
Lesson 1: Corpus
Start by constructing a workflow that consists of a Corpus widget, 
a Word Cloud widget and two Corpus Viewer widgets:

Orange3-Text comes with several preloaded data sets. From these 
(“Browse documentation data sets…”) choose Grimm-tales-
selected.tab, a data set containing Grimm’s selected tales.

Now open Word Cloud. Word Cloud displays word frequencies, 
where the more frequent the word, the larger the font. Select a 
word in the visualization and pass it to Corpus Viewer (1). You can 
now observe only those documents that contain the selected word 
in the Corpus Viewer. 

Corpus is any collection of 
documents.

The particularity of the Corpus 
widget is that it sets the text 
feature(s) to apply text mining 
on.  “Used text features” defines 
the content (text), while other 
columns contain meta attributes 
(title, abstract, etc.).
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But wait a second! This word cloud is a mess! We got a bunch of 
semantic junk in our visualization.  Is there a way to clean this up?

Of course! We need to remove all the bits that carry no 
information, namely punctuation and stopwords.
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Lesson 2: Preprocessing Text
Word Cloud simply displayed all the words and symbols found in 
the text. But this is often not what we want. We want to extract 
only meaningful units, such as semantically rich words. This is why 
we need text preprocessing.

In the Preprocess Text widget, we decided to transform all words 
to lowercase, treat each word as a token (and omit punctuation), 
and to remove the stopwords (such as “in”, “and”, and “the”). This 
preprocessing outputs the following tokens:

“This is a sample sentence.” → “sample”, “sentence”

To see the results of preprocessing, we can display the most 
frequent tokens in Word Cloud. Word Cloud enables us to identify 
redundant words and irregularities.
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Preprocessing is key to defining 
what is important in our data. Is 
“Doctor” the same as “doctor”? 
Should we consider words such 
as “and”, “the”, “when” or omit 
them? Do we wish to treat “said” 
and “say” as the same word? 

Preprocessing defines the core 
units of our analysis. 

Token is a basic unit of our 
analysis. It can be a word, a bi-
gram, a sentence… With 
preprocessing we define our 
tokens for the analysis.
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To remove the words that carry no meaning, we have already 
filtered out some stopwords. But perhaps filtering out generic 
stopwords is not enough for our analysis. 

We can always load our own 
custom stopword list. Open 
a plain text editor and 
create a custom list of 
stopwords. Write each new 
word on its own line and 
save the file.

Load the list of custom 
stopwords in the right-hand dropdown of the Filtering section.
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We see the results of our 
preprocessing in the Word 
Cloud. Two of the most frequent 
words are “would” and “could”. If 
we decide these two words are 
not important for our analysis, it 
would be good to omit them. We 
can do this with custom filtering.

A good plain text editor is 
Sublime, but you can easily work 
with Notepad++.
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Another preprocessing technique is to filter out words that are too 
rare and too frequent. Rare words are normally found in only a few 
documents and frequent words are likely stopwords or very general 
words. To retain only those words that truly represent the corpus 
and may distinguish between corpus documents, we use Document 
frequency filter. If we set the values to 0.1 and 0.9; we will retain 
only those words that appear in more than 10% of the documents 
and in fewer than 90%.

Preprocessing is really the key to a successful text analysis. We have 
only mentioned a few techniques, but you can experiment on your 
own with the following ones:

• normalization transforms all words into lemmas or stems (for 
example sons to son)

• n-grams are tokens of larger size, bigrams (a pair of consecutive 
words) and trigrams (word triplets), e.g. “office hours” or 
“Department of Justice”.

• POS tagging tags each token with a corresponding part-of-
speech tag (sons → noun, plural, tag = NNS)
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For POS tag symbols see: 

https://www.ling.upenn.edu/
courses/Fall_2003/ling001/
penn_treebank_pos.html

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
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Lesson 3: Context
We have prepared our corpus and now it is time to visualize it. We 
have already seen some of the preprocessing results in a word 
cloud. Word Cloud shows us word frequencies. The more 
frequently the word appears in the corpus, the larger it will be in 
the word cloud.

But we still don’t know much about the use of a specific word in a 
text. For example ‘oh’ could be a lowercase version of OH (the 
chemical compound of hydroxide), a simple exclamation ‘Oh!’ or 
an abbreviation for the state of Ohio.

To check the context of a particular word we can use Concordance 
widget. Concordance shows us the text around our word.

Connect Concordance to Corpus to pass the text to the widget. To 
browse the word, type it in the query line at the top or provide it 
with the Word Cloud. Here we have selected the word ‘king’ in the 
Word Cloud and observed the context in Concordance. 

�6

To inspect the documents 
containing a particular word, 
select the documents in 
Concordance and pass them to 
Corpus Viewer for a deeper 
analysis. 
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Lesson 4: Bag of Words
Now we have a preprocessed text, with proper tokens, but we still 
cannot really find any patterns in our text. For this, we need 
numbers and a simple way to convert documents into numeric 
vectors is to… well, count the words in each text.

