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Topology and geometry study the shapes of spaces. In the first lecture

we will introduce our basic objects: metric spaces. These are sets with

a meaningful notion of a distance (metric). The focus will be on an

intuitive understanding of three equivalence types of metric spaces:

Isometry type, homeomorphic type, and homotopic type of spaces.

These types will play a crucial role in later sections.

1 Definition of metric spaces and basic examples

Definition 1.1. A metric space (X, d) is a pair consisting of a set

X and a function d : X× X → [0, ∞), such that for any x, y, z ∈ X
the following hold:

• d(x, y) = 0 iff x = y,

• symmetry: d(x, y) = d(y, x), and

• triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

Function d is referred to as a distance or a metric.

If X is introduced as a metric space, we implicitly assume d or

dX is the metric on X, unless stated otherwise. Also, Rn is always

considered to be equipped with the Euclidean d2 metric (see Example

1.2 for definition), unless stated otherwise.

Example 1.2. The following are some of the metrics d∗ on Rn. For

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) we define:

• d1(x, y) = ∑n
i=1 |xi − yi|

• d2(x, y) =
√

∑n
i=1(xi − yi)2

• dp(x, y) = p
√

∑n
i=1(xi − yi)p for p > 1

• d∞(x, y) = maxi∈{1,2,...,n} |xi − yi|

x = (1, 2)

y = (3, 5)

2

3

Figure 1: A few distances: d1(x, y) =
5, d2(x, y) =

√
13, d∞(x, y) = 3.

Example 1.3. Occasionally the underlying space is different that Rn.

Here are some examples:

• Suppose X is a finite graph with a length associated with each edge.

The geodesic distance dg between two points in X is the length of

the shortest path between these points in X.
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• Suppose X is a surface. We can think of it as a sphere or the sur-

face of the earth. Similarly as above, the geodesic distance dg be-

tween two points on X is the length of the shortest path between

these points on X. For example, consider the distance between Lon-

don and Sydney (see Figure 2). The distance usually thought of in

this case is the geodesic distance on Earth, that is, the length of the

shortest path between the two cities. The actual Euclidean distance

in space between the two cities is shorter, but usually not of interest,

since the path that realizes it passes fairly close to the center of the

Earth.

LON

SY D

d2(LON,SY D)

dg(LON,SY D)

Figure 2: Geodesic vs d2 distance

between London and Sydney.

• Suppose A is a finite set which we call alphabet. Let X denote a set

of finite sequences (words) consisting of the elements of A (letters).

The Levenshtein distance between two words in X is defined as

the minimum number of edits required to transform one word into

another, where the allowed edits are:

– an insertion of a letter at any position;

– a deletion of a letter anywhere;

– a substitution of a letter in any place by another letter.

See Figure 3 for example.

DOG DOL DOLF WOLF
Figure 3: Levenshtein distance be-

tween DOG and WOLF is 3 by the
following argument. The sequence

above demonstrates that the distance

is at most 3. As WOLF has three
letters that do not appear in DOG,

the distance is at least 3.

• Let X be a finite set and let 2X be the collection of all subsets of X.

The Jaccard distance on 2X is defined as

dJ(A, B) =
|A ∪ B| − |A ∩ B|

|A ∪ B| .

For a metric space (X, d), x ∈ X and r > 0 we define the closed1 1 As we will only consider closed balls,

the phrase will be simplified to just

“balls”.
r-ball around x as

Bd(x, r) = {y ∈ X | d(x, y) ≤ r}.

When the metric is apparent from the context we omit it and use

B(x, r).

Figure 4: Balls in d1, d2 and d∞ metric
in the plane.2 Maps and equivalence types

When transforming or mapping spaces we will always be using

continuous maps.

Definition 2.1. A map f : X → Y between metric spaces is contin-

uous if for each x ∈ X and for each ε > 0 there exists δ > 0 so
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that the following holds for all y ∈ X:

dX(x, y) < δ =⇒ dY( f (x), f (y)) < ε.

The notion of continuity between metric spaces includes the classi-

cal continuity from infinitesimal calculus, i.e., all continuous elemen-

tary functions R → R are continuous in the sense of Definition 2.1 on

(R, d2).

An equivalent definition of continuity could be stated in terms of

convergent sequences. A sequence of points {zi}i∈N in Z converges to

w ∈ Z (notation zi
i→∞−→ w) iff dZ(zi, w) converges to zero. It turns

out that a map f : X → Y between metric spaces is continuous if

the following implication holds: If {xi}i∈N is any sequence in X with

xi
i→∞−→ u ∈ X, then f (xi)

i→∞−→ f (u) ∈ Y. A practical interpretation

of continuity would be the following: if we improve our measurements

xi in the sense that we get a better approximation for the desired state

w, then the values over a continuous map f (xi) also converge to the

value f (w). For example, suppose we want to estimate the area of

Madagascar from a .bmp image representing a map of the island. We

expect that as the resolution increases, we should get a better estimate

for the total area.

