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Homology as defined in the previous chapter is an invariant assigned

to a simplicial complex. While its homotopy invariance and computa-

tional amenability make homology a suitable tool for computational

purposes, the structural depth of the underlying theory goes far be-

yond the presented material.

In this chapter we present some further properties on homology.

The first one is functoriality and its impact on significant topological

results of the beginning of the twentieth century. The second one is

the ability to combine homology computations of two parts of a space

in order to deduce the homology of the whole space.

1 Impact

One of the fundamental tasks of mathematics is a construction

of new objects (invariants) assigned to known objects. For example,

given a closed surface we can assign to it a triangulation. In turn, we

can assign homology groups to that obtained triangulation.

It turns out to be supremely beneficial if such an assignment can be

extended in a consistent manner to maps between the original objects

as well. When this is the case we say the assignment is functorial1. It 1 Functoriality and its formal con-
sequences are studied within the

Category Theory.
turns out that homology is functorial as Proposition 1.2 demonstrates.

Functoriality of homology

Definition 1.1. Suppose f : K → L is a simplicial map between sim-

plicial complexes, q ∈ {0, 1, . . .}, and F is a field. The induced maps

f# and f∗ are defined as follows:

• f# : Cq(K; F) → Cq(L; F) is the linear map of chain groups de-

fined as

f#

(
∑

i
aiσi

)
= ∑

i : dim( f (σi))=q
ai f (σi), ai ∈ F, σ

(q)
i ∈ K.

• f∗ : Hq(K; F)→ Hq(L; F) is the linear map defined as

f∗([α]) = [ f#(α)].

" We refrain from specifying q and
F in the notation f∗ in order not

to overload it with the indices. As
such f∗ represents the induced map

on homology in any dimension or

coefficients. The relevant choice of the
dimension(s) and coefficients should

always be apparent from the context.

T The induced maps in the case of
coefficients in a group are homomor-
phisms and are still well defined.

T Identity maps between spaces

induce identity maps on homology.
Constant maps between spaces induce
trivial (i.e., zero) maps on homology.

Comments on Definition 1.1 using the notation established in it:

1. Given a simplex σ ∈ K of dimension q, its image f (σ) is a simplex

of dimension q or less. The condition on dimension in the definition
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of f# means that only the images of those simplices σi, which are of

full dimension q, are taken into account. In particular,

f#(σ) =

 f (σ); dim( f (σ)) = q

0; else.

2. The induced map f∗ turns out to be well defined, i.e., if [α] = [β]

then f∗([α]) = f∗([β]).

3. Homotopic maps induce the same maps on homology.

4. Suppose X and Y are metric spaces with triangulations K and L.

By the Simplicial approximation Theorem there exists for each

continuous map f1 : X → Y a simplicial map f2 between some sub-

divisions of K and L, such that f1 ' f2. Whenever we mention the

homology of X we formally think of the homology of K. In a similar

manner, whenever we talk about the maps on homology induced by

a continuous map f1, we formally think2 of maps induced by the 2 With this explanation, the notion

of a map on homology induced by a
continuous map between spaces is well

defined.

simplicial map f2.

↪→
f

K L

Figure 1: An embedding f : K → L.
While the first homology groups of K
and L are of dimension 2, the image

f∗(H1(K; F)) is of dimension 1, demon-
strating that the embedding preserves

only one hole. This interpretation will

be significantly expanded within the
context of persistent homology.

The induced maps are consistent with respect to compositions3 as
3 Formally speaking we express this

property by saying that homology is

functorial.

the following proposition explains.

Proposition 1.2. [Functoriality of the induced maps] Suppose maps

f : K → L and g : L → M between simplicial complexes are simpli-

cial. Then for each q ∈ {0, 1, . . .} and for each F we have

(g ◦ f )# = g# ◦ f#, and (g ◦ f )∗ = g∗ ◦ f∗.

The proof follows straight from the definition.

Figure 2: A geometric intuition
dictates that if we want to retract
B2 onto S1 = ∂B2, the resulting map

would need to have a discontinuity,
i.e., at least one point where we “tear”

the disc. A fairly simple proof of this

fact is given using homology.

One of the most natural demonstrations of the power of functori-

ality concerns the existence of retractions. Given a space X and its

subspace4 A ⊂ X, a retraction of X to A is any continuous map

4 A required condition for the exis-

tence of a retraction is for A to be
closed in X.

