University of Ljubljana, Faculty of Computer and Information Science

N-gram language models

thou knowst
“tentimes gyeet Iove)
love doth|ove thou thou hast tye In:;ve

s thou mayst
shatt find beautythy y love theethee thy e,

- thou shalt thou dost thy love ™

__|é ;e;;||| dost thou tﬁeﬁr %"eehc thou wilt =,

\\\\\\\\ wilt thou

o e thou 2 tho
thou shouldst th tlhy worth think thee
self thy doth live beauty stil
thou mlnethou thy O u a r =slove thyloue though

e thy beaUty mlne eye th heart thy face

eye doth thy beautysthy glass why dost doth lie olet love love

thou "“’SE mine eyesmine OWN upon thy thee make
. _nrqﬁ;hfr;rthy sweet thine eyes..

back agaln doth give
thine own sertnou ny dear “" "
« hastthou “geet self ime
ove whom thine eye truth beauty

against time thou gavst

Jl

Pt oo, ek dad wek

mﬁ alarm code soil rout
circle rai hot

shute risk riot

clock visit not

did must

Wk g UP Unas hesrma

wake me up thai m-:uarlnéréL
taxis having
this running

tier morning
loving

Prof Dr Marko Robnik-Sikonja
Natural Language Processing, Edition 2022

Contents

* [anguage models
* n-grams
* Brown clustering for word representation

mostly based on Jurafsky & Martin, 3" edition,
read Chapter3.1-3.4

Probabilistic Language Models

* The goal: assign a probability to a sentence

* Machine Translation:
* P(high winds tonight) > P(large winds tonight)
* Spell Correction

Why? * The office is about fifteen minuets from my house
* P(about fifteen minutes from) > P(about fifteen minuets from)

* Speech Recognition
* P(I saw a van) >> P(eyes awe of an)
* + Summarization, question-answering, etc., etc.!!

Probabilistic Language Modeling

* Goal: compute the probability of a sentence or sequence of
words:

P(W) = P(w,W,,W;,W,,We...W,)
 Related task: probability of an upcoming word:
P(ws|wy,w,,w3,w,)
* A model that computes either of these:
P(W) or P(w,|w,w,..w,) is called a language model.
* A better name would be: the grammar model
* But language model or LM is standard

How to compute P(W)

* How to compute this joint probability:

P(its, water, is, so, transparent, that)

* Intuition: let’s rely on the Chain Rule of Probability

Reminder: The Chain Rule

* Recall the definition of conditional probabilities
p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)

 More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

* The Chain Rule in General
P(X1,X5,X5,...,X,,) = P(X7)P(X, | X{)P(X5]X1,X5)...P(X,, | X1, 0%, 1)

The Chain Rule applied to compute joint
probability of words in sentence

P(W,W,...W,) = H P(w, | w,w,...w._,)

P(“its water is so transparent”) =
P(its) x P(water|its) x P(is|its water)
x P(so|its water is) x P(transparent|its water is so)

How to estimate these probabilities

* Could we just count and divide?

P(the | its water Is so transparent that) =

Count(Its water Is so transparent that the)
Count(its water 1S so transparent that)

* No! Too many possible sentences!
* We'll never see enough data for estimating these

Markov Assumption

*The memory is short

* First order Markov assumption

Andrei Markov

P(the |its water Is so transparent that) » P(the |that)

* The second order Markov assumption
P(the |its water Is so transparent that) » P(the |transparent that)

Using Markov Assumption

P(W,W,..W,) = H PW; | W,y ... W)

*In other words, we approximate each
component in the product

P(W, [W,W,..W, ;) = P(W, | W,_..W, ;)

Simplest case: Unigram model

P(W,W,...W,) = H P(w;)

Some automatically generated sentences from a unigram model
fifth, an, of, futures, the, an, incorporated, a,
a, the, inflation, most, dollars, quarter, 1in, 1s,
mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Bigram model|

Condition on the previous word:

P(Wi ‘W1W2'"Wi—1) ~ P(Wi ‘Wi—l)

texaco, rose, one, 1in, this, issue, 1is, pursuing, growth, in,
a, boiler, house, said, mr., gurria, mexico, 's, motion,
control, proposal, without, permission, from, five, hundred,
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

N-gram models

* We can extend to trigrams, 4-grams, 5-grams

*In general this is an insufficient model of language
* because language has long-distance dependencies:

“The computer(s) which | had just put into the machine room
on the fifth floor is (are) crashing.”

