
Bias, variance and predictive models

Intelligent Systems, October 2021

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja

Contents

• Bias and variance of prediction models

• Simple regression models:

• linear models, nearest neighbor, regression trees, regression rules

• Simple classification models:

• nearest neighbor, naïve Bayes, decision trees, decision rules, logistic
regression

• Biases in data

2

Assessing model accuracy

• Measuring the quality of fit

• The bias-variance trade-off

• Bias variance in the classification setting

3

Measuring the quality of fit

• Suppose we have a regression problem.

• One common measure of accuracy is the mean squared error (MSE),
i.e.

• Where is the prediction our method gives for the observation in our
training data.

4

=

−=
n

i

ii yy
n

MSE
1

2)ˆ(
1

iŷ

A generalization problem

➢Our method has generally been designed to make MSE small on the
training data, e.g. with linear regression, we choose the line such that
MSE is minimized.

➢What we really care about is how well the method generalizes i.e.
how well it works on new data. We call this new data “Test data”.

➢There is no guarantee that the method with the smallest training
MSE will have the smallest test (i.e. new data) MSE.

5

Training vs. test error

• In general the more flexible a method is the lower its training MSE
will be, i.e. it will “fit” or explain the training data very well.
• More flexible methods (such as splines) can generate a wider range of

possible shapes to estimate f as compared to less flexible and more restrictive
methods (such as linear regression). The less flexible the method, the easier
to interpret the model. Thus, there is a trade-off between flexibility and
model interpretability.

• However, the test MSE may in fact be higher for a more flexible
method than for a simple approach like linear regression.

6

Different levels of flexibility: example 1

7

LEFT
Black: Truth
Orange: Linear Estimate
Blue: smoothing spline
Green: smoothing spline (more
flexible)

RIGHT
RED: Test MS
Grey: Training MSE
Dashed: Minimum possible test
MSE (irreducible error)

Different levels of flexibility: example 2

8

LEFT
Black: Truth
Orange: Linear Estimate
Blue: smoothing spline
Green: smoothing spline (more
flexible)

RIGHT
RED: Test MSE
Grey: Training MSE
Dashed: Minimum possible test MSE
(irreducible error)

Different levels of flexibility: example 3

9

LEFT
Black: Truth
Orange: Linear Estimate
Blue: smoothing spline
Green: smoothing spline (more flexible)

RIGHT
RED: Test MSE
Grey: Training MSE
Dashed: Minimum possible test MSE
(irreducible error)

Bias - variance trade-off

• The previous graphs of test versus training MSE’s illustrates a very important
trade-off that governs the choice of statistical learning methods.

• There are always two competing forces that govern the choice of learning
method, i.e. bias and variance.

10

Bias of learning methods

• Bias refers to the error that is introduced by modeling a real life problem (that is
usually extremely complicated) by a much simpler problem.

• For example, linear regression assumes that there is a linear relationship between
Y and X. It is unlikely that, in real life, the relationship is exactly linear so some
bias will be present.

• The more flexible/complex a method is the less bias it will generally have.

11

Variance of learning methods

• Variance refers to how much your estimate for f would change if you had a
different training data set.

• Generally, the more flexible a method is the more variance it has.

12

Bias-variance illustration

13

The trade-off?

• It can be shown that for any given, X=x0, the expected test MSE for a new Y
at x0 will be equal to

•
where Bias = E[Y]-f(x) and Var = E[(Y - E[Y])2]

• What this means is that as a method gets more complex the bias will
decrease and the variance will likely increase but expected test MSE may
go up or down!

• The trade-off is only present if we assume fixed error!
• For some models there are no trade-off!

14

ExpectedTestMSE= E Y - f (x0)()
2

= Bias2 +Var+ s 2

Irreducible Error

Test MSE,
bias and
variance

15

The classification setting

• For a regression problem, we used the MSE to assess the accuracy of
the statistical learning method

• For a classification problem, we can use the error rate, i.e.

• is an indicator function, which will give 1 if
the condition is correct, otherwise it gives a 0.

