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Topological and computational treatment of metric spaces relies on

their convenient description. Given a metric space, we would like to

have a finite combinatorial description, that can be used for computa-

tions. In the previous lectures we introduced planar triangulations as

an example of such a description for planar subsets. In this lecture we

will introduce simplicial complexes, which will form the basic structure

upon which all our later computations will depend.

Simplicial complexes are higher-dimensional analogues of planar

triangulations. While the later are collections of triangles that fit

together nicely, simplicial complexes are collections of higher dimen-

sional simplices (generalizations of triangles) that fit together nicely.

Essentially we will be building spaces from simple building blocks

(simplices) given a rule describing how these blocks fit together... just

like LEGO cubes.

Figure 1: Some geometric simplices:

a point, a line segment, a triangle, a
tetrahedron.

1 Affine independence

A point, a line segment, a triangle, a tetrahedron, etc. These are

some of the geometric simplices. They are basic building blocks of

geometric simplicial complexes. A geometric simplex is a convex hull

of a finite collection of points. Before we state their formal definition

we need to clarify a general position property required of a set of

points spanning such a simplex. Under this property we want a pair of

points to span a line segment, a triple of points to span a triangle (and

not just a line segment), etc.

Choose d, k ∈N and let V = {v0, v1, . . . , vk} ⊂ Rd be a collection of

points. Their affine combination is any sum of the form

k

∑
i=0

αivi, with
k

∑
i=0

αi = 1.

The affine hull of V is the collection of all affine combinations of ele-

ments of V. An affine hull is always an affine linear subspace in Rd,

meaning it is obtained from a linear subspaces of Rd by a translation.

Figure 2: The affine hull of the two

points on the left is a line. The affine
hull of the three colinear points on

the right is also a line, implying

these three points are not affinely
independent.

Points {v0, v1, . . . , vk} are affinely independent if no vi can be ex-

pressed as an affine combination of points V \ {vi}. Proposition 1.1

explains how to test points for affine independence using linear inde-

pendence, and why each affine hull is a translated linear subspace.

Proposition 1.1. Points of V = {v0, v1, . . . , vk} ⊂ Rd are affinely

independent iff {v1− v0, v2− v0, . . . , vk − v0} are linearly indepen-
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dent.

x

y
z

Figure 3: The convex hull of three

affinely independent points is a trian-
gle.

Proof. Assume points of V are not affinely independent. Then, with-

out the loss of generality, v0 = ∑k
i=1 αivi and ∑k

i=1 αi = 1, which

implies equality ∑k
i=1 αi(vi − v0) = 0 and not all αi are zero. We

conclude that the points of V are not linearly independent.

On the other hand assume ∑k
i=1 βi(vi − v0) = 0 with not all βi

being zero. We define β0 = −∑k
i=1 βi and observe that

k

∑
i=1

βivi + β0v0 = 0 and
k

∑
i=0

βi = 0.

Choose K ∈ {0, 1, . . . , k} so that βK 6= 0. Then

vK =
k

∑
i=0, i 6=K

− βi
βK

vi and
k

∑
i=0, i 6=K

− βi
βK

= 1.

Hence points of V are not affinely independent.
T A linearly independent collection

of vectors in Rd can have at most d
elements. An affinely independent
collection of points in Rd can have at

most d + 1 elements.

Proposition 1.2. Suppose points of V = {v0, v1, . . . , vk} ⊂ Rd are

affinely independent. Then for each point x ∈ Conv(V) there ex-

ist unique coefficients αi ∈ [0, 1], i ∈ {0, 1, . . . , k}, such that

x =
k

∑
i=0

αivi and
k

∑
i=0

αi = 1.

Coefficients αi in are called barycentric coordinates of point x in

Conv(V).

Proof. The existence of such coefficients αi follows from x ∈ Conv(V).

