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Test for linear independence of solutions

Let x1(t), . . . , xn(t) be the solutions of the homogeneous part of (??) and
form a matrix

W (x1(t), . . . , xn(t)) :=


x1(t) . . . xn(t)
ẋ1(t) . . . ẋn(t)

...
. . .

...

x
(n−1)
1 (t) . . . x

(n−1)
n (t)


We call the determinant

φ(t) = detW (x1(t), . . . , xn(t)) : I → R

the Wronskian determinant of W (x1(t), . . . , xn(t)), where I is the interval
on which t lives.

Theorem (Existence and uniqueness of solutions)

If x1(t), . . . , xn(t) are solutions of a LDE with continuous coefficient
functions a1(t), . . . an(t), then their Wronskian is either identically equal to
0 or nonzero at every point. In other words, if W (x1, . . . , xn) has a zero at
some point t0, then it is identically equal to 0.
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Proof of theorem
Let πn be the set of all permutations of the set {1, . . . , n}. Now we differentiate φ(t) and
obtain

φ′(t) =

(∑
σ∈πn

xσ(1)x
(1)
σ(2) · · · x

(n−1)
σ(n)

)′
(t)

=
∑
σ∈πn

((
xσ(1)

)′
(t)x

(1)
σ(2)(t) · · · x (n−1)

σ(n) (t)

+ xσ(1)(t)
(
x
(1)
σ(2)

)′
(t) · · · x (n−1)

σ(n) (t) + · · ·

+xσ(1)(t)x
(1)
σ(2)(t) · · ·

(
x
(n−1)
σ(n) (t)

)′)
=

(∑
σ∈πn

x
(1)
σ(1)(t)x

(1)
σ(2)(t) · · · x (n−1)

σ(n) (t)

)
+(∑

σ∈πn

xσ(1)(t)x
(2)
σ(2)(t)x

(2)
σ(3)(t) · · · x (n−1)

σ(n) (t)

)
+

· · ·+

(∑
σ∈πn

xσ(1)(t)x
(1)
σ(2)(t) · · · x (n−2)

σ(n) (t)x
(n)
σ(n)(t)

)
.
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Now notice that the first n − 1 summand are the determinants of the matrices

x1(t) . . . xn(t)
...

. . .
...

x
(i)
1 (t) . . . x

(i)
n (t)

x
(i)
1 (t) . . . x

(i)
n (t)

...
. . .

...

x
(n−1)
1 (t) . . . x

(n−1)
n (t)


(1)

and hence are equal to 0.
For the last summand use the initial DE (??) to express

x
(n)
σ(n) := −an−1(t)x

(n−1)
σ(n) − · · · − a0(t)xσ(n).

The summands of the from −ai (t)x
(i)
σ(n) for i < n − 1 give 0 terms in the sum

∑
σ∈πn

since the sum is just the −ai (t) multiple of the determinant of the form (1), while the

term −an−1(t)x
(n−1)
σ(n) gives

−an−1(t)φ(t).

It follows that φ(t) satisfies the DE

φ′(t) = −an−1(t)φ(t).

The theorem follows by noticing that the solution of this DE is

φ(t) = ke−
∫
an−1(t)dt , where k ∈ R.
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Second order homogeneous LDE with constant coefficients

We are given a DE
aẍ + bẋ + cx = 0,

where a, b, c ∈ R are real numbers. We know from the theory above that

the general solution is

x(t,C1,C2) = C1x1(t) + C2x2(t),

where C1,C2 ∈ R are parameters and

1. x1(t) = eλ1t and x2(t) = eλ2t if the characteristic polynomial has two
distinct real roots,

2. x1(t) = eαt cosβt and x2(t) = eαt sinβt if the characteristic
polynomial has a complex pair λ12 = α± iβ of roots, and

3. x1(t) = eλt , x2(t) = teλt if the characteristic polynomial has one
double real root.
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Nonhomogeneous LDEs
We are given the nonhomogeneous LDE

x (n) + an−1(t)x (n−1) + · · ·+ a0(t)x = f (t),

where f : I → R is a nonzero function on the interval I . The following
holds:

I If x1 and x2 are solutions of the nonhomogeneous equation, the
difference x1 − x2 is a solution of the corresponding homogeneous
equation.

I The general solution is a sum

x(t,C1,C2) = xp + xh = xp + C1x1 + · · ·+ Cnxn,

where xp is a particular solution of the nonhomogeneous equation and
x1, . . . , xn are linearly independent solutions of the homogeneous
equation.

I The particular solution can be obtained using the method of
“intelligent guessing” or the method of variation of constants.
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The method of “intelligent guessing” typically works if the function f (t)
belongs to a class of functions that is closed under derivations, like
polynomials, exponential functions and sums of these.

Example (ẍ + ẋ + x = t2)
We are guessing that the particular solution will be of the form

xp(t) = At2 + Bt + C .

We have that
ẋp(t) = 2At + B, ẍp(t) = 2A,

and so

ẍ + ẋ + x = 2A + (2At + B) + (At2 + Bt + C )

= At2 + (2A + B)t + (2A + B + C )

The initial DE gives us a linear system in A,B,C :

A = 1, 2A + B = 0, 2A + B + C = 0

with the solution A = 1,B = −2,C = 0. Hence, xp(t) = t2 − 2t.
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Example (ẍ − 3ẋ + 2x = e3t)
We are guessing that the particular solution will be of the form

xp(t) = Ae3t .

