
Nature
inspired
computing

Prof Dr Marko Robnik Šikonja
Intelligent Systems, October 2021

University of Ljubljana, Faculty of Computer and Information Science

Evolutionary and natural computation

 Many engineering and computational ideas from
nature work fantastically!

 Evolution as an algorithm

 Abstraction of the idea:

 progress, adaptation - learning, optimization

 Survival of the fittest - competition of agents,
programs, solutions

 Populations – parallelization

 (Over)specialization – local extremes

Template of evolutionary program

generate a population of agents (objects, data structures)

do {

compute fitness (quality) of the agents
select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

 immensely general -> many variants

A result of successful evolutionary
program

Strengths and weaknesses

 robust, adaptable, general
 requires only weak knowledge of the problem

(fitness function and representation of genes)
 several alternative solutions
 hybridization and parallelization

 suboptimal solutions
 possibly many parameters
 computationally expensive

 no-free-lunch theorem

Main approaches

 Genetic algorithms

 Genetic programming

 Swarm methods (particles, ants, bees, …)

 Self organized fields

 Differential evolution

 etc.

Genetic Algorithms - History

 Pioneered by John Holland in the 1970’s

 Got popular in the late 1980’s

 Based on ideas from Darwinian evolution

 Can be used to solve a variety of problems that
are not easy to solve using other techniques

Chromosome, Genes and
Genomes

Evolution in the real world

 Each cell of a living thing contains chromosomes - strings of DNA

 Each chromosome contains a set of genes - blocks of DNA

 Each gene determines some aspect of the organism (like eye
colour)

 A collection of genes is sometimes called a genotype

 A collection of aspects (like eye colour) is sometimes called a
phenotype

 Reproduction involves recombination of genes from parents and
then small amounts of mutation (errors) in copying

 The fitness of an organism is how much it can reproduce before it
dies

 Evolution based on “survival of the fittest”

Genotype and Phenotype

 Genotype:

– Particular set of genes in a genome

 Phenotype:

– Physical characteristic of the genotype (smart,
beautiful, healthy, etc.)

Genotype and Phenotype

Key terms

 Individual - Any possible solution

 Population - Group of all individuals

 Search Space - All possible solutions to the problem

 Chromosome - Blueprint for an individual

 Trait - Possible aspect (features) of an individual

 Allele - Possible settings of trait (black, blond, etc.)

 Locus - The position of a gene on the chromosome

 Genome - Collection of all chromosomes for an
individual

Biological equivalents

 Evolution is a variation of alleles frequencies
through time.

 Reproduction, variation (mutation, crossover),
selection

Evolutionary computation keywords

 Representation: data structures, operations

 Fitness, heuristics

 Population variability

 Local and global extremes

 Coevolution

 Variability of fitness function

A fitness function

Gene representation

 Bit vector

 Numeric vectors

 Strings

 Permutations

 Trees: functions, expressions, programs

 ...

Crossover

 Single point/multipoint

 Shall preserve individual objects

Crossover: bit representation

Parents: 1101011100 0111000101

Children: 1101010101 0111001100

Crossover: vector representation

Simplest form

Parents: (6.13, 4.89, 17.6, 8.2) (5.3, 22.9, 28.0, 3.9)

Children: (6.13 , 22.9, 28.0, 3.9) (5.3, 4.89, 17.6, 8.2)

In reality: linear combination of parents

Linear crossover

 The linear crossover simply takes a linear
combination of the two individuals.

 Let x = (x1,…xN) and y = (y1,…yN)

 Select α in (0, 1)

 The results of the crossover is α x + (1- α)y .

 Possible variation: choose a different α for each
position.