In order to prove the coefficients are unique assume the statement

holds for two different sets of coefficients αi and α′i, i.e.,

x =
k

∑
i=0

αivi =
k

∑
i=0

α′ivi and
k

∑
i=0

αi =
k

∑
i=0

α′i = 1.

At some index i the coefficients αi and α′i differ. Without the loss of

generality we can assume that index is zero, i.e., α0 − α′0 6= 0. Then

(α0 − α′0)v0 =
k

∑
i=1

(α′i − αi)vi

and

v0 =
k

∑
i=1

α′i − αi

α0 − α′0
vi,

which contradicts the assumption that the points of V are affinely

independent.
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2 Geometric simplicial complex

We are now ready to define our basic building blocks.

Definition 2.1. Let k, d ∈ {0, 1, . . .}, k ≤ d. A geometric sim-

plex σ in Rd is the convex hull of an affinely independent family V =

{v0, v1, . . . , vk} ⊂ Rd, i.e., σ = Conv(V).

Figure 4: A two-dimensional simplex
has six simplices as faces (three edges

and three vertices), three of which are

facets (edges).

The following is some terminology related to a geometric simplices

σ = Conv({v0, v1, . . . , vk}):

• Dimension: dim(σ) = k. We sometimes express it by writing it as

supscript: σ = σk.

• Vertices of σ: v0, v1, . . . , vk.

• Edges of σ: convex hulls of pairs of vertices.

• We say that σ is spanned by the set of its vertices.

• If simplex τ is spanned by a subset of the vertices of σ, we say that:

– τ is a face of σ.

– σ is a coface of τ.

– τ is a facet of σ if dim(τ) = dim(σ)− 1.

Note that σk ∼= Dk. By Proposition 1.2 each point of σ is uniquely

described by its barycentric coordinates using the vertices of σ.

We can now use these building blocks to assemble more complicated

spaces.

T All our simplicial complexes will
be finite. For that reason we will be

dropping the word “finite”. There

also exist simplicial complexes with
infinitely many simplices. However, a

proper definition of infinite simplicial

complexes brings along additional
technicalities which we want to avoid

in our context.
Definition 2.2. Let d ∈ {0, 1, . . .}. A (finite) geometric simpli-

cial complex K ⊂ Rd is a (finite) collection of geometric simplices,

such that:

a: If σ ∈ K and τ is a face of σ, then τ ∈ K.

b: If σ, τ ∈ K, then σ∩ τ is either empty or a common face of both.

Figure 5: The smallest two-
dimensional simplicial complex con-

sists of a triangle and all its faces:
three edges and three vertices.

Each planar triangulation has a corresponding simplicial complex

consisting of all triangles, edges and vertices of the triangulation.

Let K be a simplicial complex. We define:

• Dimension dim(K) = maxσ∈K dim(σ). A one-dimensional simplicial

complex is a graph.

• Vertices of K as the collection of all vertices of all simplices of K.
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• Edges of K as the collection of all edges of all simplices of K.

• A geometric simplicial complex L is a subcomplex of K [notation:

L ≤ K], if L ⊂ K.

• For n ∈ {0, 1, . . .} the n−skeleton of K [notation: K(n)] is the sim-

plicial subcomplex of K consisting of all simplices of K of dimension

at most n. For example, K(0) is the set of vertices of K.

Figure 6: The simplicial complex

from Figure 5 (left) and its 1-skeleton
(right) consisting of three edges and

three vertices.

• The body of K [notation: |K|] is the union of all simplices of K.

Formally speaking, a geometric simplicial complex in Rd is a collec-

tion of simplices and its body is a subset in Rd. In practice however

we will be often identifying the two objects in geometric discussions.

From now on we will be visualizing simplicial complexes by drawing

their body and assuming the underlying structure of asimplicial com-

plex. Figure 7: On the left there is a geo-
metric simplicial complex presented

by drawing its body. Each edge of

a sketched triangle and each vertex
of a sketched edge is assumed to be

in the complex. On the right is the
1-skeleton of the simplicial complex on

the left.