• Thus, the error rate represents the fraction of incorrect classifications,
or misclassifications

16

nyyIRateError
n

i

ii /)ˆ(
1

=

=

)ˆ(ii yyI

)ˆ(ii yy

Bayes error rate

▪ The Bayes error rate refers to the lowest possible error rate that could
be achieved if somehow we knew exactly what the “true” probability
distribution of the data looked like.

▪On test data, no classifier (or statistical learning method) can get
lower error rates than the Bayes error rate.

▪Of course, in real life problems, the Bayes error rate can’t be
calculated exactly.

17

Bayes optimal
classifier
• for new x0 returns

the maximally
probable prediction
value P(Y=y | X=x0)

• in classification
arg maxj P(Y=yj|X=x0)

18

K-Nearest Neighbors (KNN)

• k Nearest Neighbors is a flexible approach to estimate the Bayes
classifier.

• For any given X we find the k closest neighbors to X in the training
data, and examine their corresponding Y.

• If the majority of the Y’s are orange, we predict the orange label
otherwise the blue label.

• The smaller that k is the more flexible the method will be.

19

KNN example with k = 3

20

K-NN classifier

• Given a positive integer K and a test observation x0, the KNN classifier
first identifies the K points in the training data that are closest to x0,
represented by 𝒩0.

• It then estimates the conditional probability for class j as the fraction
of points in 𝒩0 whose response values equal j:

• applies Bayes rule and classifies the test observation x0 to the class
with the largest probability.

21

Simulated data:
K = 10

22

K = 1 and K = 100

23

Training vs. test error rates on the simulated data

• Notice that training
error rates keep
going down as k
decreases or
equivalently as the
flexibility increases.

• However, the test
error rate at first
decreases but then
starts to increase
again.

24

A fundamental picture
• In general training errors

will always decline.

• However, test errors will
decline at first (as
reductions in bias
dominate) but will then
start to increase again (as
increases in variance
dominate).

• This is a conventional
wisdom, but it is not true
for all methods and all
training regimes.

25

The double descent curve
• While for some models, like kNN, there seem to be a trade-off

between bias and variance, this is not a universal phenomenon

• E.g., overparametrization in neural networks produce double descent
curve (similar evidence for random forests)

26

Belkin, M., Hsu, D., Ma, S. and Mandal, S., 2019. Reconciling modern machine-learning practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32), pp.15849-15854.

27

K-nearest neighbor for regression

• kNN regression is similar to the kNN classifier.

• To predict Y for a given value of X, consider k closest points to X in
training data and take the average of the responses. i.e.

𝑓(𝑥) =
1

𝑘

𝑥𝑖∈𝑁𝑖

𝑦𝑖

28

KNN Fits for k =1 and k = 9

29

KNN fits in one dimension (k =1 and k = 9)

• black line: actual function,

• blue line: regressional kNN

30

Choice of k in KNN

• If k is small, kNN is much more flexible than linear regression.

• Is that better?

• The results may be highly dependent on
the choice of k.

31

kNN is not so good in high dimensional
situations

• p is the number of dimensions

32

Speeding up KNN algorithm

• precondition: normalization of dimensions, e.g., to [0, 1]

• naive search for nearest neighbors: O(n·d·t)

• n is number of instances

• d is number of dimensions

• t is number of nearest neighbors

• exact search for low dimensional spaces

• k-d trees (d is around 10)

• quad-trees (d=2), octrees (d=3)

• R-tree (rectangular tree, also R+, R*, ...), d=2 or 3

• approximate search

• RKD-tree (random k-d tree)

• locally sensitive hashing (LSH),

• hierarchical k-means

Speeding up KNN with K-d trees

• K-d tree = binary tree with k keys

k-d trees and NN search

• Selection of:

• split dimension

• split value

• Optimized tree

• Finds t NN in

O(log N)

k-d tree

• k-d tree (k-dimensional tree)

• generalization of binary search tree to k-dimensional keys

• the simplest splitting criterion: on level d split on dimension
1+ (d mod k)