Linear crossover example

 Let α = 0.75 and we have this two individuals:

A = (5, 1, 2, 10) and B = (2, 8, 4, 5)

 then the result of the crossover is:

(3.75 + 0.5, 0.75 + 2, 1.5 + 1, 7.5 + 1.25) = (4.25, 2.75,2.5, 8.75)

 If we use the variation and we have α = (0.5, 0.25, 0.75,
0.5), the result is:

(2.5 + 1, 0.25 + 6, 1.5 + 1, 5 + 2.5) = (3.5, 6.25, 2.5, 7.5)

Crossover: trees

Permutations: travelling salesman
problem

 9 cities: 1,2 ..9

 bit representation using 4 bits?

 0001 0010 0011 0100 0101 0110 0111 1000 1001

 crossover would give invalid genes

 permutation and ordered crossover

 keep (part of) sequences

 use the sequence from second cut, keep already existing

1 9 2 | 4 6 5 7 | 8 3 → x x x | 4 6 5 7 | x x 2 3 9 | 4 6 5 7 | 1 8

4 5 9 | 1 8 7 6 | 2 3 → x x x | 1 8 7 6 | x x 3 9 2 | 1 8 7 6 | 4 5

A demo: Eaters
 Plant eaters are simple organisms, moving around in a

simulated world and eating plants

 Fitness function: number of plants eaten

 An eater sees one square in front of its pointed end; it sees 4
possible things: another eater, plant, empty square or the wall

 Actions: move forward, move backward, turn left, turn right

 It is not allowed to move into the wall or another eater

 Internal state: number between 0 and 15

 The behavior is determined by the 64 rules encoded in its
chromosome; one rule for each of 16 states x 4 observations;
one rule is a pair (action, next state)

 The chromosome therefore consists of length 64 x (4+2) bits =
384 bits

 Crossover and mutation

https://math.hws.edu/eck/js/genetic-algorithm/GA.html

Gray coding of binary numbers

 Keeping similarity

Adaptive crossover

 Different evolution phases

 Crossover templates

 0 – first parent, 1 second parent

 Different dynamics of template crossover

Mutation

 Adding new information

 Binary representation:
0111001100 --> 0011001100

 Single point/multipoint

 Random search?

 Lamarckian (searching for locally best mutation)

Lamarckianism
Lamarckism is the hypothesis that an organism can
pass on characteristics that it has acquired through
use or disuse during its lifetime to its offspring.

Gaussian mutation

 When mutating one gene, selecting the new
value by choosing uniformly among all the
possible values is not the best choice
(empirically).

 The mutation selects a position i in the vector of
floats and mutates it by adding a Gaussian error:
a value extracted according to a normal
distribution with mean 0 and variance depending
on the problem.

Template of evolutionary program

generate a population of agents (objects, data structures)

do {

compute fitness (quality) of the agents
select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

 immensely general -> many variants

Evolutional model

 Keeping the good

 Prevent premature convergence

 Assure heterogeneity of population

Selection

 Proportional

 Rank proportional

 Tournament

 Single tournament

 Stochastic
universal sampling

Tournament selection

1. set t=size of the tournament,
p=probability of a choice

2. randomly sample t agents from population
forming a tournament

3. select the best with probability p

4. select second best with probability p(1-p)

5. select third best with probability p(1-p)2

6. ...

Stochastic universal sampling (SUS)

 unbiased

 selecting N agents

 randomly chosen first position r [0, F/N]

 selected positions r + i*F/N, i 0, 1,..., N-1]
determine chosen agents

Replacement

 All

 According to the fitness (roulette, rang,
tournament, randomly)

 Elitism (keep a portion of the best)

 Local elitism (children replace parents if they are
better)

Single tournament selection

1. randomly split the population into small groups

2. apply crossover to two best agents from each
group; their offspring replace two worst agents
from the group

 advantage: in groups of size g the best g-2 progress
to next generation (we do not use good agents,
maximal quality does not decrease)

 no matter the quality even the best agents have no
more than two offspring (we do not loose
population diversity)

Population size

 small, large?

