Mathematical modelling

Lecture 14, May 17th, 2022

Faculty of Computer and Information Science University of Ljubljana

2021/22

Test for linear independence of solutions

Let $x_{1}(t), \ldots, x_{n}(t)$ be the solutions of the homogeneous part of (??) and form a matrix

$$
W\left(x_{1}(t), \ldots, x_{n}(t)\right):=\left[\begin{array}{ccc}
x_{1}(t) & \ldots & x_{n}(t) \\
\dot{x}_{1}(t) & \ldots & \dot{x}_{n}(t) \\
\vdots & \ddots & \vdots \\
x_{1}^{(n-1)}(t) & \ldots & x_{n}^{(n-1)}(t)
\end{array}\right]
$$

We call the determinant

$$
\phi(t)=\operatorname{det} W\left(x_{1}(t), \ldots, x_{n}(t)\right): I \rightarrow \mathbb{R}
$$

the Wronskian determinant of $W\left(x_{1}(t), \ldots, x_{n}(t)\right)$, where I is the interval on which t lives.

Theorem (Existence and uniqueness of solutions)

If $x_{1}(t), \ldots, x_{n}(t)$ are solutions of a LDE with continuous coefficient functions $a_{1}(t), \ldots a_{n}(t)$, then their Wronskian is either identically equal to 0 or nonzero at every point. In other words, if $W\left(x_{1}, \ldots, x_{n}\right)$ has a zero at some point t_{0}, then it is identically equal to 0 .

Proof of theorem

Let π_{n} be the set of all permutations of the set $\{1, \ldots, n\}$. Now we differentiate $\phi(t)$ and obtain

$$
\begin{aligned}
& \phi^{\prime}(t)=\left(\sum_{\sigma \in \pi_{n}} x_{\sigma(1)} x_{\sigma(2)}^{(1)} \cdots x_{\sigma(n)}^{(n-1)}\right)^{\prime}(t) \\
&= \sum_{\sigma \in \pi_{n}}\left(\left(x_{\sigma(1)}\right)^{\prime}(t) x_{\sigma(2)}^{(1)}(t) \cdots x_{\sigma(n)}^{(n-1)}(t)\right. \\
& \quad+x_{\sigma(1)}(t)\left(x_{\sigma(2)}^{(1)}\right)^{\prime}(t) \cdots x_{\sigma(n)}^{(n-1)}(t)+\cdots \\
&\left.\quad+x_{\sigma(1)}(t) x_{\sigma(2)}^{(1)}(t) \cdots\left(x_{\sigma(n)}^{(n-1)}(t)\right)^{\prime}\right) \\
&=\left(\sum_{\sigma \in \pi_{n}} x_{\sigma(1)}^{(1)}(t) x_{\sigma(2)}^{(1)}(t) \cdots x_{\sigma(n)}^{(n-1)}(t)\right)+ \\
&\left(\sum_{\sigma \in \pi_{n}} x_{\sigma(1)}(t) x_{\sigma(2)}^{(2)}(t) x_{\sigma(3)}^{(2)}(t) \cdots x_{\sigma(n)}^{(n-1)}(t)\right)+ \\
& \cdots+\left(\sum_{\sigma \in \pi_{n}} x_{\sigma(1)}(t) x_{\sigma(2)}^{(1)}(t) \cdots x_{\sigma(n)}^{(n-2)}(t) x_{\sigma(n)}^{(n)}(t)\right) .
\end{aligned}
$$

Now notice that the first $n-1$ summand are the determinants of the matrices

$$
\left[\begin{array}{ccc}
x_{1}(t) & \cdots & x_{n}(t) \tag{1}\\
\vdots & \ddots & \vdots \\
x_{1}^{(i)}(t) & \cdots & x_{n}^{(i)}(t) \\
x_{1}^{(i)}(t) & \cdots & x_{n}^{(i)}(t) \\
\vdots & \ddots & \vdots \\
x_{1}^{(n-1)}(t) & \cdots & x_{n}^{(n-1)}(t)
\end{array}\right]
$$

and hence are equal to 0 .
For the last summand use the initial DE (??) to express

$$
x_{\sigma(n)}^{(n)}:=-a_{n-1}(t) x_{\sigma(n)}^{(n-1)}-\cdots-a_{0}(t) x_{\sigma(n)} .
$$