Example of 2-d tree

Example of 2-d tree

k-d trees for NN search

• Structure the search space

• Dimension are chosen based on variance of dimensions in each node
separately (e.g., start with 2, then 1)

k-d trees
for NN
search

k-d tree node

• the nodes stores also the index of splitting dimension and the
splitting value

• keys and pointers to children nodes

Tree construction in practice

• on average we search O(log n) leaves, worst case is O(n) leaves
• we would like the leaves to be approximately hypercubes (not

hyperrectangles)
• splitting dimension is selected to maximize variance in that dimension
• splitting value is usually the median of chosen dimension
• normalize data to [0,1]:

val = (data[i][j]-low[j])/(max[j] – min[j])
• in leaves we store more than 1 element (typically bucket size is around

10)
• tree construction takes O(n log n)
• only makes sense if searching for large number of NN

Searching NNs

• recursively to the leaf containing query point q
• (the nearest) instance from that leaf is the first approximation for the

nearest neighbor, the distance from that point to q is the radius of
hypersphere

• in recursive backtracking we check if hyperspere with center in q would
intersect the hyperrectangle of the other subtree; if yes we enter that
subtree and search in it

• if we find a new closest element, this is the new radius of hypersphere
• when searching for t nearest: the radius of hypersphere is the t-th

closest element
• works when the number of instances is much larger than the

dimensionality , n >> 2k

Quad-tree

• generalization of k-d tree

• each node has 4
successors

• used in splitting of 2D
space

• leaves store points,
curves, areas, polygons
etc.

Octree

• as quad-tree, but each node has eight successors,

• to be used in 3D spaces

R tree

• rectangular tree

• 2d example

• R-tree (rectangle tree)

• spatial data representation. e.g.,
coordinates, rectangles, polygons

• generalization of B-tree

• balanced, all leaves on the same
level

• each node has from m to M
successors

• splitting node criteria: balance, least
overlap, least coverage of empty
space etc.

• variants: insert all at once, step by
step, allow delete

Example of
R-tree in 3D

• nodes store
minimally
bounding,
possibly
overlapping
(hyper)
rectangles

• generalization of
B trees

R*-tree
more balanced than
R-tree due to different
splitting heuristics

Approximate methods

• -approximate methods

RKD-tree

• kd-tree for high dimensional data

• we build a set of m kd-trees which differ in their splitting
dimensions

• we take into account only v dimensions with the largest variance

• in each tree we randomly select splitting dimensions in nodes

• if the probability not to find the nearest element with a single tree
is p, for m trees this probability is pm

• easy to use several threads, sharing the common list of nearest
instances,

• several variants how t choose dimensions, splitting points

Locally sensitive hash functions

• LSH (locally sensitive hashing)

• among the fastest methods

• we generate l tables with m hash functions

• each table generates one hash value for an object

• with enough tables, two neighboring points have different hash values with
high probability

Locally sensitive hash functions

• a family of hash functions H with parameters
(r1, r2, P1, P2), r1<r2, P1>P2 is (r1, r2, P1, P2)-sensitive

An example: hashing with random hyperplanes

• hyperplane is determined with a normal vector n,
which is rectangular to the plane

• if for a dot product of vectors sign(xn) sign(yn),
then x and y are on the opposite sides of the
plane h determined by n

Hash functions for cosine distance

• cosine distance between vectors:

• let be an angle between x and y

• the probability that a random hyperplane
separates x and y is /180

• this gives a family of locally sensitive
functions for cosine distance: each hash
function f(x) is a random hyperplane

• f(x) = f(y) if and only if
sign(xn) = sign(yn)

• this family is
(r1, r2, (180-r1)/180, (180-r2)/180)-sensitive

BA

BA
=)cos(

LSH insertion

• for each hash table, compute the hash value of a point and insert it
into a bucket representing that value

• repeat for all hash tables and insert each point into l buckets

Insertion into a single table

LSH search

• for a point u, compute hash values with all functions and get hash
values and bucket indices

• compare u with elements in that buckets and choose the nearest
one (or more)

• a weakness: for larger number of dimensions k there may not be
enough instances in that bucket

• improvement: multiprobe LSH search

Multiprobe-LSH

• similar elements have similar
hash values

• we set the allowed difference
and insert an element in all
buckets with allowed
difference

• we can use smaller tables

• an example for allowed
difference of 1

Hierarchical k-means

• repeat several times
• recursively run k-means clustering, until clusters are small

enough

• in one clustering, compare the element with centers of the
clusters and find the nearest neighbor in the clusters

