

Video stabilization

Problem description

Change positions of image frames through time to remove rapid motion (e.g. hand-held camera, external shaking)

M. Grundmann and V. Kwatra and I. Essa , "Auto-Directed Video Stabilization with Robust L1 Optimal Camera Paths", CVPR2011

Stabilization approaches

Mechanic

- Move sensor or lenses
- Stabilize image before it is digitalized
- Lenses (Nikon 1994, Canon 1995): detect vibrations and move lens with magnetic field
- Sensor: move sensor with motors (supports lens changes)
- External: Steadicam, tripod, dolly
- Digital
 - Post processing
 - Move images, apply geometrical transformations
 - Digital filters in case of blurring

Digital stabilization types

- Global
 - Making camera motion smooth
 - Can be fully automatic or initialized manually
- Object-centric
 - Object's position does not change significantly in the camera frame
 - Manual object selection

Stabilization by alignment

Two consecutive images, aligned by shifting one of them

Color composite (frame A = red, frame B = cyan)

Stabilization by feature tracking

- Only look for regions in image that can be reliably positioned in frames
 - Corners
 - Blobs
- Features have to be visible all the time
- Use difference in position to determine transformation

Normalized cross correlation

Search image, F

Model, H

 $\psi(\mathbf{A})$... reshape pixels in A in a vector.

 \mathbf{F}_{ij} ... sub-image from *F* centered at (i,j).

 $\begin{aligned} \mathbf{h} &= \psi(\mathbf{H}) \\ \mathbf{f}_{ij} &= \psi(\mathbf{F}_{ij}) \end{aligned}$

 \hat{h} ... average brightness of \pmb{H} \hat{f}_{ij} ... average brightness of \pmb{F}_{ij}

Normalized cross correlation:

$$G(i,j) = \frac{(\mathbf{h}^T - \hat{h})(\mathbf{f}_{ij} - \hat{f})}{\sqrt{\mathbf{h}^T \mathbf{h}} \sqrt{\mathbf{f}_{ij}^T \mathbf{f}_{ij}}}$$

Example

More positions are equally suitable according to NCC

Transformation chain

Number of features

- One feature translation
- Two features translation + rotation or scale
- Three features affine transformation
 - Only planar motion
- Four features perspective transform
 - Assumes planar scene
 - Can lead to destroyed depth illusion

Stabilization using keypoints

- Detect keypoints in both images, compute correspondences, estimate transformation
 - How to find best matches
 - How to estimate transformation

Deformation model

- Planar transformation homography (3x3 matrix 8 parameters, one constant)
- Affine transformation more simple, small movements

Algorithm

- Detect key-points in each image
- Search for correspondences between key-points in image pairs
 - If we are not sure which matches between first and second image are correct we have to use robust estimation methods (RANSAC)
- Compute transformations
- Align images to each other

Global stabilization example

What to do with black border?

Filling in missing information

- Cropping viewport
 - Only focusing on always visible part of video
 - Can be problematic with large shifts
- Smoothing trajectory
 - Transfromation filtered with low-pass filter
 - Only jerky motion removed, camera still moves
- Mosaicking

Video mosaicking

- Find transformation between frames
- Assume planarity (expect distortion if not planar)
- Re-project images to a common image plane

Video mosaicking algorithm

- For each N-th image in video (N fixed or dynamic)
 - Search for keypoints in image and determine correspondences to previous image
 - Estimate homography based on correspondences (RANSAC)
- Determine reference image and recalculate transformations
- Merge images (with blending)

Use cases

- Panoramas
- Areal images
- Video stabilization

Image Processing Group, Madrid

Mosaicking in video stabilization

- Warp each frame to match smoothed motion
- Fill in missing regions from nearby frames
 - Single frame
 - Averaging

Optical flow stabilization

- Use optical flow instead of keypoints, more dense
 - Lucas & Kanade fast, local
 - Horn & Schunk slow, global
- For each pixel compute its most likely translation in the next image
- Fit global transformation to multiple optical flow vectors

Motion inpainting

- Use optical flow to predict which pixels will move where
- Improve mosaicking using these predictions
 - Warp images
 - Inpaint missing information

2D stabilization result

Raw video

2d stabilization

Stabilization in space

- Reconstruct 3D geometry using Structure from Motion
 - Reconstruction also gives us camera location and translation
- Filter camera path to get smooth path
- Compute warps for modified camera positions and apply them to frames

Camera motion types

- 2D stabilization is only removing image motion
- 3D camera path can be used to fit a parametric behaviour

Content-preserving warps

- Non-linear transform
 - 3D points from SFM algorithm
 - Transformation quad-mesh
- Fake small content shifts
 - Small displacements
 - Preserves illusion of depth

3D stabilization result

Local stabilization / re-centering

- Manually set object in first image
- Track object through the sequence
- Cut images so that the object is centered

Simple recentering example

Smoothing trajectory

- Shaking = high frequencies
- We can filter trajectory with 1D Gaussian filter (by x and y separately)
- Object will not be centered, but we get rid of the shaking

Questions

- How to find object in the following images?
 - Find position that is a best match to object's appearance
 - Object tracking
- What to do if a part of the cut-out image is out of bounds?
 - Image extrapolation
 - Clamping center to source image