The summands of the from $-a_{i}(t) x_{\sigma(n)}^{(i)}$ for $i<n-1$ give 0 terms in the sum $\sum_{\sigma \in \pi_{n}}$ since the sum is just the $-a_{i}(t)$ multiple of the determinant of the form (1), while the term $-a_{n-1}(t) x_{\sigma(n)}^{(n-1)}$ gives

$$
-a_{n-1}(t) \phi(t)
$$

It follows that $\phi(t)$ satisfies the DE

$$
\phi^{\prime}(t)=-a_{n-1}(t) \phi(t)
$$

The theorem follows by noticing that the solution of this DE is

$$
\phi(t)=k e^{-\int a_{n-1}(t) d t}, \quad \text { where } \quad k \in \mathbb{R}
$$

Second order homogeneous LDE with constant coefficients

We are given a DE

$$
a \ddot{x}+b \dot{x}+c x=0,
$$

where $a, b, c \in \mathbb{R}$ are real numbers. We know from the theory above that the general solution is

$$
x\left(t, C_{1}, C_{2}\right)=C_{1} x_{1}(t)+C_{2} x_{2}(t)
$$

where $C_{1}, C_{2} \in \mathbb{R}$ are parameters and

1. $x_{1}(t)=e^{\lambda_{1} t}$ and $x_{2}(t)=e^{\lambda_{2} t}$ if the characteristic polynomial has two distinct real roots,
2. $x_{1}(t)=e^{\alpha t} \cos \beta t$ and $x_{2}(t)=e^{\alpha t} \sin \beta t$ if the characteristic polynomial has a complex pair $\lambda_{12}=\alpha \pm i \beta$ of roots, and
3. $x_{1}(t)=e^{\lambda t}, x_{2}(t)=t e^{\lambda t}$ if the characteristic polynomial has one double real root.

Nonhomogeneous LDEs

We are given the nonhomogeneous LDE

$$
x^{(n)}+a_{n-1}(t) x^{(n-1)}+\cdots+a_{0}(t) x=f(t)
$$

where $f: I \rightarrow \mathbb{R}$ is a nonzero function on the interval I. The following holds:

- If x_{1} and x_{2} are solutions of the nonhomogeneous equation, the difference $x_{1}-x_{2}$ is a solution of the corresponding homogeneous equation.
- The general solution is a sum

$$
x\left(t, C_{1}, C_{2}\right)=x_{p}+x_{h}=x_{p}+C_{1} x_{1}+\cdots+C_{n} x_{n}
$$

where x_{p} is a particular solution of the nonhomogeneous equation and x_{1}, \ldots, x_{n} are linearly independent solutions of the homogeneous equation.

- The particular solution can be obtained using the method of "intelligent guessing" or the method of variation of constants.

The method of "intelligent guessing" typically works if the function $f(t)$ belongs to a class of functions that is closed under derivations, like polynomials, exponential functions and sums of these.

Example $\left(\ddot{x}+\dot{x}+x=t^{2}\right)$

We are guessing that the particular solution will be of the form

$$
x_{p}(t)=A t^{2}+B t+C
$$

We have that

$$
\dot{x}_{p}(t)=2 A t+B, \quad \ddot{x}_{p}(t)=2 A,
$$

and so

$$
\begin{aligned}
\ddot{x}+\dot{x}+x & =2 A+(2 A t+B)+\left(A t^{2}+B t+C\right) \\
& =A t^{2}+(2 A+B) t+(2 A+B+C)
\end{aligned}
$$

The initial DE gives us a linear system in A, B, C :

$$
A=1, \quad 2 A+B=0, \quad 2 A+B+C=0
$$

with the solution $A=1, B=-2, C=0$. Hence, $x_{p}(t)=t^{2}-2 t$.

Example $\left(\ddot{x}-3 \dot{x}+2 x=e^{3 t}\right)$
We are guessing that the particular solution will be of the form

$$
x_{p}(t)=A e^{3 t}
$$

We have that

$$
\dot{x}_{p}(t)=3 A e^{3 t}, \quad \ddot{x}_{p}(t)=9 A e^{3 t}
$$

and so

$$
\ddot{x}-3 \dot{x}+2 x=9 A e^{3 t}-3\left(3 A e^{3 t}\right)+2 A e^{3 t}=2 A e^{3 t}
$$

The initial DE gives us an equation $2 A=1$ and hence, $x_{p}(t)=\frac{1}{2} e^{3 t}$.

