Mathematical modelling

Lecture 5, March 15, 2022

Faculty of Computer and Information Science University of Ljubljana

2021/22

Newton optimization method:
We would like to find the extrema of the function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Since the extrema are critical (or stationary) points, the candidates are zeroes of the gradient, i.e.,

$$
G(x):=\operatorname{grad} F(x)=\left[\begin{array}{lll}
F_{x_{1}}(x) & \cdots & F_{x_{n}}(x) \tag{1}
\end{array}\right]=0 .
$$

(1) is a system of n equations for n variables, the Jacobian of the vector function G is the so called Hessian of F :

$$
D G(x)=H(x)=\left[\begin{array}{ccc}
F_{x_{1} x_{1}} & \ldots & F_{x_{1} x_{n}} \\
\vdots & \ddots & \vdots \\
F_{x_{n} x_{1}} & \ldots & F_{x_{n} x_{n}}
\end{array}\right] .
$$

If the sequence of iterates

$$
x_{0}, \quad x_{k+1}=x_{k}-H^{-1}\left(x_{k}\right) G\left(x_{k}\right)
$$

converges, the limit is a critical point of F, i.e., a candidate for the minimum (or maximum).

Gradient descent

Optimization methods can also be used to ensure a sufficiently accurate starting approximation for the Newton-based techniques. (Like bisection does for a single one-variable equation.)

Finding solutions of the system $F(x)=0$, where

$$
F=\left[F_{1}, \ldots, F_{n}\right]^{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

is equivalent to finding global minima of

$$
g(x):=\|F\|^{2}=F_{1}(x)^{2}+\ldots+F_{n}(x)^{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

We search for the local minima (which are not necessarily global minima!) of g as follows:

1. Choose x_{0}.
2. Determine the constant α in $x_{r}-\alpha \cdot \operatorname{grad}\left(g\left(x_{r}\right)\right)$ which mimimizes

$$
h(\alpha)=g\left(x_{r}-\alpha \cdot \operatorname{grad}\left(g\left(x_{r}\right)\right) .\right.
$$

(Or is significantly smaller than $h(0)=g\left(x_{r}\right)$.)
3. $x_{r+1}=x_{r}-\alpha \cdot \operatorname{grad}\left(g\left(x_{r}\right)\right)$.

Quasi-Newtonov methods: Broyden's method

- For large n, the Newton's method is very expensive, since we need to evaluate n^{2} partial derivatives at each step and use $\mathcal{O}\left(n^{3}\right)$ flops $(+,-, \cdot,:)$ to solve the linear system.
- Broyden's method avoids computing derivatives. For $n=m=1$ it replaces the tangent by a secant throught the last two iterates. It mimicks this idea also for larger $n=m$.

Let B_{r} be an approximate for $J_{f}\left(x_{r}\right)$. Broyden's method works as follows:

1. Solve $B_{r} \Delta x_{r}=-f\left(x_{r}\right)$,
2. $x_{r+1}=x_{r}+\Delta x_{r}$,
3. Determine B_{r+1}.

The last step searches for a matrix B_{r+1}, which fulfils the secant condition:

$$
B_{r+1}\left(x_{r+1}-x_{r}\right)=f\left(x_{r+1}\right)-f\left(x_{r}\right)
$$

and is the closest to B_{r} in the spectral norm $\|\cdot\|_{2}$.
It turns out that

$$
B_{r+1}=B_{r}+\frac{f\left(x_{r+1}\right)\left(\Delta x_{r}\right)^{T}}{\left\|\Delta x_{r}\right\|_{2}^{2}}
$$

Recall from above the microwave oven example. The system of equations for the parameters α, a, b is:

$$
\begin{array}{r}
\frac{\alpha}{1+\sqrt{a^{2}+b^{2}}}-0.27=0 \\
\frac{\alpha}{1+\sqrt{(1-a)^{2}+(1-b)^{2}}}-0.36=0 \\
\frac{\alpha}{1+\sqrt{a^{2}+(2-b)^{2}}}-0.3=0 .
\end{array}
$$

https://zalara.github.io/Algoritmi/newtonsys.m https://zalara.github.io/Algoritmi/broyden.m https://zalara.github.io/Algoritmi/gradient_descent.m https://zalara.github.io/Algoritmi/test_newtonsys_2.m

We have an overdetermined system

$$
\begin{equation*}
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad f(x)=(0, \ldots, 0) \tag{2}
\end{equation*}
$$

of m nonlinear equations for n unknowns, where $m>n$.
The system (2) generally does not have a solution, so we are looking for a solution of (2) by the least squares method, i.e., $\alpha \in \mathbb{R}^{n}$ such that the distance of $f(\alpha)$ from the origin is the smallest possible:

$$
\|f(\alpha)\|^{2}=\min \left\{\|f(x)\|^{2}\right\}
$$

The Gauss-Newton method is a generalization of the Newton's method, where instead of the inverse of the Jacobian its MP inverse is used at each step:

$$
x_{0} \ldots \text { initial approximation, } \quad x_{k+1}=x_{k}-D f\left(x_{k}\right)^{+} f\left(x_{k}\right),
$$

where $D f\left(x_{k}\right)^{+}$is the MP inverse of $D f\left(x_{k}\right)$. If the matrix
$\left(D f\left(x_{k}\right)^{T} D f\left(x_{k}\right)\right)$ is nonsingular at each step k, then

$$
x_{k+1}=x_{k}-\left(D f\left(x_{k}\right)^{T} D f\left(x_{k}\right)\right)^{-1} D f\left(x_{k}\right)^{T} f\left(x_{k}\right)
$$