X → A such that f (a) = a, ∀a ∈ A.

Example 1.3. For each n ∈ N the standard (n − 1)-sphere Sn−1 is

the boundary of the standard n-ball Bn. We claim there is no retrac-

tion Bn → Sn−1. As a special case, there is no retraction of the unit

interval onto its endpoints.

g f

H1
∼= F H1

∼= FH1 = 0
g∗ f∗

Figure 3: The proof of Example

1.3. The composition of maps is
identity on S1, while the composition
of induced maps can’t be identity as it
factors through 0.

Proof. Assume such a retraction f : Bn → Sn−1 = ∂Bn exists. Precom-

pose it with the inclusion g : Sn−1 ↪→ Bn, see Figure 3. Let [α] 6= 0 be

a basis (generator) of Hn−1(Sn−1; F). We combine two observations:

• As f ◦ g : Sn−1 → Sn−1 is identity, ( f ◦ g)∗([α]) = [α] 6= 0.

• As Hn−1(Bn; F) = 0, g∗([α]) = 0 and thus f∗(g∗([α])) = 0.

By Proposition 1.2 ( f ◦ g)∗([α]) = f∗(g∗([α])), a contradiction. Hence

a retraction f does not exist.
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Brouwer fixed point

Brouwer fixed point Theorem is probably one of the most famous

early results of topology. It has a surprisingly short proof using the

functoriality of homology.

Theorem 1.4. Every continuous map f : B2 → B2 has a fixed point,

i.e., a point x0 ∈ B2 such that f (x0) = x0.

x

f(x)

y = g(y)

f(y)

g(x)

Figure 4: Map g from the proof of the
Brouwer fixed point Theorem.

Proof. Assume map f has no fixed point. Define map g : B2 → S1

by declaring that for each x ∈ B2, point g(x) ∈ S1 = ∂B2 is the

intersection of S1 with the ray based at f (x) containing x, see Figure

4. As f has not fixed point, the mentioned ray is always unique. Map

g is a continuous retraction, a contradiction according to Example 1.3.

Hence a fixed point exists.

Hairy ball

Another prominent theorem that can be conveniently proved using

homology is the Hairy ball Theorem. The name comes from a popular

adaptation of the result: one can’t comb a hair on a hairy ball without

creating a hair whorl.

Figure 5: A tangent vector field on
a sphere induces a flow presented

by the streamlines on this figure.

Theorem 1.5 states that the vector
field must have a zero, which can be

demonstrated on our example by the

source of streamlines. To the contrary,
there are non-trivial tangent vector

fields in the plane and on the torus.

Before we state the theorem we need to clarify a few technical de-

tails.

1. A tangent vector field on a surface X is a continuous map f : X →
R3 such that for each x ∈ S we have x ⊥ f (x). A vector field f is

non-vanishing, if it is non-zero at each point.

2. Given a centrally symmetric5 triangulation K of S2, let α =

5 I.e., the triangulation K has the

following property: for each simplex
τ ∈ K its reflection through the point

(0, 0, 0) is also a simplex.

∑σ(2)∈K σ be the cycle defined as the sum of consistently oriented

triangles of K. Without the loss of generality we may assume the

triangles are oriented so that their “upwards” direction is pointing

away from the point (0, 0, 0). Recall that [α] is the fundamental

class spanning H2(K; R) ∼= R.

3. For each triangle σ ∈ K the reflection of σ through (0, 0, 0) is again

a simplex σ′ of K. However, if σ has the chosen orientation from

the previous point6, then the reflected triangle has the opposite 6 I.e., such that the chosen normal is

pointing away from the point (0, 0, 0).orientation7 from the originally chosen orientation on σ′, see the left
7 I.e., such that the chosen normal is
pointing towards the point (0, 0, 0).portion of Figure 6. In particular, [α′] = ∑σ(2)∈K σ′ is a non-trivial

homology class representing −[α].

