Mathematical modelling

Lecture 5, March 15, 2022

Faculty of Computer and Information Science University of Ljubljana

2021/22

Application of Newton's method for n = m > 1 to optimization

Newton optimization method:

We would like to find the extrema of the function $F : \mathbb{R}^n \to \mathbb{R}$.

Since the extrema are *critical (or stationary) points*, the candidates are zeroes of the gradient, i.e.,

$$G(x) := \operatorname{grad} F(x) = \left[\begin{array}{ccc} F_{x_1}(x) & \cdots & F_{x_n}(x) \end{array} \right] = 0. \tag{1}$$

(1) is a system of n equations for n variables, the Jacobian of the vector function G is the so called Hessian of F:

$$DG(x) = H(x) = \begin{bmatrix} F_{x_1x_1} & \dots & F_{x_1x_n} \\ \vdots & \ddots & \vdots \\ F_{x_nx_1} & \dots & F_{x_nx_n} \end{bmatrix}$$

If the sequence of iterates

$$x_0, \quad x_{k+1} = x_k - H^{-1}(x_k)G(x_k)$$

converges, the limit is a critical point of F, i.e., a candidate for the minimum (or maximum).

Gradient descent

Optimization methods can also be used to ensure a sufficiently accurate starting approximation for the Newton-based techniques. (Like bisection does for a single one-variable equation.)

Finding solutions of the system F(x) = 0, where

$$F = [F_1, \ldots, F_n]^T : \mathbb{R}^n \to \mathbb{R}^n$$

is equivalent to finding global minima of

$$g(x) := \|F\|^2 = F_1(x)^2 + \ldots + F_n(x)^2 : \mathbb{R}^n \to \mathbb{R}$$

We search for the local minima (which are not necessarily global minima!) of g as follows:

- 1. Choose x_0 .
- 2. Determine the constant α in $x_r \alpha \cdot \operatorname{grad}(g(x_r))$ which mimimizes

$$h(\alpha) = g(x_r - \alpha \cdot \operatorname{grad}(g(x_r))).$$

(Or is significantly smaller than $h(0) = g(x_r)$.) 3. $x_{r+1} = x_r - \alpha \cdot \operatorname{grad}(g(x_r))$.

Quasi-Newtonov methods: Broyden's method

- For large n, the Newton's method is very expensive, since we need to evaluate n² partial derivatives at each step and use O(n³) flops (+, −, ·, :) to solve the linear system.
- Broyden's method avoids computing derivatives. For n = m = 1 it replaces the tangent by a secant throught the last two iterates. It mimicks this idea also for larger n = m.
- Let B_r be an approximate for $J_f(x_r)$. Broyden's method works as follows: 1. Solve $B_r \Delta x_r = -f(x_r)$,
 - $2. \ x_{r+1} = x_r + \Delta x_r,$
 - 3. Determine B_{r+1} .

The last step searches for a matrix B_{r+1} , which fulfils the secant condition:

$$B_{r+1}(x_{r+1}-x_r) = f(x_{r+1}) - f(x_r)$$

and is the closest to B_r in the spectral norm $\|\cdot\|_2$.

It turns out that

$$B_{r+1} = B_r + \frac{f(x_{r+1})(\Delta x_r)'}{\|\Delta x_r\|_2^2}.$$

Recall from above the microwave oven example. The system of equations for the parameters α , *a*, *b* is:

$$\frac{\frac{\alpha}{1+\sqrt{a^2+b^2}}-0.27 = 0}{\frac{\alpha}{1+\sqrt{(1-a)^2+(1-b)^2}}-0.36 = 0}$$
$$\frac{\frac{\alpha}{1+\sqrt{a^2+(2-b)^2}}-0.3 = 0.$$

https://zalara.github.io/Algoritmi/newtonsys.m
https://zalara.github.io/Algoritmi/broyden.m
https://zalara.github.io/Algoritmi/gradient_descent.m
https://zalara.github.io/Algoritmi/test_newtonsys_2.m

Newton's method for m > n > 0

We have an overdetermined system

$$f: \mathbb{R}^n \to \mathbb{R}^m, \quad f(x) = (0, \dots, 0) \tag{2}$$

of *m* nonlinear equations for *n* unknowns, where m > n.