We have that
ẋp(t) = 3Ae3t , ẍp(t) = 9Ae3t ,

and so

ẍ − 3ẋ + 2x = 9Ae3t − 3(3Ae3t) + 2Ae3t = 2Ae3t

The initial DE gives us an equation 2A = 1 and hence, xp(t) = 1
2e

3t .
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Example (ẍ − x = et)
The particular solution will not be of the form xp(t) = Aet , since this is a solution
of the homogeneous equation, we are guessing that the correct form in this case is

xp(t) = Atet .

We have that
ẋp(t) = A(et + tet), ẍp(t) = A(2et + tet),

and so

ẍ − x = A(2et + tet)− Atet = 2Aet .

The initial DE gives us an equation 2A = 1 and hence, xp(t) = 1
2 te

t .
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Example (ẍ + x = 1
cos t

)

Let us first solve the homogeneous part ẍ + x = 0. The characteristic polynomial
is p(λ) = λ2 + 1 with zeroes

λ1,2 = ±i = cos t ± i sin t.

Hence, real solutions of the DE are

x1(t) = cos t and x2(t) = sin t. (2)

So the general solution to the homogeneous part is

x(t) = C1x1(t) + C2x2(t), where C1,C2 ∈ R are constants.

Now we are searching for the particular solution xp(t) of the form

xp(t) = C1(t)x1(t) + C2(t)x2(t).
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Thus,
ẋp(t) = Ċ1(t)x1(t) + C1(t)ẋ1(t) + Ċ2(t)x2(t) + C2(t)ẋ2(t). (3)

We force an equation
Ċ1(t)x1(t) + Ċ2(t)x2(t) = 0. (4)

Differentiang (3) further under the assumption (4) we get

ẍp(t) = (Ċ1(t)ẋ1(t) + C1(t)ẍ1(t)) + (Ċ2(t)ẋ2(t) + C2(t)ẍ2(t)). (5)

Plugging this into the initial DE and using that x1, x2 are solutions of ẍ + x = 0

Ċ1(t)ẋ1(t) + Ċ2(t)ẋ2(t) =
1

cos t
. (6)

Expressing Ċ2(t) from (4) and plugging into (6) we get

Ċ1(t)ẋ1(t)− Ċ1(t)x1(t)

x2(t)
ẋ2(t) = Ċ1(t)

ẋ1(t)x2(t)− x1(t)ẋ2(t)

x2(t)
=

1

cos t
. (7)

Using (2) in (7) we get

Ċ1(t) = − sin t

cos t
. (8)

Hence,

C1(t) = −
∫

sin t

cos t
dt = −

∫
1

u
du = − log |u| = − log | cos t|,

where we used the substitution u = cos t.
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Using (8) in (4) we get
Ċ2(t) = 1. (9)

Hence,
C2(t) = t.

So,
xp(t) = − log | cos t| · cos t + t sin t.

The complete solution to DE is

x(t) = C1 cos t + C2 sin t − log | cos t| · cos t + t sin t,

where C1,C2 are parameters.
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Vibrating systems

There are many vibrating systems in many different domains. The
mathematical model is always the same, though. We will have in mind a
vibrating mass attached to a spring.

Case 1: Free vibrations without damping

Let x(t) denote the displacement of the mass from the equillibrium position.
I According to Newton’s second law of motion

mẍ =
∑

Fi ,

where Fi are forces acting on the mass.
I By Hooke’s law, the only force acting on the mass pulls towards the

equilibrium, its size is proportional to the displacement and the
direction is opposite

F = −kx(t), k > 0.

I So the DE in this case is

mẍ + kx = 0 .
13/17
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I The characteristic equation

mλ2 + k = 0

has complex solutions λ = ±ωi , ω2 = k/m.

I The general solution is

x(t) = C1 cosωt + C2 sinωt.

I So the solutions x(t) are periodic. The equillibrium point (0, 0) in the
phase plane (x , v) is a center.
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Case 2: Free vibrations with damping
We assume a linear damping force

Fd = −βẋ ,

so the DE is

mẍ + βẋ + kx = 0 , where m, β, k > 0.

Depending on the solutions of the characteristic equation there are three
cases:

I Overdamping when D = β2 − 4km > 0 and x(t) = C1e
λ1t + C2e

λ2t ,
λ1,2 < 0. The mass slides towards the equilibrium. The point (0, 0) in
the (x , v) plane is a sink.

I Critical damping when D = 0 and x(t) = C1e
λt + C2te

λt , λ < 0. The
point mass slides towards the equillibrium after, possibly, one swing.
The point (0, 0) in the (x , v) plane is a sink,

I Damped vibration when D < 0 and x(t) = eαt(C1 cosβt + C2 sinβt).
The mass oscillates around the equillibrium with decreasing
amplitudes. The point (0, 0) is a spiral sink.
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Case 3: Forced vibration without damping

In addition to internal forces of the system there is an additional external
force f (t) acting on the system, so

mẍ + kx = f (t) .

The general solution is of the form

x(t,C1,C2) = C1 cos(ωt) + C2 sin(ωt) + xp(t),

where xp is a particular solution of the nonhomogeneous equations.

Example

Let f (t) = a sinµt.

Using the method of intelligent guessing,

I if µ 6= ω, then xp(t) = A sinµt + B cosµt

I if µ = ω, then xp = t(A sinωt + B cosωt), so the solutions of the
equation are unbonded and incerase towards ∞ as t →∞ – the well
known phenomenion of resonance occurs.
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Case 4: Forced vibration with damping:

mẍ + βẋ + kx = f (t) .

Example

Let f (t) = a sinµt.
The general solution is of the form

x(t,C1,C2) = xh + xp = C1x1(t) + C2x2(t) + xp(t)

where xp(t) is of the form A sinµt + B cosµt, and the two solutions x1 and
x2 both converge to 0 as t →∞. For any C1,C2 the solution x(t,C1,C2)
asymptotically tends towards xp(t).
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