4. Let ρ : K → K be the reflection map and let g : K → K be the

identity map. By 2. and 3. maps g and ρ are not homotopic as

g∗([α]) = [α] 6= ρ∗([α]) = [α′].
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a

b

c

−a

−c

−b

x

−x

f(x) f(−x)

Figure 6: Elements of the proof of

Theorem 1.5.
On the left side is simplex 〈a, b, c〉

and its (oriented) reflection through

(0, 0, 0): 〈−a,−b,−c〉. Observe that
in both cases the normal to the

simplex is in the direction (1, 1, 1).
The same argument and picture work
for any odd dimension, which leads to

Theorem 1.6.

On the right side is the construc-
tion of homotopy from the proof of

Theorem 1.5. Point x is connected to

−x by the geodesic passing through
f (x) and vice versa.

Theorem 1.5. Every tangent vector field on S2 has a zero.

Proof. Suppose f is a non-vanishing vector field on S2. Without the

loss of generality8 we can assume || f (x)|| = 1, ∀x ∈ S2. Using the 8 I.e., by normalizing each vector in
the image of f .notation of the discussion leading to this theorem, we will prove that

g ' ρ, which is a contradiction by 4. of the mentioned discussion.

We will construct an explicit homotopy between g and ρ. Such a

homotopy can be thought of as a continuous collection9 of paths from 9 A homotopy in question is of the

form H : S2 × [0, 1] → S2. For each

y ∈ S2 the restriction H|{y}×[0,1] is
thus a path from y to −y. The fact

that H is continuous means that

the collection of mentioned paths is
continuous.

x to −x for all10 x ∈ S2.

10 While the homology setup above

is performed in the simplicial setting
of K, the homology here will be

constructed on a “smooth” sphere S2.

The simplest way to connect two diametrally opposite points on a

sphere, for the sake of simplicity let us assume we are connecting the

north pole N to the south pole S, is by drawing a meridian between

them. Such a meridian is completely determined by the point at which

it intersects the equator. We define this intersection point to be11

11 Recall that || f (N)|| = 1 and
f (N) ⊥ N, hence f (N) lies on the

equator.

f (N).

In general, connect x to −x by a geodesic12 on the sphere passing

12 This geodesic traces the trail of x as
translated by the resulting homotopy.

On the other hand, the trail of −x as

translated by the resulting homotopy
is given by the geodesic from −x to x
passing through f (−x). See the right
portion of Figure 6 for a sketch.

through f (x). This is a continuous assignment of paths and consti-

tutes the homology between g and ρ, which completes the proof.

The argument of Theorem 1.5 works for any even dimension which

leads to a more general result.

Theorem 1.6. Sphere Sn admits a non-vanishing tangent field iff n
is even.

When n is even there is an easy construction of a non-vanishing

tangent field:

(x1, y1, x2, y2, . . . , xm, ym) 7→ (y1,−x1, y2,−x2, . . . , ym,−xm).



homology: impact and computation by parts 5

Invariance of domain

The last classical result we mention explains why open sets in Eu-

clidean spaces of different dimension are fundamentally different in the

sense that they can’t be homeomorphic13. We will actually only prove 13 While homology itself is a homo-
topy invariant, the trick we will use

will allow us to use it to differentiate

homeomorphic types of spaces.

a corollary of the classical result14.

14 Effectively we will prove that

Dn 6∼= Dm if m 6= n.
Theorem 1.7. For any pair of natural numbers m 6= n the closed balls

B1 = BRm (0, 1) and B2 = BRn (0, 1) are not homeomorphic.

Proof. Assume there exists a homeomorphism f : B1 → B2. Let x ∈ B1

be the center of B1. Then f |B1\{x1} : B1 \ {x1} → B2 \ { f (x1)} is

also a homeomorphism. Recall that B1 \ {x1} ' Sn−1 via the radial

projection (see Figure 7), which means Hn−1(B1 \ {x1}; F) is non-

trivial for any F. On the other hand, B2 \ { f (x1)} is either:

• homotopy equivalent to Sm−1 if f (x1) /∈ ∂B2, or

• contractible if f (x1) ∈ ∂B2.

In both cases Hn−1(B2 \ { f (x1)}; F) = 0, a contradiction, hence f
can’t exist. Figure 7: Radial projection of a

disc with the center removed to the
boundary of the disc. The induced

homotopy equivalence demonstrates

B1 \ {x1} ' Sn−1 in the proof of
Theorem 1.7.

