[1] 14.3 12.0 15.0 19.0

You may extract individual elements of lists using the following indexing
schema,

> my.1lst[[1]]

[1] 34453

> my.1lst[[3]]

[1] 14.3 12.0 15.0 19.0

You may have noticed that we have used double square brackets. If we have
used my.1st[1] instead, we would obtain a different result,

> my.1lst[1]
$stud.id
[1] 34453

This latter notation extracts a sub-list formed by the first component of
my.1lst. On the contrary, my.1st [[1]] extracts the value of the first component
(in this case a number), which is not a list anymore!

In the case of lists with named components (as the previous example), we
may use an alternative way of extracting the value of a component of a list,

> my.lst$stud.id
[1] 34453

The names of the components of a list are, in effect, an attribute of the list,
and can be manipulated as we did with the names of elements of vectors,

> names (my.lst)

[1] "stud.id" "stud.name" "stud.marks"
> names(my.lst) <- c(’id’,’name’,’marks’)
> my.lst

$id

[1] 34453
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$name
[1] "John"

$marks
[1] 14.3 12.0 15.0 19.0

Lists may be extended by adding further components to them,

> my.lst$parents.names <- c("Ana","Mike")
> my.lst

$id

[1] 34453

$name
[1] "John"

$marks
[1] 14.3 12.0 15.0 19.0

$parents.names
[1] "Ana" "Mike"

You may check the number of components of a list using the function

length(),

> length(my.1lst)
(1] 4

You can concatenate lists using the c() function,

> other <- list(age=19,sex=’male’)
> 1st <- c(my.lst,other)

> 1lst

$id

[1] 34453

$name
[1] "John"

$marks
[1] 14.3 12.0 15.0 19.0

$parents.names
[1] "Ana" "Mike"

$age
[1] 19

$sex
[1] "male"
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Finally, you may unflatten all data in a list using the function unlist().
This will create a vector with as many elements as there are data objects in a list.
By default this will coerce different data types to a common data type'®, which
means that most of the time you will end up with everything being character
strings. Moreover, each element of this vector will have a name generated from
the name of the list component which originated it,

> unlist(my.lst)

id name marksl marks2 marks3

II34453II llJOhnll II14.3ll II12II |l15l|
marks4 parents.namesl parents.names2
II19II IIAnall IIMikell

1.2.10 Data frames

A data frame is similar to a matrix but with named columns. However, contrary
to matrices data frames may include data of different type on each column. In
this sense they are more similar to lists, and in effect, for R data frames are a
special class of lists.

Each row of a data frame is an observation (or case), being described by a
set of variables (the named columns of the data frame).

You can create a data frame like this,

> my.dataset <- data.frame(site=c(’A’,’B’,’A’,’A’,°B’),

+ season=c(’Winter’,’Summer’,’Summer’,’Spring’,’Fall’),

+ pH = c(7.4,6.3,8.6,7.2,8.9))

> my.dataset

site season pH
A Winter
B Summer
A Summer
A Spring
B Fall 8.9

GO W N
~N 00 o N
N O W

Elements of data frames can be accessed like a matrix,

> my.dataset[3,2]
[1] Summer
Levels: Fall Spring Summer Winter

Note that the “season” column has been coerced into a factor, because all
its elements are character strings. Similarly, the “site” column is also a factor.
This is the default behavior of the data.frame () function'®.

You may use the indexing schemes described in Section 1.2.7 with data
frames. Moreover, you may use the column names for accessing full columns of
a data frame,

> my.dataset$pH
[1] 7.4 6.3 8.6 7.2 8.9

You can perform some simple querying of the data in the data frame taking
advantage of the indexing possibilities of R, as shown on these examples,

15Because vector elements must have the same type (c.f. Section 1.2.3).
16Check the help information on the data.frame() function to see examples on how you
may use the I() function to avoid this coercion.
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> my.dataset [my.dataset$pH > 7,]
site season pH

1 A Winter 7.4

3 A Summer 8.6

4 A Spring 7.2

5 B Fall 8.9

> my.dataset[my.dataset$site == ’A’,’pH’]

[1] 7.4 8.6 7.2

> my.dataset [my.dataset$season == ’Summer’,c(’site’,’pH’)]
site pH

2 B 6.3

3 A 8.6

You can simplify the typing of these queries by using the function attach()
which allows you to access the columns of a data frame directly without having
to use the name of the respective data frame. Let us see some examples of this,

> attach(my.dataset)
> my.dataset[pH > 8,]
site season pH
3 A Summer 8.6
5 B Fall 8.9
> season
[1] Winter Summer Summer Spring Fall
Levels: Fall Spring Summer Winter

The inverse of the function attach() is the function detach() that disables
these facilities,

> detach(my.dataset)
> season
Error: Object "season" not found

Because data frames are lists, you may add new columns to a data frame in
the same way you did with lists,

> my.dataset$NO3 <- c(234.5,256.6,654.1,356.7,776.4)
> my.dataset
site season pH NO3

1 A Winter 7.4 234.5
2 B Summer 6.3 256.6
3 A Summer 8.6 654.1
4 A Spring 7.2 356.7
5 B Fall 8.9 776.4

The only restriction to this addition is that new columns must have the same
number of rows as the existing data frame, otherwise R will complain. You may
check the number of rows or columns of a data frame with these two functions,

> nrow(my.dataset)
[1] 5
> ncol(my.dataset)
[1]1 4
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Usually you will be reading our data sets into a data frame, either from some
file or from a database. You will seldom type the data using the data.frame ()
function as above, particularly in a typical data mining scenario. In the next
chapters describing our data mining case studies you will see how to import this
type of data into data frames. In any case, you may want to browse the “R
Data Import/Export” manual that comes with R, to check all different types of
possibilities R has.

R has a simple spreadsheet-like interface that can be used to enter small
data frames. You can edit an existent data frame by typing,

> my.dataset <- edit(my.dataset)
or you may create a new data frame with,
> new.data <- edit(data.frame())

You can use the names vector to change the name of the columns of a data
frame,

> names (my.dataset)

[1] "Site" "SeaSOH" lllel ||N03||

> names (my.dataset) <- c("area","season","pH","NO3" )
> my.dataset

area season pH NO3

1 A Winter 7.0 234.5
2 B Summer 6.9 256.6
3 A Summer 8.6 654.1
4 A Spring 7.2 356.7
5 B Fall 8.9 776.4

As the names attribute is a vector, if you just want to change the name of
one particular column you can type,

> names (my.dataset) [4] <- "P04"
> my.dataset
area season pH P04

1 A Winter 7.0 234.5
2 B Summer 6.9 256.6
3 A Summer 8.6 654.1
4 A Spring 7.2 356.7
5 B Fall 8.9 776.4

Finally, R comes with some “built-in” data sets that you can use to explore
some of its potentialities. Most of the add-on packages also come with data sets.
To obtain information on the available data sets type,

> data()

To use any of the available data sets you can use its name with the same
function,

> data(USArrests)

This instruction creates a data frame named USArrests containing the data
of this problem that comes with R.
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1.2.11 Some useful functions

This section provides very brief descriptions of some useful functions. This list
is far from being exhaustive! It is just a personal sample of different types of
functions. You may wish to use R help facilities to get more information on

these functions, because we do not describe all their arguments.

Reading and writing data

read.table(file)

Reads a table from a file and creates a data
frame from the contents of this file, where each
row corresponds to a line of the file and each
column corresponds to a field in the file.

write.table(obj,file)

Converts obj into a data frame, and writes the

result to file.

Some basic statistics

sum(x) Sum of the elements of x.
max (x) Largest value of the elements in x.
min(x) Smallest value of the elements in x.

which.max(x)

The index of the largest value in x.

which.min(x)

The index of the smallest value in x.

range (x) The range of values in x (has the same result
as c(min(x) ,max(x))).

length(x) The number of elements of x.

mean (x) The mean value of the elements of x.

median(x) The median value of the elements of x.

sd (x) The standard deviation of the elements of x.

var (x) The variance of the elements of x.

quantile(x) The quantiles of x.

scale(x) Standardizes the elements of x, i.e. subtracts

the mean and divides by the standard devia-
tion. Results in a vector with zero mean and
unit standard deviation. Also works with data
frames (column-wise and only with numeric
datal).
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Some vector and mathematical functions

sort (x) Sort the elements of x.
rev(x) Reverse the order of the elements of x.
rank (x) Ranks of the elements of x.

log(x,base)

The logarithms of all elements of x in base
base.

exp(x) The exponentials of the elements of x.

sqrt (x) The square roots of the elements of x.

abs (x) The absolute value of the elements of x.

round(x,n) Rounds all elements of x to n decimal places.

cumsum (x) Returns a vector where the ith element is the
sum from z[1] to z[i].

cumprod (x) The same for the product.

match(x,s)

Returns a vector with the same length as x,
with the elements of x that are contained in
s. The ones that do not belong to s have the
value NA.

union(x,y)

Returns a vector with the union of vectors x
and y.

intersect(x,y)

Returns a vector with the intersection of vec-
tors x and y.

setdiff (x,y)

Returns a vector resulting from removing the
elements of y from x.

is.element(x,y)

Return TRUE if x is contained in vector y.

choose(n,k)

Calculates the number of combinations of k n
to n.

Matrix algebra

diag(x,nrow,ncol)

Builds a diagonal matrix with nrow rows and
ncol columns, with the number x. Can also
be used to extract or replace the diagonal ele-
ments of a matrix (see Help).

t(x) The transpose of x.

nrow(x) Number of rows of x.

ncol(x) The number of columns of x.

A %xY B Matrix multiplication of A by B.

solve(A,b) Solve the system of linear equations Ar =
b. With a single matrix argument (e.g.
solve(4)) it calculates the inverse of matrix
A.

svd (x) Singular value decomposition of matrix x.

qr (x) QR decomposition of matrix x.

eigen(x) Eigen values and vectors of the square matrix
X.

det (x) The determinant of matrix x.

(DRAFT - May 22, 2003)




1.2 A short introduction to R 25

Meta-functions

apply(x,margin,fun) | Applies the function fun to all rows or
columns of matrix x. If the parameter margin
is 1 then the function is applied to each row,
if it is 2 it is applied to each column.

sapply (x,fun) Applies the function fun to all elements of vec-
tor x.
lapply(x,fun) The same as previous but the function is ap-

plied to all elements of a list x.
aggregate(x,by,fun) | Applies a summarization function fun to all
subsets of rows of the data frame x. The sub-
sets are formed by the using all combinations
of the factors in the list by.

by (x,by,fun) Applies a function fun to all subsets of rows
of the data frame x. The subsets are formed
by the using all combinations of the factors in
the list by.

1.2.12 Creating new functions

R allows the user to create new functions. This is a useful feature particularly
when you want to automate certain tasks that you have to repeat over and over.
Instead of writing the instructions that perform this task every time you want
to execute it, it is better to create a new function containing these instructions,
and then simply using it whenever necessary.

R functions are objects similar to the structures that you have seen in pre-
vious sections. As an object, a function can store a value. The ’value’ stored
in a function is the set of instructions that R will execute when you call this
function. Thus, to create a new function one uses the assignment operator to
store the contents of the function in an object name (the name of the function).

Let us start with a simple example. Suppose you often want to calculate
the standard error of a mean associated to a set of values. By definition the
standard error of a mean is given by,

2
s

standard error = {/ —
n

where s? is the variance and n the sample size.

Given a vector of values we want a function to calculate the respective stan-
dard error. Let us call this function se. Before we proceed to create the function
we should check whether there is already a function with this name in R. If that
was the case, and we insisted in creating our new function with that name, the
side-effect would be to override the R function which is not probably what you
want! To check the existence of that function it is sufficient to type its name at
the prompt,

> se
Error: Object "se" not found
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The error printed by R indicates that we are safe to use that name. If a
function (or any other object) existed with the name “se” R would have printed
its content instead of the error.

The following is a possible way to create our function,

> se <- function(x) {
+ v <= var(x)

+ n <- length(x)

+ return(sqrt(v/n))
+

}

Thus, to create a function object you assign to its name something with the
general form,

function(<list of parameters>) { <list of R instructions> }
After creating this function you can use it as follows,

> se(c(45,2,3,5,76,2,4))
[1] 11.10310

The body of a function can be written either in different lines (like the
example above) or in the same line by separating each instruction by the ’;’
character.!”

The value returned by any function can be “decided” using the function
return() or alternatively R returns the result of the last expression that was
evaluated within the function. The following function illustrates this and also

the use of parameters with default values,

basic.stats <- function(x,more=F) {
stats <- list()

clean.x <- x['is.na(x)]

stats$n <- length(x)
stats$nNAs <- stats$n-length(clean.x)

stats$std <- sd(clean.x)
stats$med <- median(clean.x)
if (more) {
stats$skew <- sum(((clean.x-stats$mean)/stats$std)"3)/length(clean.x)
stats$kurt <- sum(((clean.x-stats$mean)/stats$std) "4)/length(clean.x) - 3
}

>

+

+

+

+

+

+

+

+ stats$mean <- mean(clean.x)
+

+

+

+

+

+

+ stats
+

}

This function has a parameter (more) that has a default value (F). This
means that you can call the function with or without setting this parameter. If
you call it without a value for the second parameter, the default value will be
used. Below are examples of these two alternatives,

17This separator also applies to any instructions that you issue on the R command prompt.
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> basic.stats(c(45,2,4,46,43,65,NA,6,-213,-3,-45))
$n
[1] 11

$nNAs
[1] 1

$mean
[1] -5

$std
[1] 79.87768

$med
[1] 5

> basic.stats(c(45,2,4,46,43,65,NA,6,-213,-3,-45) ,more=T)
$n
[1] 11

$nNAs
[1] 1

$mean
[1] -5

$std
[1] 79.87768

$med
[11 5

$skew
[1] -1.638217

$kurt
[1] 1.708149

The function basic.stats() also introduces a new instruction of R: the
instruction if. As the name indicates this instruction allows us to condition  The if instruction
the execution of certain instructions to the truth value of a logical test. In
the case of this function the two instructions that calculate the kurtosis and
skewness of the vector of values are only executed if the variable more is true.
Otherwise they are skipped.

Another important instruction is the for. This instruction allows us to  The for instruction
repeat a set of instructions several times. Below you have an example of the use
of this instruction,

f <- function(x) {
for(i in 1:10) {
res <- x*i
cat(x,’*’,i,’=’,res,’\n’)
}
}

Try to call £() with some number (e.g. £(5)). The instruction for in this
function says to R that the instructions “inside of it” (delimited by the curly

+ 4+ + + + V
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braces) are to be executed several times. Namely, they should be executed with
the variable “i” taking different values at each repetition. In this example, “i”
should take the values in the set 1:10, that is 1, 2, 3, ..., 10. This means that
the two instructions inside the for are executed 10 times, each time with i set
to a different value.

Output to the screen The function cat can be used to output the contents of several objects to the
screen. Namely, characters strings are written as themselves (try cat (*hello!’)),
while other objects are written as their content (try y <- 45; cat(y)). The
string "\n’ makes R change to the next line.

1.2.13 Managing your sessions

When you are using R for more complex tasks, the command line typing style
of interaction becomes a bit limited. In these situations it is more practical to
write all your code in a text file and then ask R to execute it. To produce such
file you can use your favorite text editor (like Notepad, Emacs, etc.). After
creating and saving the file, you may issue the following command at R prompt
to execute all commands in the file,

> source(’mycode.R’)

This assumes that you have a text file named “mycode.R”'® on the current
working directory of R. In Windows versions the easiest way to change this
directory is through the option “Change directory” of the “File” menu. In Unix
versions you may use the functions getwd () and setwd(<directory path>) to,
respectively, check and change the current working directory.

When you are using the R prompt in an interactive fashion you may wish to
save some of the objects you create for later use (like for instance some function
you have typed in). The following example saves the objects named f and
my .dataset in a file named “mysession.R”,

> save(f,my.dataset,file="mysession.R’)

Later, for instance in a new R session, you can load in these objects by
issuing,

> load(’mysession.R’)
You can also save all objects currently in R workspace'?, by issuing,
> save.image()

This command will save the workspace in a file named “.RData” in the
current working directory. This file is automatically loaded when you run R
again from this directory. This kind of effect can also be achieved by answering
Yes when quiting R (c.f. Section 1.2.1).

Further readings on R

The online manual An Introduction to R that comes with every distribution of R is an excelent
source of information on R. The “Contributed” sub-section of the “Documentation” section at R
Web site, includes several free books on different facets of R.