We are now ready to describe a connection between a metric sub-

space of a Euclidean space and its combinatorial description.

Definition 2.3. Let d ∈ {0, 1, . . .}. A triangulation of a subspace

X ⊂ Rd is a simplicial complex K in Rd, such that |K| ∼= X.

Not every subspace of Rd admits a triangulation. However, all the

subsets that will arise in our context will admit it. Triangulations of

BR2 ((0, 0), 1) include examples in Figure 8 and Delaunay triangula-

tions. A geometric simplicial complex is a triangulation of its body.

Figure 8: Some triangulations of D2.

Figure 9: Some triangulations of S1.

Occasionally we will want to refine the triangulation of a space,

meaning we will want to decrease the size of simplices in order to

improve visualisation, level of details, etc. Such refinements are called

subdivisions. Given a geometric simplicial complex K, a geometric

simplicial complex L is its subdivision, if each simplex of K is the

union of a collection of simplices from L. As an example we already

mentioned the barycentric subdivision of planar triangulations, which

also exists for simplicial complexes. At this point we will refrain from

introducing the formal definition. The lower right part of Figure 8

depicts a subdivision of a single 2-simplex, see also Figure 10.

Figure 10: A simplicial complex and

its subdivision.

3 Abstract simplicial complex

When buying a commercial object to be assembled, be it a piece

of furniture, a toy or a model made of cubes, or a picture made of

puzzles, the package usually arrives in a big box. On the box is a

picture of the object, which in our context represents the body of a

geometric simplicial complex. On the picture we can often determine

pieces, which in our setting would be geometric simplicial complexes.
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Pieces on that picture have specific locations and just like geometric

simplices, could be described by specific coordinates. However, the as-

sembly instructions contain no coordinates. There is a good reason for

that1. In order to assemble the object, the instructions only provide a 1 Besides the fact that nobody would
purchase such an item.list of pieces and instructions about how to put them together. That

information is sufficient to reconstruct the object. Abstract simplicial

complex plays a role of such instructions.

Assume we want to describe a geometric simplicial complex. That

means we have to provide a list of all simplices. A simplex could be

provided by a list of coordinates of its vertices, but then we also have

to make sure the simplices intersect appropriately. It would be much

easier to just list the simplices and describe how they fit together in a

coordinate free way. Here is a way to do it.

Definition 3.1. Let V be a finite set. An abstract simplicial com-

plex L on V is a family of non-empty subsets of V, such that if σ ∈
L and τ ⊆ σ is non-empty, then τ ∈ L.

T In some sources the non-empty

condition in the definition of an

abstract simplicial complex is omitted
and the empty set is always included

as an abstract simplex of dimension

−1.
A few more accompanying definitions using the notation of Defini-

tion 3.1:

• An abstract simplex σ is an element of L. Its dimension is dim(σ) =

|σ| − 1.

• If τ ⊆ σ ∈ L, then:

– τ is a face of σ.

– σ is a coface of τ.

– τ is a facet of σ if dim(τ) + 1 = dim(σ).

• Dimension dim(L) of L is the maximal dimension of a simplex in L.

• The (closed) star of a vertex v ∈ K is StK(v) = St(v) = {σ ∈ K |
σ ∪ {v} ∈ K} ≤ K.

• The link of a vertex v ∈ K is LkK(v) = Lk(v) = {τ ∈ St(v) | v /∈
τ} ≤ St(v).

Figure 11: A star (left) and a link

(right) of a vertex.

A geometric simplex is a subset of an Euclidean space, provided as

the convex hull of the collection of its vertices. Each vertex is given

as a point in space, usually in terms of coordinates. A geometric sim-

plicial complex is a set of such simplices, contains all faces and has to

satisfy the intersection properties of Definition 2.2.

