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Recurrent Neural Networks
• Recurrent Neural Networks are networks 

with loops in them, allowing information to 
persist.
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In the above diagram, a chunk of neural

network, A, looks at some input xt and
outputs a value ht.
A loop allows information to be passed from
one step of the network to the next.

A recurrent neural network can be thought of as multiple 
copies of the same network, each passing a message to a 
successor. 
The diagram above shows what happens if we unroll the loop. 



Examples of Recurrent Neural Networks

4

• Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). 
• Input vectors are in red, output vectors are in blue and green vectors hold the RNN's state
1. Standard mode of processing without RNN, from fixed-sized input to fixed-sized output (e.g. image 

classification).
2. Sequence output (e.g. image captioning takes an image and outputs a sentence of words).
3. Sequence input (e.g. sentiment analysis where a given sentence is classified as expressing positive 

or negative sentiment).
4. Sequence input and sequence output (e.g. Machine Translation: an RNN reads a sentence in 

English and then outputs a sentence in French).
5. Synced sequence input and output (e.g. video classification where we wish to label each frame of 

the video).

1 2 3 4 5



Seq2Seq model
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Videos by Jay Alammar: Visualizing A Neural Machine Translation Model 
(Mechanics of Seq2seq Models With Attention), 2018

http://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/


Seq2Seq for NMT
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Encoder-Decoder model

• encode into a latent space
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Encoder-decoder for sequences
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Encoder-decoder for NMT
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Encoder-decoder hidden states
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Unrolled encoder-decoder
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Problems of encoder-decoder models

• long dependencies that would require larger networks 
and many more training data

• the information of different length sentences is stored in 
the fixed length hidden layer (migh be too long or to 
short)

• solution: attention mechanism

12



NMT with attention
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Attention mechanism implementation
for RNNs 1/2

• for all input words, we store their hidden layer weights
• during decoding, we add these vectors to the decoder

input
• we use bidirectional encoding (forward and backward

LM) and concatenate both weight vectors
• vectors are stored into a matrix
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Attention mechanism implementation
for RNNs 2/2

• we train the attention – which stored vectors are more or
less important for decoding certain words

• the importance is determined with the attention vector
αt (between 0 and 1, sums to 1), applied to stored hidden
weights and given as additional input to the decoder
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Illustration of attention
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Decoder with attention
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Attention produces alignments
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Illustration of 
attention
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Attention illustration
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Problems with RNNs

• We want parallelization but RNNs are inherently sequential

• Despite GRUs and LSTMs, RNNs still need attention 
mechanism to deal with long range dependencies – path 
length between states grows with sequence 

• If attention gives us access to any state… maybe we can just
use attention and don’t need the RNN?

21



Transformer model

• currently the most successful DNN

• non-recurrent

• architecturally it is an encoder-decoder model

• fixed input length (relatively long)

• can be parallelized

• adapted for GPU (TPU) processing

• based on extreme use of attention

22



Transformer
overview

• Initial task: machine
translation with parallel
corpus

• Predict each translated
word

• Final cost/loss/error
function is standard cross-
entropy error on top of a 
softmax classifier
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Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, 
A.N., Kaiser, Ł. and Polosukhin, I., 2017. Attention is all you need. In 
Advances in neural information processing systems (pp. 5998-6008).

https://papers.nips.cc/paper/7181-attention-is-all-you-need


Transformer is encoder-decoder model
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on the figure there are 6 encoders and 6 decoders
(could be some other number)



Transformer: encoder

• two layers

• no weight sharing between different encoders

• self-attention helps to focus on relevant part of input
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Transformer: decoder

• the same as encoder but with an additional attention layer in 
between, receiving input fom encoder
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Start with embeddings
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Input to transformer
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• embeddings, e.g., 512 dimensional vectors
(special, we will discuss that later)

• fixed length, e.g., max 128 tokens
• dependencies between inputs are only in the self-

attention layer, no dependencies in feed forward
layer – good for parallelization

• Let us first present the working of the 
transformer with illustration of the prediction, 
later we will cover also training.