18The extension “.R” is not mandatory.
These can be listed issuing 1s(), as mentioned before.
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1.3 A short introduction to MySQL

This section provides a very brief introduction to MySQL. MySQL is not nec-
essary to carry out all case studies in this book. Still, for larger data mining
projects the use a database management system like MySQL can be crucial.

MySQL can be freely downloaded from the Web site http://www.mysql. com.
As R, MySQL is available for different operating systems, like for instance Linux
and Windows. If you wish to install MySQL on your computer you should
download it from MySQL Web site and follow its installation instructions. Al-
ternatively, you may use your local computer network to access a computer
server that has MySQL installed.

Assuming you have access to a MySQL server you can use a client program
to access MySQL. There are many different MySQL client programs at MySQL
Web site. MySQL comes with a MS-DOS console-type client program, which
works in a command by command fashion. Alternatively, you have graphical
client programs that you may install to use MySQL. In particular, MyCC is a
freely available and quite nice example of such programs that you may consider
installing on your computer.

To access the server using the console-type client you can use the following
statement at your operating system prompt,

$> mysql -u myuser -p
Password: skkkkxxx
mysql>

or, in case of a remote server, something like,

$> mysql -h myserver.xpto.pt -u myuser -p
Password: s xkkxkkx
mysql>

We are assuming that you have a user named “myuser” that has access to
the MySQL server, and that the server is password protected. If all this sounds
strange to you, you should either talk with your system administrator about
MySQL, or learn a bit more about this software using for instance the user
manual that comes with every installation, or by reading a book (e.g. ,

).

After entering MySQL you can either use and existent database or create a

new one. The latter can be done as follows in the MySQL console-type client,

mysql> create database contacts;
Query 0K, 1 row affected (0.09 sec)

To use this newly created database or any other existing database you issue,

mysql> use contacts;
Database changed

If you are using the graphical client MyCC, you need to open a SQL console
and then you can type, and execute, all SQL commands we are describing here.?’

A database is formed by a set of tables containing the data concerning some
entities. You can create a table as follows,

20 At MyCC you do not need the “” at the end of each statement.
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mysql> create table people(
-> id INT primary key,
-> name CHAR(30),
-> address CHAR(60));
Query OK, 1 row affected (0.09 sec)

Note the continuation prompt of MySQL (“— >7).

To populate a table with data you can either insert each record by hand or
use one of the MySQL import statements to read in data contained for instance
in a text file.

A record can be insert in a table as follows,

mysql> insert into people

-> values(1,’John Smith’,’Strange Street, 34, Unknown City’);
Query 0K, 1 row affected (0.35 sec)

You can check which records are in a given table using the SELECT statement,
of which we provide a few examples below,

mysql> select * from people;

e TR B e +
| id | name | address |
T e e +
| 1 | John Smith | Strange Street, 34, Unknown City |
s R e +

1 row in set (0.04 sec)

mysql> select name, address from people;

e e +
| name | address |
e B +
| John Smith | Strange Street, 34, Unknown City |
- e e e +

1 row in set (0.00 sec)

mysql> select name from people where id >= 1 and id < 10;

1 row in set (0.00 sec)

After you finish working with MySQL, you can leave the console-type client
issuing the “quit” statement.

Further readings on MySQL
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Further information on MySQL can be obtained from the free user's manual coming with MySQL.
This manual illustrates all aspects of MySQL, from installation to the technical specifications
of the SQL language used in MySQL. The book MySQL by ( , ), one of the active
developers of MySQL, is also a good general reference on this DBMS.
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Chapter 2

Case Study 1:
Predicting Algae Blooms

This case study will introduce you to some of the basic tasks of any data mining
problem: data pre-processing, exploratory data analysis, and predictive model
construction. For this initial case study we have selected a small problem by
data mining standards. If you are not familiar with the R language and you
have not read the small introduction provided in Section 1.2 of Chapter 1, you
may feel the need to review that section as you work through this case study.

2.1 Problem description and objectives

High concentrations of certain harmful algae in rivers is a serious ecological
problem with a strong impact not only on river lifeforms, but also on water
quality. Bein able to monitor and perform an early forecast of algae blooms is
essential to improve the quality of rivers.

With the goal of addressing this prediction problem several water samples
were collected in different European rivers at different times during a period of
approximately one year. For each water sample, different chemical properties
were measured as well as the frequency of occurrence of 7 harmful algae. Some
other characteristics of the water collection process were also stored, such as the
season of the year, the river size, and the river speed.

One of the main motivations behind this application lies in the fact that
chemical monitoring is cheap and easily automated, while the biological anal-
ysis of the samples to identify the algae that are present in the water involves
microscopic examination, requires trained manpower and is therefore both ex-
pensive and slow. As such, obtaining models that are able to accurately predict
the algae frequencies based on chemical properties would facilitate the creation
of cheap and automated systems for monitoring harmful algae blooms.

Another objective of this study is to provide a better understanding of the
factors influencing the algae frequencies. Namely, we want to understand how
these frequencies are related to certain chemical attributes of water samples as
well as other characteristics of the samples (like season of the year, type of river,
etc.).

33
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2.2 Data Description

The data available for this problem consists of two separate text files (“Anal-
ysis.txt” and “Eval.txt”). Each file contains a set of water samples. The first
file contains data regarding 200 water samples collected at different Furopean
rivers'. Each water sample is described by 11 variables. Three of these variables
are nominal and describe the season of the year when the sample was collected,
the size of the river, and the water speed of the river. The 8 remaining vari-
ables are values of different chemical parameters measured in the water sample.
Namely, the measured parameters were:

e Maximum pH value?

e Minimum value of Oy (Oxygen)

e Mean value of Cl (Chloride)

e Mean value of NO3 (Nitrates)

e Mean value of NH; (Ammonium)
e Mean of PO}~ (Orthophosphate)
e Mean of total PO4 (Phosphate)

e Mean of Chlorophyll

Associated with each of these water samples are 7 frequency numbers of
different harmful algae found in the water samples. No information is given
regarding which algae were identified.

The second data file contains other 140 water samples described by the
same variables. These samples can be regarded as a kind of test set. As such,
the information concerning the values of the concentrations of the 7 algae was
omitted. The main goal of our study is to predict the frequencies of the 7 algae
for these 140 water samples.

2.3 Loading the data into R

The two data files are available at the book Web site on the Data section. The
“Training data” link contains the 200 water samples of the “Analysis.txt” file,
while the “Test data” link points to the “Eval.txt” file that contains the 140
test samples. There is an additional link that points to a file (“Sols.txt”) that
contains the algae frequencies of the 140 test samples. This latter file will be
used to check the performance of our predictive models and will be taken as
unknown information at the time of model construction. The files have the
values for each water sample in a different line. Each line of the training and
test files contains the variable values (according to the description given on

1 Actually, each observation in the data files is an aggregation of several water samples
carried out over a period of three months, on the same river, and during the same season of
the year.

2Please recall that each line corresponds to an aggregation of several water samples taken
in the same river during the same period of the year (i.e. same season).
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Section 2.2) separated by spaces. Unknown values are indicated with the string
XX XXXXX.

The first thing to do in order to follow this case study is to download the
three files from the book Web site and store them in some directory of your
hard disk.

After downloading the data files into a local directory, we can start by loading
into R the data from the “Analysis.txt” file (the training data,i.e the data that
will be used to obtain the predictive models). To read in the data in the file it
is sufficient to issue the following command:®

> algae <- read.table(’Analysis.txt’,

+ header=F,

+ dec=’.",

+ col.names=c(’season’,’size’,’speed’, ’mxPH’,’mn02’,’Cl’,
+ ’N0O3’,’NH4’,’0P04’,’P04°’,’Chla’,’al’,’a2’,’a3’,’a4’,

+ ’ab’,’a6’,’a7’),

+ na.strings=c(’XXXXXXX’))

The parameter header=F indicates that the file to be read does not include
a first line with the variables names. dec=’.’ states that the numbers use
the ’.” character to separate decimal places. Both these two previous parameter
settings could have been omitted as we are using their default values. col.names
allows us to provide a vector with the names to give to the variables whose values
are being read. Finally, na.strings serves to indicate a vector of strings that
are to be interpreted as unknown values. These values are represented internally
in R by the value NA, as mentioned in Section 1.2.3.

R has several other functions that can be used to read data contained in
text files. You may wish to type “?read.table” to obtain further information
on this and other related functions. Moreover, R has a manual that you may
want to browse named 'R Data Import/Export’, that describes the different
possibilities R includes for reading data from other applications.

The result of this instruction is a data frame, which can be seen as a kind of
matrix or table with named columns (in this example with the names we have
indicated in the col.names parameter). Each line of this data frame contains a
water sample. For instance, we can see the first 5 samples using the instruction
algae[1:5,]. In Section 1.2.7 (page 12) we have described other alternative
ways of extracting particular elements of R objects like data frames. If you did
not read this introductory material, maybe now it is a good time to browse
these sections.

2.4 Data Visualization and Summarization

Given the lack of further information on the problem domain it is wise to inves-
tigate some of the statistical properties of the data, so as to get a better grasp
of the problem. Even if that was not the case it is always a good idea to start
our analysis by some kind of exploratory data analysis similar to the one we will
show below.

3We assume that the data files are in the current working directory of R. If not, use the
command “setwd()” to change this, or use the “Change dir...” option in the ’File’ menu of
Windows versions.
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A first idea of the statistical properties of the data can be obtained through
a summary of its descriptive statistics,

> summary (algae)
season size speed mxPH mn02

autumn:40 large :45 high :84 Min. :5.600 Min. : 1.500
spring:53 medium:84  low :33  1st Qu.:7.700 1st Qu.: 7.725
summer : 45 small :71 medium:83 Median :8.060 Median : 9.800
winter:62 Mean :8.012 Mean : 9.118
3rd Qu.:8.400 3rd Qu.:10.800
Max. :9.700 Max. :13.400
NA’s 1.000 NA’s : 2.000
Cl NO3 NH4 oP04
Min. : 0.222  Min. : 0.060 Min. : 5.00 Min. : 1.00
1st Qu.: 10.981 1st Qu.: 1.296 1st Qu.: 38.33 1st Qu.: 15.70
Median : 32.730 Median : 2.675 Median : 103.17 Median : 40.15
Mean : 43.636 Mean ¢ 3.282 Mean : 501.30 Mean : 73.59
3rd Qu.: 57.824 3rd Qu.: 4.446 3rd Qu.: 226.95 3rd Qu.: 99.33
Max. :391.500 Max. :45.650 Max. :24064.00 Max. :564.60
NA’s : 10.000 NA’s : 2.000 NA’s : 2.00 NA’s : 2.00
P04 Chla al a2
Min. : 1.00 Min. : 0.200 Min. : 0.00 Min. : 0.000
1st Qu.: 41.38 1st Qu.: 2.000 1st Qu.: 1.50 1st Qu.: 0.000
Median :103.29 Median : 5.475 Median : 6.95 Median : 3.000
Mean :137.88 Mean : 13.971 Mean :16.92 Mean 7.458
3rd Qu.:213.75 3rd Qu.: 18.308 3rd Qu.:24.80 3rd Qu.:11.375
Max. :771.60 Max. :110.456 Max. :89.80 Max. :72.600
NA’s : 2.00 NA’s : 12.000
a3 ad ab a6
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
Median : 1.550 Median : 0.000 Median : 1.900 Median : 0.000
Mean : 4.309 Mean ¢ 1.992 Mean ¢ 5.064 Mean : 5.964
3rd Qu.: 4.925 3rd Qu.: 2.400 3rd Qu.: 7.500 3rd Qu.: 6.925
Max. :42.800 Max. :44.600 Max. :44.400 Max. :77.600
a7
Min. : 0.000
1st Qu.: 0.000
Median : 1.000
Mean : 2.495
3rd Qu.: 2.400
Max. :31.600

This simple instruction immediately gives us a first overview of the statistical
properties of the data. In the case of nominal variables (that are represented by
factors in R data frames), it provides frequency counts for each possible value
4. For instance, we can observe that there are more water samples collected
in winter than in other seasons. For numeric variables, R gives us a series
of statistics like their mean, median, quartiles information and extreme values.
These statistics provide a first idea on the distribution of the variable values (we
will return to this issue later on). In the event of a variable having some unknown
values, their number is also shown following the string NA’s. By observing the
difference between medians and means, as well as the interquartile range (3rd
quartile minus the 1st quartile)®, we can have an idea of the skewness of the

4 Actually, if there are too many, only the most frequent are shown.
5If we order the values of a variable, the 1st quartile is the value below which there are
25% of the data points, while the 3rd quartile is the value below which there are 75% of the
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distribution and also its spread. Still, most of the times this information is
better captured graphically. Let us see an example:

> hist(algae$mxPH, prob=T)

This instruction shows us the histogram of the variable mazPH. The result is
shown in Figure 2.1. With the parameter prob=T we get probabilities instead
of frequency counts for each interval of values. Omitting this parameter setting
would give us frequency counts of each bar of the histogram.

Histogram of algae$mxPH
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Figure 2.1: The histogram of variable mazPH.

Figure 2.1 tells us that the values of variable 'mxPH’ follow a distribution
very near to the normal distribution, with the values nicely clustered around
the mean value. We can get further information by using instead the following
instructions ( the result is in Figure 2.2),

> hist(algae$mxPH, prob=T, xlab=’’,

+ main=’Histogram of maximum pH value’,ylim=0:1)
> lines(density(algae$mxPH,na.rm=T))

> rug(jitter(algae$mxPH))

The first instruction is basically the same as previous, except that we omit
the X axis label, we change the title of the graph, and we provide sensible limits
for the Y axis. The second instruction plots a smooth version of the histogram
(a kernel density estimate® of the distribution of the variable), while the third

cases, thus meaning that between these two values we have 50% of our data. The interquartile
range is defined as the 3rd quartile minus the 1st quartile, thus being a measure of the spread
of the variable around its central value (larger values indicate larger spread).

6The na.rm=T parameter setting is used in several functions as a way of indicating that
NA values should not be considered in the function calculation. This is necessary in several
functions because it is not their default behavior, and otherwise an error would be generated.
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Histogram of maximum pH value
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Figure 2.2: An “enriched” version of the histogram of variable MxPH.

plots the real values of the variable near the X axis, thus allowing easy spotting
of outliers. For instance, we can observe that there are two values significantly
lower than all others. This kind of data inspection is very important as it may
identify possible errors in the data sample, or even help to locate values that
are so awkward that they may only be errors or at least we would be better off
by disregarding them in posterior analysis.

Another example (Figure 2.3) showing this kind of data inspection can be
achieved with the following instructions, this time for variable oPO/:

> boxplot(algae$oP04,boxwex=0.15,ylab="0rthophosphate (oP04)’)
> rug(jitter(algae$oP04) ,side=2)
> abline(h=mean(algae$oP04,na.rm=T) ,1ty=2)

The first instruction draws a box plot of variable oPO4. Box plots pro-
vide a quick summarization of some key properties of the variable distribution.
Namely, there is a box whose limits are the 1st and 3rd quantiles of the variable.
This box has an horizontal line inside that represents the median value of the
variable. Let r be the interquartile range. The small horizontal dash above
the box is the largest observation that is less or equal to the 3rd quartile plus
1.57. The small horizontal dash below the box is the smallest observation that
is greater than or equal to the 1st quartile minus 1.57. The circles below or
above these small dashes represent observations that are extremely low (high)
compared to all others, and are usually considered outliers. This means that
box plots give us plenty of information regarding not only the central value and
spread of the variable but also on eventual outliers.

The second instruction was already described before (the only difference
being the place were the data is plotted), while the third uses the function
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Figure 2.3: An ’enriched’ box plot for Orthophosphate.

abline() to draw an horizontal line” at the mean value of the variable, which is
obtained using the function mean(). By comparing this line with the line inside
the box indicating the median we can conclude that the presence of several
outliers has distorted the value of the mean.

The analysis of Figure 2.3 shows us that the variable 0PO/ has a distribution
of the observed values clearly skeweed to the right (high values). In most of the
water samples the value of 0PO4 is low, but there are several observations of
high values, and even of extremely high values.

Sometimes when we encounter outliers, we are interested in identifying the
observations that have these “strange” values. We will show two ways of doing
this. First, let us do it graphically. If we plot the values of variable NHj we
notice a very large value. We can identify the respective water sample by doing:

plot(algae$NH4,xlab="")
abline(h=mean(algae$NH4,na.rm=T),1ty=1)

abline (h=mean(algae$NH4,na.rm=T)+sd(algae$NH4,na.rm=T) ,1ty=2)
abline (h=median(algae$NH4,na.rm=T),1lty=3)

identify(algae$NH4)

V V V VvV V

The first instruction plots all values of the variable. The calls to the abline ()
function draw three informative lines, one with the mean value, another with
the mean+standard deviation, and the other with the median. The last instruc-
tion is interactive, and allows the user to click on the plotted dots with the left
mouse button. For every clicked dot, R will write the respective row number in
the algae data frame.® The user can finish the interaction by clicking the right
mouse button.

