## Computational topology <br> Lab work, $9^{\text {th }}$ week

1. Calculate the following products:
(a) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ and $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$,
(b) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & k\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ and $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & k\end{array}\right]$,
(c) $\left[\begin{array}{lll}1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ and $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\left[\begin{array}{lll}1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

Identify which of these swap two rows/columns, add a multiple of a row/column to another row/column and multiply a row/column with a number.
2. For the simplicial complex $X$ in the figure below
(a) write down the chain groups $\mathcal{C}_{2}, \mathcal{C}_{1}$ and $\mathcal{C}_{0}$,
(b) write down the matrices $D_{n}$ for the boundary homomorphisms $\partial_{n}: \mathcal{C}_{n} \rightarrow \mathcal{C}_{n-1}$ for $n=0,1,2,3$,
(c) compute the homology groups,
(d) collapse the free faces and determine how this changes the boundary matrices.

3. Write down the corresponding chain groups $\mathfrak{C}_{2}, \mathfrak{C}_{1}$ and $\mathfrak{C}_{0}$ for the Moebius strip (use the triangulation from last week) and the matrices $D_{n}$ for the boundary homomorphisms $\partial_{n}: \mathcal{C}_{n} \rightarrow \mathcal{C}_{n-1}$. Compute the homology.


4. Write down the corresponding chain complexes $\mathcal{C}_{2}, \mathfrak{C}_{1}$ and $\mathcal{C}_{0}$ and the matrices $D_{2}$ and $D_{1}$ for the boundary homomorphisms $\partial_{2}: \mathfrak{C}_{2} \rightarrow \mathfrak{C}_{1}$ and $\partial_{1}: \mathfrak{C}_{1} \rightarrow \mathfrak{C}_{0}$ for the torus, the Klein bottle and the projective plane. Use your favourite computational topology software to compute the homology groups.