Example $\left(\ddot{x}-x=e^{t}\right)$

The particular solution will not be of the form $x_{p}(t)=A e^{t}$, since this is a solution of the homogeneous equation, we are guessing that the correct form in this case is

$$
x_{p}(t)=A t e^{t} .
$$

We have that

$$
\dot{x}_{p}(t)=A\left(e^{t}+t e^{t}\right), \quad \ddot{x}_{p}(t)=A\left(2 e^{t}+t e^{t}\right),
$$

and so

$$
\ddot{x}-x=A\left(2 e^{t}+t e^{t}\right)-A t e^{t}=2 A e^{t} .
$$

The initial DE gives us an equation $2 A=1$ and hence, $x_{p}(t)=\frac{1}{2} t e^{t}$.

Example $\left(\ddot{x}+x=\frac{1}{\cos t}\right)$
Let us first solve the homogeneous part $\ddot{x}+x=0$. The characteristic polynomial is $p(\lambda)=\lambda^{2}+1$ with zeroes

$$
\lambda_{1,2}= \pm i=\cos t \pm i \sin t
$$

Hence, real solutions of the DE are

$$
\begin{equation*}
x_{1}(t)=\cos t \quad \text { and } \quad x_{2}(t)=\sin t . \tag{2}
\end{equation*}
$$

So the general solution to the homogeneous part is

$$
x(t)=C_{1} x_{1}(t)+C_{2} x_{2}(t), \quad \text { where } \quad C_{1}, C_{2} \in \mathbb{R} \quad \text { are constants. }
$$

Now we are searching for the particular solution $x_{p}(t)$ of the form

$$
x_{p}(t)=C_{1}(t) x_{1}(t)+C_{2}(t) x_{2}(t)
$$

Thus,

$$
\begin{equation*}
\dot{x}_{p}(t)=\dot{C}_{1}(t) x_{1}(t)+C_{1}(t) \dot{x}_{1}(t)+\dot{C}_{2}(t) x_{2}(t)+C_{2}(t) \dot{x}_{2}(t) . \tag{3}
\end{equation*}
$$

We force an equation

$$
\begin{equation*}
\dot{C}_{1}(t) x_{1}(t)+\dot{C}_{2}(t) x_{2}(t)=0 . \tag{4}
\end{equation*}
$$

Differentiang (3) further under the assumption (4) we get

$$
\begin{equation*}
\ddot{x}_{p}(t)=\left(\dot{C}_{1}(t) \dot{x}_{1}(t)+C_{1}(t) \ddot{x}_{1}(t)\right)+\left(\dot{C}_{2}(t) \dot{x}_{2}(t)+C_{2}(t) \ddot{x}_{2}(t)\right) . \tag{5}
\end{equation*}
$$

Plugging this into the initial DE and using that x_{1}, x_{2} are solutions of $\ddot{x}+x=0$

$$
\begin{equation*}
\dot{C}_{1}(t) \dot{x}_{1}(t)+\dot{C}_{2}(t) \dot{x}_{2}(t)=\frac{1}{\cos t} . \tag{6}
\end{equation*}
$$

Expressing $\dot{C}_{2}(t)$ from (4) and plugging into (6) we get

$$
\begin{equation*}
\dot{C}_{1}(t) \dot{x}_{1}(t)-\frac{\dot{C}_{1}(t) x_{1}(t)}{x_{2}(t)} \dot{x}_{2}(t)=\dot{C}_{1}(t) \frac{\dot{x}_{1}(t) x_{2}(t)-x_{1}(t) \dot{x}_{2}(t)}{x_{2}(t)}=\frac{1}{\cos t} . \tag{7}
\end{equation*}
$$

Using (2) in (7) we get

$$
\begin{equation*}
\dot{C}_{1}(t)=-\frac{\sin t}{\cos t} . \tag{8}
\end{equation*}
$$

Hence,

$$
C_{1}(t)=-\int \frac{\sin t}{\cos t} d t=-\int \frac{1}{u} d u=-\log |u|=-\log |\cos t|
$$

where we used the substitution $u=\cos t$.