An abstract simplex is just a collection of vertices. No coordinates

are needed. An abstract simplicial complex is a set of such collections

which contains all faces (all subsets of its elements). There are no

intersections to be checked. It is a complete combinatorial description

of a topological space.
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Example 3.2. Let K be a geometric simplicial complex provided by

Figure 12. As a geometric simplicial complex, K contains specific

geometric simplices described by the coordinates of their vertices. We

can construct a corresponding abstract simplicial complex L. Label the

vertices as demonstrated by the figure. Then

L = {{a, c, d}, {a, b}, {b, c}, {c, d}, {d, a}, {a, c}, {a}, {b}, {c}, {d}, }.

No coordinates are involved. We could also only list the inclusion-

maximal simplices, which completely determine the simplicial complex:

{{a, c, d}, {a, b}, {b, c}}.
a

b

c

d

Figure 12: A picture accompanying

Example 3.2.

A simpler structure of an abstract simplicial complex will suffice

for most of our topological analysis of spaces and the corresponding

computations. Indeed, it will simplify them. A geometric simplicial

complex however is still useful when we want to visualise a complex.

For example, outputs of various scans come in a form of geometric

simplicial complexes modelling the scanned shape. While geometric

simplicial complexes describe geometric information about the space

(various sizes, lengths, etc.), abstract simplicial complexes contain only

topological information (homeomorphic type).

It is easy to turn a geometric simplicial complex into an abstract

simplicial complex: replace each coordinate given vertex by a unique

label. The opposite is a bit harder. Turning an abstract simplicial

complex into a geometric simplicial complex requires us to choose co-

ordinates of vertices in line with the requirements for a geometric sim-

plicial complex. If it can be done, such a geometric simplicial complex

is called a geometric realization (or just realization) of the original

abstract simplicial complex. It turns out that geometric realizations

always exists, although obtaining them in a low-dimensional space is

typically hard. The following are two special cases of such realizations.

Theorem 3.3. Every abstract simplicial complex K with n vertices ad-

mits a geometric realization in Rn−1.

Proof. Simplicial complex K is a subcomplex of the full simplicial

complex L on n vertices, i.e., the simplicial complex, whose simplices

are all subsets of vertices of K. As L admits a realization in Rn−1 as

an (n − 1)-simplex (i.e., the convex hull of a collection of n affinely

independent points), so does K as its subspace.

x1 x2 x3

y1 y2 y3
Figure 13: A sketch of a one-
dimensional abstract simplicial
complex (graph) with no realiza-

tion in R2. The complex consists of
all edges between xi and yj.

Theorem 3.4. Every abstract simplicial complex of dimension d ad-

mits a geometric realization in R2d+1.
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A proof of Theorem 3.4 is provided in Appendix.

As an example consider graphs, i.e., one-dimensional simplicial

complexes. It is well known that some graphs are planar, which means

they admit a geometric realization in the plane. However, there are

graphs, that are not planar. These graphs can only be realized in

R3 = R2·1+1 (and, of course, in Rm for m > 3). See Figure 13.

One of the goals of this course is the following: given an abstract

simplicial complex, extract topological properties of its geometric

realization. We will study and analyze spaces by working with their

triangulations.

a b

c

Figure 14: A metric space (left) and
the corresponding geometric simplicial

complex (right). The correspond-

ing abstract simplicial complex is
{{a, b, c}, {a, b}, {b, c}, {a, c}, {a}, {b}, {c}}.

Remark 3.5. It is important to understand the differences between a

metric space, its triangulation and a corresponding abstract simpli-

cial complex. In practice however, we will be frequently vague in our

expression for the sake of simplicity, ofter referring to just simplicial

complex. Given a picture of a space like the one in Figure 12, we will

keep in mind the three possible interpretations and use the one that fits

the context at the moment.