"The parameter 1ty=2 is used to obtain a dashed line.
8The position where you click relatively to the point determines the side where R writes
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We can also perform this inspection without graphics, as shown below:’
> algae[algae$NH4 > 19000, ]

This instruction illustrates another form of indexing a data frame, by using
a logical expression as a row selector (c.f. Section 1.2.7 for more examples on
this). The result is showing the rows of the data frame for which the logical
expression is true.

Finally, we will explore a few examples of another type of data inspection.
These examples use the “lattice” graphics package of R, that provides a set of
impressive graphics tools. Suppose that we would like to study the distribution
of the values of say algal al. We could use any of the possibilities discussed
before. However, if we wanted to study how this distribution depends on other
variables new tools are required.

Conditioned plots are graphical representations that depend on a certain
factor. A factor is a nominal variable with a set of finite values. For instance,
we can obtain a set of box plots for the variable a1, each for different values
of the variable size (c.f. Figure 2.4). Each of the box plots was obtained
using the subset of water samples that have a certain value of the variable size.
These graphs allow us to study how this nominal variable may influence the
distribution of the values of al. The code to obtain the box plots is,

> library(lattice)
> buplot(size ~ al, data=algae,ylab=’River Size’,xlab=’Alga Al’)

The first instruction loads in the lattice’ package'?. The second obtains a
box plot using the ’lattice’ version of these plots. The first argument of this
instruction can be read as 'plot al for each value of size’. The remaining
arguments have obvious meanings.

Figure 2.4 allows us to observe that higher frequencies of alga a! are expected
in smaller rivers, which can be valuable knowledge.

This type of conditioned plots is not restricted to nominal variables, neither
to a single factor. You can carry out the same kind of conditioning study with
continuous variables as long as you previously “discretize” them. Let us see
an example by observing the behavior of the frequency of alga a8 conditioned
by season and mnO2, this latter being a continuous variable. Figure 2.5 shows
such a graph and the code to obtain it is the following:

> min02 <- equal.count(na.omit(algae$mn02) ,number=4,overlap=1/5)
> stripplot(season ~ a3|min02,data=algae[!is.na(algae$mn02),])

the row number. For instance, if you click on the right of the dot, the row number will be
written on the right.

9The output of this instruction may seem a bit strange. This results from the fact that
there are some observations with NA values in variable NH/, which ”puzzles” R. We may
avoid this behavior by issuing instead the instruction algae[!is.na(algae$NH4) & algae$NH4
> 19000,]. The ' operator performs the logical negation, the &’ operator the logical
conjunction, while the function is.na() is true whenever its argument has the value NA.

10A word of warning on the use of the function library() to load packages. This is only
possible if the package is installed on your computer. Otherwise a error will be issued by R.
If that is the case you will need to install the package using any of the methods described in
the Section 1.2.1 of Chapter 1.
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Figure 2.4: A conditioned box plot of Alga al.
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Figure 2.5: A conditioned stripplot plot of Alga a8 using a continuous variable.
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The first instruction, uses function equal.count() to create a factorized
version of the continuous variable mnO2. The parameter number sets the num-
ber of desired bins, while the parameter overlap sets the overlap between the
bins near their respective boundaries (this means that certain observations will
be assigned to adjacent bins). The bins are created such that they contain
an equal number of observations. You may have noticed that we did not use
algae$mn02 directly. The reason is the presence of NA values in this variable.
This would cause problems in the subsequent graphics function. We have used
the function na.omit () that removes any NA value from a vector.!'!

The second line contains the call to the graphics function stripplot (). This
is another graphical function of the ’lattice’ package. It creates a graph con-
taining the actual values of a variable, in different strips depending on another
variable (in this case the season). Different graphs are them drawn for each bin
of the variable mnO2. The bins are ordered from left to right and from bottom
up. This means that the bottom left plot corresponds to lower values of mn0O2
(lower than 25, approximately). The existence of NA values in mnO2 also has
some impact on the data to be used for drawing the graph. Instead of using
the parameter data=algae (as for creating Figure 2.4), we had to ’eliminate’
the rows corresponding to samples with NA values in mnO2. This was achieved
using the function is.na(), which produces a vector of boolean values (TRUE or
FALSE). An element of this vector is TRUE when mnO2 is NA. This vector has
as many elements as there are rows in the data frame algae. The construction
lis.na(mn02) thus returns a vector of boolean values that are TRUE in elements
corresponding to rows where mn0O2 is known, because ’!” is the logical negation
operator. Given the way R handles bolean index vectors (c.f. Section 1.2.7) this
means we are using the rows of the algae data frame, corresponding to water
samples not having NA in the value of variable mnO2. NA values cause problems
to several methods. The next session addresses this issue and suggests forms of
overcoming these problems.

Further readings on data summarization and visualization

Most standard statistics books will include some sections on providing summaries of data. A simple

and well-written book is Statistics for technology by ( ). This book has simple exam-
ples and is quite informal. Another good source of information is the book Introductory Statistics
with R by ( ). For data visualization, the book Visualizing Data by ( )
is definitely a must. This is an outstanding book that is clearly worth its value. A more formal
follow-up of this work is the book The Elements of Graphing Data ( , ) by the same
author.

2.5 Unknown values

There are several water samples with unknown variable values. This situation,
rather common in real problems, may preclude the use of certain techniques
that are not able to handle missing values.

Whenever we are handling a data set with missing values we can follow
several strategies. The most common are:

e Remove the cases with unknowns

L ater, in Section 2.5 we shall see a better solution to this.
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e Fill in the unknown values by exploring the correlations between variables
e Fill in the unknown values by exploring the similarity between cases

e Use tools that are able to handle these values.

The last alternative is the most restrictive, as it limits the set of tools one
can use. Still, it may be a good option whenever we are confident on the merit
of the strategies used by the data mining tools to handle missing values.

In the following sub-sections we will show examples of how to use these
methods in R. If you decide to try the code given in these sections you should
be aware that they are not complementary. This means that as you go into
another method of dealing with missing values you should read in again the
original data (c.f. Section 2.3) to have all the unknown cases again, as each
section handles them in a different way.

2.5.1 Removing the observations with unknown values

The option of removing the cases with unknown values is, not only an easy
approach to implement, but can also be a reasonable choice when the proportion
of cases with unknowns is small with respect to the size of the available data
set. This alternative can be easily implemented in R as we will see below.

Before eliminating all observations with at least one unknown value in some
variable, it is always wise to have a look, or at least count them,

> algae[!complete.cases(algae),]

> nrow(algae[!complete.cases(algae),])
[1] 16

The function complete.cases() produces a vector of boolean values with
as many elements as there are rows in the algae data frame, where an element
is TRUE if the respective row is 'clean’ of NA values (i.e. is a complete observa-
tion). Thus the above instruction shows the water samples with some NA values
because the ’!” operator performs logical negation as it was mentioned before.

In order to remove these 16 water samples from our data frame we can do,

> algae <- na.omit(algae)

Even if we decide not to use this drastic method of removing all cases with
some unknown value, we may remove some observations because the number
of unknown values is so high that they are almost useless, and even complex
methods of filling in these values will fail on them. Note that if you have executed
the previous command you should read in the data again (c.f. Section 2.3), as
this instruction has removed all unknowns, so the next statements would not
make sense! Looking at the cases with unknowns we can see that both the
samples 62 and 199 have 6 of the 11 explanatory variables with unknown values.
In such cases, it is wise to simply ignore these observations by removing them,

> algae <- algae[-c(62,199),]
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2.5.2 Filling in the unknowns with the most frequent val-
ues

An alternative to eliminating the cases with unknown values is to try to find the
most probable value for each of these unknowns. Again several strategies can
be followed, with different trade-offs between the level of approximation and the
computational complexity of the method.

The simplest and fastest way of filling in the unknown values is to use some
central value. Central values reflect the most frequent value of a variable dis-
tribution, thus they are a natural choice for this strategy. Several statistics of
centrality exist, like the mean, the median, etc. The choice of the most adequate
value depends on the distribution of the variable. For approximately normal
distributions, where all observations are nicely clustered around the mean, this
statistic is the best choice. However, for skewed distributions, or for variables
with outliers, the mean can be disastrous. Skewed distributions have most val-
ues clustered near one of the sides of the range of values of the variable, thus
the mean is clearly not representative of the most common value. On the other
hand, the presence of outliers (extreme values) may distort the calculation of
the mean'?, thus leading to similar representativeness problems. Thus it is not
wise to use the mean without a previous inspection of the distribution of the
variable using, for instance, some of the graphicall tools of R (e.g. Figure 2.2).
For skewed distributions or for variables with outliers, the median is a better
statistic of centrality.

For instance, the sample algae[48,] does not have a value in the variable
mazPH. As the distribution of this variable is nearly normal (c.f. Figure 2.2) we
could use its mean value to fill in the “hole”. This could be done by,

> algae[48, ’mxPH’] <- mean(algae$mxPH,na.rm=T)

where the function mean() gives the mean value of any vector of numbers, and
na.rm=T disregards any NA values in this vector from the calculation.'?

Most of the times we will be interested in filling in all unknowns of a column
instead of working on a case-by-case basis as above. Let us see an example
of this with the variable Chla. This variable is unknown on 12 water samples.
Moreover, this is a situation were the mean is a very poor representative of the
most frequent value of the variable. In effect, the distribution of Chla is skewed
to higher values, and there are a few extreme values that make the mean value
(13.971) highly unrepresentative of the most frequent value. Therefore, we will
use the median to fill in all unknowns of this column,

> algae[is.na(algae$Chla),’Chla’] <- median(algae$Chla,na.rm=T)

While the presence of unknown values may impair the use of some methods,
filling in their values using a strategy as above is usually considered a bad idea.
This simple strategy although extremely fast, and thus appealing for large data
sets, may introduce a large bias in the data, which can influence our posterior
analysis. However, unbiased methods that find the optimal value to fill in an
unknown, are extremely complex and may not be adequate for some large data
mining problems.

12The mean of the vector c¢(1.2,1.3,0.4,0.6,3,15) is 3.583.
BWithout this ’detail’ the result of the call would be NA because of the presence of Na
values in this column.
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2.5.3 Filling in the unknown values by exploring correla-
tions

An alternative to getting less biased estimators of the unknown values is to
explore the relationship between variables. For instance, using the correlation
between the variable values we could discover that a certain variable is highly
correlated with maPH, which would enable us to obtain other more probable
value for the sample number 48, which has an unknown on this variable. This
could be preferable to the use the mean as we did above.

To obtain the variables correlation we can issue the command,

> cor(algae[,4:18] ,use="complete.obs")

The function cor() produces a matrix with the correlation values between
the variables (we have avoided the first 3 variables because they are nominal).
The use="complete.obs" setting tells R to disregard observations with NA val-
ues in this calculation. Values near 1 (or -1) indicate a strong positive (negative)
linear correlation between the values of the two respective variables. Other R
functions could then be used to obtain the functional form of this linear corre-
lation, which in turn would allow us to calculate the values of one variable from
the values of the correlated variable.

The result of this cor() function is not very legible, but we can put it
through the function symnum to improve this,

> symnum(cor(algae[,4:18] ,use="complete.obs"))
mP mO C1 NO NH o P Ch al a2 a3 a4 ab a6 a7

mxPH 1

mn02 1

c1 1

NO3 1

NH4 , 1

oP04 . 1

P04 . * 1

Chla . 1

al . .o 1

a2 . . 1

a3 1

ad . .o 1

ab 1

a6 R .1

a7 1

attr(,"legend")

[11 0 ¢ 7 0.3 .7 0.6 ¢,” 0.8 “+> 0.9 ‘x’ 0.95 ‘B’ 1

This symbolic representation of the correlation values is more legible, par-
ticularly for large correlation matrices.

The correlations are most of the times irrelevant. However, there are two
exceptions: between variables NH/ and NOS3; and between P04 and oPOj/.
These two latter variables are very strongly correlated (above 0.9). The correla-
tion between NH/ and NOS is less evident and thus it is risky to take advantage
of it to fill in the unknowns. Moreover, assuming that you have removed the
samples 62 and 199 because they have too many unknowns, there will be no
water sample with unknown values on NH/ and NO3. With respect to PO/
and oPO/ the discovery of this correlation'* allows us to fill in the unknowns

14 According to domain experts this was expected because the value of total phosphates
(PO4) includes the value of orthophosphate (0PO4).
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on these variables. In order to achieve this we need to find the form of the linear
correlation between these variables. This can be done as follows,

> 1m(oP04 ~ P04,data=algae)

Call:
lm(formula = oP04 ~ P04, data = algae)

Coefficients:
(Intercept) P04
-15.6142 0.6466

The function 1m() can be used to obtain linear models of the form Y = 85+
G1 X1+ ...+ 6,X,. We will describe this function in detail on Section 2.6. The
linear model we have obtained tells us that oPO4 = —15.6142 4 0.6466 x PO4.
With this formula we can fill in the unknown values of these variables, provided
they are not both unknown.

After removing the sample 62 and 199, we are left with a single observation
with an unknown value on the variable PO/ (sample 28), thus we could simply
use the discovered relation to do the following,

> algae[28,’P04’] <- (algae[28,’0P04’]+15.6142)/0.6466

However, for illustration purposes, let us assume that there were several
samples with unknown values on the variable PO4. How could we use the above
linear relationship to fill all the unknowns? The best would be to create a
function that would return the value of PO/ given the value of 0PO/, and then
apply this function to all unknown values'?,

£i11P04 <- function(oP) {
if (is.na(oP)) return(NA)
else return((oP+15.6142)/0.6466)

}

algae[is.na(algae$P04),’P04°] <-
sapply(algae[is.na(algae$P04),’oP04°],£i11P04)

+ V + + + Vv

The first instruction creates a function named fillPO4 with one argument,
which is assumed to be the value of 0PO/. Given a value of 0PO4, this function
returns the value of PO4 according to the discovered linear relation (try issuing
“fi11P04(6.5)”). This function is then applied to all samples with unknown
value on the variable PO4. This is done using the function sapply(). This
function has a vector as the first argument and a function as the second. The
result is another vector with the same length, with the elements being the result
of applying the function in the second argument to each element of the given
vector.'® This means that the result of this call to sapply() will be a vector
with the values to fill in the unknowns of the variable PO/.

15Because there was a single case with unknown in "PO4’, if you have tried the previous
instruction that filled in this unknown, R will complain with these following instructions. If
you want to avoid this before trying the code set the 28th observation 'PO4’ value back to
unknown using for instance algae[28,°P04°] <- NA.

16Try, for instance, sapply(1:10,sqrt), where “sqrt” calculates the square root of a number.

(DRAFT - May 22, 2003)



2.5 Unknown values 47

The study of the linear correlations enabled us to fill in some new unknown
values. Still, there are several observations left with unknown values. We may
try to explore the correlations between the variables with unknowns and the
nominal variables of this problem. We can use conditioned histograms that are
available through the "lattice’ R package with this objective. For instance Figure
2.6, shows an example of such graph. This graph was produced as follows,
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Figure 2.6: An histogram of variable mzPH conditioned by season.

> histogram(™ mxPH | season,data=algae)

This instruction obtains an histogram of the values of maxPH for the different
values of season. Each histogram is built using only the subset of observations
with a certain season value. Notice that the histograms are rather similar thus
leading us to conclude that the values of maPH are not very influenced by the
season of the year when the samples were collected. If we try the same using
the size of the river, with histogram(~ mxPH | size,data=algae), we can
observe a tendency for smaller rivers showing lower values of mzPH. We may
extend our study of these dependencies using several nominal variables. For
instance,

> histogram(~ mxPH | sizexspeed,data=algae)

shows the variation of mzPH for all combinations of size and speed of the rivers.
It is curious to note that there is no information regarding small rivers with low
speed.!'” The single sample that has these properties is exactly sample 48, the
one for which we do not know the value of mxPH!

Another alternative to obtain similar information but now with the concrete
values of the variable is,

17 Actually, if you have executed the instruction given before, to fill in the value of maPH
with the mean value of this variable, this is not true anymore!
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Figure 2.7: The values of variable mzPH by river size and speed.

> stripplot(size ~ mxPH | speed, data=algae, jitter=T)

The result of this instruction is shown in Figure 2.7. The jitter=T param-
eter setting is used to perform a small random permutation of the values in the
Y direction to avoid plotting observations with the same values over each other,
thus loosing some information on the concentration of observations with some
particular value.