Encoding
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Self-attention

• As the model processes each word (each position in the input 
sequence), self-attention allows it to look at other positions in 
the input sequence for clues that can help lead to a better 
encoding for this word

”The animal didn't cross the street because it was too tired”

• What does “it” in this sentence refer to? Is it referring to the 
street or to the animal? It’s a simple question to a human, but 
not as simple to an algorithm.

• ”The animal didn't cross the street because it was too wide”

• When the model is processing the word “it”, self-attention 
allows it to associate “it” with “animal”. 30



Illustrating self-attention

• As we are encoding 
the word "it" in 
encoder #5 (the top 
encoder in the stack), 
part of the attention 
mechanism was 
focusing on "The 
Animal", and baked a 
part of its 
representation into 
the encoding of "it".
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Self-attention details 1/4

• create three vectors from each of the encoder’s input vectors 
(in the first layer these are the embedding of each word). 

• Query vector Q, Key vector K, Value vector V are created by 
multiplying the embedding by three matrices that are trained 
during the training process.

• Q, K, and V are smaller than the embedding vector, typically
64, while the embedding and encoder input/output vectors 
have dimensionality of 512. 

• They are smaller to make the computation of multiheaded
attention (mostly) constant.
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Self-attention details 1/4
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Multiplying x1 by the WQ weight matrix produces q1, the "query" vector associated with that 
word. We end up creating a "query", a "key", and a "value" projection of each word in the input 
sentence.



Details 2/4: attention vectors Q, K, V

• The “query” Q, “key” K, and “value” V vectors are abstractions 
that are useful for calculating and thinking about attention. 

• To calculate self-attention for a given word (e.g., “Thinking”), 
we score each word of the input sentence against this word. 
The score determines how much focus to place on other parts 
of the input sentence as we encode a word at a certain 
position.

• The score is calculated by taking the dot product of the query 
vector Q with the key vector K of the respective word. 

• E.g., on computing the self-attention for the word in position 
#1, we would compute dot product of q1 and k1, and q1 and k2.
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Details 2/4: scoring
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Details 3/4: normalize scores

• divide the scores by the square root of the dimension of the 
key vectors used (in example, the vectors are of dimension 64, 
therefore divide by 8)

• This leads to more stable gradients. 

• Then pass the result through a softmax operation. Softmax 
normalizes the scores so they’re all positive and add up to 1.
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Details 3/4: normalization of scores
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Details 4/4: apply attention scores

• The softmax score determines how much each word will be expressed at 
this position. Usually the word at this position will have the highest 
softmax score, but sometimes it’s useful to attend to another word that is 
relevant to the current word.

• Next multiply each value vector by the softmax score (in preparation to 
sum them up). The intuition is to keep intact the values of the word(s) we 
want to focus on, and drown-out irrelevant words (by multiplying them 
with small scores, e.g., 0.001).

• End computation by summing up the weighted value vectors. This 
produces the output of the self-attention layer at this position (for the 
given word – the first one in the example).

• The resulting vector is send to the feed-forward neural network. 

• In the actual implementation, however, the calculation is done in matrix 
form for faster processing. 
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Details 4/4: self-attention output 
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Matrix calculation of self-attention 1/2

42

Every row in the X matrix 
corresponds to a word in the 
input sentence. 
The embedding vector (512) is 
larger then the q/k/v vectors (64)



Matrix calculation of self-attention 2/2
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• final calculation



Computing attention head
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Encoding

45



In summary 1/3
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In summary 2/3
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In summary 3/3
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Multi-headed attention

• Self-attention layer is replicated several times, called “multi-
headed” attention. 

• This expands the model’s ability to focus on different positions. E.g., 
one attention head might be dominated by the the actual word, but 
other heads might reveal other important information

• E.g., in translating a sentence like “The animal didn’t cross the 
street because it was too tired”, we would want to know which 
word “it” refers to.