Also note that the nomenclatures are essentially the same for the

abstract and geometric simplicial complexes. We declare this to be

the case for all further2 definitions as well. For example, an abstract 2 Including the concepts of link and

star of a complex at a point.simplicial complex L is a triangulation of a metric space X if the cor-

responding geometric simplicial complex is, i.e., if the body of a geo-

metric realization of L is homeomorphic to X.

Figure 15: Torus.

Example 3.6. One of our standard examples of a metric space will

be torus T. It is a two-dimensional metric space, actually a surface,

depicted in Figure 15. A triangulation of T in terms of an abstract

simplicial complex is provided by Figure 17.

Topologically speaking, torus can be obtained from a square by iden-

tifying the opposite sides along the same direction. This construction is

depicted in Figure 16.

As a result we can obtain a structure of an abstract simplicial com-

plex by triangulating a square and respecting the mentioned identifica-

tions. This provides a convenient topological visualisation of a torus.

Observe that a triangulation of T in terms of a geometric simplicial

complex would be more complicated and not presentable in the plane.
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a

a

b b

a

b b

b b

b

Figure 16: Torus arising from a

square. Starting with a square (top
left) we identify its pairs of opposite

sides along the same direction as the

labels and arrows suggest. Identifying
the sides a we obtain a cylinder (top

right). Identifying the other pair of

sides, which represent loops b in the
cylinder, we obtain the torus (bottom

right).

x

y

z

x

x

y

z

xv w

v w
Figure 17: A triangulation of a torus

in terms of an abstract simplicial

complex.

The mentioned abstract simplicial complex is provided by Figure 17.

We divide the square into 18 triangles and keep in mind the identifi-

cations suggested by the arrows. The two sides of the square along the

single arrows get identified along the direction of the arrows, and the

same holds for the two sides along the double arrows. For the sake of

clarity we also labeled the outer vertices of the triangles as each label

appears at least twice due to the identifications.

Example 3.7. Choose n ∈ {1, 2, . . .}. In this example we provide the

simplest triangulations of discs and spheres.

Let σn be an n-simplex and define K to be the simplicial complex

whose only maximal simplex is σn, i.e., K contains σn and all of its

faces. Simplicial complex K is a triangulation of Dn.

To obtain a triangulation of Sn−1 remove from K the maximal sim-

plex, i.e., K′ = K \ {σn}. Simplicial complex K consists of all faces of

σn but does not contain σn itself. Simplicial complex K′ is a triangula-

tion of Sn−1.

Figure 18: A triangle as a triangu-

lation of D2 and its boundary as a
triangulation of S1. In a similar way

a solid tetrahedron is a triangula-
tion of D3 while its boundary is a

triangulation of S2.

Two invariants

Here we provide two invariants (of a space) that can be extracted

from a triangulation. Both are homotopy invariants (and hence also

topological invariants), meaning they coincide for homotopically equiv-

alent spaces. A space typically has infinitely many possible triangu-

lations. Imagine all possible Delaunay triangulations: they are all

triangulations of D2. We conclude that the numbers of vertices, edges,
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or higher dimensional simplices in a triangulation can’t be topological

invariants.

Figure 19: A complex with two
components.

The first invariant is the number of components. Given a triangula-

tion K, it is easy to extract that number from K(1) (which is a graph)

using standard approaches of graph theory. Later we will explain in

detail how to obtain this number in terms of homology. For example,

the simplicial complex in Figure 19 has two components.

The second invariant is the Euler characteristic, which can be de-

fined for simplicial complexes.

Definition 3.8. Suppose K is a simplicial complex and let ni denote

the number of i-simplices in K. The Euler characteristic χ(K) ∈
Z is defined as χ(K) = n0 − n1 + n2 − n3 + . . . .

The Euler characteristic of a metric space is the Euler character-

istic of any of its triangulations.

Figure 20: A series of homeomorphic
simplicial complexes, each differing

from the previous one by a small

modifications. Note that the modifica-
tions preserve the Euler characteristic.