This type of analysis could be carried out for the other variables with un-
known values. Still, this is a tedious process because there are too many com-
binations to be analyzed. Nevertheless, this is a method that can be applied in
small data sets with few nominal variables.

2.5.4 Filling in the unknown values by exploring similari-
ties between cases

Instead of exploring the correlation between the columns (variables) of a data
set, we can try to use the similarities between the rows (observations) to fill in
the unknown values. We will illustrate this method to fill in all unknowns with
the exception of the two samples with too many NA’s. Let us read in again the
data to override the code of the previous sections (assuming you have tried it).

> algae <- read.table(’Analysis.txt’,

+ header=F,

+ dec=’.7,

+ col.names=c(’season’,’size’,’speed’, ’mxPH’,’mn02’,°Cl’,’N03’,
+ ’NH4’,’oP04’,°P04’,’Chla’,’al’,’a2’,’a3’,’a4’,’ab’,’a6’,’a7’),
+ na.strings=c(’ XXXXXXX’))
> algae <- algae[-c(62,199),]
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The approach described in this section assumes that if two water samples
are similar, and one of them has an unknown value in some variable, there is a
high probability that this value is similar to the value of the other sample. In
order to use this intuitively appealing method we need to define the notion of
similarity. This notion is usually defined by using a metric over the multivariate
space of the variables used to describe the observations. Many metrics exist in
the literature, but a common choice is the euclidean distance. This distance can
be informally defined as the sum of the squared differences between the values
of any two cases. The method we will describe below will use this metric to
find the 10 most similar cases of any water sample with some unknown value
in a variable. With these 10 cases, we will calculate their median value on this
variable and use this to fill in the unknown. Let us see how to implement this
in R.

R has several packages with functions for calculating distances between cases.
Most of them assume that the cases are described by numeric variables (e.g. the
dist () function in the mva package). That is not the case of our problem where
we have three nominal variables. As such we will use the package cluster that
includes functions able to calculate distances using mixed mode variables.

Any distance function over a multivariate space will suffer from the exis-
tence of different scales of values among the variables. These differences can
overweight the differences between the values on some variable over the dif-
ferences on other variables. To avoid this, we will re-scale all variables to a
“normalized” interval where every variable has a zero mean and unit standard
deviation. The distance between all water samples can be obtained as follows,

> library(cluster)
> dist.mtx <- as.matrix(daisy(algae,stand=T))

The second instruction uses the function daisy () from the cluster package
to calculate the distances. We have used the parameter stand to indicate that
the data should be normalized before the distances are calculated. Moreover,
we have transformed the output, which includes several information that we are
not interested in this case, into a matrix of distances, using the as.matrix()
function.

Let us remember which water samples have some unknown values and thus
will need to be processed,

> which(!complete.cases(algae))
[1] 28 38 48 55 56 57 58 59 60 61 62 115 160 183

Let us play a bit with sample number 38. Line 38 of the matrix dist.mtx
has the distances between this water sample and all others. We can sort these
distances and check the 10 most similar,

> sort(dist.mtx[38,])[1:10]

38 54 22 64 11 30 25
0.00000000 0.02126003 0.05711782 0.05790530 0.06047142 0.06427236 0.06668811
53 37 24

0.06677694 0.06983926 0.07609126

Notice how R has named the columns of the distance matrix so that we know
which are the most similar water samples in the original data frame. The most
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similar observation to the sample 38 is ...the sample 38! After this sample
come the samples 54, 22, 64, etc. We can get a vector with the numbers of the
10 most similar water samples as follows,

> as.integer (names(sort(dist.mtx[38,]) [2:11]))
[1] 54 22 64 11 30 25 53 37 24 18

Now that we know the most similar water samples let us see which variable(s)
we need to fill in,

> algae[38,]
season size speed mxPH mn02 Cl NO3 NH4 oP04 P04 Chla al a2 a3 a4 ab a6
38 spring small high 8 NA 1.450.81 10 2.5 3 0.375.8 0 0 0 O O
a7
38 0

Thus, we want a value for mnO2 for this water sample. According to the
method we have outlined before we can use the median value on this variable
in the 10 most similar samples,

> median(algae[c(as.integer (names(sort(dist.mtx[38,])[2:11]))),’mn02°])
[1] 10

This means that according to this method we should fill in the value of mn0O2
of the water sample 38 with the value 10, which we can do by,

> algae[38,’mn02’] <-
+ median(algae[c(as.integer (names(sort(dist.mtx[38,]1)[2:11]))),’mn02°],
+ na.rm=T)

You may check the result with algae[38,]!

What if the water sample has more than one unknown value? We can use
the function apply() to obtain the medians for each of the columns that are
unknown. For instance, that is the case of the water sample 55 that has two
unknown values,

> apply(algaelc(as.integer(names(sort(dist.mtx[565,]1) [2:11]))),

+ which(is.na(algae[55,1))],
+ 2,
+ median,na.rm=T)

Cl Chla

6.5835 0.8000

The function apply() can be used to apply a function to all columns (or
rows) of a data frame. The first argument is the data frame. If the second
argument has value 2 the function in the third argument is applied to all columns
of the data frame. If it is 1, it is applied to all rows. Any argument after the third
is passed to the function being applied. Notice that we have used na.rm=T as a
fourth parameter to avoid problems with unknown values when calculating the
medians. We should also remark that this will not work if there are unknowns in
the nominal variables of the data frame because you would then try to calculate
medians on discrete columns. In that case the best is to create a new function
for obtaining the central value to be used, that will depend on whether the
column is numeric or a factor,
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> central.value <- function(x) {

+ if (is.numeric(x)) median(x,na.rm=T)

+ else if (is.factor(x)) levels(x) [which.max(table(x))]
+ else {

+ f <- as.factor(x)

+ levels(f) [which.max(table(f))]

+ 3}

+ 3

The function central.value() will return the median for any numeric col-
umn, while for other type of columns it will transform them into factors and
return the value that occurs more frequently. We can use this function instead
of the median in the apply call mentioned before. Let us now automate this for
all samples with some unknown value. The main problem in doing this is that
we will mix observations with a single unknown value with others with several
missing values. For the latter we need to use apply() that generates a data
frame as result. The apply () function can only be applied to objects with more
than one dimension which is not the case of the objects resulting from a water
sample with a single NA value.'® This results in a bit more complex solution,

> for(r in which(!complete.cases(algae)))
algae[r,which(is.na(algae[r,]))] <-
apply(data.frame(algae[c(as.integer (names(sort(dist.mtx[r,]) [2:11]))),
which(is.na(algaelr,1))1),
2,central.value)

+
+
+
+

We use a for statement to go through all cases which have some missing
value. This is an iterative statement that allows us to repeat the assignment
statement for different values of the r variable.!” With this for cycle consisting
of a single assignment we are able to fill in all unknown values of our data frame,
using the 10 most similar water samples to help finding the most probable value.

In summary, after these simple instructions we have the data frame free of
NA values, and are better prepared to take full advantage of several R func-
tions. Regarding which method should be used from the alternatives we have
described, the answer is most of the times domain dependent. The method of
exploring the similarities between cases seems to be more rational, although it
suffers from some problems. These include possible existence of irrelevant vari-
ables which may distort the notion of similarity, or even excessive computational
complexity for extremely large data sets. Still, for these large problems we can
always use random samples to calculate the similarities.

Further readings on handling unknown values

The book Data preparation for data mining by ( ) is an extensive source of information
on all issues of preparing data for data mining, which includes handling missing values. The book
Predictive data mining by ( ) is another good source of information on
data preparation in general and unknown values in particular.

( ) and ( ) are good references on distance measures involving
variables with different types. Further references can also be found in ( ).

18For instance, while algae[38,which(is.na(algae[38,]1))] is a vector with a single ele-
ment, algae[55,which(is.na(algae[55,]))] is a data frame.

191f you are not familiar with this programming constructs maybe it is a good time to review
the material presented at Section 1.2.12.
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2.6 Obtaining prediction models

The main goal of this case study is to obtain predictions for the frequency
values of the 7 algae in a set of 140 water samples. Given that these frequencies
are numbers, we are facing a regression problem®’. In simple words, this task
consists of trying to obtain a model relating a numerical variable with a set of
other explanatory variables. This model can be used either to predict the value
of the target variable for future observations of the explanatory variables, or to
provide a better understanding of the interactions among the variables in our
problem.

In this section we explore two different predictive models that could be
applied to the algae domain: linear regression and regression trees. Our choice
was mainly guided by illustrative purposes in the context of this book, and not
as a consequence of some model selection data mining step. Still, these models
are two good alternatives for regression problems as they are quite different
in terms of their assumptions regarding the “shape” of the regression function
being approximated, they are easy to interpret, and fast to run on any computer.
This does not mean that in a real data mining scenario we should not try other
alternatives and then use some form of model selection (c.f. Section 2.7) to
select one or more of them for the final predictions on our 140 test samples.

The models we are going to try handle missing values in a different way.
While linear regression is not able to use data sets with unknown values, regres-
sion trees handle these values naturally?'. As such, we will follow a different
path concerning the preparation of the data before model construction. For
linear regression we will use one of the techniques described in Section 2.5 for
pre-processing the data so that we can use these models. Regarding regression
trees we will use the original 200 water samples.??

In the analysis we are going to carry out we will assume that we do not know
the true values of the target variables for the 140 test samples. As we have
mentioned before, the book Web page also includes a file with these solutions.
Still, they are given just for you to get a final opinion on the value of the models
we are going to obtain.

2.6.1 Multiple linear regression

Multiple linear regression is among the most used statistical data analysis tech-
niques. These models obtain an additive function relating a target variable with
a set of predictor variables. This additive function is a sum of terms of the form
0B; x X;, where X is a predictor variable and (; is a number.

As we have mentioned before, there is no predefined way of handling missing
values for this type of modeling techniques. As such we will use the data result-
ing from applying the method of exploring the similarities among the training
cases to fill in the unknowns (c.f. Section 2.5.4). Nevertheless, before we apply
this method, we will remove the water samples number 62 and 199 because, as
mentioned before, they have 6 from the 11 predictor variables missing, which

20 Actually, as we want to predict 7 values for each water sample, one can handle this
problem as 7 different regression problems.

21Obviously, we are referring to the implementations of these methods available in R.

22 Actually, we will remove two of them because they have too many missing values.
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makes the task of filling them by exploring similarities too unreliable. The
following code obtains a data frame without missing values,??

> algae <- read.table(’Analysis.txt’,
+ header=F,

+ dec=’.",

+ col.names=c(’season’,’size’,’speed’, ’mxPH’,’mn02’,’C1’,’N0O3’,
+ 'NH4,’0P04°,°P04°,°Chla’,’al’, ’a2’,’a3’,’ad’,’ab’, a6’,’a7’),
+ na.strings=c (’XXXXXXX’))

> algae <- algae[-c(62,199),]

> clean.algae <- algae

> for(r in which(!complete.cases(algae)))

+ clean.algae[r,which(is.na(algae([r,]))] <-

+ apply(data.frame(algae[c(as.integer (names(sort(dist.mtx[r,])[2:11]))),
+ which(is.na(algaelr,]))]), 2,central.value)

After this code we have a data frame, clean.algae, that has no missing
variable values.

Let us start by learning how to obtain a linear regression model for predicting
the frequency of one of the algae.

> Im.al <- Im(al ~ .,data=clean.algael[,1:12])

The function 1m() obtains a linear regression model. The first argument
of this function?* indicates the functional form of the model. In this example,
it states that we want a model that predicts the variable al using all other
variables present in the data, which is the meaning of the dot character. For
instance, if we wanted a model to predict al as a function of the variables mazPH
and NH4, we should have indicated the model as “al ~ mxPH + NH4”. There
are other variants of this model language that we will introduce as necessary.
The data parameter sets the data sample to be used to obtain the model.

We may obtain more information about the linear model with the following
instruction,

> summary(lm.al)

Call:
Im(formula = al ~ ., data = clean.algael[, 1:12])
Residuals:

Min 1Q Median 3Q Max

-37.582 -11.882 -2.741 7.090 62.143

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 43.210622 24.042849 1.797 0.07396 .

seasonspring 3.575474 4.135308 0.865 0.38838
seasonsummer 0.645459 4.020423 0.161 0.87263
seasonwinter 3.572084 3.863941 0.924 0.35647
sizemedium 3.321935 3.797755 0.875 0.38288
sizesmall 9.732162 4.175616 2.331 0.02086 *
speedlow 3.965153  4.709314 0.842 0.40090
speedmedium  0.304232 3.243204 0.094 0.92537
mxPH -3.570995 2.706612 -1.319 0.18871

23Reading in again the data is included only because you have probably tried the code of
the previous sections that has changed the original data.
24 Actually, of most functions used to obtain models in R.
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mn02 1.018514  0.704875 1.445 0.15019

Cl -0.042551 0.033646 -1.265 0.20761

NO3 -1.494145 0.551200 -2.711 0.00736 *x*

NH4 0.001608  0.001003 1.603 0.11072

oP04 -0.005235 0.039864 -0.131 0.89566

P04 -0.052247  0.030737 -1.700 0.09087 .

Chla -0.090800 0.080015 -1.135 0.25796

Signif. codes: 0 ‘**x*’ 0.001 ‘*x*x’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ > 1

Residual standard error: 17.64 on 182 degrees of freedom
Multiple R-Squared: 0.3737, Adjusted R-squared: 0.3221
F-statistic: 7.24 on 15 and 182 DF, p-value: 2.273e-12

Before we analyze the information provided by the function summary () when
applied to linear models, let us say something on how R handled the three
nominal variables. When using them as shown above, R will create a set of
auxiliary variables?®. Namely, for each factor variable with k levels, R will
create k — 1 auxiliary variables. These variables have the values 0 or 1. A value
of 1 means that the associated value of the factor is “present”, and that will
also mean that the other auxiliary variables will have the value 0. If all £ — 1
variables are 0 then it means that the factor variable has the remaining kth
value. Looking at the summary presented above, we can see that R has created
three auxiliary variables for the factor season (seasonspring, seasonsummer
and seasonwinter). This means that if we have a water sample with the value
“autumn” in the variable season, all these three auxiliary variables will be set
to zero.

The application of the function summary() to a linear model gives some
diagnostic information concerning the obtained model. First of all, we have
information concerning the residuals (i.e. the errors) of the fit of the linear
model to the used data. These residuals should have a mean zero and should
have a normal distribution (and obviously be as small as possible!).

For each coefficient (variable) of the multiple regression equation, R will
show its value and also its standard error (an estimate of the variation of these
coefficients). In order to check the importance of each coefficient we may test
the hypothesis that each of them is null, i.e. HO : 8; = 0. To test this hypothesis
the t test is normally used. R calculates a t value, which is defined as the ratio

between the coeflicient value and its standard error, i.e. fﬁ" . R will show us a

column (Pr(>|t|)) associated with each coefficient with the level at which the
hypothesis that the coefficient is null is rejected. Thus a value of 0.0001, has the
meaning that we are 99.99% confident that the coefficient is not null. R marks
each test with a symbol corresponding to a set of common confidence levels used
for these tests. In summary, coefficients that do not have any symbol in front
of them, cannot be discarded as possibly null with a minimum confidence of at
least 90%.

Another piece of relevant diagnostics information outputted by R, are the
R? coefficients (Multiple and Adjusted). These indicate the degree of fit of the
model to the data, that is the proportion of variance in the data that is explained
by the model. Values near 1 are better (almost 100% explained variance), while
the smaller the values the larger the lack of fit. The adjusted coefficient is more

250ften named dummy variables.
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demanding as it takes into account the number of parameters of the regression
model.

Finally, we can also test the null hypothesis that there is no dependence of
the target variable on any of the explanatory variables, i.e. HO : f; = (B =
... = Bm = 0. With this goal we use the F-statistic, which is compared to a
critical value. R provides the confidence level at which we are sure to reject this
null hypothesis. Thus a p-level of 0.0001, means that we are 99.99% confident
that the null hypothesis is not true. Usually, if the model fails this test it makes
no sense to look at the t-tests on the individual coefficients.

Some diagnostics may also be checked by plotting a linear model. In effect,
we may issue a command like plot (1m.al) to obtain a series of successive plots
that help in understanding the performance of the model. One of the graphs
simply plots each fitted target variable value against the respective residual (er-
ror) of the model. Larger errors are usually marked by adding the corresponding
row number to the dot in the graph, so that you may inspect the observations
if you wish. Another graph shown by R is a normal Q-Q plot of the errors that
helps you to check if they follow a normal distribution?® as they should.