2 Homology by parts

Given a decomposition of a simplicial complex K = A ∪ B as the

union of subcomplexes A and B, can15 we compute the homology of X 15 A similar question: Given a finite
set Y = C ∪ D, can we determine the

cardinality |Y| from |C| and |D|? The

answer |Y| = |C| + |D| − |C ∩ D|,
which also includes the intersection, is

not unlike the answer to our question

about homology...especially since,
for discrete sets, the cardinality

represents the zero-dimensional

homology.

from the homology of A and B?

The answer to this question is unfortunately negative, for example:

• As the sidenote on the right on a similar question demonstrates, the

cumulative zero-dimensional homology of K and L may be too large

and should possibly be decreased by the zero-dimensional union of

the intersection.

• On the other hand, a circle is the union of two intervals, i.e., a

space with a one-dimensional hole is the union of two subspaces

without holes.

AA A

BB B

Figure 8: Two contractible complexes,
whose union is not contractible.

These two examples show that A and B can have cumulatively “too

much” or “too little” homology to deduce the homology of the union

X and that one should probably take into account the homology of

the intersections as well. The algebraic structure through which the

connection between the homologies of X, A, and B is expressed is that

of exact sequences.
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Exact sequences

Definition 2.1. A sequence of vector spaces V0, V1, . . . and linear maps

ϕn : Vn → Vn−1 is exact, if for each n we have Im ϕn+1 = ker fn.
T Recall that homology is defined

from a sequence of chain groups called
the chain complex; it is defined as the

quotient ker ∂/ Im ∂. In particular,
the homology of a chain complex is

zero at all dimensions iff the chain

complex forms an exact sequence. Or,
to put it locally, Hq = 0 iff the chain

complex is “exact at Cq” in the sense

that Im ∂q+1 = ker ∂q. Homology thus
measures the extent to which a chain

complex is not exact.

It turns out that in an exact sequence, the dimension of each vector

space (except for the last one) can be deduced from the ranks of the

neighboring maps.

Proposition 2.2. Suppose the following sequence is exact:

· · · → Vn+1
ϕn+1→ Vn

ϕn→ Vn−1 → · · · → V2
ϕ2→ V1

ϕ1→ V0.

Then for each n > 0, dim Vn = rank ϕn+1 + rank ϕn.

Proof. We know that dim Vn = dim ker ϕn + rank ϕn. Now use

exactness: Im ϕn+1 = ker ϕn.

Mayer-Vietoris exact sequence

We are now able to express16 the connection between the homology 16 Standard proofs use Zig-Zag lemma

given in an appendix.of X and the homology of its two parts A and B, a connection that

also includes the homology of the intersection A ∩ B.

Theorem 2.3. Suppose A, B ≤ K are subcomplexes of a simplicial

complex K such that A∪B = X. Then for each choice of coefficients

the following sequence of homology groups is exact:

· · · → Hn+1(X)
δn+1→ Hn(A∩B)

(in ,jn)−→ Hn(A)⊕Hn(B)
µn→ Hn(X)→ · · ·

· · · → H0(A ∩ B)
(i0,j0)−→ H0(A)⊕ H0(B)

µ0→ H0(X)→ 0,

with the involved maps being defined as follows:

• i∗, j∗ are inclusion induced maps, i.e., i∗[α] = [α] and j∗[α] = [α].

• µ is the subtraction map, i.e., mu∗([α], [β]) = [α− β].

• δ is a variant of a boundary map defined as follows. Given an n-

cycle α in X, decompose it as α = αA + αB where αA is an n-chain

in A and αB is an n-chain in B. Define δ[α] = [∂αA] as the ho-

mology class corresponding to the boundary of the chain αA.

A BA ∩B

Figure 9: A decomposition of S1 into

two intervals.

Example 2.4. We will compute the homology of S1 with coefficients in

a field F. Express S1 as the union of two intervals A and B as Figure
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9 suggests. The only non-trivial part of the corresponding Mayer-

Vietrois sequence is the following:

H1(A)⊕H1(B)→ H1(X)→ H0(A∩B)→ H0(A)⊕H0(B)→ H0(X)→ 0,

which is of the form

0→ H1(X)
δ1→ F2 (i0,j0)−→ F2 µ0→ H0(X)

δ0→ 0.

We proceed by the following sequence of deductions:

1. rank δ0 = 0 as it is the trivial map.