In the first step we add a point and
a vertex; in the second step a point

we add a vertex, two edges and a tri-

angle; and so on. Each new addition
contributes a total of 0 to the Euler

characteristic.

As was mentioned above, the Euler characteristic is homotopy

invariant. Using this fact we can compute the following cases:

• Let X be a one-point space. Then χ(X) = 1. Since each Delaunay

triangulation K is homotopic to a point (meaning that |K| ' X),

we also conclude χ(K) = 1, a statement which we have already

proved directly. In fact, the homotopy invariance implies that each

triangulation of a contractible space is of Euler characteristic 1.

• The Euler characteristic of a torus is 0. It can be computed di-

rectly from the triangulation presented by Figure 17, which has 18
triangles, 27 edges and 9 vertices (keep in mind the identifications).

• Let n ∈ {0, 1, 2, . . .}. Then χ(Sn) = 1 + (−1)n.

Proof. Let σn+1 be an (n + 1)-simplex and define K to be the

simplicial complex whose only maximal simplex is σn+1. As we

know K is a triangulation of Dn+1. As Dn+1 is contractible, χ(K) =

1. We also mentioned that K′ = K \ σn+1 is a triangulation of Sn.

As K′ is obtained from K by removing an (n + 1)-simplex, χ(K′)
is obtained from χ(K) by removing a contribution of that simplex,

which is (−1)n+1. Hence χ(Sn) = 1− (−1)n+1 = 1 + (−1)n.

T χ(Sn) could also be computed from

the triangulation K′ directly using the

binomial formula.

4 Simplicial maps

Just as simplicial complexes provide a convenient combinatorial

description of metric spaces, simplicial maps provide a combinatorial

description of continuous maps. We first define them in the abstract

setting.
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Definition 4.1. Suppose K and L are abstract simplicial complexes.

A simplicial map between K and L is an assignment f : K(0) → L(0)

on vertices, such that for each abstract simplex {v0, v1, . . . , vk} ∈ K
its image { f (v0), f (v1), . . . , f (vk)} is an abstract simplex in L. ↪→

Figure 21: An embedding of a sim-
plicial subcomplex L ≤ K into K is

identity on the vertices and always a

simplicial map.

Remark 4.2. A simplicial map will be usually denoted by f : K → L.

However, since K and L are collections of sets, such a notation would

formaly include maps that map, say, a vertex to an edge, a highly

unfavourable occurence. When talking about simplicial maps K → L
we thus always consider only maps in the sense of Definition 4.1, i.e.,

maps that map a vertex to a vertex, while images on simplices are

always determined by the values on the vertices:

• For each vertex v ∈ K we define a corresponding vertex f (v).

• For each abstract simplex σ = {v0, v1, . . . , vk} ∈ K its image

f (σ) = { f (v0), f (v1), . . . , f (vk)} is determined by the values on its

vertices.

• Note that f (σ) is a set, meaning there are no repetitions of ele-

ments. In particular this means that each vertex appears at most

once in f (σ), even if it appears multiple times as f (vi). As a re-

sult the image of an n-dimensional simplex can be of dimension less

than or equal to n, but never more than n.

Example 4.3. Let K be the simplicial complex in Figure 22. Assign-

ment a 7→ a; b 7→ c; c 7→ c; d 7→ d; e 7→ b can be verified

to induce a simplicial map K → K. Note that triangle {a, b, c} gets

mapped to edge {a, c}.
a

b

c

d

e

Figure 22: Simplicial complex K of

example 4.3.

We are now ready to define simplicial maps in the geometric set-

ting.

Definition 4.4. Suppose K and L are geometric simplicial complexes.

A map f : K → L is a simplicial map, if:

1. For each vertex v of K its image f (v) is a vertex of L.

2. The corresponding map between the corresponding abstract sim-

plicial complexes is simplicial, i.e., if {v0, v1, . . . , vk} span a geo-

metric simplex in K then { f (v0), f (v1), . . . , f (vk)} span a geomet-

ric simplex in L.