Niche specialization

 evolutionary niches are generally undesired

 punish too similar agents

f’i = fi /q(r,i)

q(r,i) = { 1 ; sim(i) <=4,
sim(i)/4 ; otherwise }

Stopping criteria

 number of generations, track progress,
availability of computational resources, etc.

Checkboard example

 We are given an n by n checkboard in which every field
can have a different colour from a set of four colors.

 Goal is to achieve a checkboard in a way that there are
no neighbours with the same color (not diagonal)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Checkboard example Cont’d

 Chromosomes represent the way the checkboard is colored.

 Chromosomes are not represented by bitstrings but by
bitmatrices

 The bits in the bitmatrix can have one of the four values 0, 1, 2 or
3, depending on the color.

 Crossover involves matrix manipulation instead of point wise
operating.

 Crossover can combine the parential matrices in a horizontal,
vertical, triangular or square way.

 Mutation remains bitwise - changing bits

 Fitness function: check 2n(n-1) violations

Checkboard example Cont’d

• Fitness curves for different cross-over rules:

0 100 200 300 400 500
130

140

150

160

170

180

F
it
n
e
s
s

Lower-Triangular Crossing Over

0 200 400 600 800
130

140

150

160

170

180
Square Crossing Over

0 200 400 600 800
130

140

150

160

170

180

Generations

F
it
n
e
s
s

Horizontal Cutting Crossing Over

0 500 1000 1500
130

140

150

160

170

180

Generations

Verical Cutting Crossing Over

Why genetic algorithms work?

 building blocks hypothesis

 ... is controversial (mutations)

 sampling based hypothesis

Parameters of GA

 Encoding (into fixed length strings)

 Length of the strings;

 Size of the population;

 Selection method;

 Probability of performing crossover (pc);

 Probability of performing mutation (pm);

 Termination criteria (usually a number of
generations and/or a target fitness).

Usual settings of GA parameters

 Population size: from 20–50 to a few thousands
individuals;

 Crossover probability: high (around 0.9);

 Mutation probability: low (below 0.1).

Demo: find genome of
a biomorph

 A biomorph is a graphic configuration generated from nine genes.

 The first eight genes each encode a length and a direction.

 The ninth gene encodes the depth of branching.

 Each gene is encoded with five bits.

 The four first bits represent the value, the fifth its sign.

 Each gene can get a value from -15 to +15.

 value of gen nine is limited to 2-9.

 There are : 8 (number of possible depths) x 240 (the 8 * 5 =40 bits encoding basic genes) =
8.8 x1012 possible biomorphs. If we were able to test 1000 genomes every second, we would
need about 280 years to complete the whole search.

 At the beginning, the drawing algorithm being known, we get the image of a biomorph.
The only informations directly measurable are the positions of branching points and their
number. The basic algorithm simulates the collecting of these informations.

 fitness function: the distance of the generated biomorph from the target one.

http://www.rennard.org/alife/english/gavgb.html

Applications

 optimization

 scheduling

 bioinformatics,

 machine learning

 planning

 multicriteria optimization

Where to use evolutionary algorithms?

 Many local extremes

 Just fitness, without derivations

 No specialized methods

 Multiobjective optimization

 Robustness

 Combined approaches

Multiobjective optimization

 Fitness function with several objectives

 cost, energy, environmental impact, social
acceptability, human friendliness

 min F(x)=min (f1(x), f2(x), ..., fn(x))

 Pareto optimal solution: we cannot improve one
criteria without getting worse on others

 GA: in reproduction, use all criteria

An example:
smart buildings

 simple scenario: heater, accumulator, solar
panels, electricity from grid

 criteria: price, comfort of users (as the difference
in temperature to the desired one)

 chromosome: shall encode schedule of charging
and discharging the battery, heating on/off

 operational time is discretized to 15min intervals

Control problem for smart buildings

Parameters:
• the price of energy from the grid varies during the

day
• the prediction of solar activity
• schedule of heater and battey
• usual activities of a user