• Multi-head attention layer can cover multiple “representation 
subspaces”

• I.e., we have multiple sets of Query/Key/Value weight matrices 
(original  Transformer uses 8 attention heads)

• Each attention head is randomly initialized. After training, each set 
is used to project the input embeddings (or vectors from lower 
encoders/decoders) into a different representation subspace.
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Example: two attention heads
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Example: 8 att. heads
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• What to do with 8 Z matrices, the feed-forward layer is expecting a single matrix 
(one  vector for each word). We need to condense all attention heads into one 
matrix.



Condensation of attention heads
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Computing multi-head attention
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Summary of self-attention
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Illustration of self-attention: 1 head

• encoder #5 (the top 
encoder in the stack)

• As we encode the word 
"it", one attention 
head is focusing most 
on "the animal", while 
another is focusing on 
"tired" -- in a sense, 
the model's 
representation of the 
word "it" bakes in 
some of the 
representation of both 
"animal" and "tired". 
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Illustration of self-attention: all heads

• all the 
attention 
heads in one 
picture are  
harder to 
interpret
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Representing the order of the 
sequence using positional encoding

• Order of the sequence is important but it is lost with the 
described transformation, therefore

• The transformer adds a position vector to each input 
embedding. 

• These vectors follow a specific pattern that the model learns, 
which helps it determine the position of each word, or the 
distance between different words in the sequence. 

• Adding these values to the embeddings provides meaningful 
distances between the embedding vectors once they’re 
projected into Q/K/V vectors and during the dot-product 
attention.
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Adding position encoding
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Example: encoding position

• the values of positional encoding vectors 
follow a specific pattern.
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Patterns of possitional encodings

• many different possibilities how to generate a pattern

• next slide contains an example of positional encoding for 20 
words (rows) with an embedding size of 512 (columns). 

• the values of the left half are generated by one function 
(which uses sine), and the right half is generated by another 
function (which uses cosine). They're then concatenated to 
form each of the positional encoding vectors
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Example of positional encoding
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Another positional encoding
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Encoder blocks

• Each block has two “sublayers”

– Multihead attention

– 2-layer feed-forward NNet (with ReLU)

• Each of these two steps also has residual
(short-circuit) connection and LayerNorm

– LayerNorm(x + Sublayer(x))
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The Residual connections

• each sub-layer of transformer (self-attention and feed-
forward NN) in each encoder has a residual connection 
around it, and is followed by a layer-normalization step.

• the same for decoder sub-layers

• enable learning of deeper networks by improving a gradient 
flow

• in transformers they also maintain positional information in 
higher layers
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Architecture with residual connection
– top level view
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Architecture with residual connection
– example
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Example: 2 stacked transformer
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Complete encoder

• each block is repeated several times, 
e.g., 6 times
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Decoder

• Decoders have the same components as encoders

• An encoder start by processing the input sequence. 

• The output of the top encoder is transformed into a set of 
attention vectors K and V. 

• These are used by each decoder in its “encoder-decoder 
attention” layer which helps the decoder to focus on 
appropriate places in the input sequence.

69



Encoder-decoder in action 1/2
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After finishing the encoding phase, we begin the decoding phase. Each step in the 
decoding phase outputs an element from the output sequence (the English 
translation sentence in this case). 



Encoder-decoder in action 2/2
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The steps repeat until a special symbol indicating the end of output. The output of each step 
is fed to the bottom decoder in the next time step. We add positional encoding to decoder 
inputs to indicate the position of each word.



Self-attention and encoder-decoder
attention in the decoder

• In the decoder, the self-attention layer is only allowed to 
attend to itself and earlier positions in the output sequence 
(to maintain the autoregressive property).

• This is done by masking future positions (setting them to -inf) 
before the softmax step in the self-attention calculation.