* But we can often get away with N-gram models, at least
in English.

* Why not in Slovene and many other languages?

Estimating bigram probabilities

* The Maximum Likelihood Estimate

count(w._,,w,)

Pw.|w..)=
(l‘ l—l) COunt(Wl._l)

P(w, |w,,) = C(VZW v;z-)

An example

<s>|am Sam </s>
<s>Sam | am </s>

<s> | do not like green eggs and ham </s>

P(Wi |Wi-1) = C(CM(/;;, M)/’)

More examples:
Restaurant sentences

* can you tell me about any good cantonese restaurants close by
* mid priced thai food is what i’'m looking for

* tell me about chez panisse

* can you give me a listing of the kinds of food that are available
*i’'m looking for a good place to eat breakfast

* when is caffe venezia open during the day

Raw bigram counts

e Qut of 9222 sentences

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Raw bigram probabilities

* Normalize by unigrams:

e Result:

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
1 want | to eat chinese | food | lunch | spend

1 0.002 03310 0.0036 | O 0 0 0.00079
want 0.0022 |0 0.66 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | 0 0.0017 | 0.28 0.00083 | 0 0.0025 | 0.087
eat 0 0 0.0027 | O 0.021 0.0027 | 0.056 |0
chinese || 0.0063 | 0 0 0 0 0.52 0.0063 | O
food 0.014 0 0.014 |0 0.00092 | 0.0037 | O 0
lunch || 0.0059 | O 0 0 0 0.0029 | O 0
spend || 0.0036 | O 0.0036 | 0 0 0 0 0

Bigram estimates of sentence probabilities

P(<s> | want english food </s>) =
P(l|<s>)
x P(want]l)
x P(english|want)
x P(food|english)
x P(</s>|food)
= .000031

What kinds of knowledge?

* P(english|want) =.0011
* P(chinese|want) = .0065
* P(to|want) = .66

*P(eat | to) = .28

*P(food | to) =0

* P(want | spend) =0

P (i| <s>)=.25

Practical Issues

*We do everything in log space
* Avoid underflow
*(also adding is faster than multiplying)

log(p,~ p,~ p3~ ps)=logp, +log p, +log p; +log p,

Google Book N-Grams, 2006

That's why we decided to sh:are fhis enormous dataset _with everyone. We prdcess_ed 1.024.908.26?.229@0@5
of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40
times. There are 13,588,391 unique words, after discarding words that appear less than 200 times.

Google N-Gram Release

* serve as the incoming 92

* serve as the incubator 99

* serve as the independent 794

* serve as the index 223

* serve as the indication 72

* serve as the indicator 120

* serve as the indicators 45

* serve as the indispensable 111
* serve as the indispensible 40

* serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Language Modeling Tools

e are ngram language models still useful?
* yes, e.g., in speech processing
* mostly replaced by neural LMs

* many variants of adapted neural LMs exist, e.g., word2vec,
fastText, ELMo, BERT

Evaluation: How good is our model?

* Does our language model prefer good sentences to bad
ones?

* Assign higher probability to “real” or “frequently observed”
sentences
e Than “ungrammatical” or “rarely observed” sentences?

* We train parameters of our model on a training set.

* We test the model’s performance on data we haven’t seen.

* A test set is an unseen dataset that is different from our training set,
totally unused.

