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Huge number of features

• text classification, ≈ 50,000 words in a dictionary

• bioinformatics, ≈ 10,000 measurements of gene expression levels

• computer vision, ≈ 1,000,000 pixels
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Feature subset selection

• choose a small subset of the relevant features from the original 
features by removing irrelevant, redundant or noisy features

• the aim: better learning performance, i.e. higher learning accuracy, 
lower computational cost, or better model interpretability
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Evaluation of attributes

• numerical evaluation and ranking of the attributes

• the success of the evaluation procedure depends on the role it 
plays in learning:

• feature subset selection

• building of the tree-based models

• constructive induction

• discretization

• attribute weighting

• comprehension

• …
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Attribute description

color weight shape size sort

red 12 round middle apple

yellow 20 conic large pear

red 15 round tiny apple

green 8 round small pear

yellow 22 conic large apple

mixed 12 conic small apple

green 15 round middle apple

mixed 8 round tiny apple

yellow 6 round small pear
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▪ nominal attributes: ordered and unordered

▪ numeric attributes



Feature evaluation

• in order to select attributes, we have to evaluate (rank) them

• the success of feature evaluation is measured through the success of 
learning 

• an example: feature evaluation in decision tree building

• in each interior node of the tree an attribute is selected which 
determines split of the instances

• the attributes are evaluated to ensure useful split
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Three types of feature selection methods

• filter methods: independent on learning algorithm, select the most 
discriminative features through a criterion based on the character of 
data, e.g. information gain and ReliefF

• wrapper methods: use the intended learning algorithm to evaluate 
the features, e.g., progressively add features to SVM while 
performance increases

• embedded method select features in the process of learning
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Heuristic measures for attribute evaluation

• impurity based
• information theory based (information gain, gain ratio, distance measure, J-measure)

• probability based: Gini index, DKM, classification error on the training set

• MDL

• statistics G, 2

• mean squared and mean absolute error (MSE, MAE)

• assume conditional independence (upon label) between the attributes

• context sensitive measures: 
• Relief, Contextual Merit, 

• random forests or boosting based attribute evaluation, 

• affinity graph based 
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Information gain

• measure purity of labels before and after the split  

• impurity = entropy

• each attribute is evaluated independently from others
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Multivalued and numeric attributes 
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• multivalued: 
insufficient 
statistical support 
in certain splits

• numeric: requires 
prior discretization



Attribute interactions
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• criterion: evaluate attribute according to its power of separation 
between near instances 

• values of good attribute should distinguish between near 
instances from different class and have similar values for near 
instances from the same class

Relief algorithms
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Relief algorithms

• no assumption of conditional independence

• context sensitive

• reliable also in problems with strong conditional dependencies

• included in several machine learning systems (e.g., Weka, Orange, scikit-
learn, R)

• Relief (Kira in Rendell, 1992): two class classification
• ReliefF (Kononenko, 1994): multi-class classification
• RReliefF (Robnik Šikonja in Kononenko, 1997): regression

Marko Robnik-Šikonja, Igor Kononenko: Theoretical and Empirical Analysis of ReliefF and RReliefF. 
Machine Learning Journal, 53:23-69, 2003 
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Algorithm Relief

Input:  set of instances <xi, i>   

Output: the vector W of  attributes’ evaluations  
 

set all weights W[A] := 0.0; 

for i := 1 to m do begin 

randomly select an instance R; 

find nearest hit H and nearest miss M;  

for A := 1 to #all_attributes do 

W[A] := W[A] - diff(A,R,H)/m + diff(A,R,M)/m;  

end; 



for nominal attributes
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Extension ReliefF

• multi-class problems

• incomplete and noisy data

• robust

• uses with k nearest instances from all the classes



The algorithm ReliefF

Input:  set of instances <xi, i>   

Output: the vector W of  attributes’ evaluations  
 

for v:=1 to a do Wv := 0.0; 

for i := 1 to m do begin 

randomly select an instance Ri 

find k nearest hits H  

for each class t  Ri, do  

     from class t find k nearest misses M(t) 

for v := 1 to a do 

 update Wv  according to update formula  

end; 