• The “Encoder-Decoder Attention” layer works just like 
multiheaded self-attention, except it creates its Q (queries) 
matrix from the layer below it, and takes the K (keys) and V 
(values) matrix from the output of the encoder stack.
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Attentions in the decoder

1. Masked decoder self-attention on previously generated
outputs

2. Encoder-Decoder Attention, where queries come from
previous decoder layer and keys and values come from output of 
the encoder
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One encoder-
decoder block
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Final Linear and Softmax Layer
• The decoder stack outputs a vector of floats.

• The final linear layer which is followed by a softmax layer turns
them into words.

• The Linear layer is a simple fully connected neural network that 
projects the vector produced by the stack of decoders, into a much 
larger vector called a logits vector (probability scores for each
word).

• Example: the model knows 10,000 unique English words (“output 
vocabulary”) that it’s learned from its training dataset. Therefore,
the logits vector is 10,000 cells wide – each cell corresponding to 
the score of a unique word. 

• The softmax layer turns those scores into probabilities (all positive, 
between 0 and 1, sum to 1.0). 
The cell with the highest probability is chosen, and the word 
associated with it is produced as the output for this time step. 75



Producing the output words
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Training the transformer

• During training, an untrained model would go through the 
exact same forward pass. But since we are training it on a 
labeled training dataset, we can compare its output with the 
actual correct output.

• For illustration, let’s assume that our output vocabulary only 
contains six words(a, am, i, thanks, student, <eos>)

• The input is typically in the order of 104 (e.g., 30 000)
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The Loss Function
• evaluates the difference between the true output and the 

returned output

• transformer typically uses cross-entropy or Kullback–Leibler
divergence.

• both true and returned output are 1-hot encoded, e.g., 
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Loss evaluation for sequences

• loss function has to be evaluated for the whole sentence, not 
just a single word

• transformers use greedy decoding or beam search
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Animated workings of transformer
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Transformer tricks

• Byte-pair encodings for input tokens

• Checkpoint averaging

• ADAM optimizer with learning rate changes

• Dropout during training at every layer just before adding
residual

• Label smoothing

• Auto-regressive decoding with beam search and length
penalties

• Use of transformers is spreading but they are hard to optimize 
and unlike LSTMs don’t usually just work out of the box and 
they don’t play well yet with other building blocks on tasks.
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BERT
• BERT: Pre-training of Deep Bidirectional Transformers for 

Language Understanding

• State-of-the-art pretained LM based on transformer
architecture (only the encoder part)

• Idea: 

• use large unlabeled corpora and an auxiliary task to pretrain a 
model for general language representation

• fine-tune the model on a (possibly small) dataset for a specific 
downstream task

• presentation based on slides from Jacob Devlin and Jay 
Alammar
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Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2019. BERT: Pre-training of Deep 
Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 
Conference of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies, Volume 1, pp. 4171-4186.

https://www.aclweb.org/anthology/N19-1423.pdf


BERT: motivation 1/3

• Problem: Language models only use the left or right context, 
but language understanding is bidirectional.

• Why are LMs unidirectional?

– Reason 1: Directionality is needed to generate a well-
formed probability distribution.

• We don’t care about this.

– Reason 2: Words can “see themselves” in a bidirectional
encoder.
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BERT: motivation 2/3
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BERT: motivation 3/3

• Solution: Mask out k% of the input words, and then predict the
masked words

• BERT uses k = 15%

store gallon

↑ ↑

the man went to the [MASK] to buy a [MASK] of milk

• Too little masking: Too expensive to train (not enough masks)

• Too much masking: Not enough context
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BERT architecture
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BERT uses several tasks

• besides masked LM, BERT learns relationships between 
sentences

• predict whether Sentence B is actual sentence that proceeds 
Sentence A, or a random sentence

• some follow-up BERT-like models, e.g., RoBERTa, drop this
task and claim better performance on downstream tasks
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Sentence-pair encoding for BERT
• Token embeddings are word pieces (sub-word encoding)

• (Relatively) common words are in the vocabulary: at, fairfax, 1910s

• Other words are built from wordpieces: hypatia = h ##yp ##ati ##a

• Learned segmented embedding represents each sentence

• Positional embedding is the same as for other transformer
architectures
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BERT training