Bag of Words creates a table with words in columns and 
documents in rows. Values are word occurrences in each 
document. They can be binary, but normally they are counts.

However, text with many common words will have a 
greater importance than texts with many specific words. 
To balance the effect of stopwords, TF-IDF approach 
weights the matrix with total document frequency.
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Using TF-IDF, common words will have a low value as 
they appear across most documents, while significant 

words will have a high value because they appear frequently in a 
small number of documents. 

Pass the data through a Bag of Words widget and then again to a 
Data Table. We get a new column that contains word counts for 
each document. Now that we have numbers, we can finally 
perform some magic!

t f − i d f = t f × log
n o of d ocs

d ocs con ta in ing ter m
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this is an example another apple

“This is an example” 1 1 1 1 0 0

“Another example” 0 0 0 1 1 0

“This is another apple. 1 1 0 0 1 1
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Lesson 5: Document Embedding
Bag of words, however, is not the only way to transform text into 
numbers. BoW is a great approach, because it is intuitive and 
interpretable (each feature is a word). But it requires a lot of 
careful preprocessing and with many words, the document-term 
matrix can get extremely large. Also, words like mother and mom 
would be unrelated in the BoW matrix, which we know is not the 
case. Wouldn’t it be nice to have model that describes  mother and 
mom with a similar number?

Such models are called word embedders and a based on 
pre-trained deep models that map words in the language 
space. In such a model, words with similar meaning and 
words from the same family (car, Toyota, vehicle) would 
be placed close together. Computing a vector for an 
individual word based on the model is called embedding.

Orange uses fastText pre-trained models to embed words. 
Then is averages word vectors to produce a single 
document vector (one can also use sum, min or max 
aggregation). The document is now described with 300 

features, regardless of the length of the document. However, 
features cannot be mapped to words — they are abstract 
representations in the language space. 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Lesson 6: Clustering & Distances
One common task in text mining is finding interesting groups of 
similar documents. That is, we would like to identify documents 
that are similar to each other.

We already know how to cluster data instances. We pass the data 
to Distances, use Euclidean distance, then to Hierarchical 
Clustering. But the Euclidean distance is not the only option. 
There are many distance measures and Euclidean doesn’t work 
very well for text. Let us see why.

Using the Euclidean distance, document 2 would be closer to 
document 3 than to document 1. But documents 1 and 2 talk 
predominantly about wolves, while document 3 talks about foxes. 
The measure that captures the similarity of concepts without 
considering how many words there are in the text is called cosine 
distance.

Word counts from BoW are vectors, each pointing in a direction 
defined by text content as seen from the figure. Cosine distance is 
the angle between these vectors. Once the angle is considered, 
document 2 would be closer to document 1 than to document 3 
(angle between them is smaller). For complex objects, such as texts, 
cosine distance is a frequent choice.
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For text, an intuitive approach for measuring similarity would also 
be the number of words that two documents share. This is simply:
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The measure is called Jaccard similarity coefficient or Jaccard 
index. Note that in this case, we are measuring similarity, not 
distance. Similarity is the opposite of distance, so to convert 
Jaccard index to distance, we would subtract it from 1.

Now, let us go back to our Grimm’s Tales and construct the 
following workflow:

Connect Corpus Viewer to Hierarchical 
Clustering and open both widgets. Now 
click on a cluster in the dendrogram and 
observe the documents from the selected 
cluster in Corpus Viewer. Explore different 
clusters. Why are some Tales of Magic 
mixed with Animal Tales? What do they 
have in common?

J(A, B) =
|A⋂B |
|A⋃B |
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You can try the same workflow 
on a different corpus, say 
bookexcerpt.tab, which contains 
excerpts from adult and 
children’s books. 
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Lesson 7: Word Enrichment
We have previously explored the clusters with box plot. But for 
text mining, there is another option to find what is significant in 
the cluster. The approach is called word enrichment.

Word Enrichment compares a subset of documents against the 
entire corpus and finds statistically significant words for the 
selected subset. It uses hypergeometric p-value to find words, that 
are overrepresented in the subset.
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FDR stands for false discovery rate. It is a measure to account for 
falsly significant words. In a large data matrix (which BoW usually 
is), some terms will be significant by chance. FDR tried to account 
for it.

In the above clustering, we selected a 
cluster with mostly Animal Tales. 
Unsurprisingly, fox the most significant 
word in the subset. So the next time you 
see the word fox in a tale, you can bet the 
text is an animal one! :)

p =
(term in corpus

term in subset ) × ( other terms
other terms in subset)

( all terms
terms in subset)
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Word Enrichment works on any 
kind of subset.
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Lesson 8: Classification
Earlier we mentioned the Aarne-Thompson type (ATU). This is 
the index of folk-tale motifs and we have already marked every tale 
with a high-level (genre) and a mid-level ATU type (subgenre).

Could we perhaps predict the ATU type based on the content of 
the tale? Let us see.