3. Map f is linear on simplices (in terms of barycentric coordinates),
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i.e.,

∀ti ∈ [0, 1],
k

∑
i=0

ti = 1, ∀vi ∈ K(0) : f (
k

∑
i=0

tivi) =
k

∑
i=0

ti f (vi).

Given a simplicial map between geometric simplicial complexes the

induced map (i.e., the restriction to vertices) between abstract simpli-

cial complexes is simplicial. Conversely, each simplicial map between

abstract simplicial complexes corresponds to the unique simplicial map

between the corresponding geometric simplicial complexes: the exten-

sion from vertices to geometric simplices is defined using the formula

of item 3 of Definition 4.4. In accordance with our declarations simpli-

cial maps will be used to denote maps either in geometric or abstract

setting: in case of a preferred interpretation it will be stated explicitly

or should be obvious from the context.

Simplicial maps between geometric simplicial complexes are con-

tinuous maps as they are linear (hence) continuous on each simplex.

Surprisingly enough, each continuous map can be (up to homotopy)

represented by a simplicial map, which means that as long as we are

interested in homotopical properties, we can restrict ourselves to sim-

plicial maps.

Figure 23: The upper part of the

figure presents a simplicial complex.

The middle part consists of a smooth
curve (bold) superposed on the sim-
plicial complex. The bottom part

consists of a simplicial approximation
(bold red) of a smooth curve super-

posed on the simplicial complex and

the curve. The indicated simplicial
approximation requires a triangulation

of the domain S1 with at least 12
edges.

Theorem 4.5. Suppose f : K → L is a continuous map between ge-

ometric simplicial complexes. Then there exist sufficiently fine sub-

divisions K′ of K and L′ of L, and a simplicial map f ′ : K′ → L′,
such that f ' f ′. We call f ′ a simplicial approximation of f .

The subdivisions above can be taken to be sufficiently fine barycen-

tric subdivision. A continuous map between simplicial complexes is

formally a map between the bodies of the simplicial complexes. In this

sense both f and f ′ are maps |K| = |K′| → |L| = |L′| hence f ' f ′

makes sense.

Elementary collapses

Elementary collapses are minor local modifications of simplicial

complexes, which preserve its homotopy type. Conveniently enough,

they can be described in purely combinatorial terms. Their impor-

tance stems from the following Lemma.

Lemma 4.6. Let K be a geometric simplicial complex containing sim-

plex σ = {v0, v1, . . . , vk} and let τ = {v1, . . . , vk} be its facet. If σ

is the only coface3 of τ, then the inclusion i : K \ {τ, σ} ↪→ K is a 3 i.e., a simplex which contains τ.

homotopy equivalence.

Proof. The proof is sketched in Figure 24.
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We first need to subdivide σ and τ. Choose a point a in the middle

of τ and connect it to all vertices of σ. This induces a subdivision of σ

and τ and in fact of K as no other simplex contains4 σ or τ. 4 If there was another simplex contain-

ing σ, then that simplex would have
been a coface of τ, which contradicts

our assumptions. In particular, If σ is

the only coface, then τ is a facet of σ.
This fact also refers to conditions of

Definition 4.7.

In order to obtain a continuous deformation5 from K to K \ {τ, σ},

5 Homotopy equivalence.

slide a towards v0. This sliding is a linear homotopy and can be easily

described in the barycentric coordinates of the new subdivision of

K.

στ v0a

Figure 24: Elementary collapse from

Lemma 4.6 with σ being the triangle
and τ its left side.

Definition 4.7. Let K be a simplicial complex, τ(k−1) ⊂ σ(k) ∈ K,

and assume σ is the only coface of τ. A removal K → K \ {τ, σ}
is called an elementary collapse.

Figure 25: The elementary collapse of

Figure 24 is usually indicated by an
arrow from τ into σ.