* An evaluation metric tells us how well our model does on the test
set.
* Two types of evaluation
* intrinsic (internal)
 extrinsic (external, on a downstream task)

Extrinsic evaluation of N-gram models

* Best evaluation for comparing models A and B
* Put each model in a task
 spelling corrector, speech recognizer, MT system
* Run the task, get an accuracy for A and for B
* How many misspelled words corrected properly
* How many words translated correctly
e Compare accuracy for Aand B

Difficulty of extrinsic (in-vivo) evaluation of
N-gram models

* Extrinsic evaluation
* Time-consuming; can take days or weeks

*So
* Sometimes use intrinsic evaluation: perplexity

* Bad approximation
* unless the test data looks just like the training data

* So generally only useful in pilot experiments
* But is helpful to think about.

Intuition of Perplexity

* The Shannon Game: .
* How well can we predict the next word?

mushrooms 0.1
pepperoni 0.1
| always order pizza with cheeseand < anchovies 0.01

The 33" President of the US was

| saw a fried rice 0.0001

* Unigrams are terrible at this game. (Why?) |_and 1e-100

e A better model of a text

* is one which assigns a higher probability to the word that actually
occurs

Perplexity

The best language model is one that best predicts an unseen test set
e Gives the highest P(sentence)

1

Perplexity is the inverse probability of PP(W) = P(ww,..wy)
the test set, normalized by the number
of words: _ d 1
P(wyw,...wy)
Chain rule: | ol
PP(W) = J }JP m,\m D)
For bigrams: N)
N
PP(I'V) - \ :I-I:IIZP(M;”H:E_I)

Minimizing perplexity is the same as maximizing probability

Perplexity as branching factor

* Let’s suppose a sentence consisting of random digits

* What is the perplexity of this sentence according to a model that
assign P=1/10 to each digit?

1

PP(W) = Plwiwa...wy) ¥

R
— (— |7
(75)
1 -1

~ 10

10

Lower perplexity = better model

* Training 38 million words, test 1.5 million words, WSJ

N-gram Bigram Trigram
Order

Perplexity 962

The Shannon Visualization Method

* Choose a random bigram

(<s>, w) according to its <s>
probability ! WZEE o
W
* Now choose a random bigram to eat
(w, x) according to its probability eat Chinese

Chinese food

' food </s>
* Then string the words togethert ,ant to eat chinese food

* And so on until we choose </s>

Approximating Shakespeare

gram

gram

gram

gram

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
tis done.
—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;
—It cannot be but so.

Shakespeare as corpus

* N=884,647 tokens, |V|=29,066
* Shakespeare produced 300,000 bigram types out of
|V %= 844 million possible bigrams.
* S0 99.96% of the possible bigrams were never seen
(have zero entries in the table)

* Quadrigrams worse: What's coming out looks like
Shakespeare because it is Shakespeare

The Wall Street Journal

gram

gram

gram

Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one
point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions

What is the source of these random 3-gram
sentences?

* They also point to ninety nine point six billion dollars from two
hundred four oh six three percent of the rates of interest stores
as Mexico and gram Brazil on market conditions

* This shall forbid it should be branded, if renown made it empty.

* “You are uniformly charming!” cried he, with a smile of
associating and now and then | bowed and they perceived a
chaise and four to wish for.

The perils of overfitting

* N-grams only work well for word prediction if the
test corpus looks like the training corpus

*|n real life, it often doesn’t
* We need to train robust models that generalize!
* One kind of generalization: Zeros!
* Things that don’t ever occur in the training set
* But occur in the test set

Zeros

* Training set:
... denied t
... denied t
... denied t
... denied t

P(“offer” | denied the) =0

ne allegations
ne reports
ne claims

ne request

e Test set
... denied the offer
... denied the loan

/ero probability bigrams

* Bigrams with zero probability
* mean that we will assign O probability to the test
set!

* And hence we cannot compute perplexity (can’t
divide by 0)!

The intuition of smoothing

* When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total

* Steal probability mass to generalize better

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

7 total

attack

man

outcome

allegations

reports

cIaimsI
requestl

attack

man

outcome

Add-one estimation

* Also called Laplace smoothing
* Pretend we saw each word one more time than we did
e Just add one to all the counts!