2. Map µ0 is of rank17 1. 17 Recall that µ(u, v) = u− v. Its rank
is either 0, 1, or 2. Its can’t be 0 as the

map is nontrivial. It can’t be 2, as it

has a non-trivial kernel generated by
(u, u) since A and B are in the same

component of X.

3. By Proposition 2.2 we get dim H0(S1) = 1.

4. By exactness and observation 2. we have dim Im(i0, j0) = dim ker µ0 =

1, hence rank(i0, j0) = 1.

5. By exactness and the previous item we have dim Im δ1 = dim ker(i0, j0) =

1, hence rank δ1 = 1.

6. By Proposition 2.2 we get dim H1(S1) = 1.

7. All higher homotopy groups (for n > 1) are trivial as they appear as

· · · 0 → Hn(X) → 0 · · · in the exact sequence which, by Proposition

2.2, means they are trivial.

Figure 10: A decomposition of S2 into

two discs, whose intersection is S1.

Remark 2.5. In the same manner we could compute the homology

groups of Sm for each m by observing that it can be decomposed as the

union of two hemispheres (m-discs) whose intersection is homotopy

equivalent to Sm−1, see Figure 10.

A BA ∩B

α
β

Figure 11: A decomposition of the
torus into two parts, whose intersec-
tion is the disjoint union of two copies

of S1.

Example 2.6. In a similar manner we can compute the homology of a

two-dimensional torus X with coefficients in any field F. We will only

mention how to compute its first homology as the homology groups of

other dimensions are already familiar to us.

We will use the decomposition of Figure 11. The relevant part of the

Mayer-Vietoris sequence is

H1(A)⊕H1(B)→ H1(X)→ H0(A∩B)→ H0(A)⊕H0(B)→ H0(X)→ 0

which is of the form

F2 µ1→ H1(X)
δ1→ F2 (i0,j0)−→ F2 → F→ 0.

We proceed by the following sequence of deductions:

1. By the same argument as in Example 2.4 we have rank δ1 = 1.
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2. The generators of H1(A) and H1(B) are cycles/loops α and β

respectively. Note that α ' β in X thus [α] = [β] ∈ H1(X).

Furthermore, as18 0 6= [α] ∈ H1(X), we have19 rank µ1 = 1. 18 An algebraic way to see that 0 6=
[α] ∈ H1(X) is through the Mayer-
Vietrois sequence:

Proof. If [α] was trivial in H1(X) then

([α], 0) would have been in ker µ1.
By exactness, this would mean that

([α], 0) ∈ Im(i1, j1). However, Im(i1, j1)
is generated by the images of the
two obvious cycles in A ∩ B, each of

which maps into (±[α],∓[β]). Space

Im(i1, j1) is thus one-dimensional
and generated by (±[α],∓[β]), hence

([α], 0) /∈ Im(i1, j1) as [α] 6= 0 in H1(A)
and [β] 6= 0 in H1(B).

19 The map µ1 is defined as

µ1(u, v) = u − v in the basis
([α], 0), (0, [β]) of H1(A)⊕ H1(B). Its

rank is either 0, 1, or 2. Its can’t be 0
as the map is nontrivial, since α is not
nullhomologous in X. It can’t be 2, as

it has a non-trivial kernel generated

by (u, u) since [α] = [β] ∈ H1(X).

3. By Proposition 2.2 we get dim H1(X) = 2.

3 Concluding remarks

Recap (highlights) of this chapter

• Induced maps on homology and functoriality;

• Brouwer fixed point Theorem and Hairy ball Theorem;

• Exact sequences;

• Mayer-Vietoris exact sequence.

Background and applications

Invariants of homological nature appear throughout topology, ge-

ometry and other fields of mathematics. The examples of theoretical

applications presented here barely scratch the surface. Some of the

settings in which such constructions contributed to significant develop-

ment include knot theory (Khovanov homology), differential geometry

(De Rham cohomology, Floer homology), etc.

The Mayer-Vietoris sequence arises from a decomposition of a space

into two pieces. A natural question about a similar result in the con-

text of decompositions into more pieces in treated within the context

of spectral sequences, an algebraic formalism far above the reach of

our presentation. These theoretical developments allow for a certain

level of distributed computation of homology.