Using (8) in (4) we get

$$
\begin{equation*}
\dot{C}_{2}(t)=1 . \tag{9}
\end{equation*}
$$

Hence,

$$
C_{2}(t)=t .
$$

So,

$$
x_{p}(t)=-\log |\cos t| \cdot \cos t+t \sin t .
$$

The complete solution to DE is

$$
x(t)=C_{1} \cos t+C_{2} \sin t-\log |\cos t| \cdot \cos t+t \sin t
$$

where C_{1}, C_{2} are parameters.

Vibrating systems

There are many vibrating systems in many different domains. The mathematical model is always the same, though. We will have in mind a vibrating mass attached to a spring.

Case 1: Free vibrations without damping
Let $x(t)$ denote the displacement of the mass from the equillibrium position.

- According to Newton's second law of motion

$$
m \ddot{x}=\sum F_{i},
$$

where F_{i} are forces acting on the mass.

- By Hooke's law, the only force acting on the mass pulls towards the equilibrium, its size is proportional to the displacement and the direction is opposite

$$
F=-k x(t), \quad k>0
$$

- So the DE in this case is

$$
m \ddot{x}+k x=0 \text {. }
$$

- The characteristic equation

$$
m \lambda^{2}+k=0
$$

has complex solutions $\lambda= \pm \omega i, \omega^{2}=k / m$.

- The general solution is

$$
x(t)=C_{1} \cos \omega t+C_{2} \sin \omega t .
$$

- So the solutions $x(t)$ are periodic. The equillibrium point $(0,0)$ in the phase plane (x, v) is a center.

Case 2: Free vibrations with damping
We assume a linear damping force

$$
F_{d}=-\beta \dot{x},
$$

so the $D E$ is

$$
m \ddot{x}+\beta \dot{x}+k x=0, \quad \text { where } \quad m, \beta, k>0 .
$$

Depending on the solutions of the characteristic equation there are three cases:

- Overdamping when $D=\beta^{2}-4 k m>0$ and $x(t)=C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2} t}$, $\lambda_{1,2}<0$. The mass slides towards the equilibrium. The point $(0,0)$ in the (x, v) plane is a sink.
- Critical damping when $D=0$ and $x(t)=C_{1} e^{\lambda t}+C_{2} t e^{\lambda t}, \lambda<0$. The point mass slides towards the equillibrium after, possibly, one swing. The point $(0,0)$ in the (x, v) plane is a sink,
- Damped vibration when $D<0$ and $x(t)=e^{\alpha t}\left(C_{1} \cos \beta t+C_{2} \sin \beta t\right)$. The mass oscillates around the equillibrium with decreasing amplitudes. The point $(0,0)$ is a spiral sink.

Case 3: Forced vibration without damping

In addition to internal forces of the system there is an additional external force $f(t)$ acting on the system, so

$$
m \ddot{x}+k x=f(t) \text {. }
$$

The general solution is of the form

$$
x\left(t, C_{1}, C_{2}\right)=C_{1} \cos (\omega t)+C_{2} \sin (\omega t)+x_{p}(t)
$$

where x_{p} is a particular solution of the nonhomogeneous equations.
Example
Let $f(t)=a \sin \mu t$.
Using the method of intelligent guessing,

- if $\mu \neq \omega$, then $x_{p}(t)=A \sin \mu t+B \cos \mu t$
- if $\mu=\omega$, then $x_{p}=t(A \sin \omega t+B \cos \omega t)$, so the solutions of the equation are unbonded and incerase towards ∞ as $t \rightarrow \infty$ - the well known phenomenion of resonance occurs.

Case 4: Forced vibration with damping:

$$
m \ddot{x}+\beta \dot{x}+k x=f(t) \text {. }
$$

Example

Let $f(t)=a \sin \mu t$.
The general solution is of the form

$$
x\left(t, C_{1}, C_{2}\right)=x_{h}+x_{p}=C_{1} x_{1}(t)+C_{2} x_{2}(t)+x_{p}(t)
$$

where $x_{p}(t)$ is of the form $A \sin \mu t+B \cos \mu t$, and the two solutions x_{1} and x_{2} both converge to 0 as $t \rightarrow \infty$. For any C_{1}, C_{2} the solution $x\left(t, C_{1}, C_{2}\right)$ asymptotically tends towards $x_{p}(t)$.