At each step x_{k+1} is the least squares approximation to the solution of the overdetermined linear system $L_{x_{k}}(x)=0$, that is,

$$
\left\|L_{x_{k}}\left(x_{k+1}\right)\right\|^{2}=\min \left\{\left\|L_{x_{k}}(x)\right\|^{2}, x \in \mathbb{R}^{n}\right\}
$$

Convergence is not guaranteed, but:

- if the sequence x_{k} converges, the limit $x=\lim _{k} x_{k}$ is a local (but not necessarily global) minimum of $\|f(x)\|^{2}$.

It follows that the Gauss-Newton method is an algorithm for the local minimum of $\|f(x)\|^{2}$.

Example

We are given point $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2}$ for $i=1, \ldots, m$ and are searching for the function

$$
f(x, a, b)=a e^{b x}
$$

which fits this data best by the method of least squares.
So we have the overdetermined system $F(a, b)=0$, where

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{m}, \quad F(a, b)=\left(y_{1}-a e^{b x_{1}}, \ldots, y_{m}-a e^{b x_{m}}\right)
$$

The Jacobian of F is

$$
D F(a, b)=\left[\begin{array}{cc}
-e^{b x_{1}} & a x_{1} e^{b x_{1}} \\
\vdots & \\
-e^{b x_{m}} & a x_{m} e^{b x_{m}}
\end{array}\right]
$$

Using the Gauss-Newton method:

- We choose initianl approximation (a_{0}, b_{0}),
- Calculate iterates

$$
\left[\begin{array}{l}
a_{r+1} \\
b_{r+1}
\end{array}\right]=\left[\begin{array}{l}
a_{r} \\
b_{r}
\end{array}\right]-D F\left(a_{r}, b_{r}\right)^{+} F\left(a_{r}, b_{r}\right)^{T} .
$$

Chapter 4:

Curves and surfaces

- Curves
- Definition and examples
- Derivative
- Arc length and the natural parametrization
- Curvature
- Plotting plane curves
- Area bounded by plane curves
- Curves in the polar form
- Motion in \mathbb{R}^{3}
- Surfaces
- Definition and examples
- Cartesian, cylindrical and spherical coordinates
- Surface of revolution
- Tangent plane

Curves - definition and examples

A parametric curve (or parametrized curve) in \mathbb{R}^{m} is a vector function

$$
f: I \rightarrow \mathbb{R}^{m}, \quad f(t)=\left[\begin{array}{c}
f_{1}(t) \\
\vdots \\
f_{m}(t)
\end{array}\right]
$$

where $I \subset \mathbb{R}$ is a bounded or unbounded interval.

The independent variable (in this case t) is the parameter of the curve.
For every value $t \in I, f(t)$ represents a point in \mathbb{R}^{m}.
As t runs through $I, f(t)$ traces a path, or a curve, in \mathbb{R}^{m}.

If $\underline{m=2}$, then for every $t \in I$,

$$
f(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\mathbf{r}(t)
$$

is the position vector of a point in the plane \mathbb{R}^{2}.
All points $\{f(t), t \in I\}$ form a plane curve:

In this example $x(t)=t \cos t, y(t)=t \sin t, t \in[-3 \pi / 4,3 \pi / 4]$

If $m=3$, then

$$
f(t)=\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\mathbf{r}(t)
$$

is the position vector of a point in \mathbb{R}^{3} for every t, and $\{f(t), t \in I\}$ is a space curve:

In this example $x(t)=\cos t, y(t)=\sin t, z(t)=t / 5, t \in[0,4 \pi]$

Example

$$
f(t)=\left[\begin{array}{c}
2 \cos t \\
2 \sin t
\end{array}\right], t \in[0,2 \pi]
$$

a circle with radius 2 and center $(0,0)$

$$
f(t)=\mathbf{r}_{0}+t \mathbf{e}, t \in \mathbb{R}
$$

$$
\mathbf{r}_{0}, \mathbf{e} \in \mathbb{R}^{m}, \mathbf{e} \neq \mathbf{0}
$$

line through \mathbf{r}_{0} in the direction of \mathbf{e} in \mathbb{R}^{m}

$$
\begin{aligned}
& \mathrm{m}=2 \text { : } \\
& \text { slope } k=e_{2} / e_{1} \text { if } e_{1} \neq 0 \\
& \text { vertical if } \mathbf{e}=\left(0, e_{2}\right) \\
& \text { horizontal if } \mathbf{e}=\left(e_{1}, 0\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& f(t)=\left[\begin{array}{c}
t^{3}-2 t \\
t^{2}-t
\end{array}\right], t \in \mathbb{R} \\
& f(t)=\left[\begin{array}{c}
t+\sin (3 t) \\
t+\cos (5 t)
\end{array}\right], t \in \mathbb{R}
\end{aligned}
$$

A parametric curve $f(t), t \in[a, b]$ is closed if $f(a)=f(b)$.
Example

$$
f(t)=\left[\begin{array}{c}
\cos 3 t \\
\sin 5 t
\end{array}\right], t \in[0,2 \pi]
$$