Update formula
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In regression: RReliefF

• after applying the Bayesian rule: P(A|B) = P(A)P(B|A)/P(B)

• we approximate this formula

• unified view on attribute evaluation in classification and regression

W 𝐴 = 𝑃𝑑𝐴|𝑑𝐶 − 𝑃𝑑𝐴|¬𝑑𝐶

Marko Robnik-Šikonja, Igor Kononenko: An adaptation of Relief for attribute estimation in regression. Machine Learning, 
Proceedings of ICML 1997





Relief’s interpretations

• probabilistic interpretation

• ratio of the explained concept: in the limit, an attribute is 
assigned a weight interpreted as a ratio between the 
number of prediction values it helps to determine and the 
number of examined instances



Regularization for feature selection

• feature selection as part of learning (embedded method)

• loss function is composed of two components: prediction error and 
number/weight of included features

𝐿 𝑋, 𝑌, 𝑓 = ෍

𝑖=1

𝑛

𝐼(𝑦𝑖 ≠ 𝑓 𝑥𝑖 ) + 𝜆෍

𝑗=1

𝑎

𝐼(𝐴𝑗 ∈ 𝑋)

• in regression we get similar expressions for ridge regression and lasso
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Ridge regression
• Ordinary Least Squares (OLS) estimates       by minimizing

• Ridge regression minimizes a slightly different equation 
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Ridge regression adds a penalty on      ! 
• The effect of this equation is to add a penalty of the form 

where the tuning parameter     is a positive value. 

• This has the effect of “shrinking” large values of        towards zero.

• It turns out that such a constraint should improve the fit, because shrinking the 
coefficients can significantly reduce their variance

• Notice that when    = 0, we get the OLS!  

25
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Credit data: ridge regression

• As     increases, the standardized coefficients shrinks towards zero.

26



Why can shrinking towards zero be a good thing 
to do?

• It turns out that the OLS estimates generally have low bias but can be highly 
variable. In particular when n and p are of similar size or when 
n < p, then the OLS estimates will be extremely variable.

• The penalty term makes the ridge regression estimates biased  but can also 
substantially reduce variance

• Thus, there is a bias/ variance trade-off
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Ridge regression bias / variance
• Black: Bias

• Green: Variance

• Purple: MSE

• Increase of        
increases bias but 
decreases variance
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Bias  / variance trade-off

• In general, the 
ridge regression 
estimates will be 
more biased 
than the OLS 
ones but have 
lower variance

• Ridge regression 
will work best in 
situations where 
the OLS 
estimates have 
high variance
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Computational advantages of ridge regression

• If number of features p is large, then using the best subset selection 
approach requires searching through enormous numbers of possible 
models

• With ridge regression, for any given    , we only need to fit one model 
and the computations turn out to be very simple

• Ridge regression can even be used when p > n, a situation where OLS 
fails completely!      
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The LASSO method

• Ridge regression isn’t perfect

• One significant problem is that the penalty term will never force any of 
the coefficients to be exactly zero. Thus, the final model will include all 
variables, which makes it harder to interpret 

• A more modern alternative is the LASSO

• The LASSO works in a similar way to ridge regression, except it uses a 
different penalty term 
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LASSO’s Penalty Term
• Ridge Regression minimizes

• The LASSO estimates the        by minimizing the  

32
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What’s the difference between ridge regression 
and lasso?

• This seems like a very similar idea but there is a big 
difference.

• Using this penalty, it could be proven mathematically that 
some coefficients end up being set to exactly zero.

• With LASSO, we can produce a model that has high 
predictive power and it is simple to interpret.
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Credit data: Ridge and LASSO
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Selecting the tuning parameter 

• We need to decide on a value for     .