The proportion of variance explained by this model is not very impressive
(around 32.0%). Still, we can reject the hypothesis that the target variable does
not depend on the predictors (the p value of the F' test is very small). Looking
at the significance of some of the coefficients we may question the inclusion of
some of them in the model. There are several methods for simplifying regression
models. In this section we will explore a method usually known as backward
elimination.

We will start our study of simplifying the linear model using the anova()
function. When applied to a single linear model this function will give us a
sequential analysis of variance of the model fit. That is, the reductions in the
residual sum of squares (the total error of the model) as each term of the formula
is added in turn. The result of this analysis for the model obtained above is
shown below,

> anova(lm.al)
Analysis of Variance Table

Response: al
Df Sum Sq Mean Sq F value Pr(>F)

season 3 85 28 0.0906 0.9651499
size 2 11401 5701 18.3253 5.613e-08 *x*x*
speed 2 3934 1967 6.3236 0.0022126 **
mxPH 1 1322 1322 4.2499 0.0406740 *
mn02 1 2218 2218 7.1312 0.0082614 *x*
Cl 1 4451 4451 14.3073 0.0002105 *x**
NO3 1 3399 3399 10.9263 0.0011420 *x*
NH4 1 385 385 1.2376 0.2674000
oP04 1 4765 4765 15.3168 0.0001283 *x*x*
P04 1 1423 1423 4.5738 0.0337981 *
Chla 1 401 401 1.2877 0.2579558
Residuals 182 56617 311

Signif. codes: 0 ‘**x*’ 0.001 ‘x*x’ 0.01 ‘*’> 0.05 ‘.’ 0.1 ¢ > 1

These results indicate that the variable season is the variable that least
contributes for the reduction of the fitting error of the model. Let us remove it

261deally, all errors would be in a straight line in this graph.
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from the model,
> 1m2.al <- update(lm.al, . ~ . - season)

The update () function can be used to perform small changes to an existing
linear model. In this case we use it to obtain a new model by removing the
variable season from the 1m.al model. The summary information for this new
model is given below,

> summary(1lm2.al)

Call:
Im(formula = al ~ size + speed + mxPH + mn02 + Cl + NO3 + NH4 +
oP04 + P04 + Chla, data = clean.algael[, 1:12])

Residuals:
Min 1Q Median 3Q Max
-36.386 -11.899 -2.941 7.338 63.611

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 44.9587170 23.2659336 1.932 0.05484 .

sizemedium 3.3636189 3.7773655 0.890 0.37437
sizesmall 10.3092317 4.1173665 2.504 0.01315 *
speedlow 3.1460847 4.6155216 0.682 0.49632
speedmedium -0.2146428 3.1839011 -0.067 0.94632
mxPH -3.2377235 2.6587542 -1.218 0.22487
mn02 0.7741679 0.6578931 1.177 0.24081

Cl -0.0409303 0.0333812 -1.226 0.22170
NO3 -1.5126458 0.5475832 -2.762 0.00632 *x*
NH4 0.0015525 0.0009946 1.561 0.12027
oP04 -0.0061577 0.0394710 -0.156 0.87620
P04 -0.0508845 0.0304911 -1.669 0.09684 .
Chla -0.0879751 0.0794655 -1.107 0.26969
Signif. codes: 0 ‘**x*’ 0.001 ‘*x’> 0.01 ‘x’> 0.05 ‘.’ 0.1 ¢ *> 1

Residual standard error: 17.56 on 185 degrees of freedom
Multiple R-Squared: 0.369, Adjusted R-squared: 0.3281
F-statistic: 9.016 on 12 and 185 DF, p-value: 1.581e-13

The fit has improved a bit (32.8%) but it is still not too impressive. We may
carried out a more formal comparison between the two models by using again
the anova() function, but this time with both models as arguments,

> anova(lm.al,lm2.al)
Analysis of Variance Table

Model 1: al ~ season + size + speed + mxPH + mn02 + C1 + NO3 + NH4 + oP04 +

P04 + Chla
Model 2: al ~ size + speed + mxPH + mn02 + C1 + NO3 + NH4 + oP04 + P04 +
Chla
Res.Df RSS Df Sum of Sq F Pr(>F)
1 182 56617
2 185 57043 -3 -425 0.4559 0.7134

This function performs an analysis of variance of the two models using a
F-test to assert the significance of the differences. In this case, although the
sum of the squared errors has decreased (-425), the comparison shows that the
differences are not significant (a value of 0.7134 tells us that with only around
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29% confidence we can say they are different). Still, we should recall that this
new model is simpler. In order to proceed to check if we can remove more
coefficients we would use again the anova() function, applied to the 1m2.al
model. This process would continue until we have no cadidate coefficients for
removal. However, to simplify our backward elimination process R has a function
that performs all process for us.

The following code creates a linear model that results from applying the
backward elimination method to the initial model we have obtained (1m.a1),?”

> final.lm <- step(lm.al)

Start: AIC= 1151.85

al ” season + size + speed + mxPH + mn02 + C1 + NO3 + NH4 + oP04 +
P04 + Chla

Df Sum of Sq RSS AIC

- season 3 425 57043 1147
- speed 2 270 56887 1149
- oP04 1 5 56623 1150
- Chla 1 401 57018 1151
- Cl 1 498 57115 1152
- mxPH 1 542 57159 1152

<none> 56617 1152

- mn02 1 650 57267 1152
- NH4 1 799 57417 1153
- P04 1 899 57516 1153
- size 2 1871 58488 1154
- NO3 1 2286 58903 1158

Step: AIC= 1147.33
al ” size + speed + mxPH + mn02 + C1 + NO3 + NH4 + oP04 + P04 +
Chla

Df Sum of Sq RSS AIC
- speed 2 213 57256 1144

- oP04 1 8 57050 1145
- Chla 1 378 57421 1147
- mn02 1 427 57470 1147
- mxPH 1 457 57500 1147
- Cl 1 464 57506 1147

<none> 57043 1147
- NH4 1 751 57794 1148
- P04 1 859 57902 1148
- size 2 2184 59227 1151
- NO3 1 2353 59396 1153

Step: AIC= 1140.09
al ~ size + mxPH + Cl + NO3 + P04

Df Sum of S9 RSS AIC

<none> 58432 1140
- mxPH 1 801 59233 1141
-Cl 1 906 59338 1141
- NO3 1 1974 60405 1145
2 2652 61084 1145

1 8514 66946 1165

- size
- P04

2"We have omitted some of the output of the step() function for space reasons.
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The function step () uses the Akaike Information Criterion to perform model
search. The search uses by default backward elimination, but with the param-
eter direction you may use other algorithms (check the help of this function
for further details).

We can obtain the information on the final model by,

> summary(final.lm)

Call:

Im(formula = al ~ size + mxPH + Cl + NO3 + P04, data = clean.algael,
1:12])

Residuals:
Min 1Q Median 3Q Max

-28.876 -12.681 -3.688 8.393 62.875

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 57.63859 20.93604 2.753 0.00647 **

sizemedium  2.82560 3.39950 0.831 0.40691

sizesmall 10.39431 3.81809 2.722 0.00708 *x*

mxPH -4.00980 2.47801 -1.618 0.10728

Cl -0.05438 0.03160 -1.721 0.08692 .

NO3 -0.89215 0.35124 -2.540 0.01188 *

P04 -0.05887 0.01116 -5.276 3.57e-07 ***

Signif. codes: O ‘**x*’ 0.001 ‘*x’> 0.01 ‘x’> 0.05 ‘.’ 0.1 ¢ > 1

Residual standard error: 17.49 on 191 degrees of freedom
Multiple R-Squared: 0.3536, Adjusted R-squared: 0.3333
F-statistic: 17.42 on 6 and 191 DF, p-value: 4.857e-16

The proportion of variance explained by this model is still not very interest-
ing! This kind of proportion is usually considered as a sign that the linearity
assumptions of this model are inadequate for the domain.

Further readings on multiple linear regression models

Linear regression is one of the most used statistics techniques. As such, most statistics books will
include a chapter on this subject. Still, specialized books should be used for deeper analysis. Two
extensive books are the ones by ( ) and by ( ). These books
should cover most of the topics you will ever want to know about linear regression.

2.6.2 Regression trees

Let us now look at a different kind of regression model available in R. Namely,
we will learn how obtain a regression tree (e.g. , ) to predict
the value of the frequencies of algal al. As these models handle data sets with
missing values we only need to remove the samples 62 and 199 for the reasons
mentioned before.

The necessary instructions to obtain a regression tree are presented below:

> library(rpart)
> algae <- read.table(’Analysis.txt’,

+ header=F,
+ dec=’.",
+ col.names=c(’season’,’size’, ’speed’,’mxPH’,’mn02’,’Cl’,’NO3’,
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+ ’NH4’,’0oP04’,°’P04°,’Chla’,’al’,’a2’,’a3’,’a4’,’ab’,’a6’,’a7’),
+ na.strings=c (’XXXXXXX’))

> algae <- algae[-c(62,199),]

> rt.al <- rpart(al ~ .,data=algael[,1:12])

The first instruction loads the ’'rpart’ package that implements regression
trees in R.?® The last instruction obtains the tree. Note that this function uses
the same schema as the 1m() function to describe the functional form of the
model. The second argument of rpart indicates which data to use to obtain
the tree.

The content of the object rt.al object is the following,

> rt.al
n= 198

node), split, n, deviance, yval
* denotes terminal node

1) root 198 90401.290 16.996460
2) P04>=43.818 147 31279.120 8.979592
4) Cl>=7.8065 140 21622.830 7.492857
8) oP04>=51.118 84 3441.149 3.846429 *
9) oP04< 51.118 56 15389.430 12.962500
18) mn02>=10.05 24 1248.673 6.716667 *
19) mn02< 10.05 32 12502.320 17.646880
38) N03>=3.1875 9 257.080 7.866667 *
39) NO3< 3.1875 23 11047.500 21.473910
78) mn02< 8 13 2919.549 13.807690 *
79) mn02>=8 10 6370.704 31.440000 *
5) Cl< 7.8065 7 3157.769 38.714290 *
3) P04< 43.818 51 22442.760 40.103920
6) mxPH< 7.87 28 11452.770 33.450000
12) mxPH>=7.045 18 5146.169 26.394440 *
13) mxPH< 7.045 10 3797.645 46.150000 *
7) mxPH>=7.87 23 8241.110 48.204350
14) P04>=15.177 12 3047.517 38.183330 *
15) P04< 15.177 11 2673.945 59.136360 *

A regression tree is a hierarchy of logical tests on some of the explanatory
variables. Tree-based models automatically select the more relevant variables,
thus not all variables need to appear in the tree. A tree is read from the root
node that is marked by R with the number 1. R provides some information
of the data in this node. Namely, we can observe that we have 198 samples
(the overall training data used to obtain the tree) at this node, that these 198
samples have an average value for the frequency of algal a1 of 16.99, and that the
deviance® from this average is 90401.29. Each node of a tree has two branches.
These are related to the outcome of a test on one of the predictor variables. For
instance, from the root node we have a branch (tagged by R with “2)”) for the

28 Actually, there is another package that also implements tree-based models, the package
tree.
29The sum of squared differences from the average.
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P04>=43.82

CI>=f.806 mxPHK 7.87

0PO4>=51.12 mxPH>=7.04504>%15.18
38.7
mn023=10.05

3.85 26.4 46.1 38.2 59.1

NO3>%3.188

mnQ2< 8

13.8 31.4

Figure 2.8: A regression tree for predicting algal al.

cases where the test “P0/>43.818”" is true (147 samples); and also a branch for
the 51 remaining cases not satisfying this test (marked by R with “3)”). From
node 2 we have two other branches leading to nodes 4 and 5, depending on the
outcome of a test on CI. This testing goes on until a leaf node is reached. These
nodes are marked with asterisks by R. At these leaves we have the predictions
of the tree. This means that if we want to use a tree to obtain a prediction for a
particular water sample, we only need to follow a branch from the root node till
a leaf, according to the outcome of the tests for this test sample. The average
target variable value found at the leaf we have reached is the prediction of the
tree for that sample.
We can also obtain a graphical representation of the tree as follows,

> plot(rt.al,uniform=T,branch=1, margin=0.1, cex=0.9)
> text(rt.al,cex=0.75)

The first instruction draws the tree, while the second labels the nodes of
the tree. The other parameters have to do with graphical details of the tree
presentation (character size, margins, etc.). They are not essential for the tree
visualization, and we may even need to adjust slightly their values to better fit
our presentation requirements.

Figure 2.8 shows the obtained tree. On this representation if the test at
each node is truth you should follow the left branch, otherwise the right branch
should be selected. Manipulating the various parameters of the functions used
to draw trees you can obtain much better looking trees.

The summary () function can also be applied to tree objects. This will pro-
duce a lot of information concerning the tests on the tree, the alternative tests
that could be considered and also the surrogate splits. These splits are part of
the strategy used in R regression trees to handle unknown values.
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Trees are usually obtained in two steps. Initially, a large tree is grown, and
then this tree is pruned by deleting bottom nodes through a process of statistical
estimation. This process has the goal of avoiding overfitting. This has to do
with the fact that an overly grown tree will fit the traning data almost perfectly,
but will be capturing spurious relationships of the sample (overfitting), and thus
will perform badly when faced with a new data sample for which predictions
are necessary. The overfitting problem occurs in many modelling techniques,
particularly when the assumptions regarding the function to aproximate are
more relaxed. These models although having a wider application range (due to
these relaxed criteria), suffer from this overfitting problem, thus demanding for
a statistical estimation step which precludes the overfitting problem.

The function rpart() that we have used to obtain our tree only grows the
tree, stopping when certain criteria are met. Namely, the tree stops growing
whenever the decrease in the deviance goes below a certain threshold; when the
number of samples in the node is less than another threshold; or when the tree
depth exceeds another value. These thresholds are controled by the parameters
cp, minsplit and maxdepth, respectively. Their default values are 0.01, 20 and
30, respectively.

If we want to avoid the overfitting problem we should always check the
validity of these default tree growth stopping criteria. This can be carried out
through a process of post-pruning of the obtained tree. The rpart package
implements a pruning method named cost complexity pruning. This method
uses the values of the parameter cp that R calculates for each node of the tree.
The pruning method tries to estimate the value of cp that ensures the best
compromise between predictive accuracy and tree size. Given a tree obtained
with the rpart() function, R can produce a set of sub-trees of this tree and
estimate their predictive performance. This information can be obtained using
the function printcp(),"

> printcp(rt.al)

Regression tree:
rpart(formula = al ~ ., data = algael, 1:12])

Variables actually used in tree construction:
[1] C1  mn02 mxPH NO3 oP04 P04

Root node error: 90401/198 = 456.57

n= 198

CP nsplit rel error xerror xstd
1 0.405740 0 1.00000 1.00737 0.13075
2 0.071885 1 0.59426 0.65045 0.10913
3 0.030887 2 0.52237 0.65470 0.10912
4 0.030408 3  0.49149 0.69417 0.11537
5 0.027872 4 0.46108 0.70211 0.11682
6 0.027754 5 0.43321 0.70211 0.11682
7 0.018124 6 0.40545 0.68015 0.11488
8 0.016344 7 0.38733 0.71108 0.11552
9 0.010000 9 0.35464 0.70969 0.11522

The tree produced by the rpart() function is the last tree of this list (tree
9). This tree has a value of cp of 0.01 (the default value of this parameter),

30You may obtain similar information in a graphical form using the function plotcp(rt.al).
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includes 9 tests and has a relative error (compared to the root node) of 0.354.
However, R estimates, using an internal process of 10-fold cross validation, that
this tree will have an average relative error®!' 0.70969 + 011522. Using the
information provided by these more reliable estimates of performance, which
avoid the overfitting problem, we can observe that we would theoretically be
better off with the tree number 2, which has a lower estimated relative error
(0.65045). An alternative selection rule is to choose the best tree according to
the 1-SE rule. This consists of looking at the cross validation error estimates
(“xerror” columns) and their standard deviations (“xstd” column). In this case
the 1-SE tree is the smallest tree with error less than 0.65045 + 0.10913 =
0.75958, which in this case is the same as the tree with lowest estimated error
(the tree at line 2). If we prefer this tree to the one suggested by R, we can
obtain it by using the respective cp value®?,

> rt2.al <- prune(rt.al,cp=0.08)
> rt2.al
n= 198

node), split, n, deviance, yval
* denotes terminal node

1) root 198 90401.29 16.996460
2) P04>=43.818 147 31279.12 8.979592 *
3) P04< 43.818 51 22442.76 40.103920 *

We can automate this grow an prune steps using the following functions,

> reliable.rpart <- function(form,data,se=1,cp=0,verbose=T,...) {

+ tree <- rpart(form,data,cp=cp,...)