The system (2) generally does not have a solution, so we are looking for a solution of (2) by the least squares method, i.e., $\alpha \in \mathbb{R}^n$ such that the distance of $f(\alpha)$ from the origin is the smallest possible:

$$||f(\alpha)||^2 = \min\{||f(x)||^2\}.$$

The <u>Gauss-Newton method</u> is a generalization of the Newton's method, where instead of the inverse of the Jacobian its MP inverse is used at each step:

 $x_0 \dots$ initial approximation, $x_{k+1} = x_k - Df(x_k)^+ f(x_k)$, where $Df(x_k)^+$ is the MP inverse of $Df(x_k)$. If the matrix $(Df(x_k)^T Df(x_k))$ is nonsingular at each step k, then $x_{k+1} = x_k - (Df(x_k)^T Df(x_k))^{-1} Df(x_k)^T f(x_k)$. At each step x_{k+1} is the least squares approximation to the solution of the overdetermined linear system $L_{x_k}(x) = 0$, that is,

$$\|L_{x_k}(x_{k+1})\|^2 = \min\{\|L_{x_k}(x)\|^2, x \in \mathbb{R}^n\}.$$

Convergence is not guaranteed, but:

▶ if the sequence x_k converges, the limit x = lim_k x_k is a local (but not necessarily global) minimum of ||f(x)||².

It follows that the Gauss-Newton method is an algorithm for the local minimum of $||f(x)||^2$.

Example

We are given point $(x_i, y_i) \in \mathbb{R}^2$ for i = 1, ..., m and are searching for the function

$$f(x,a,b) = ae^{bx}$$

which fits this data best by the method of least squares.

So we have the overdetermined system F(a, b) = 0, where

$$F: \mathbb{R}^2 \to \mathbb{R}^m, \quad F(a, b) = (y_1 - ae^{bx_1}, \dots, y_m - ae^{bx_m}).$$

The Jacobian of F is

$$DF(a, b) = \begin{bmatrix} -e^{bx_1} & ax_1e^{bx_1} \\ \vdots \\ -e^{bx_m} & ax_me^{bx_m} \end{bmatrix}.$$

Using the Gauss-Newton method:

- We choose initianl approximation (a₀, b₀),
- Calculate iterates

$$\begin{bmatrix} a_{r+1} \\ b_{r+1} \end{bmatrix} = \begin{bmatrix} a_r \\ b_r \end{bmatrix} - DF(a_r, b_r)^+ F(a_r, b_r)^T.$$

Chapter 4:

Curves and surfaces

Curves

- Definition and examples
- Derivative
- Arc length and the natural parametrization
- Curvature
- Plotting plane curves
- Area bounded by plane curves
- Curves in the polar form
- ▶ Motion in ℝ³

Surfaces

- Definition and examples
- Cartesian, cylindrical and spherical coordinates
- Surface of revolution
- Tangent plane

Curves - definition and examples

A parametric curve (or parametrized curve) in \mathbb{R}^m is a vector function

$$f: I \to \mathbb{R}^m, \qquad f(t) = \begin{bmatrix} f_1(t) \\ \vdots \\ f_m(t) \end{bmatrix},$$

where $I \subset \mathbb{R}$ is a bounded or unbounded interval.

The independent variable (in this case t) is the parameter of the curve.

For every value $t \in I$, f(t) represents a point in \mathbb{R}^m .

As t runs through I, f(t) traces a path, or a curve, in \mathbb{R}^m .

If m = 2, then for every $t \in I$,

$$f(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \mathbf{r}(t)$$

is the position vector of a point in the plane \mathbb{R}^2 .

All points $\{f(t), t \in I\}$ form a plane curve:

In this example $x(t) = t \cos t$, $y(t) = t \sin t$, $t \in [-3\pi/4, 3\pi/4]$

If m = 3, then

$$f(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} = \mathbf{r}(t)$$

is the position vector of a point in \mathbb{R}^3 for every t, and $\{f(t), t \in I\}$ is a space curve:

In this example $x(t) = \cos t$, $y(t) = \sin t$, z(t) = t/5, $t \in [0, 4\pi]$

Example

$$f(t) = \begin{bmatrix} 2\cos t \\ 2\sin t \end{bmatrix}, t \in [0, 2\pi]$$

a circle with radius 2 and center $\left(0,0\right)$

$$egin{aligned} &f(t) = \mathsf{r_0} + t\mathbf{e}, t \in \mathbb{R}, \ &\mathsf{r_0}, \mathbf{e} \in \mathbb{R}^m, \mathbf{e}
eq \mathbf{0} \end{aligned}$$

line through \mathbf{r}_0 in the direction of \mathbf{e} in \mathbb{R}^m

Example

$$egin{aligned} f(t) &= \left[egin{aligned} t^3 - 2t \ t^2 - t \end{array}
ight], t \in \mathbb{R} \ \end{aligned}$$
 $f(t) &= \left[egin{aligned} t + \sin(3t) \ t + \cos(5t) \end{array}
ight], t \in \mathbb{R} \end{aligned}$

A parametric curve $f(t), t \in [a, b]$ is <u>closed</u> if f(a) = f(b). Example

$$f(t) = \begin{bmatrix} \cos 3t \\ \sin 5t \end{bmatrix}, t \in [0, 2\pi]$$