By Lemma 4.6 each elementary collapse preserves the homotopy

type of a complex. Note that the collapsing map K → K \ {τ, σ} is

not6 a simplicial map on K. It is, however, a simplicial map on the

6 Except if τ is a vertex.

subdivision of K employed in Lemma 4.6, defined by mapping a 7→ v0

and keeping all the other vertices intact. Its homotopy inverse is the

inclusion K \ {τ, σ} ↪→ K, which is a simplicial map.

Elementary collapses are convenient because they provide us with a

simple combinatorial condition that can be used to induce homotopy

equivalence on abstract simplicial complexes. This idea will be further

expanded later within the context of Discrete Morse Theory.

Figure 26: An example of a simpli-
fication of (the homotopy type of) a

simplicial complex using elementary
collapses.
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5 Concluding remarks

Recap (highlights) of this chapter

• Geometric simplex;

• Geometric simplicial complex;

• Abstract simplicial complex;

• Geometric realization;

• Simplicial map;

• Simplicial approximation and elementary collapse.

Background and applications

Simplicial complexes model spaces in a wide spectrum of theory and

applications. Great portions of topology and geometry are based on

them due to their simple structure and amenability to combinatorial

treatment. On the applied side simplicial complexes are typically used

to model shapes.

Appendix: Proof of Theorem 3.4

Before we begin with the proof we clarify a fact that will be used.

A generic7 (random) collection of n + 1 points in Rn is affinely inde- 7 Notion “generic” as used in this

appendix is usually referred to as

“general linear position” in the litera-
ture.

pendent. Geometrically this is easy to believe:

• Generic two points in R will be different;

• Generic three points in R2 will not be colinear;

• Generic four points in R3 will not be coplanar.

Similarly, even for k > n + 1 a generic set V of k points in Rn has

the same property: each a collection of n + 1 points in V is affinely

independent. For example, in a generic collection of points in the

plane no triple of points will be collinear. We will only use the fact

that generic collections exist. This fact can be proved using linear

algebra.

Figure 27: A generic collection of 5
points in the plane, meaning that no

three are collinear. Only by adding
a point on any grey line does the

generic condition brake. If we add
any other point to this collection, the
obtained collection of 6 points is still

generic.

Proof of Theorem 3.4. Let K be an abstract simplicial complex of di-

mension d, whose vertices are v0, v1, . . . , vk. Choose a generic collection

of points V = {x0, x1, . . . , xk} ⊂ R2d+1, meaning that each collection

of 2d + 2 points from V is affinely independent. We will prove that the

correspondence vi ↔ xi for all i ∈ {0, 1, . . . , k} provides a geometric

realization of K.
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For each abstract simplex σ ∈ K spanned by vj0 , vj1 , . . . , vjm , the

corresponding geometric simplex σ′ is spanned by the affinely indepen-

dent collection xj0 , xj1 , . . . , xjm . It remains to prove that if σ, τ ∈ K,

then σ′ ∩ τ′ = (σ ∩ τ)′.

As (σ ∩ τ)′ ⊆ σ′, τ′ by the definition, we have σ′ ∩ τ′ ⊇ (σ ∩ τ)′.

To prove the other inclusion we will make use of the dimension

assumption. Let z ∈ σ′ ∩ τ′, which means that z can be expressed as a

convex combination of vertices in σ′ and also as a convex combination

of vertices in τ′. As the total number of vertices in τ′ and σ′ is at

most 2n + 2 (by the dimension assumption), the generic condition

implies these are affinely independent, and thus the convex (affine)

combinations above coincide as they have to be unique by Proposition

1.2. In particular, this means that only the barycentric coordinates

corresponding to the vertices that lie in both simplices (i.e., σ ∩ τ)

can be non-zero, which implies z ∈ (σ ∩ τ)′ and hence σ′ ∩ τ′ ⊆
(σ ∩ τ)′.
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