_ C(Wi— ’Wi)
* MILE estimate: Pe (Wi | Wi—l) — !

(maximum likelihood) c(Wiy)

C(Wz'—l’ Wi) +1
C(Wi—l) +V

e Add-1 estimate:

P4 (Wi | Wi—l) —

Add-1 estimation is a blunt instrument

e Add-1 isn’t used for N-grams (why?)
* We'll see better methods
e But add-1 is used to smooth other NLP models
* For text classification
* In domains where the number of zeros isn’t so huge.

Backoff and Interpolation

* Sometimes it helps to use less context

* Condition on less context for contexts you haven’t learned
much about

 Backoff:
* use trigram if you have good evidence,
* otherwise bigram, otherwise unigram

* Interpolation:
* mix unigram, bigram, trigram

* Interpolation works better

Linear Interpolation

* Simple interpolation

(Wn‘wn 2Wn— 1) = Alp(wn|wn 2Whn— 1 ZA =1
—|—),2P(wn|wn 1) [
—|—A3P(Wn)

 Lambdas conditional on context:

p(m"n‘”"n—ZH”f;—l) — kl (” ;; é)P(H;J?‘1"1}1'3—211}}?—1)
(;; %)P WH‘WFI—I)
+7¥ (w) %)P(Wn)

How to set the lambdas?

Held-Out Test
Data Data
* Choose As to maximize the probability of held-out data:

* Fix the N-gram probabilities (on the training data)
* Then search for As that give largest probability to held-out set:

* Use a held-out corpus

log P(wy...w, | M (L. 1)) = QI0g P,y 1) (W, | W)

Unknown words:
Open versus closed vocabulary tasks

* If we know all the words in advanced
* Vocabulary V is fixed
* Closed vocabulary task

* Often we don’t know this
e Out Of Vocabulary = OOV words
* Open vocabulary task

* Instead: create an unknown word token <UNK>
* Training of <UNK> probabilities
* Create a fixed lexicon L of size V
At text normalization phase, any training word not in L changed to <UNK>
* Now we train its probabilities like a normal word
* At decoding time
* If text input: Use UNK probabilities for any word not in training

Brown clustering

* An agglomerative clustering algorithm that clusters words based
on which words precede or follow them

* These word clusters can be turned into a kind of vector
* We’ll give a very brief sketch here.

Brown language model

* the class-based language model based on clusters
* each word belongs to a class (cluster) with probability p(w]|c)

* language models is defined based on transitions between
clusters and not words

P(W,g |W,g_'1) — P(Cg |Cg_1)P(Wg ’C;‘)
* probability of corpus is comp}ljted as

pleorpusiC) = | [Pleilei)P(wiler)
i=1

* this LM is not good enough for machine translation or speech
recognition(better exist, including n-gram LM) but suitable for

clustering

Brown clustering algorithm

* Each word is initially assigned to its own cluster.
* We now consider consider merging each pair of clusters.
Highest quality merge is chosen.

* Quality = merges two words that have similar
probabilities of preceding and following words

* More technically:
qguality = smallest decrease in the likelihood of the corpus
according to a class-based language model

* Clustering proceeds until all words are in one big cluster.

Brown clusters as vectors

* By tracing the order in which clusters are merged, the model
builds a binary tree from bottom to top.

* Each word represented by binary string = path from root to
leaf

* Each intermediate node is a cluster
e Chairman is 0010, “months” =01, and verbs =1

11
000 101 walk

CEO 0010 0011 November October run sprint
chairman president

Brown cluster examples

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
June March July April January December October November September August

pressure temperature permeability density porosity stress velocity viscosity gravity tension
anyone someone anybody somebody

had hadn’t hath would’ve could’ve should’ve must’ve might’ve

asking telling wondering instructing informing kidding reminding bothering thanking deposing
mother wife father son husband brother daughter sister boss uncle

great big vast sudden mere sheer gigantic lifelong scant colossal

down backwards ashore sideways southward northward overboard aloft downwards adrift