First, we need a target variable. This is the feature we are trying to 
predict, in our case an ATU type. We also need a numerical 
representation of each document - something we already have 
from the Bag of Words.

Now we will build a predictive model. A predictive model 
considers tokens (words) and predicts the target variable (ATU 
Topic). Every model also needs a learner, which is a method on 

how to consider the 
tokens. In our case, 
this is Logistic 
Regression.

In Predictions, we 
can see a column 
with predicted 
values from Logistic 
Regression. Seems 
like our model got 
most of the tale 
types right.
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Aarne and Thompson were 
two folklorists, who invented 
and perfected the motif-
based classification system of 
folk tales. This system has 
been in place since 1910 and 
is commonly used in 
comparative folkloristics. The 
final U in ATU stands for 
Uther, who was the last to 
update the index in 2004.
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Lesson 9: Predictions
Predicting on new data works just like for regular data.

Open a new Corpus widget and load the andersen.tab corpus. Here 
we have three tales from H. C. Andersen. Inspect them in Corpus 
Viewer and try to guess the tale type yourself.

Now connect them to Predictions the same way as before - with 
Logistic Regression passing the constructed model and the new 
Corpus widget passing the data for prediction. Logistic Regression 
predicted two tales to be Tales of Magic and one the Animal Tale. 

The Ugly Duckling as an animal tale? Sounds quite right! 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Lesson 10: Twitter Data
The Grimm’s Tales already come with the program. Text add-on, 
however, can retrieve data from many other sources: Twitter, 
Guardian, New York Times, and Wikipedia!

Here’s an example on how to use the Twitter widget.

Entry the query, which can be a word, a hashtag, or a 
mention. You can provide multiple queries, one per 
line, which will be considered with OR (at least one 
query appears in the tweet). Set the language to 
English (or any other language) to limit tweet language.

For this example, we will retrieve a hundred English tweets with a 
hashtag #datamining. We have entered the query in the “Query 
word list” and set the language to English.

Now we run “Search” and Twitter widget will send the retrieved 
tweets immediately to the output. Connect Corpus Viewer to 
Twitter to observe the retrieved data. 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To use Twitter widget you will 
need to get a Twitter API key. Go 
to https://apps.twitter.com/ and 
create a new app. Once you’ve 
created the app, you will get 
your own API key. 

Enter it into the Twitter API Key 
section and begin using the 
Twitter widget.

https://apps.twitter.com/
https://apps.twitter.com/
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Lesson 11: Twitter Preprocessing
Twitter requires specific preprocessing. Why? Think about this 
tweet:

“I am looking forward to today’s lesson, @drprofessor. #course 😊 ”

With the standard preprocessing, the tokens would be the 
following:

i, am, looking, forward, to, today’s, lesson, @, drprofessor, #, course, :, -, )

Not exactly what we want. Preprocessing should keep mentions, 
hashtags and emojis together as one token, not separate it. For 
this, we use the pre-trained Tweet tokenizer.

Text preprocessing steps are the following:

1.Remove urls from the text. Twitter’s 
URLs are not informative.

2.Use a special Tweet tokenizer, that 
was pre-trained on millions of tweets. It 
keeps hashtags, emojis, and mentions.

3.Remove punctuation with regex 
(Tweet tokenizer doesn’t do it by 
default). 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Un-preprocessed Word Cloud 
above and a preprocessed Word 
Cloud with Tweet tokenizer on 
the right.
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Lesson 11: Sentiment Analysis
Can we discover how people feel about data mining? Sure, with 
sentiment analysis. We will pass the tweets to Sentiment Analysis 
widget and compute a sentiment score.

Connect Sentiment Analysis to Twitter. Sentiment Analysis uses 
dictionary-based approaches to discover positive or negative words 
and provides a total sentiment score. We will use Vader, which is a 
smarter approach that recognizes phrases (“This is sick, dude.”), 

punctuation (Great!!!!!!), and emojis (😲 ).

Vader outputs 4 sentiment features, namely positive (pos), neutral 
(neu), negative (neg) and compound scores. Liu & Hu and 
Multilingual sentiment are both simpler methods based solely on 
dictionary words. Positive dictionary is used to count positive 
words and negative dictionar for negative ones. The sum of 
negative words is subtracted from the sum of positive words to get 
the final score.

We will observe sentiment strength and polarity in a Heat Map. 
Heat map shows numeric attributes, where each value is colored 
according to scale. In our example, data with higher values are 
yellow and white, while data with lower values are blue. ‘Clustering 
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More advanced techniques for 
sentiment analysis are based on 
models, usually with deep neural 
networks that learn from a large 
amount of labelled texts.
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(opt. ordering)’ option groups tweets with 
similar sentiment together.

Select, for example, the most positive 
tweets from the bottom of the visualization 
and inspect them in Corpus Viewer.
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The words that contribute to the 
two documents being labelled as 
positive, are free, confident, and 
great.