+ if (verbose & ncol(tree$cptable) < 5)

+ warning("No pruning will be carried out because no estimates were obtained.")
+ rt.prune(tree,se,verbose)

+ %

> rt.prune <- function(tree,se=1,verbose=T,...) {

+ if (ncol(tree$cptable) < 5) tree

+ else {

+ lin.min.err <- which.min(tree$cptable[,4])

+ if (verbose & lin.min.err == nrow(tree$cptable))

+ warning("Minimal Cross Validation Error is obtained

+ at the largest tree.\n Further tree growth

+ (achievable through smaller ’cp’ parameter value),\n

+ could produce more accurate tree.\n")

+ tol.err <- tree$cptable[lin.min.err,4] + se * tree$cptable[lin.min.err,5]
+ se.lin <- which(tree$cptable[,4] <= tol.err) [1]

+ prune.rpart(tree,cp=tree$cptable[se.lin,1]+1le-9)

+ }

+ %

Using this function with its default parameter values we will obtain the 1-SE
tree,

311t is important to note that you may have obtained different numbers on the columns
xerror’ and ’xstd’. The cross validation estimates are obtained using a random sampling
process, meaning that your samples will probably be different and thus the results will also
differ.

32 Actually, a value between the cp’s of the trees in line 1 and 2.
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> (rt.al <- reliable.rpart(al ~ .,data=algae[,1:12]))
n= 198

node), split, n, deviance, yval
* denotes terminal node

1) root 198 90401.29 16.996460
2) P04>=43.818 147 31279.12 8.979592 *
3) P04< 43.818 51 22442.76 40.103920 *

The trees are grown with a cp value of 0, which ensures a very large initial
tree. This avoids stop growing too soon, which has the danger of missing some
interesting tree model. In any case, if the chosen tree is the last of the cp
table obtained with printcp(), our functions will issue a warning, suggesting
to decrease the cp value. You may also add any of the other rpart () function
parameters to the call of our reliable.rpart function, because these will be
passed to the rpart function. That is the goal of the three dots in the arguments
of the function. Their goal is to accept any other parameters apart from the
ones presented in the function description, and in this case to pass them to the
function rpart(). The function also checks whether the user has turned off
cross-validation estimates (which is possible though the xval parameter). In
this case no pruning is carried out and a warning is printed.

R also allows a kind of interactive pruning of a tree through the function
snip.rpart(). This function can be used to generate a pruned tree in two
ways. The first consists of indicating the number of the nodes (you can obtain
these numbers by printing a tree object) at which you want to prune the tree,

> first.tree <- rpart(al ~ .,data=algael[,1:12])
> snip.rpart(first.tree,c(4,7))
n= 198

node), split, n, deviance, yval
* denotes terminal node

1) root 198 90401.290 16.996460
2) P04>=43.818 147 31279.120 8.979592
4) Cl>=7.8065 140 21622.830 7.492857 *
5) Cl< 7.8065 7 3157.769 38.714290 *
3) P04< 43.818 51 22442.760 40.103920
6) mxPH< 7.87 28 11452.770 33.450000
12) mxPH>=7.045 18 5146.169 26.394440 *
13) mxPH< 7.045 10 3797.645 46.150000 *
7) mxPH>=7.87 23 8241.110 48.204350 *

Note that the function returns a tree object like the one returned by the
rpart () function, which means that you can store your pruned tree using some-
thing like my.tree <- snip.rpart(first.tree,c(4,7)).

Alternatively, you may use snip.rpart () in a graphical way. First, you plot
the tree, and then you call the function without the second argument. If you
click with the mouse at some node, R prints on its console some information
about the node. If you click again on that node, R prunes the tree at that node.
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You can go on pruning nodes in this graphical way. You finish the interaction
by clicking the right mouse button. The result of the call is again a tree object,

> plot(first.tree)
> text(first.tree)
> snip.rpart(first.tree)
node number: 2 n= 147
response= 8.979592
Error (dev) = 31279.12
node number: 6 n= 28
response= 33.45
Error (dev) = 11452.77
n= 198

node), split, n, deviance, yval
* denotes terminal node

1) root 198 90401.290 16.996460
2) P04>=43.818 147 31279.120 8.979592 *
3) P04< 43.818 51 22442.760 40.103920
6) mxPH< 7.87 28 11452.770 33.450000 *
7) mxPH>=7.87 23 8241.110 48.204350
14) P04>=15.177 12 3047.517 38.183330 *
15) P04< 15.177 11 2673.945 59.136360 *

In this example, I have clicked and pruned nodes 2 and 6.

Further readings on regression trees

The more complete study on regression trees is probably the book by ( ). This
is the standard reference on both classification and regression trees. It provides a deep study of
these two types of models. The approach can be seen as a bit formal (at least in some chapters)
for some readers. Nevertheless, it is definitely a good reference although slightly biased towards
statistical literature. The book on the system C4.5 by ( ) is a good reference on
classification trees from the machine learning community perspective. My Ph.D thesis (

), which you can freely download from my home page, should provide you with a good
introduction, references and advanced topics on regression trees. It will also introduce you to
other types of tree-based models that have the goal of improving the accuracy of regression trees
by using more sophisticated models at the leaves (see also ( ))-

2.7 Model evaluation and selection

In Section 2.6 we have seen two examples of prediction models that could be
used on this case study. The obvious question is which one should we use for
obtaining the predictions for the 7 algae of the 140 test samples. To answer this
question one needs to specify some preference criteria over the space of possible
models, i.e. we need to specify how we will evaluate the performance of the
models.

Several criteria exist for evaluating (and thus comparing) models. Among
the most popular are criteria that calculate the predictive performance of the
models. Still, other criteria exist like for instance the model interpretability, or
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even the model computational efficiency that can be important for very large
data mining problems.

The predictive performance of regression models is obtained by comparing Predictive
the predictions of the models with the real values of the target variables, and  performance of
calculating some average error measure from this comparison. One of such regression models
measures is the mean absolute error (MAE). Let us see how to obtain this
measure for our two models (linear regression and regression trees). The first
step is to obtain the model predictions for the set of cases where we want to  Obtaining model
evaluate it. To obtain the predictions of any model in R, one uses the function  predictions
predict (). This general function peeks a model and a set of data and retrieves
the model predictions,

> 1lm.predictions.al <- predict(final.lm,clean.algae)
> rt.predictions.al <- predict(rt.al,algae)

These two statements collect the predictions of the models obtained in Sec-
tion 2.6 for algal al. Note that we have used the clean.algae data frame with
linear models, because of the missing values.

Having the predictions of the models we can calculate their mean absolute  Mean absolute error
error as follows,

> (mae.al.lm <- mean(abs(lm.predictions.al-algae[,’a1’])))
[1] 13.10279
> (mae.al.rt <- mean(abs(rt.predictions.al-algael[,’al’])))
[1] 11.61717

Another popular error measure is the mean squared error (MSE) . This Mean squared error
measure can be obtained as follows,

> (mse.al.lm <- mean((lm.predictions.al-algae[,’a1’])"2))
[1] 295.1097
> (mse.al.rt <- mean((rt.predictions.al-algael,’a1’])"2))
[1] 271.3226

This latter statistic has the disadvantage of not being measured in the same
units as the target variable, and thus being less interpretable from the user per-
spective. Even if we use the MAE statistic we can ask ourselves the question
whether the scores obtained by the models are good or bad. An alternative
statistic that provides a reasonable answer to this question is the normalized  Normalized mean
mean squared error (NMSE). This statistic calculates a ratio between the per-  squared error
formance of our models and that of a baseline predictor, usually taken as the
mean value of the target variable,

> (nmse.al.lm <- mean((lm.predictions.al-algae[,’al’])"2)/
+ mean((mean(algael,’al’])-algael,’a1’])"2))
[1] 0.6463594
> (nmse.al.rt <- mean((rt.predictions.al-algael,’a1’])"~2)/
+ mean ((mean(algael,’al’])-algael,’a1’])"2))
[1] 0.5942601

The NMSE is a unit-less error measure with values usually ranging from 0
to 1. If your model is performing better than this very simple baseline predictor
then the NMSE should be clearly below 1. The smaller the NMSE, the better.

(DRAFT - May 22, 2003)



Visual inspection of

the predictions

66 PREDICTING ALGAE BLOOMS

Linear Model

True Values
40
L
®

20
1

T T
-10 0 10 20 30 40

Predictions

Regression Tree

60 80
1 I

True Values
% wog g o o
o

10 20 30 40 50 60

Predictions

Figure 2.9: Visual inspection of the predictions.

Values above 1 mean that your model is performing worse than simply predicting
always the average for all cases!

Occasionally, it may also be interesting to have some kind of visual inspec-
tion of the predictions of the models. The following is an example using the
predictions of our two models (c.f. the result in Figure 2.9),

old.par <- par(mfrow=c(2,1))

plot(lm.predictions.al,algae[,’al’] ,main="Linear Model",
xlab="Predictions",ylab="True Values")

abline(0,1,1ty=2)

plot(rt.predictions.al,algael[,’al’] ,main="Regression Tree",
xlab="Predictions",ylab="True Values")

abline(0,1,1ty=2)

par (old.par)

VV + VYV + VYV

The first instruction sets one of the many parameters of the graphics system
of R. The mfrow parameter allows us to divide the figure region in a kind of
matrix of plots, providing means for presenting several plots in the same figure.
In this case we have set it to a matrix with two rows and one column. After
setting this value, any subsequent calls to the plot() function will fill each of
these matrix elements in turn. Finally, the last call to the par() function sets
the graphical parameters to what they were before our changes.

Looking at Figure 2.9 we can observe that the models have a rather poor
performance in several cases. In the ideal scenario that they make correct pre-
dictions for all cases, all the circles in the plots should lie on the dashed lines,
that were obtained with the abline(0,1,1ty=2) calls. These lines have a 45
degrees slope. Given that each circle in the plots gets its coordinates from the
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predicted and truth values of the target variable, if these were equal the circles
would all lie on this ideal line. As we can observe that is not the case at all!
We can check which is the sample number where a particularly bad prediction
is made with the function identify(),

> plot(lm.predictions.al,algael,’al’],main="Linear Model",
+ xlab="Predictions",ylab="True Values")

> abline(0,1,1lty=2)

> identify(lm.predictions.al,algael[,’al1’])

After the call to the function identify(), R enters in an interactive mode
where the user is allowed to click with the left mouse button on any of the circles
in the plot. For each clicked circle a number appears. This number is the row
number in the algae data frame corresponding to that particular prediction.
Try clicking the worse predictions. To end this interactive mode click on the
right button of your mouse. R returns a vector with the row numbers of the
clicked circles. Taking advantage of this, we could see the complete information
regarding these water samples by issuing the following command instead of the
identify () call used above,

> plot(lm.predictions.al,algae[,’al’] ,main="Linear Model",
+ xlab="Predictions",ylab="True Values")

> abline(0,1,1lty=2)

> algae[identify(1m.predictions.al,algael,’al’]),]

Using this alternative, after finishing the interaction with the graphics win-
dow, you should see the rows of the algae data frame corresponding to the
clicked circles, because we are using the vector returned by the identify()
function to index the algae data frame.

Looking at the graph with the predictions of the linear model we can see that
this model predicts negative algae frequencies for some cases. In this application
domain it makes no sense to say that the occurrence of an algal in a water sample
is negative (at most it can be zero). As such, we can take advantage of this
domain knowledge and use this minimum value as a form of improving the linear
model performance,

> sensible.lm.predictions.al <- ifelse(lm.predictions.al < 0,0,lm.predictions.al)
> (mae.al.lm <- mean(abs(sensible.lm.predictions.al-algael[,’a1’])))

[1] 12.47114

> (nmse.al.lm <- mean((sensible.lm.predictions.al-algael,’a1’])"2)/

+ mean ((mean(algael,’al’])-algael,’a1’])"2))

[1] 0.6257973

We have used the function ifelse() to achieve this effect. This function
has 3 arguments. The first is a logical condition, the second is the result of
the function call when the condition is true, while the third argument is the
result when the condition is false. Notice how this small detail has increased
the performance of our model!

According to the performance measures calculated above one should prefer

the regression tree to obtain the predictions for the 140 test samples. However,
there is a trap on this reasoning. Our goal is to choose the best model for
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obtaining the predictions on the 140 test samples. As we do not know the
target variables values for those samples, we have to estimate which of our
models will perform better on these test samples. The key issue here is to
obtain a reliable estimate of a model performance on data for which we do not
know the true target value. The measures calculated using the training data
(as the ones obtained above) are unreliable, because they are biased. In effect,
there are models that can easily obtain zero prediction error on the training
data. However, this performance will hardly generalize over new samples for
which the target variable value is unknown. This phenomenon is usually known
as overfitting the training data, as we have mentioned before. Thus to select a
model one needs to obtain more reliable estimates of the models performance on
test data. K-fold Cross Validation is among the most frequently used methods
of obtaining these reliable estimates for small data sets like our case study. This
method can be briefly described as follows. Obtain K equally sized and random
sub-sets of the training data. For each of these K sub-sets, build a model using
the remaining K-1 sets and evaluate this model on the Kth sub-set. Store the
performance of the model and repeat this process for all remaining sub-sets. In
the end we have K performance measures, all obtained by testing a model on
data not used for its construction. The K-fold Cross Validation estimate is the
average of these K measures. A common choice for K is 10. The following code
puts these ideas in practice for our two models,

cross.validation <- function(all.data,clean.data,n.folds=10) {

n <- nrow(all.data)

idx <- sample(n,n)

all.data <- all.datalidx,]
clean.data <- clean.data[idx,]

n.each.part <- as.integer(n/n.folds)

perf.lm <- vector()
perf.rt <- vector()

for(i in 1:n.folds) {
cat(’Fold ’,i,’\n’)
out.fold <- ((i-1)*n.each.part+1):(i*n.each.part)

.model <- 1m(al ~ .,clean.data[-out.fold,1:12])

.model <- step(l.model)

.model.preds <- predict(l.model,clean.datalout.fold,1:12])
.model.preds <- ifelse(l.model.preds < 0,0,1.model.preds)

e

H

.model <- reliable.rpart(al ~ .,all.datal[-out.fold,1:12])
r.model.preds <- predict(r.model,all.datalout.fold,1:12])

perf.1m[i] <- mean((1l.model.preds-all.datalout.fold,’al1’])"~2) /
mean((mean(all.data[-out.fold,’al’])-all.datalout.fold,’a1’])"2)
perf.rt[i] <- mean((r.model.preds-all.datalout.fold,’al’])"~2) /
mean((mean(all.data[-out.fold,’al’])-all.datalout.fold,’al’])"2)
}

>
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

list(Im=1list(avg=mean(perf.lm),std=sd(perf.lm),fold.res=perf.1lm),
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+ rt=list(avg=mean(perf.rt),std=sd(perf.rt),fold.res=perf.rt))

> cv10.res <- cross.validation(algae,clean.algae)

> cv10.res

> cvl0.res

> cvl0.res
$1m

$1m$avg

[1] 0.6615105

$1m$std
[1] 0.1445622

$1m$fold.res
[1] 0.9032081 0.8211061 0.5616579 0.6315887 0.4587398 0.6257729 0.6718084
[8] 0.4720356 0.7806779 0.6885100

$rt
$rt$avg
[1] 0.6420002

$rt$std
[1] 0.1091459

$rt$fold.res
[1] 0.5751316 0.5773694 0.6860172 0.9014692 0.7118805 0.5312575 0.5502557
[8] 0.6258313 0.5903314 0.6704584

The function cross.validation() implements the K-fold Cross Validation
process outlined above, for the two models and for algal al. The result of the
function is a list with two components that are also lists. Each component
contains the performance of one of the models (linear regression and regression
trees). The performance of the models is described by the average performance
(measured using the NMSE) over the K folds, the standard deviation of this
performance and also a vector containing the performance on each individual
fold.