• for each cluster we also store its radius (distance to the farthest
member), to detect overlapping

A simple clustering example

61

Rule learning

• Using IF-THEN Rules for Classification

• Represent the knowledge in the form of IF-THEN rules

R: IF age = youth AND student = yes THEN buys_computer = yes
• Rule antecedent/precondition vs. rule consequent

• Assessment of a rule: coverage and accuracy
• ncovers = # of tuples covered by R
• ncorrect = # of tuples correctly classified by R
coverage(R) = ncovers /|D| /* D: training data set */
accuracy(R) = ncorrect / ncovers

• If more than one rule are triggered, need conflict resolution
• Size ordering: assign the highest priority to the triggering rules that has the

“toughest” requirement (i.e., with the most attribute tests)
• Class-based ordering: decreasing order of prevalence or misclassification cost per

class
• Rule-based ordering (decision list): rules are organized into one long priority list,

according to some measure of rule quality or by experts

63

Rule extraction from a decision tree

• Example: Rule extraction from our buys_computer decision-tree
IF age = young AND student = no THEN buys_computer = no
IF age = young AND student = yes THEN buys_computer = yes
IF age = mid-age THEN

buys_computer = yes
IF age = old AND credit_rating = excellent THEN buys_computer = no
IF age = old AND credit_rating = fair THEN buys_computer = yes 64

age?

student? credit rating?

<=30
>40

no yes yes

yes

31..40

fairexcellentyesno

◼ Rules are easier to understand than large
trees

◼ One rule is created for each path from the
root to a leaf

◼ Each attribute-value pair along a path forms a
conjunction: the leaf holds the class
prediction

◼ Rules are mutually exclusive and exhaustive

Rule induction: sequential covering method

• Sequential covering algorithm: extracts rules directly from training
data

• Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER

• Rules are learned sequentially, each for a given class Ci will cover
many tuples of Ci but none (or few) of the tuples of other classes

• Steps:
• Rules are learned one at a time
• Each time a rule is learned, the tuples covered by the rules are

removed
• Repeat the process on the remaining tuples until termination

condition, e.g., when no more training examples or when the
quality of a rule returned is below a user-specified threshold

• Compare with decision-tree induction: learning a set of rules
simultaneously

65

Sequential covering algorithm

while (enough target tuples left)
generate a rule
remove positive target tuples satisfying this rule

66

Examples covered

by Rule 3

Examples covered

by Rule 2Examples covered

by Rule 1

Positive

examples

Rule generation

• To generate a rule

while(true)

find the best predicate p

if ruleQuality(p) > threshold then add p to current rule

else break

67

Positive

examples

Negative

examples

A3=1A3=1 & A1=2
A3=1 & A1=2

& A8=5

How to learn one rule?

• Start with the most general rule possible: condition = empty

• Adding new attributes by adopting a greedy depth-first strategy

• Picks the one that most improves the rule quality

• Rule-quality measures: consider both coverage and accuracy

• Foil-gain (in FOIL & RIPPER): assesses information gain by extending
condition

• favors rules that have high accuracy and cover many positive tuples

• Rule pruning based on an independent set of test tuples

Pos/neg are # of positive/negative tuples covered by Rule

If FOIL_Prune is higher for the pruned version of Rule, prune Rule

)log
''

'
(log'_ 22

negpos

pos

negpos

pos
posGainFOIL

+
−

+
=

negpos

negpos
RulePruneFOIL

+

−
=)(_

68

Ethical consideration of bias in ML models

• bias in models:
• characteristic of models,

• affects error,

• unlikely to be ethically problematic

• when it can be problematic?

• bias in data:
• data unrepresentative of true population,

• might be ethically problematic

69

Biases in the data

• Machine learning models are not inherently objective. Engineers train
models by feeding them a data set of training examples, and human
involvement in the provision and curation of this data can make a model's
predictions susceptible to bias.

• When building models, it's important to be aware of common human
biases that can manifest in your data, so you can take proactive steps to
mitigate their effects.

• The biases listed provide just a small selection of biases that are often
uncovered in machine learning data sets; this list is not intended to be
exhaustive. Wikipedia's catalog of cognitive biases enumerates over 100
different types of human bias that can affect our judgment. When auditing
your data, you should be on the lookout for any and all potential sources of
bias that might skew your model's predictions.