Appendix: Zig-Zag Lemma

The Mayer-Vietoris long exact sequence is derived from the Zig-Zag

Lemma.

Lemma 3.1. [Zig-Zag Lemma] Let F be a field of coefficients. Assume

the following diagram of vector spaces over F and linear maps20 is 20 For the sake of simplicity the
indices of maps will be omitted. For
example, maps αq : Aq → Bq are

all denoted by α even though they

depend on q . For the same reason we
will refrain from mentioning F again.

commutative21:

21 I.e., ∂ ◦ α = α ◦ ∂ and ∂ ◦ β = β ◦ ∂.
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...

∂

��

...

∂

��

...

∂

��

0 // Aq+1
α //

∂

��

Bq+1
β
//

∂

��

Cq+1

∂

��

// 0

0 // Aq
α //

∂

��

Bq
β
//

∂

��

Cq

∂

��

// 0

0 // Aq−1
α //

∂��

Bq−1
β
//

∂��

Cq−1

∂��

// 0

...
...

...

If each row is a short exact sequence, and each columns is a chain

T An exact sequence of the form

0→ A→ B→ C → 0

is called a short exact sequence. In

such a situation, map A → B is
injective as its kernel is the trivial

image of the map 0→ A. On a similar

note, B → C is surjective as its image
is the kernel of the map C → 0, which

is C. As Im(B → C) ∼= B/ ker(B → C)
we conclude C ∼= B/A since equality
ker(B → C) = Im(A → B) holds by

exactness.

complex22, then there exists a long exact sequence of homology groups23 22 I.e., ∂2 = 0.
23 I.e., the homology groups arising

from the vertical chain complexes. In

particular, Hq(A) is the quotient

ker(Aq → Aq−1)/ Im(Aq+1 → Aq).

· · · α∗ // Hq+1(B)
β∗
// Hq+1(C)

δ

tt
Hq(A)

α∗ // Hq(B)
β∗

// Hq(C)

δ

tt

Hq−1(A)
α∗ // Hq−1(B)

β∗
// · · ·

T Diagram 1:

c � //_

∂

��

0

0

T Diagram 2:

b1
�

β
//

_

∂

��

c � //_

��

0

b2
� β

// 0

T Diagram 3:

b1
� //

_

��

c � //_

��

0

a1
� α // b2

� // 0

T Diagram 4:

b1
� //

_

��

c � //_

��

0

a1_

��

� // b2_

��

� // 0

a2
� // 0

The idea of a proof. The proof is performed using the “diagram chas-

ing” technique. We will only prove the existence of the δ map.

In order to define δ let us choose a non-trivial cycle c ∈ Cq+1.

Charted by the diagrams on the right, the chase after δ([c]) begins:

Diagram 1: ∂(c) = 0 as c is a cycle.

Diagram 2: By the exactness of the row map β is surjective, thus

there exists b1 ∈ β−1(c). Define b2 = ∂(b1). By the commutativity

β(b2) = 0.

Diagram 3: By the exactness of the row map there exists a1 ∈
α−1(b2). Define δ([c]) = [a1].

The rest of the proof goes along the same lines. For example, in

order to prove a1 is a cycle we use diagram 4:

• Define a2 = ∂(a1) observe ∂(b2) = 0 as ∂2 = 0.

• By the commutativity α(a2) = 0.

• By the exactness of the row a2 = 0, hence a1 is a cycle.
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Remark 3.2. The construction and proof of the Mayer-Vietoris se-

quence follows from the Zig-Zag Lemma using the following24 commu- 24 We will be using the notation of

Theorem 2.3.tative diagram

...

∂

��

...

∂

��

...

∂

��

0 // Cq+1(A ∩ B)
α //

∂

��

Cq+1(A)⊕ Hq+1(B)
β
//

∂

��

Cq+1(X)

∂

��

// 0

0 // Cq(A ∩ B)
α //

∂

��

Cq(A)⊕ Hq(B)
β

//

∂

��

Cq(X)

∂

��

// 0

0 // Cq−1(A ∩ B)
α //

∂
��

Cq−1(A)⊕ Hq−1(B)
β
//

∂
��

Cq−1(X)

∂
��

// 0

...
...