Smart building: structure of the
chromosome

 temperature: for each interval we set the desired
temperature between Tmin and Tmax interval

 battery+: if photovoltaic panels produce enough
energy we set: 1 charging, 0 no charging

 battery-: if photovoltaic panels do not produce
enough energy, we set: 1 battery shall discharge,
0 battery is not used

 appliances: each has its schedule when it is used
(1) and when it is off (0)

Example of schedule

Example of solutions and optimal front

Toolboxes and libraries

 CIlib – computational intelligence library

 EO (C++) - evolutionary computation library

 ECF- Evolutionary Computation Framework
(C++)

 ECJ, EvA2, JAGA (Java)

 R: Rfreak, ppso, numDeriv, etc

 Matlab

Pros and Cons of GA

 Pros

 Faster (and lower memory requirements) than searching a very
large search space.

 Easy, in that if your candidate representation and fitness function
are correct, a solution can be found without any explicit analytical
work.

 Cons

 Randomized – not optimal or even complete.

 Can get stuck on local maxima, though crossover can help
mitigate this.

 It can be hard to work out how best to represent a candidate as a
bit string (or otherwise).

57

Genetic programming

 Functions, programs, expression trees

 Keep the structures valid

 Tree crossover, type closure

 applications

GP quick overview
 Developed: USA in the 1990’s

 Early names: J. Koza

 Typically applied to:

 machine learning tasks (prediction, classification…)

 controller design

 function fitting

 Attributed features:

 competes with neural nets and alike

 needs huge populations (thousands)

 slow

 Special:

 non-linear chromosomes: trees, graphs

 mutation possible but not necessary (disputed!)

 large potential, but so far did not deliver much

GP technical summary tableau

Representation Tree structures

Recombination Exchange of subtrees

Mutation Random change in trees

Parent selection Fitness proportional

Survivor selection Generational replacement

Introductory example:
credit scoring with interpretable rules

 Bank wants to distinguish good from bad loan
applicants

 Model needed that matches historical data

ID No of

children

Salary Marital

status

OK?

ID-1 2 45000 Married 0

ID-2 0 30000 Single 1

ID-3 1 40000 Divorced 1

…

Introductory example:
credit scoring

 A possible model:

IF (NOC = 2) AND (S > 80000) THEN good ELSE bad

 In general:

IF formula THEN good ELSE bad

 Only unknown is the right formula, hence

 Our search space (phenotypes) is the set of formulas

 Natural fitness of a formula: percentage of well classified
cases of the model it stands for

 Natural representation of formulas (genotypes) is: parse trees

Introductory example:
credit scoring

IF (NOC = 2) AND (S > 80000) THEN good ELSE bad

can be represented by the following tree

AND

S2NOC 80000

>=

Tree based representation

 Trees are a universal form, e.g. consider

 Arithmetic formula

 Logical formula

 Program

+
−++

15
)3(2

y
x

(x true) → ((x y) (z (x y)))

i =1;
while (i < 20)
{

i = i +1
}

Tree based representation

+
−++

15
)3(2

y
x

Tree based representation

(x true) → ((x y) (z (x y)))

Tree based representation

i =1;
while (i < 20)
{

i = i +1
}

Tree based representation

 In GA chromosomes are linear structures (bit
strings, integer string, real-valued vectors,
permutations)

 Tree shaped chromosomes are non-linear
structures

 In GA the size of the chromosomes is fixed

 Trees in GP may vary in depth and width

Tree based representation

 Symbolic expressions can be defined by

 Terminal set T

 Function set F (with the arities of function symbols)

 Adopting the following general recursive definition:

1. Every t T is a correct expression

2. f(e1, …, en) is a correct expression if f F, arity(f)=n and e1, …, en are
correct expressions

3. There are no other forms of correct expressions

 In general, expressions in GP are not typed (closure
property: any f F can take any g F as argument)

Offspring creation scheme

Compare

 GA scheme using crossover AND mutation
sequentially (be it probabilistically)