• Select a grid of potential values, use cross validation to estimate the error rate 
on test data (for each value of    ) and select the value that gives the least error 
rate.
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Wrapper approach

start with an empty set of features S={} // forward selection

repeat

add all unused features one by one to S

train a prediction model with each set S

evaluate each prediction model

keep the best added feature in S

until all features are added to S

return the best set of features encountered

• high computational load but effective for a given learning model; attention to 
data overfitting

• how would backward selection differ?
36



Model evaluation metrics

• Evaluation metrics: How can we measure accuracy?  Other metrics to consider?

• Regression: MSE, MAE

• Classification:  accuracy, sensitivity, specificity, AUC, precision, recall

• Comparing classifiers:

• Confidence intervals

• Cost-benefit analysis and ROC Curves

• rank-based tests (Friedman/Nemenyi)

• Bayesian (hierarchical) tests
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Classifier evaluation metrics: 
confusion matrix aka missclassification matrix

Actual class\Predicted 
class

buy_computer 
=  yes

buy_computer 
= no

Total

buy_computer = yes 6954 46 7000

buy_computer = no 412 2588 3000

Total 7366 2634 10000

• Given m classes, an entry, CMi,j in a confusion matrix indicates # of tuples 
in class i that were labeled by the classifier as class j

• May have extra rows/columns to provide totals

Confusion Matrix:
Actual class\Predicted class C1 ¬ C1

C1 True Positives (TP) False Negatives (FN)

¬ C1 False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:
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Classification accuracy, error rate

• Classifier Accuracy, or recognition rate: percentage of test set tuples 
that are correctly classified

Accuracy = (TP + TN)/All

• Error rate: 1 – accuracy, or  Error rate = (FP + FN)/All

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All
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Sensitivity and specificity

Class Imbalance Problem: 

One class may be rare, e.g. fraud, or HIV-positive

Significant majority of the negative class and minority of the positive class

Sensitivity: True Positive recognition rate

Sensitivity = TP/P

Specificity: True Negative recognition rate

Specificity = TN/N

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All
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Precision, recall and F-measures

• Precision: exactness – what % of tuples that the classifier labeled as 
positive are actually positive
Precision = TP/P’

• Recall: completeness – what % of positive tuples did the classifier 
label as positive?
Recall = TP / P (the same as sensitivity)

• Perfect score is 1.0

• Inverse relationship between precision & recall
•
F measure (F1 or F-score): harmonic mean of precision and recall,

• Fß:  weighted measure of precision and recall
• assigns ß times as much weight to recall as to precision
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Example: precision and recall 

• Precision = 90/230 = 39.13%             Recall = 90/300 = 30.00%

42

Actual Class\Predicted class cancer = yes cancer = no Total Recognition(%)

cancer = yes 90 210 300 30.00 (sensitivity)

cancer = no 140 9560 9700 98.56 (specificity)

Total 230 9770 10000 96.40 (accuracy)



Error depends on decision threshold

• Example: False positive and false negative rate are computed based 
on probabilities returned by classifier

P(Class=True |X1, X2, …) ≥ 0.5

• We can change the two error rates by changing the threshold from 
0.5 to some other value in [0, 1]:

P(Class=True |X1, X2, ….) ≥ threshold
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Varying the threshold

• To reduce false negative rate, we would chose threshold other than 0.5, e.g., 
threshold  ≤ 0.1
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ROC curve
• ROC curve shows both TP 

rate and FP rate 
simultaneously

• To summarize overall 
performance we also use 
area under the ROC curve 
(AUC)

• The larger the AUC the 
better is the classifier. Why? 
What would be an ideal ROC 
curve?
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Issues affecting model selection

• Accuracy

• classifier accuracy: predicting class label

• regression: MSE, MAE

• Speed

• time to construct the model (training time)

• time to use the model (classification/prediction time)

• Robustness: handling noise and missing values

• Scalability: efficiency in disk-resident databases 

• Interpretability

• understanding and insight provided by the model

• other measures, e.g., goodness of rules, such as decision tree size or 

compactness of classification rules
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Unsupervised feature selection

• criterion: preserve similarity between instances

• SPEC: spectral feature selection

• take instance similarity matrix and compute its eigenvectors and eigenvalues 
of graph Laplacian matrix L