A continuous map g : [0, 1]→ X is called a path from g(0) to g(1).

Next, we give three different equivalence relations on the class of

metric spaces, each of which preserves different level of geometric

information. We start with the strictest equivalence, which preserves

the most structure.

Definition 2.2. A map f : X → Y between metric spaces is an isom-

etry, if it is bijective and preserves distances, i.e., for each x1, x2 ∈
X, dX(x1, x2) = dY( f (x1), f (x2)). Two metric spaces are isomet-

ric, if there exists an isometry between them.

Figure 5: Four isometric planar sets.

Isometries of the plane are combinations of translations, rotations

and reflections. In Rn, isometries are combinations of a translation

and a linear isometry. Linear isometries in Rn are represented by

orthogonal matrices.

It turns out that no patch of a sphere (equipped with the geodesic

metric) is2 isometric to a subset of a plane. A practical consequence of 2 This is a consequence of Gauss’

Theorem Egregium.this fact is that all topographic maps are distorted.

Although isometries are convenient in many situations, they are es-

sentially a geometric notion that is too rigid for topological treatment.

We next introduce a topological counterpart.
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Definition 2.3. A map f : X → Y between metric spaces is a home-

omorphism, if it is bijective, continuous, and f−1 is continuous. Two

metric spaces are homeomorphic (or of the same topological type;

notation: X ∼= Y), if there exists a homeomorphism between them.

Obviously, every isometry is a homeomorphism. While homeomor-

phisms are much more flexible and preserve a number of invariants of

a space (later we will mention dimension, number of components and

holes, etc.), they do not preserve some of the geometric properties, e.g.

diameter (the supremum of pairwise distances in a space), radii of the

smallest enclosing balls, etc.

Figure 6: Four homeomorphic sets in

the plane.

We will often be referring to the following two spaces:

• For n ∈ N an n-sphere Sn is any space homeomorphic to the n-

dimensional sphere

{x ∈ Rn+1 | d2(x, 0) = 1} =
{

(x1, . . . , xn+1) ∈ Rn+1 |
n+1

∑
i=1

x2
i = 1

}
,

where 0 is the (n + 1)-tuple of zeros. Observe that S0 consists of

two points, S1 is homeomorphic to a circle3, S2 to the usual sphere, 3 A circle is a 1-dimensional subset of
R2 defined by (x− a)2 + (y− b)2 = r2,

i.e., it is “empty inside”.
etc.

• For n ∈N an n-disc Dn is any space homeomorphic to

{x ∈ Rn | d2(x, 0) ≤ 1},

where 0 is the n-tuple of zeros4. Observe that D1 is a closed inter- 4 A clarification on terminology: A

ball (a metric concept) in a metric
space is a particular specific subspace

of that metric space. An n-disc (a

topological concept) is any space
homeomorphic to the standard unit

ball in Rn, and thus defined up to

homeomorphism. A square in the
plane is a 2-disc, but is not a ball

in the Euclidean metric. Any unit

ball of radius at least 1 on a circle of
circumference 1 is the entire circle and

so is not a 1-disc.

val, whose endpoints are S0. Similarly, D2 can be thought of as the

unit disc in the plane. Note that its boundary in the plane is S1.

Example 2.4. Here we provide some examples of homeomorphisms.

• Two finite metric spaces are homeomorphic iff they consist of the

same number of points. Each map between finite metric spaces is

continuous.

• Any two closed intervals are homeomorphic. In particular, a homeo-

morphism f : [0, 1]→ [a, b] for a < b is given by f (t) = a + t(b− a).

Figure 7: Four homeomorphic sets in

the plane.

• A square [−1, 1]2 in the plane is homeomorphic to the ball B((0, 0), 1)

in the plane. One of the homomorphisms is given by a radial map

B((0, 0), 1)→ [−1, 1]2 mapping:

◦ (0, 0) 7→ (0, 0) and

◦ (x, y) 7→ ρ(x, y) · (x, y) for

ρ(x, y) =

√
x2 + y2

max{|x|, |y|} =
d2

(
(0, 0), (x, y)

)
d∞

(
(0, 0), (x, y)

) .
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• All three balls in Figure 4 are homeomorphic.

• For each n ∈ N, Sn ∼= Sm iff n = m. We will prove this result using

homology in a later chapter.

• For each n ∈N, Dn ∼= Dm iff n = m.

• No n-disc is homeomorphic to any k-sphere. Each n-sphere can be

obtained as a union of two n-discs acting as hemispheres.

Figure 8: Two homeomorphic sur-

faces.

Figure 9: Two non-homeomorphic

surfaces.

Figure 10: The surface of a cube with
a puncture in each of the six sides is

homeomorphic to a planar set with

five holes.