• Transformer encoder

• Self-attention⇒ no locality bias

• Long-distance context has “equal opportunity”

• Single multiplication per layer ⇒ efficiency on GPU/TPU

• Trained on Wikipedia + BookCorpus

• English BERT was trained on 2 model sizes:

– BERT-Base: 12-layer, 768-hidden neurons, 12-head, 110M 
parameters

– BERT-Large: 24-layer, 1024-hidden neurons, 16-head, 
340M parameters

• Trained on 4x4 or 8x8 TPU slice for 4 days
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Use of BERT
• train a classifier built on the top layer for each task that you

fine-tune for, e.g., Q&A, NER, inference

• achieves state-of-the-art results for many tasks

• GLUE and SuperGLUE tasks for NLI

90



Two sentence classification using BERT-
inference
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Sentence classification using BERT –
sentiment, grammatical correctness
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Questions and answers with BERT 
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Sentence tagging with BERT-
NER, POS tagging, SRL 

94



Multilingual BERT

• BERT base architecture was trained on 104 languages with the 
largest Wikipedia (at least 1 million words at the time)

• achieves good results for many tasks

• good cross-lingual transfer
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BERT can produce embeddings

• one can extract fixed size contextual vectors from BERT, 
achieving slightly lower accuracy than using the whole BERT 
as the first stage model
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Layer-wise embeddings
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Which layer of BERT to use as embeddings?
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Examples of GLUE tasks

• GLUE benchmark is dominated by natural language inference tasks, 
but also has sentence similarity and sentiment

MultiNLI
Premise: Hills and mountains are especially sanctified in Jainism.
Hypothesis: Jainism hates nature.
Label: Contradiction

CoLA (Corpus of Linguistic Acceptability)
Sentence: The wagon rumbled down the road. Label: Acceptable
Sentence: The car honked down the road. Label: Unacceptable
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SuperGLUE tasks
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BoolQ - Boolean Questions
CB – Commitment Bank
COPA - Choice of Plausible Alternatives

MultiRC - Multi-Sentence Reading Comprehension
ReCoRD - Reading Comprehension with 
Commonsense Reasoning Dataset
RTE - Recognizing Textual Entailment 
WiC - Word-in-Context
WSC - Winograd Schema Challeng
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GPT family

• GPT: Generative Pre-trained 
Transformers

• use only the decoder part of 
transformer

• pretrained for language 
modeling (predicting the next 
word given the context)

• Shortcoming: unidirectional, 
does not incorporate 
bidirectionality

• “What are those?” he said 
while looking at my crocs.
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Transformer as language model

103
• Can be computed in parallel



Autoregressive generators
• priming the generator with the context

• can be used also in summarization 104



GPT-2 and GPT-3
• few architectural changes, layer norm now applied to input of 

each subblock

• GPT-3 also uses some sparse attention layers

• more data, larger batch sizes (GPT-3 uses batch size of 3.2M)

• the models are scaled:

• see demos at https://transformer.huggingface.co/
105
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In-context learning in GPT-2 and GPT-3

• GPT-2 and GPT-3 ditch the “pre-train and fine-tune” training 
paradigm of GPT;

• GPT-2 explores unsupervised zero-shot learning, whereas in 
GPT-3 the authors expand the idea into in-context learning;

• use text input to condition the model on task description and 
some examples with ground truth.

• Uses zero-shot learning, one-shot learning, few-shot learning 
(as many examples as they can fit into the context, usually 10-
100)

• no gradients updates are performed.
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Attention efficiency

• time and space complexity of self-attention grows 
quadratically with n (size of input)

• not suitable for very long sequences like

– documents

– character-level language models

– images (as sequences of pixels);

– protein sequences.
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Transformers are everywhere

• music: vocabulary consists of MIDI pitches, pauses, velocity

• object detection (attention to objects)
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