As we can see from the output of the function, regression trees have a slightly
better score (0.64 against 0.66)**. However, you may also note that there is a
large variation of the scores on the different folds, which is also captured by the
large standard deviations of both methods. We can carry out a formal statistical
test to check whether the difference between the two means is statistically sig-
nificant with some degree of confidence. The appropriate test for this situation
is the paired ¢ test. This test checks the hypothesis that the difference between
the means of the two methods is zero. The following code performs the test for
the results of our methods in the 10 folds,

33You may obtain a different score if you try this code as there is a random component in
the cross validation function (the call to the sample () function).
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> t.test(cv10.res$lm$fold.res,cvlO.res$rt$fold.res,paired=T)
Paired t-test

data: cv10.res$lm$fold.res and cv1iO.res$rt$fold.res
t = 0.2928, df = 9, p-value = 0.7763
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-0.1312125 0.1702331
sample estimates:
mean of the differences
0.01951031

The average difference between the performance of the linear model and of
the regression tree is positive (0.01951031), meaning that the linear model has
a larger average NMSE. However, the 95% confidence interval of the difference
between the two methods ([—0.1312..0.1702]) includes the zero, meaning that
we can not be confident that there is a significant difference between the two
methods. This is equivalently confirmed by the p-value that is clearly above
the value of 0.05 (the significance level for a 95% confidence test), confirming
that the observed differences between the two mean errors are not statisticaly
significant.

In summary, according to these results we have no reasons to prefer one
model over the other, in the task of predicting the concentrations of algal al.

2.8 Predictions for the 7 algae

In this section we will see how to obtain the predictions for the 7 algae on the
140 test samples. Section 2.7 described how to proceed to choose a model to
obtain these predictions. A similar procedure can be followed for all 7 algae.
This process would lead us to the choice of a model to obtain the predictions
for each of the 7 algae.

An alternative procedure is to carry out some kind of averaging over the
models, instead of selecting one of them to obtain the predictions. This mixture
of different models is frequently used as a form of reducing the final prediction
error, by incorporating “different views” of the same training data. As such, we
will include this mixture model as a third alternative to obtain the predictions
of each algal.

In summary, for each algal, we will compare three alternative ways of ob-
taining the predictions for the 140 test samples: using a linear model; using a
regression tree; or using a combination of the two models. The comparison will
be carried out using a 10-fold cross validation process designed to estimate the
performance of these alternatives in predicting the frequencies of the 7 algae.
The estimated performance for the two “basic” models (linear models and re-
gression trees) will be used to calculate a weight. This weight will enter the
averaging process of the two models to obtain the predictions of the mixture
model. The idea is to give more weight on this combination to the model which
we estimate to have better performance.

In the end of this comparison process we will have information to decide
which of the 3 models should be used for each of the 7 algae.
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2.8.1 Preparing the test data

In this case study we have a separate file with test data, for which we want to
obtain predictions for the 7 algae frequencies. Let us start by loading the test
data, following a similar procedure as described in Section 2.3,

> test.algae <- read.table(’Eval.txt’,

+ header=F,

+ dec=’.",

+ col.names=c(’season’,’size’, ’speed’, ’mxPH’, ’mn02’,’Cl’,
+ ’N03’,’NH4’,’0oP04’,’P04’,’Chla’),

+ na.strings=c (’XXXXXXX’))

Note that the test data does not contain the seven columns of the algae
frequencies, which is reflected in the col.names parameter.

The test data does not include samples with lots of missing values. We will
use the same filling method as the one used in Section 2.6.1 to prepare the data
for the linear regression models. As mentioned before, regression trees do not
need any preparation as they handle unknown values.

> datad4dist <- rbind(algael[,1:11],test.algae[,1:11])

> dist.mtx <- as.matrix(daisy(dataddist,stand=T))

> clean.test.algae <- test.algae

> for(r in which(!complete.cases(test.algae)))

+ clean.test.algae[r,which(is.na(test.algae[r,]))] <-

+ apply(data.frame(

+ dataddist [c(as.integer (names(sort(dist.mtx[r+198,]1)[2:11]))),
+ which(is.na(test.algael[r,]1))]1),

+ 2,central.value)

2.8.2 Comparing the alternative models

In this section we carry out a process of performance estimation for three al-
ternative models: linear regression; a regression tree; and a combination of the
predictions of both models. As mentioned before, we use a 10-fold cross valida-
tion method to estimate the NMSE of these models for the 7 algae. The code
is quite similar to the one given in Section 2.7 with the main difference being
the fact that we are estimating the accuracy for all 7 algae and using a third
alternative model,

cv.all <- function(all.data,clean.data,n.folds=10) {

n <- nrow(all.data)

idx <- sample(n,n)

all.data <- all.datalidx,]
clean.data <- clean.datal[idx,]

n.each.part <- as.integer(n/n.folds)
perf.lm <- matrix(nrow=n.folds,ncol=7)

perf.rt <- matrix(nrow=n.folds,ncol=7)

>
+
+
+
+
+
+
+
+
+
+
+  perf.comb <- matrix(nrow=n.folds,ncol=7)
+

¥

for(i in 1:n.folds) {
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cat(’Fold ’,i,’\n’)
out.fold <- ((i-1)*n.each.part+1):(i*n.each.part)

for(a in 1:7) {

form <- as.formula(paste(names(all.data)[11+a],"~."))

1.model <- 1m(form,clean.datal[-out.fold,c(1:11,11+a)])

1.model <- step(l.model)

1.model.preds <- predict(l.model,clean.datalout.fold,c(1:11,11+a)])
1.model.preds <- ifelse(l.model.preds < 0,0,1.model.preds)

r.model <- reliable.rpart(form,all.datal[-out.fold,c(1:11,11+a)])
r.model.preds <- predict(r.model,all.datalout.fold,c(1:11,11+a)])

perf.lm[i,a] <- mean((l.model.preds-all.datalout.fold,11+al)"~2) /
mean((mean(all.data[-out.fold,11+a])-all.datalout.fold,11+a])"2)

perf.rt[i,a] <- mean((r.model.preds-all.datalout.fold,11+al)"~2) /
mean((mean(all.data[-out.fold,11+a])-all.datalout.fold,11+a])"2)

wl <- 1-perf.lm[i,a]/(perf.lm[i,al+perf.rt[i,a])

wr <- 1-wl

comb.preds <- wl*l.model.preds + wr*r.model.preds

perf.comb[i,a] <- mean((comb.preds-all.datalout.fold,11+al)"~2) /
mean((mean(all.data[-out.fold,11+a])-all.datalout.fold,11+a])"2)

cat(paste("Algal a",a,sep=""),"\tlm=",perf.1lm[i,al,"\trt=",
perf.rt[i,al,"\tcomb=",perf.comb[i,al,"\n")

lm.res <- apply(perf.lm,2,mean)

names (lm.res) <- paste("a",1:7,sep="")
rt.res <- apply(perf.rt,2,mean)
names(rt.res) <- paste("a",1:7,sep="")
comb.res <- apply(perf.comb,2,mean)
names (comb.res) <- paste("a",1:7,sep="")
list(Im=1m.res,rt=rt.res,comb=comb.res)

> all.res <- cv.all(algae,clean.algae)

> all.res

$1m

al a2 a3 ad ab ab a7

0.8001161 1.0645198 1.0554538 2.7642420 1.1138268 0.8801750 1.1648678

$rt

al a2 a3 a4 ab a6 a7

0.8967313 1.0000000 1.0047853 1.0000000 1.0000000 1.0000000 0.9500312

$comb

al a2 a3 ad ab ab a7
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0.7360687 0.8641726 0.9463703 0.8990338 0.8936548 0.8401665 0.9491620
> all.res
$1m

al a2 a3 ad ab ab a7
0.7006490 1.0188807 0.9461492 3.2476246 0.9755554 0.8508742 1.2295709

$rt
al a2 a3 ad ab a6 a7
0.6997513 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0802391

$comb
al a2 a3 a4 ab a6 a7
0.6077761 0.8671840 0.8956491 0.8868241 0.8402844 0.7828258 1.0508497

This may take a little while to run on slower computers and will surely
produce lots of output!

The cv.all() function returns a list containing three vectors: one with
the estimated NMSE of the linear models for all 7 algae; another with the
same estimates for regression trees; and the third with these estimates for the
combination strategy. We will use these estimates to decide which model to use
for obtaining the predictions for the 140 test samples.

The function has already some degree of complexity and it is worth spending
some time trying to understand its functioning. Note how we have built the
formula in the calls to 1m() and reliable.rpart(). The cv.all() function
obtains several models for each algal, and for each of the 10 iterations of the
cross validation process. This is accomplished by using two for () cycles inside
each other. The first iterates through the 10 repetitions of the 10-fold cross
validation process. On each of these iterations the i variable takes a different
value leading to a different set of data being left out for testing the models (c.f.
the out.fold variable that depends on i). For each i iteration, the function
obtains different models for each algal. This is accomplished with another for ()
cycle. On each repetition of this inner cycle what varies is the target variable,
which is successively the algal 1 to 7. As such, the single difference when calling
the modeling functions is on the target variable, i.e. the formula argument.
This means that on the first model we want the formula model to be “al ~ .7,
on the second model “a2 ~ .”, and so on. In order to achieve this we have to
“build” the formula at running time as the inner for() iterates from 1 to 7.
This is accomplished with the call to the function as.formula() that can be
used to transform a string into a model formula.

As we can observe from the results of the estimation process, the combination
strategy, in spite of some poor NMSE scores (algae a3 and a7), is the alternative
with better estimated predictive accuracy for all algae. One can question the
statistical significance of these observed differences. This could be asserted
through paired ¢ tests as the ones carried out in Section 2.7. However, even
if some of the differences are not statistically significant we need to make a
decision regards which model is going to be used for obtaining the predictions
for the 140 test samples. As such, even on those cases we will choose the model
with better estimated performance (even if the difference to the others is not
statistically significant).

In summary, we will use the mixture model in all algae, when obtaining
predictions for the 140 test samples.
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2.8.3 Obtaining the prediction for the test samples

In this section we will obtain two regression models using the 200 training sam-
ples, for each of the 7 algae. These models will then be used to obtain predic-
tions for the 140 test samples. The predictions of each of the models will then
be weighed using the prediction accuracy estimates obtained in Section 2.8.2.
These weighed predictions will be our final “bets” for the 140 test samples as a
result of our predictive performance estimation process.

The following code obtains 7 different linear models for the algae, construct-
ing a list with several information concerning these models that we may later
inspect or use in any way,

> 1m.all <- function(train,test) {

+ results <- list()

+ results$models <- list()

+ results$preds <- list()

+ for (alg in 1:7) {

+ results$models[[alg]l] <- step(lm(as.formula(paste(names(train)[11+alg]l,’~ .’)),
+ data=train[,c(1:11,11+alg)]))
+ p <- predict(results$models[[algl],test)
+ results$preds[[algl] <- ifelse(p<0,0,p)
+ 1}
+

+

results

}

> 1m.models <- 1m.all(clean.algae,clean.test.algae)

The 1m.all () function produces a list containing two sub-lists: one with the
7 linear models; and the other with the respective predictions of these models
for the 140 test samples. This way of working is one of the advantages of R with
respect to other statistical software. All models obtained in R are objects, and
as such can be stored in variables for later inspection. For instance, if we were
curious about the linear model obtained for algae a5, we can check its details
at any time by simply doing,

> summary (1m.models$models[[5]11)

Call:
Im(formula = ab ~ season + size + speed + mn02 + NO3 + NH4 +
P04, data = train[, c(1:11, 11 + alg)])

Residuals:
Min 1Q Median 3Q Max
-12.945 -3.503 -0.975 2.143 35.770

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -5.0245574 3.4407693 -1.460 0.1459

seasonspring -1.9868754 1.5455275 -1.286 0.2002
seasonsummer 0.9967160 1.4982003 0.665 0.5067
seasonwinter -1.6702756 1.4389373 -1.161 0.2472
sizemedium 3.4485731 1.3323818 2.588 0.0104 *
sizesmall 0.1520604 1.4172271 0.107 0.9147
speedlow -3.4456928 1.6615247 -2.074 0.0395 *
speedmedium -0.3032838 1.1892515 -0.255 0.7990
mn02 0.7030887 0.2622467 2.681 0.0080 *x*
NO3 0.4885728 0.1949781 2.506 0.0131 *
NH4 -0.0008542 0.0003647 -2.342 0.0202 *
P04 0.0184992 0.0045891 4.031 8.09e-05 *x*x*
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Signif. codes: 0 ‘**x*’ 0.001 ‘x*x’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ > 1

Residual standard error: 6.608 on 186 degrees of freedom
Multiple R-Squared: 0.2695, Adjusted R-squared: 0.2263
F-statistic: 6.238 on 11 and 186 DF, p-value: 1.022e-08

One of the nicest things of having the model construction functions sharing a
similar syntax, is that we can create a similar function to obtain regression trees
by only having to change the function 1m() into reliable.rpart()! Everything
else stays the same! as you can see below,

rt.all <- function(train,test) {
results <- list()
results$models <- 1list()
results$preds <- list()
for (alg in 1:7) {

data=train[,c(1:11,11+alg)])
results$preds[[alg]l] <- predict(results$models[[algl],test)
}

results

}
> rt.models <- rt.all(algae,test.algae)

Having obtained the predictions from the models considered in this case
study, we are now ready to obtain the weighed average of these predictions that
lead to our final predictions,

> final.preds <- function(lm.preds,rt.preds,ws) {

+ final <- matrix(nrow=140,ncol=7)

+ for (alg imn 1:7) {

+ wl <- 1-ws$lm[algl/(ws$lm[alg]l +ws$rt[alg]l)

+ wr <- 1-wl

+ final[,alg] <- wl*lm.preds[[alg]] + wr*rt.preds[[alg]]
+ 3

+  colnames(final) <- paste(’a’,1:7,sep=’’)

+ final

+}
> final <- final.preds(lm.models$preds,rt.models$preds,all.res)
> final[1:10,]
al a2 a3 ad ab a6 a7
[1,] 8.010443 7.659476 4.046844 2.968524 6.398159 3.801033 2.481505
[2,] 13.092888 7.929399 3.754411 1.488492 5.184258 8.104343 2.585820
[3,] 15.774637 7.748229 3.544444 2.191713 4.490437 5.437407 1.957751
[4,] 14.933346 6.463206 5.465103 1.788305 3.737262 4.704890 1.709891
[5,] 35.908769 7.717396 2.998125 1.682552 3.995119 2.810936 1.370024
[6,] 36.034865 9.180016 2.220470 1.466830 5.023223 4.380623 1.370024
[7,] 38.045345 4.417147 5.022605 2.240296 3.182154 2.810936 2.288463
[8,] 36.372757 8.082238 2.995262 1.748558 4.695560 4.100239 1.735729
[9,] 35.124901 5.624183 3.198995 1.800770 5.081536 5.398252 1.764130
[10,] 17.638827 5.289090 2.884245 2.051009 5.764570 6.543876 1.711255

The matrix final contains our predictions for the 7 algae of the 140 test
samples (above we are only showing the predictions for the first 10).

We may be curious about how good (or bad) are these predictions. As
mentioned in the beginning of this chapter we have the “solutions” for these

34 Actually, we also remove the correction for negative predicted frequencies, as that does
not happen with regression trees.
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140 test samples in a text file at the book web page. We may compare our
predictions with these true values just to check how far we got from the perfect
predictions.

> algae.sols <- read.table(’Sols.txt’,
+ header=F,dec=’.",
+ col.names=c(’al’,’a2’,’a3’,’a4’,’ab’,’a6’,’a7’))
> sq.errs <- (final-algae.sols)"2
> abs.errs <- abs(final-algae.sols)
> apply(sq.errs,2,mean)

al a2 a3 a4 ab a6 a7
229.572679 101.150321 28.111477 5.782261 82.443397 154.842940 21.871590
> apply(abs.errs,2,mean)

al a2 a3 ad ab a6 a7
11.298151 7.139530 4.078631 1.811488 5.487225 7.543154 2.700523
> baseline.preds <- apply(algael,paste(’a’,1:7,sep=’")],2,mean)

> base.sq.errs <- (matrix(rep(baseline.preds,nrow(algae.sols)) ,byrow=T,ncol=T)
+ - algae.sols)"2
> apply(sq.errs,2,mean)/apply(base.sq.errs,2,mean)

al a2 a3 a4 ab a6 a7
0.4172368 0.7931353 0.5327987 0.1082848 0.7276379 0.7750680 0.3779473

algae.sols <- read.table(’Sols.txt’,
header=F,dec=".",
col.names=c(’al’,’a2’,’a3’,’a4’,’ab’,’a6’,’a7’))
sq.errs <- (final-algae.sols)"2
abs.errs <- abs(final-algae.sols)
apply(sq.errs,2,mean)
al a2 a3 a4 ab a6 a7
229.407656 104.186428 29.589980 6.508241 73.238434 149.645554 20.876464
> apply(abs.errs,2,mean)
al a2 a3 ad ab a6 a7
11.144272 6.918737 3.966268 1.705084 4.706461 7.247290 2.459895
> baseline.preds <- apply(algael,paste(’a’,1:7,sep="")],2,mean)

vV V.V + + VvV

> base.sq.errs <- (matrix(rep(baseline.preds,nrow(algae.sols)) ,byrow=T,ncol=T)
+ -algae.sols) "2
> apply(sq.errs,2,mean)/apply(base.sq.errs,2,mean)

al a2 a3 ad ab a6 a7

0.4169369 0.8169419 0.5608209 0.1218802 0.6463958 0.7490525 0.3607512

The code presented above calculates the MSE, MAD and NMSE for all 7
algae. As we can observe from the NMSE results (the last calculation), the scores
obtained with our models are quite good for some algae, when compared to the
baseline predictor (predicting the average target value on the training data).
Still, we can observe some relatively large average errors in the predictions of
some of the algae (e.g. al).