 GP scheme using crossover OR mutation (chosen
probabilistically)

Mutation

 Most common mutation: replace randomly
chosen subtree by randomly generated tree

Mutation cont’d

 Mutation has two parameters:

 Probability pm to choose mutation vs. recombination

 Probability to chose an internal point as the root of the
subtree to be replaced

 Remarkably pm is advised to be 0 (Koza’92) or
very small, like 0.05 (Banzhaf et al. ’98)

 The size of the child can exceed the size of the
parent

Recombination

 Most common recombination: exchange two
randomly chosen subtrees among the parents

 Recombination has two parameters:

 Probability pc to choose recombination vs. mutation

 Probability to chose an internal point within each
parent as crossover point

 The size of offspring can exceed that of the
parents

Child 2

Parent 1 Parent 2

Child 1

Selection

 Parent selection typically fitness proportionate

 Over-selection in very large populations

 rank population by fitness and divide it into two groups:

 group 1: best x% of population, group 2 other (100-x)%

 80% of selection operations chooses from group 1, 20% from group 2

 for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%

 motivation: to increase efficiency, %’s come from rule of thumb

 Survivor selection:

 Typical: generational scheme (thus none)

 Recently steady-state is becoming popular for its elitism

Initialisation

 Maximum initial depth of trees Dmax is set

 Full method (each branch has depth = Dmax):

 nodes at depth d < Dmax randomly chosen from function set F

 nodes at depth d = Dmax randomly chosen from terminal set T

 Grow method (each branch has depth Dmax):

 nodes at depth d < Dmax randomly chosen from F T

 nodes at depth d = Dmax randomly chosen from T

 Common GP initialisation: ramped half-and-half, where
grow & full method each deliver half of initial population

Bloat

 Bloat = “survival of the fattest”, i.e., the tree
sizes in the population are increasing over time

 Ongoing research and debate about the reasons

 Needs countermeasures, e.g.,

 Prohibiting variation operators that would deliver “too
big” children

 Parsimony pressure: penalty for being oversized

Problems involving “physical”
environments

 Trees for data fitting vs. trees (programs) that are “really”
executable

 Execution can change the environment → the calculation
of fitness

 Example: robot controller

 Fitness calculations mostly by simulation, ranging from
expensive to extremely expensive (in time)

 But evolved controllers are often very good

Example application:
symbolic regression

 Given some points in R2, (x1, y1), … , (xn, yn)

 Find function f(x) s.t. i = 1, …, n : f(xi) = yi

 Possible GP solution:

 Representation by F = {+, -, /, sin, cos}, T = R {x}

 Fitness is the error

 All operators standard

 pop.size = 1000, ramped half-half initialisation

 Termination: n “hits” or 50000 fitness evaluations reached (where
“hit” is if | f(xi) – yi | < 0.0001)

2

1

))(()(i

n

i

i yxfferr −=
=

Discussion

Is GP:

The art of evolving computer programs ?

Means to automated programming of computers?

GA with another representation?

Evolving Neural Networks

 Evolving the architecture of neural network is
slightly more complicated, and there have been
several ways of doing it. For small nets, a simple
matrix represents which neuron connects which,
and then this matrix is, in turn, converted into
the necessary 'genes', and various combinations
of these are evolved.

Evolving Neural Networks

 Many would think that a learning function could be
evolved via genetic programming. Unfortunately,
genetic programming combined with neural
networks could be incredibly slow, thus impractical.

 As with many problems, you have to constrain what
you are attempting to create.

 For example, in 1990, David Chalmers attempted to
evolve a function as good as the delta rule.

 He did this by creating a general equation based
upon the delta rule with 8 unknowns, which the
genetic algorithm then evolved.

GP flowchartGA flowchart

mutation crossover

Template of evolutionary program

generate a population of agents (objects, data structures)

do {

compute fitness (quality) of the agents
select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

 immensely general -> many variants