...

with maps α being induced by inclusion, and maps β being the sub-

traction maps25. Observe that the horizontal maps are short exact 25 I.e., β([γ1], [γ2]) = [γ1 − γ2].

sequences.

Zig-Zag Lemma provides a useful template for constructions of

exact sequences. Another setting in which it applies is that of relative

homology.

Appendix: Relative homology

Let us fix a field F, a simplicial complex K, and L ≤ K. Homology

construction on K is based on cycles: chains whose boundaries are

trivial. The concept of relative homology expands this construction in

the following way: given L ≤ K, the relative homology construction is

based on relative cycles, i.e., chains, whose boundaries are contained in

L.

Algebraic specifics of the definition. From the chain complexes of K
and L we can construct the quotient chain complex:

· · · ∂→ Cq(K)/Cq(L)
∂→ Cq−1(K)/Cq−1(L)

∂→ · · · ∂→ C0(K)/C0(L)
∂→ 0

The relative homology groups Hq(K, L) are the homology groups

arising from this chain complex. In particular26: 26 In this occurrence we also mention
the coefficients for the sake of a
complete defining formula.

Hq(K, L; F) =
ker

(
Cq+1(K)/Cq+1(L)

∂→ Cq(K)/Cq(L)
)

Im
(
Cq(K)/Cq(L)

∂→ Cq−1(K)/Cq−1(L)
) .

T Observe that Hq(K, ∅) = Hq(K).
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Combining Lemma 3.1 and the commutative diagram

...

∂

��

...

∂

��

...

∂

��

0 // Cq+1(L) �
�

//

∂

��

Cq+1(K) //

∂

��

Cq+1(K)/Cq+1(L)

∂

��

// 0

0 // Cq(L) �
�

//

∂

��

Cq(K) //

∂

��

Cq(K)/Cq(L)

∂

��

// 0

0 // Cq−1(L) �
�

//

∂
��

Cq−1(K) //

∂
��

Cq−1(K)/Cq−1(L)

∂
��

// 0

...
...

...

we conclude that relative homology groups fit into the following exact

sequence:

· · · → Hq+1(K, L)→ Hq(L)→ Hq(K)→ Hq(K, L)→ · · ·

· · · → H0(L)→ H0(K)→ H0(K, L)→ 0,

Relative homology has a geometric meaning, which expands that of

the usual homology. Table 1 summarizes the relative homology of the

pair (K, L) of simplicial complexes from Figure 12.

a b c d

e

f

g

h i j k Figure 12: Simplicial complex K. Its

subcomplex L ≤ K contains vertices
a, c, b, d, e, j, k and all edges between

these vertices. It is depicted by bold

red edges.

q dim Hq(K) dim Hq(K, L)

0 3 1

1 2 2

Table 1: The comparison of the
homology of K and the relative homol-

ogy of the pair (K, L) from Figure 12

.

Let us geometrically interpret Table 1:
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Dimension 0: K has three components. However, the relative homol-

ogy detects only component [ f ]. Homology class [e] is contained in

L and is thus trivial by the definition. Homology class [h] is homol-

ogous to [e] and thus trivial as well.

Dimension 1: A natural basis for H1(K) would consist of [〈a, b〉 +

〈b, e〉 + 〈e, a〉] and [〈e, i〉 + 〈i, h〉 + 〈h, e〉]. A natural basis for

H1(K, L) however would consist of [〈e, i〉+ 〈i, h〉+ 〈h, e〉] and [〈i, j〉].
Note that:

• [〈a, b〉+ 〈b, e〉+ 〈e, a〉] is a trivial in H1(K, L) as it is contained in

L.

• 〈i, j〉 is a cycle in the relative homology chain complex as its

boundary is contained in L and thus trivial.

f

g

h i

Figure 13: The space obtained from
simplicial complex K from Figure 12

by contracting the subcomplex L to a

point. The space has two holes but is
not a simplicial complex in general.

Geometrically we can think of the relative homology H∗(K, L) as

the homology of the space obtained from K when the subcomplex

L is contracted to a point, see Figure 13 for an example. The only

exception to this rule is H0(K, L), whose dimension is one less27 than 27 In the literature this exception

is usually encoded in the phrase

“reduced homology”.
the number of the components of the resulting space28.

28 Note that the resulting space

does not inherit the structure of a

simplicial complex from K. However,
it can be triangulated.
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