Now that we know the true values of the target variables for the 140 test
samples, we can check whether our model selection strategy “did a good job”, by
comparing the accuracy we have obtained with our strategy, with the accuracy
we would have obtained if we used only the linear models or the regression trees,

rt.preds <- matrix(nrow=140,ncol=7)
I1m.preds <- matrix(nrow=140,ncol=7)
for(a in 1:7) {rt.preds[,a] <- rt.models$preds[[al];lm.preds[,a] <- 1lm.models$preds[[al]}
rt.sq.errs <- (rt.preds-algae.sols)" 2
Im.sq.errs <- (lm.preds-algae.sols)" 2
apply(rt.sq.errs,2,mean)/apply(sq.errs,2,mean)
al a2 a3 ad ab a6 a7
.0843925 1.0616313 1.1254209 1.3584554 1.1186903 1.1580331 0.9889851
> apply(lm.sq.errs,2,mean)/apply(sq.errs,2,mean)

V V.V V VYV

[ure
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al a2 a3 a4 ab a6 a7
1.1361735 1.0120873 1.0004431 1.2750399 0.9679453 0.9349201 1.0688560

As we can observe, most NMSE’s resulting from comparing the performance
of regression trees and linear models against the combination strategy, are above
1. This means that the model selection strategy based on cross validation es-
timates performed well. Still, there are exceptions to this (algae a5 and a6
for linear models), which means that in these particular cases we would obtain
more accurate predictions if we have used the linear models. This serves as an
alert to the risks we are taking whenever we are relying on processes of accuracy
estimation: as estimates they may be wrong! Still, these methodologies are de-
signed to be right on average, and in any case there is no alternative whenever
we do not know the true value of the target variables of our test cases.

Further readings on combination of models

Combining different models (sometimes known as ensemble learning) is a hot toplc in data mining.
Techniques like bagging ( , ) or boosting ( , )
are quite frequently used to increase the performance of base models. A good overview of research
on this topics can be found in ( )-

2.9 Summary

The main goal of this first case study was to familiarize the reader with R. With
this purpose we have used a small problem at least by data mining standards.
Our goal in this chapter was to introduce the reader to some of the existing tech-
niques in R, without exploring too deeply all the modeling techniques available
in R.

In case you are interested in knowing more about the international data
analysis competition that was behind the data used in this chapter, you may
browse through the competition Web page , or read some of the papers of the
winning solutions ( ; ;

, ) to compare the data analyblb strategles followed by these authors

We hope that by now you are more acquainted with the interaction with R,
and also familiarized with some of its features. Namely, you should have learned
some techniques for:

e loading data from text files,

e descriptive statistics of data sets,

e basic visualization of data,

e handling data sets with unknown values,
e linear regression models,

e regression trees,

e model selection and comparison,

e and model combination.

35http://www.erudit.de/erudit/competitions/ic-99/.
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Further cases studies will give you more details on these and other data
mining techniques.
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Chapter 3

Case Study 2:
Predicting Stock Market
Returns

The second case study addresses the problem of trying to build a stock trading
system based on prediction models obtained with daily stock quotes data. We
will apply different models to predict the returns of IBM stocks at the New York
Stock Exchange. These predictions will be used together with a trading rule
that will generate buy and sell signals. This chapter addresses several new data
mining issues: (1) how to use R to analyze data stored in a database; (2) how
to handle prediction problems where there is a time ordering among training
cases (usually known as a time series); (3) and the consequences of wanting to
translate model predictions into actions.

3.1 Problem description and objectives

Stock market trading is an application domain with a big potential for data min-
ing. In effect, the existence of an enormous amount of historical data suggests
that data mining can provide a competitive advantage over human inspection of
this data. On the other hand there are authors claiming that the markets adapt
so rapidly in terms of price adjustments that there is no space to obtain profits
in a consistent way. This is usually known as the efficient markets hypothesis.
This theory has been successively replaced by more relaxed versions that leave
some space for trading opportunities.

The general goal of stock trading is to maintain a portfolio of stocks based
on buy and sell orders. The long term objective is to achieve as much profit
as possible from these trading actions. In the context of this chapter we will
constrain a bit more this general scenario. Namely, we will only “trade” a
single stock. Given this security and an initial capital, we will try to maximize
our profit over a future testing period by means of trading actions (Buy, Sell,
Hold). Our trading strategy will use as basis for decision making the indications
provided by the result of a data mining process. This process will consist of
trying to predict the future returns of the stock based on a model obtained

79
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with historical quotes data. Thus our prediction model will be incorporated in
a trading system that generates its decisions based on the predictions of the
model. Our overall evaluation criteria will be the performance of this trading
system, i.e. the profit/loss resulting from the actions of the system. This means
that our main evaluation criteria will be the results of applying the knowledge
discovered by our data mining process and not the accuracy of the models
developed during this process.

3.2 The available data

In our case study we will concentrate on trading “IBM” stocks from the New
York Stock Exchange (NYSE) market. Daily data concerning the quotes of this
security are freely available in many places, like for instance the Yahoo finance
site'. Intra-day data” is not so easy to obtain, thus our case study will focus on
trading at the end of each session which is possible when only the daily quotes
are available.

The data that will be used in this case study is provided in two different
formats at the book Web site®. The first is a comma separated values (CSV)
file that can be read into R in the same way as the data used in Chapter 2.
The book site also provides the data as a MySQL database dump file which we
can use to create a database with the stock quotes in MySQL. In this section,
we will illustrate how to load this data into R for these two alternative ways of
storing it. It is up to you to decide which alternative you will download. The
rest of the chapter (i.e. the analysis after reading the data) is independent of
the storage schema you decide to use.

Whichever the format you choose to download, the daily stock quotes data
includes information regarding the following properties:

e Date of the stock exchange session.

e Open price at the begining of the session.

Highest price during the session.

Lowest price.

Closing price of the session.

Volume of transactions.

Ticker (a identifier of the stock).

The reason for the ticker column is the fact that although we will concentrate
on trading IBM stocks, both files include quotes of other companies so that you
can go beyond the analysis described here. The period for which we have quotes
is not identical for all companies. Still, for IBM, we include the quotes from
02-Jan-1970 to 17-May-2002.

Ihttp://finance.yahoo.com.
2Data including the stock quotes during each daily session.
Shttp://www.liacc.up.pt/ 1ltorgo/DataMiningWithR
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We will also illustrate a third alternative way of getting this and other stocks
data directly. This alternative consists of taking advantage of R tseries pack-
age that includes a function to get the quotes of many stocks and stock indices
directly from the Yahoo finance site.*

3.2.1 Reading the data from the CSV file

If you decide to use the CSV file, you will download a file whose first lines look
like this,

Query Results

Connection: ltorgo@buba.niaad.liacc.up.pt:3306
Host: buba.niaad.liacc.up.pt

Saved: 2002-05-20 18:42:50

Query:
select * from quotes

H oH oH H

#

’Date’,’Open’,’High’,’Low’,’Close’,’Volume’,’Ticker’,

’1986-03-13 00:00:00°,°0.18,°0.27,°0.18?,70.19°,°3582600°, ’MSFT’,
’1986-03-14 00:00:00’,°0.19’,°0.27,70.19°,70.2°,°1070000°, ’MSFT’,
’1986-03-17 00:00:00’,°0.27,°0.21°,°0.2°,70.2°,°462400° ,’MSFT’,
’1986-03-18 00:00:00’,°0.27,70.217,70.27,70.2”,°235300°,’MSFT’,
’1986-03-19 00:00:00’,°0.27,°0.2°,70.19°,°0.2”,°166300° ,’MSFT’,
’1986-03-20 00:00:00’,’0.27,’0.27,70.19°,70.19°,°202900°, ’MSFT’,

This CSV file was created from a MySQL database. The software that
generated it has attached a header with some comments regarding the creation
process, which obviously are not of interest to us in R. These comment lines
all start with the character “#”. All data values are within single quotes and
all lines end with an extra comma. Let us see how can we overcome these
“difficulties”, and read in the data in an acceptable format for analysis,

stocks <- read.csv(’stocks.txt’,
col.names=c(’Date’,’Open’,’High’,’Low’,’Close’,
’Volume’,’Ticker’,’X’),
quote = now
as.is=c(1:6),
comment.char="#’,
header=T)
stocks <- stocks[,1:7]
ibm <- stocks[stocks$Ticker==">IBM’, 1:6]
ibm$Date <- substr(ibm$Date,1,10)

VVV + 4+ 4+ 4+ + +V

A few comments on these instructions. First of all we have used the read.csv()
function, which is basically a wrapper for read.table() used in Chapter 2, but
“tunned” for data files with values separated by commas. The fact that the
file has a comma at the end of each line leads R to expect that each line has
one extra field. Because of this we have added another variable to the column
names ("X’). This column will be empty because there are no real values in the
file (just an extra comma), and thus we remove it with the second instruction.

4As long as you have your computer connected to the Internet.
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The quote parameter is used to tell R the character that is used to quote values
(in this case the single quote). The as.is parameter is necessary because by
default R transforms character columns into factors. Because all our values are
quoted in the CSV file, the first 6 columns would be transformed into factors,
which does not make sense for this data. This parameter is used to avoid this
transformation for these 6 columns (notice that the ticker column will be trans-
formed into a factor). The comment . char parameter is used to tell R that every
line starting with a certain character should be disregarded as a comment line.

We then create another data frame with the subset of IBM quotes and with-
out the ticker column. Finally, we truncate the time section of the date column
to contain only the year, month and day. This is achieved with the function
substr () that selects parts of strings given the position of the first and the last
character to extract.

If we do not wish to carry out any further analysis with other companies we
can remove the stocks data frame, thus freeing some memory, by issuing,

> rm(stocks)

3.2.2 Reading the data from a MySQL database

The other alternative form of storing the data used in this case study is in
a MySQL database. At the book Web site you have a file containing SQL
statements that can be downloaded and executed within MySQL to create the
database. Information on the use and creation of MySQL databases can be
found at Section 1.3.

After creating a database to store the stock quotes we are ready to execute
the SQL statements of the file downloaded from the book site. Assuming that
this file is in the same directory from where you have entered MySQL, and that
your database is named stocks, you can type,

mysql> use stocks;
mysql> source stocks_db.sql;

The SQL statements contained in the file “stocks_db.sql” (the file down-
loaded from the book Web site) will create a table named “quotes” and insert
several records in this table containing the available data for our case study.
You may confirm that everything is OK by executing the following statements
at the MySQL prompt,

mysql> show tables;

e +
| Tables_in_stocks |
. +
| quotes |
e +

1 row in set (0.03 sec)

mysql> select * from quotes where Ticker=’IBM’;

The last SQL statement should print a large set of records, namely the quotes
of IBM.
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Loading the data using the RODBC package

If you are running R on a Windows PC, independently of whether the MySQL
database server resides on this same PC or in another computer (eventually
running other operating system), the simplest way to connect to the database
from R is through the ODBC protocol. In order to use this protocol in R you
need to install the RODBC package.

Before you are able to connect to any MySQL database for the first time
using the ODBC protocol a few extra steps are necessary. Namely, you need also
to install the MySQL ODBC driver on your Windows system, which is named
“myodbc” and can be downloaded from the MySQL site. This only needs to be
done the first time you use ODBC to connect to MySQL. After installing this
driver you can create ODBC connections to MySQL databases residing on your
computer or any other system to which you have access through your local net-
work. According to the ODBC protocol every database connection you create
has a name (the Data Source Name, or DSN according to the ODBC jargon).
This name will be used to access the MySQL database from R. To create an
ODBC connection on a Windows PC you have to use a program named “ODBC
data sources” available at the Windows control panel. After running this pro-
gram you have to create a new User Data Source using the MySQL ODBC
driver (myodbc) that you are supposed to have previously installed. During this
creation process you will be asked several things like the MySQL server address
(localhost if it is your own computer, or e.g. myserver.xpto.pt if it is a
remote server), the name of the database to which you wish to establish a con-
nection (stocks in our previous example), and the name you wish to give to this
connection (the DSN). Once you have completed this process, which you only
have to do for the first time, you are ready to connect to this MySQL database
from R.

The following R code establishes a connection to the stocks database from
R, and loads in the stock data into a data frame,

library (RODBC)

ch <- odbcConnect ("stocksDSN",uid="myuser" ,pwd="mypassword")
stocks <- sqlQuery(ch,"select * from quotes")

odbcClose(ch)

ibm <- stocks[stocks$Ticker=="IBM’,1:6]

ibm$Date <- substr(ibm$Date,1,10)

V V V V V V

The first instruction loads the RODBC package that provides the functions
allowing R to communicate with the database through the ODBC protocol.
The second instruction creates a communication channel with the data source
named “stocksDSN”?. For this to be successful you need to provide your MySQL
server username and password. The third instruction is the workhorse function
of the RODBC package that allows you to send SQL queries to the database
and store the result in a data frame. After executing the query we can close
the connection to the database. Finally, we create a data frame with the IBM
quotes information and eliminate the time information from the data field, as
before.

5Here you should substitute by whichever name you have used when creating the data
source in the Windows control panel.
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If you do not wish to analyze the quotes data of other companies it would
be easier to load only the IBM quotes from the database, as shown below,

library (RODBC)

ch <- odbcConnect("stocksDSN",uid="myuser",pwd="mypassword")

ibm <- sqlQuery(ch,"select Date, Open, High, Low, Close, Volume
from quotes where Ticker=’IBM’")

odbcClose(ch)

ibm$Date <- substr(ibm$Date,1,10)

VvV V + V VvV V

A brief note on working with extremely large databases. If your query gen-
erates a result too large to fit in your computer main memory then you have
to use some other strategy. The database interface packages of R have several
functions that allow you to send the query to the DBMS, but get the results in
smaller chunks. Obviously, this means that you will also need to adjust your
posterior data analysis steps since you will get the data in several steps and not
in a single data frame.

Loading the data using the RMySQL package

In case you are running R from a Linux box the easiest way to communicate to
your MySQL database is through the functions of the RMySQL package. With
this package you do not need any preparatory stages as with ODBC. After
installing the package you can start using it as shown by the following example,

library(RMySQL)
ch <- dbConnect (MySQL() ,dbname="stocks",
user="myuser" ,password="mypassword")
ibm <- quickSQL(ch,
"select Date, Open, High, Low, Close, Volume from quotes where Ticker=’IBM’")
close(ch)
ibm$Date <- substr(ibm$Date,1,10)

vV V + V + VvV VvV

After loading the RMySQL package we create a connection to the database
using the dbConnect () function. You need to supply the name of the database,
your MySQL username and password. After establishing the connection you
can send SQL statements to the server and collect the results of the queries in
a data frame using the quickSQL() function. Finally, we close the connection
and do the same post-processing as before.

Using the DBI package

The main idea of the DBI package is database independence. This package
provides a set of functions that lie between the user and the database driver
that will then communicate with the DBMS. The key idea is avoiding learning
different driver-dependent functions and instead use a common set of functions
that will then be translated to driver-specif calls. The only thing the user needs
to specify is the DBMS driver he wants to use. This means that with this
package we would be able to use basically the same code to interface either
to RODBC or RMySQL, which was not the case in the code presented on the
previous two sections.

Let us see how to use the DBI package. Suppose we are running R in a Linux
computer and we want to get our stocks data from a MySQL database. We could
use the code shown on the previous section or alternatively the following code:
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> library(RMySQL)

> library(DBI)

> drv <- dbDriver("MySQL")

> ch <- dbConnect(drv,dbname="stocks",

+ user="myuser" ,password="mypassword")

> ibm <- dbGetQuery(ch,

+ "select Date, Open, High, Low, Close, Volume from quotes where Ticker=’IBM’")
> dbDisconnect (ch)

> dbUnloadDriver (drv)

> ibm$Da