70

https://wikipedia.org/wiki/List_of_cognitive_biases

Reporting bias

• Reporting bias occurs when the frequency of events, properties, and/or
outcomes captured in a data set does not accurately reflect their real-world
frequency. This bias can arise because people tend to focus on documenting
circumstances that are unusual or especially memorable, assuming that the
ordinary can "go without saying."

• EXAMPLE: A sentiment-analysis model is trained to predict whether book reviews
are positive or negative based on a corpus of user submissions to a popular
website. The majority of reviews in the training data set reflect extreme opinions
(reviewers who either loved or hated a book), because people were less likely to
submit a review of a book if they did not respond to it strongly. As a result, the
model is less able to correctly predict sentiment of reviews that use more subtle
language to describe a book.

71

Automation bias

• Automation bias is a tendency to favor results generated by automated systems
over those generated by non-automated systems, irrespective of the error rates
of each.

• EXAMPLE: Software engineers working for a sprocket manufacturer were eager
to deploy the new "groundbreaking" model they trained to identify tooth defects,
until the factory supervisor pointed out that the model's precision and recall rates
were both 15% lower than those of human inspectors.

72

Selection bias
• Selection bias occurs if a data set's examples are chosen in a way that is not reflective

of their real-world distribution. Selection bias can take many different forms:
• Coverage bias: Data is not selected in a representative fashion.

• EXAMPLE: A model is trained to predict future sales of a new product based on phone surveys
conducted with a sample of consumers who bought the product. Consumers who instead opted to
buy a competing product were not surveyed, and as a result, this group of people was not
represented in the training data.

• Non-response bias (or participation bias): Data ends up being unrepresentative due to
participation gaps in the data-collection process.

• EXAMPLE: A model is trained to predict future sales of a new product based on phone surveys
conducted with a sample of consumers who bought the product and with a sample of consumers
who bought a competing product. Consumers who bought the competing product were 80% more
likely to refuse to complete the survey, and their data was underrepresented in the sample.

• Sampling bias: Proper randomization is not used during data collection.

• EXAMPLE: A model is trained to predict future sales of a new product based on phone surveys
conducted with a sample of consumers who bought the product and with a sample of consumers
who bought a competing product. Instead of randomly targeting consumers, the surveyor chose
the first 200 consumers that responded to an email, who might have been more enthusiastic about
the product than average purchasers.

73

Group attribution bias

• Group attribution bias is a tendency to generalize what is true of
individuals to an entire group to which they belong. Two key
manifestations of this bias are:
• In-group bias: A preference for members of a group to which you also belong,

or for characteristics that you also share.

• EXAMPLE: Two engineers training a resume-screening model for software
developers are predisposed to believe that applicants who attended the same
computer-science academy as they both did are more qualified for the role.

• Out-group homogeneity bias: A tendency to stereotype individual members
of a group to which you do not belong, or to see their characteristics as more
uniform.

• EXAMPLE: Two engineers training a resume-screening model for software
developers are predisposed to believe that all applicants who did not attend a
computer-science academy do not have sufficient expertise for the role. 74

Implicit bias

• Implicit bias occurs when assumptions are made based on one's own mental models and
personal experiences that do not necessary apply more generally.

• EXAMPLE: An engineer training a gesture-recognition model uses a head shake as a feature to
indicate a person is communicating the word "no." However, in some regions of the world, a head
shake actually signifies "yes." A common form of implicit bias is confirmation bias, where model
builders unconsciously process data in ways that affirm preexisting beliefs and hypotheses. In
some cases, a model builder may actually keep training a model until it produces a result that
aligns with their original hypothesis; this is called experimenter's bias.

• EXAMPLE: An engineer is building a model that predicts aggressiveness in dogs based on a variety
of features (height, weight, breed, environment). The engineer had an unpleasant encounter with
a hyperactive toy poodle as a child, and ever since has associated the breed with aggression.
When the trained model predicted most toy poodles to be relatively docile, the engineer
retrained the model several more times until it produced a result showing smaller poodles to be
more violent.

75

https://wikipedia.org/wiki/Head_shake