• according to spectral clustering theories, the eigenvalues of L measure the 
separability of the components of the graph and the eigenvectors are the 
corresponding soft cluster indicators

• rank features according to their consistency with the graph structure
• a feature that is consistent with the graph structure assigns similar values to 

instances that are near each other in the graph

Zhao Z, Liu H. Spectral feature selection for supervised and unsupervised learning. In Proceedings of ICML 2007, pp. 1151-1157. 
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Laplacian matrix
• Given a simple graph G with n vertices, its Laplacian matrix Ln × n is defined as:

L = D − A 

where D is the degree matrix and A is the adjacency matrix of the graph. A only contains 1s or
0s and its diagonal elements are all 0s. For D, a diagonal matrix, in the case of directed
graphs, either the indegree or outdegree might be used, depending on the application.

• The elements of L are given by

𝐿𝑖,𝑗

deg(𝑣𝑖) ; 𝑖 = 𝑗
−1 ; 𝑖 ≠ 𝑗 and 𝑖 is adjacent to 𝑗
0 otherwise

• where deg(vi) is the degree of the vertex i

• in feature selection, the adjacency matrix is weighted by the distance between instances
(and class membership)

• the degree serves as an estimation of density around instance (vertex) x
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SPEC – spectral feature selection

• compute fT L f to measure how 
feature f is consistent with graph

• smaller values indicate better
consistency

• both f and L have to be normalized
in order not to affect the score
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Unsupervised FS with clustering

• Nonnegative Discriminative Feature Selection (NDFS)

• perform spectral clustering to learn the cluster labels of the input 
samples

• simultaneously optimize for cluster labels and feature selection 
matrix

Li, Z., Yang, Y., Liu, J., Zhou, X. and Lu, H., 2012, Unsupervised feature selection using nonnegative spectral 
analysis. In Proceedings of AAAI, vol. 2, pp. 1026-1032.
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Semi-supervised feature selection

• typically a small sample of labelled and a 
large sample of unlabeled data is available

• principle: use the label information of 
labeled data and data distribution or local 
structure of both labeled and unlabeled 
data to evaluate feature relevance
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• Build two graphs: 
• W (within class): labeled instances are connected if from the same class, 

unlabeled instances are connected if near each other

• B (between): labelled instances are connected if from different class

• proceed similarly as in unsupervised case, compute eigenvectors of 
Laplacian graph for W and optimize for soft cluster membership, use 
degree graph of B for normalization

Cheng, H., Deng, W., Fu, C., Wang, Y. and Qin, Z., 2011. Graph-based semi-supervised feature selection with application to 
automatic spam image identification. In Computer Science for Environmental Engineering and EcoInformatics (pp. 259-264). 
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Laplacian score for semi-supervised feature selection



Stability of feature selection
• for high dimensional small sample data, the stability of feature selection is a 

pressing issue, e.g., in microarray data we might get similar classification 
accuracy with different sets of features

• Solution: ensemble approach:
1. produce diverse feature sets

• different feature selection techniques, 
• instance-level perturbation
• feature-level perturbation
• stochasticity in the feature selector, 
• Bayesian model averaging 
• combinations of the above techniques

2. aggregate them
• weighted voting
• counting
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Big data issues
• distributed feature selection, e.g., use Statistical Query model in 

MapReduce architecture

• procedure
1. decompose the feature selection process into summation forms over 

training samples, 
2. divide data and store data partitions on nodes of the cluster, 
3. compute local feature selection results in parallel on nodes of the cluster, 

and 
4. calculate the final feature selection result by integrating the local results.

Janez Kranjc, Roman Orač, Vid Podpečan, Nada Lavrač, 
Marko Robnik-Šikonja: ClowdFlows: online workflows for 
distributed big data mining. FGCS, 68:38-58, 2017
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Multi-view learning
• information from different sources, e.g., 

measurements from a series of medical 
examinations for each subject, including clinical, imaging, immunologic, 
serologic, and cognitive measures. 