While homeomorphism is the focal equivalence in the field of topol-

ogy, it turns out that many computable invariants are in fact invariant

with respect to a continuous deformation of spaces. These deforma-

tions are formalized by the concept of homotopy.

Definition 2.5. Continuous maps f , g : X → Y between metric spaces

are homotopic [ f ' g] if there exists a continuous deformation of

f into g, i.e., if there exists a map H : X× [0, 1]→ Y, such that

H|X×{0} = f and H|X×{1} = g. Map H is called homotopy.

Another way to think about homotopy between f and g would be

as a continuous collection of paths from f (x) to g(x) in X.

Example 2.6. Some examples concerning homotopies:

1. For each metric space X, any two maps f , g : X → Rn are homo-

topic. A homotopy consists of line segments between f (x) and g(x).

In particular,

H(x, t) = (1− t) f (x) + tg(x).

S1

f, g

H

f(S1)

g(S1)

Figure 11: Two maps in the plane are

homotopic.

2. Let w ∈ S1. Then the identity map id : S1 → S1 is not homotopic to

the constant map cw : S1 → S1, which maps each point to w. Later

we will be able to prove this fact using homology. Note that by the

previous example both maps are homotopic in R2, hence the relation

of being homotopic depends on the target space of the maps.

3. Consider the two spaces on Figure 12. Space X is a single point,

space Y consists of a point, an empty triangle (S1), a square (D2)

and a disc with a tail. Observe that there are four homotopy classes

of maps from X to Y, one for each component of Y.

X Y

Figure 12: There are four homotopy

classes of maps from a single point
space X to Y.

We are now ready to introduce homotopy equivalence.

Definition 2.7. Metric spaces X and Y are homotopy equivalent

[X ' Y] if there exist maps f : X → Y and g : Y → X, such that

f ◦ g ' idY and g ◦ f ' idX. Maps f and g are called homotopy
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equivalences.

Homeomorphic spaces are homotopy equivalent. A metric space X
is contractible, if it is homotopy equivalent to the one-point space.

Figure 13: Four contractible spaces.

Example 2.8. Some examples concerning homotopy equivalences:

• Let X = [0, 1] and Y = {0}. Then X ' Y, i.e., [0, 1] is contractible.

Map f : X → Y is the constant map and map g : Y → X can be

chosen to be any map, say g(0) = 0. Composition f ◦ g is identity.

It remains to show that h = g ◦ f : [0, 1] → [0, 1], which is the

constant map at 0, is homotopic to the identity. Such a homotopy

is, for example, the linear homotopy from 1. of Example 2.6. In the

same way we can prove that Dn is contractible for each n ∈N.

Figure 14: Four spaces homotopy

equivalent to S1: Moebius band (top

left), usual band S1 × [0, 1] (top right)
and two planar sets below. Only two

of them are homeomorphic.

• Contractible spaces include convex sets and trees.

• It turns out that no Sn is contractible. The case n = 1 follows from

2. of Example 2.6.

• Rn \ {(0, 0, . . . , 0)} ' Sn−1.

Figure 15: Two more homotopy

equivalent spaces.

Homotopy equivalence does not preserve all topological properties

(for example, dimension), but it does preserve many of those that we

can compute: the number of components, holes, etc.

Connectedness

Figure 16: A sequence of steps de-

forming O to P. While the figure
demonstrated a continuous defor-

mation (homotopy equivalence), the

spaces presented in this case are
actually homeomorphic.

The first homotopy invariant we will mention is connectedness.

There are a few versions of it in topology. We will focus on the one

generated by paths.

Definition 2.9. Space X is path connected, if for each x, y ∈ X there

exists a path from x to y in X.

Subset A ⊆ Y of a metric space Y is a path component, if it

is a maximal path connected subset.

A space is path connected iff it is itself a path component. As was

mentioned above, path connectedness is a homotopy invariant: if X
is path connected and Y ' X, then Y is also path connected. Simi-

larly, the number of path components of a metric space is a homotopy

invariant. Space Y on Figure 12 has four components.

" From now on we will be dropping

adjective “path” and only refer to

“connectedness”, and “components”.

3 Concluding remarks

Recap (highlights) of this chapter

• Metric spaces;
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• Isometry;

• Homeomorphism;

• Homotopy equivalence;

• Connectedness.

Background and applications

Mathematics is the language of science and scientific concepts are

modelled by mathematical objects. These objects can range from

simple to sophisticated: a simple Boolean value (0 or 1, i.e., TRUE

or FALSE), a numeric value (integer, real, complex, etc.), a collection

of numeric values (e.g., a point in Rn), a collection of points in Rn, a

function, a vector space, a probability distribution, a graph, a matrix,

a metric space, etc. For most of these notions, there is a useful notion

of a metric that transfers the possible outputs into a metric space and

thus into the realm of geometry and topology, some of which we will

explore here.

The notions introduced in this chapter are covered in standard

books on topology.
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