Computational topology Lab work, 9th week

1. Calculate the following products:

(a)	$\left[\begin{array}{c}1\\0\\0\end{array}\right]$	$0 \\ 0 \\ 1$	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} a \\ d \\ g \end{bmatrix}$	$b \\ e \\ h$	$\begin{bmatrix} c \\ f \\ i \end{bmatrix}$	and	$\left[\begin{array}{c} a\\ d\\ g\end{array}\right]$	b e h	$\begin{bmatrix} c \\ f \\ i \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0 0 1	$\begin{bmatrix} 0\\1\\0 \end{bmatrix},$
(b)	$\left[\begin{array}{c}1\\0\\0\end{array}\right]$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ k \end{bmatrix} \begin{bmatrix} a \\ d \\ g \end{bmatrix}$	$b \\ e \\ h$	$\begin{bmatrix} c \\ f \\ i \end{bmatrix}$	and	$\left[\begin{array}{c} a\\ d\\ g\end{array}\right]$	b e h	$\begin{bmatrix} c \\ f \\ i \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 0\\0\\k \end{bmatrix},$
(c)	$\left[\begin{array}{c}1\\0\\0\end{array}\right]$	$egin{array}{c} k \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} a \\ d \\ g \end{bmatrix}$	b e h	$\begin{bmatrix} c \\ f \\ i \end{bmatrix}$	and	$\left[\begin{array}{c} a\\ d\\ g\end{array}\right]$	b e h	$\begin{bmatrix} c \\ f \\ i \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$egin{array}{c} k \ 1 \ 0 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$

Identify which of these swap two rows/columns, add a multiple of a row/column to another row/column and multiply a row/column with a number.

- 2. For the simplicial complex X in the figure below
 - (a) write down the chain groups \mathcal{C}_2 , \mathcal{C}_1 and \mathcal{C}_0 ,
 - (b) write down the matrices D_n for the boundary homomorphisms $\partial_n \colon \mathfrak{C}_n \to \mathfrak{C}_{n-1}$ for n = 0, 1, 2, 3,
 - (c) compute the homology groups,
 - (d) collapse the free faces and determine how this changes the boundary matrices.

3. Write down the corresponding chain groups \mathcal{C}_2 , \mathcal{C}_1 and \mathcal{C}_0 for the Moebius strip (use the triangulation from last week) and the matrices D_n for the boundary homomorphisms $\partial_n \colon \mathcal{C}_n \to \mathcal{C}_{n-1}$. Compute the homology.

4. Write down the corresponding chain complexes C_2 , C_1 and C_0 and the matrices D_2 and D_1 for the boundary homomorphisms $\partial_2 \colon C_2 \to C_1$ and $\partial_1 \colon C_1 \to C_0$ for the torus, the Klein bottle and the projective plane. Use your favourite computational topology software to compute the homology groups.