• some measurements are irrelevant, noisy, or conflicting

• different views typically provide complementary information

• approaches:
• baseline: concatenate all views

• construct tensor space from views, preserve relations between views, use feature 
selection in tensor space

• use ReliefF like approach, where different views contribute to the distances between 
objects

• multi-view clustering and feature selection

Magajna T., Robnik-Šikonja M. (2018) Feature Selection for Multi-View Clustering.
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Multi-label learning

• each instance may have more than one label, 
e.g., purchased items, items on the picture

• approaches
• transform to single label case (does not take 

correlations between labels into account)
• select-max, select-min, select-random
• copy all, copy weighted 
• label the power set

• treat multiple labels directly e.g., binary relevance or via graph of correlations 
between labels

• Relief like approaches: 
• using multi-label approach to difference of labels (hits, misses) by comparing sets of instance 

labels (similarly as RReliefF compares different values of response in regression)

Spolaôr, N., Cherman, E.A., Monard, M.C. and Lee, H.D., 2013. A comparison of multi-label feature selection methods using the problem 
transformation approach. Electronic Notes in Theoretical Computer Science, 292, pp.135-151.
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Hierarchical multi-label learning

• labels appear in hierarchies, 
e.g., biological processes or 
image labelling

• Relief like approach: 
• compute distances between two label 

as the distance in the hierarchy
• using multi-label approach to difference 

of labels (hits, misses) by comparing sets 
of instance labels 
(similarly as RReliefF compares different values of response in regression)

Slavkov, I., Karcheska, J., Kocev, D., Džeroski, S. (2017) HMC-ReliefF: Feature ranking for hierarchical multi-label classification. 
Computer Science and Information Systems. 15. 43-43. 
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Multitask learning

• learn several related tasks simultaneously 
with the same model

• advantages: 
• the tasks share knowledge representation, 
• learning several related tasks prevents overfitting

• feature selection:
• transform to several single tasks, aggregate the results
• uses wrapper or embedded methods, e.g., multitask random forests where 

feature importance is estimated as the degradation of performance if feature 
values are randomly shuffled

Petković, M., Džeroski, S. and Kocev, D., 2017, October. Feature Ranking for Multi-target Regression with Tree Ensemble Methods. In 
International Conference on Discovery Science, pp. 171-185.
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Online feature selection

• in data stream scenario (e.g., financial trading, 
environmental monitoring, 
industrial processes)
• instances arrive sequentially, potentially the 

learned concept changes (concept-drift problem)
• detect failure of classifier, reassess features, or 
• continuously asses features, measure their stability

• new features may appear, e.g., new acronyms or hashtags on Twitter 
• asses new features, potentially replace some of the old chosen ones

• both the above scenarios appear simultaneously

Wang, J., Zhao, P., Hoi, S.C. and Jin, R., 2014. Online feature selection and its applications. IEEE Transactions on 
Knowledge and Data Engineering, 26(3), pp.698-710.
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Feature selection for graphs
• graphs are useful to represent relations, e.g., in biology

• Linked Open Data: huge graphs of relations for different areas, e.g. 
Bio2RDF

• GeneOntology – a hierarchical description of knowledge about genes  

• the graphs are often embedded into a vector space to enable 
learning

• graph reduction techniques enable relational learning

60

Jan Kralj, Marko Robnik-Šikonja, Nada Lavrač: NetSDM: Semantic Data 
Mining with Network Analysis, Journal of Machine Learning Research, 
20(32):1−50, 2019



Things we did not cover

• cost-sensitive feature evaluation

• privacy preserving feature selection

• adaptations of feature selection approaches for specific important
domains: bionformatics, image analysis, NLP, graphs

• etc
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Conclusions

• feature selection is a well researched area with many successful 
approaches  

• but: abundance of data, new types of structured data, and many new 
learning scenarios offer lots of opportunities for new developments

• E.g., combinations of scenarios, like multi-label feature selection in 
online scenario

• from feature rankings to feature subsets

• how to assure combinations of properties, e.g., scalability, stability, 
and security
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