
N-gram language models

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja

Natural Language Processing, Edition 2022

Contents

• language models

• n-grams

• Brown clustering for word representation

mostly based on Jurafsky & Martin, 3rd edition,

read Chapter 3.1 – 3.4

2

Probabilistic Language Models

•The goal: assign a probability to a sentence
• Machine Translation:

• P(high winds tonight) > P(large winds tonight)

• Spell Correction
• The office is about fifteen minuets from my house

• P(about fifteen minutes from) > P(about fifteen minuets from)

• Speech Recognition
• P(I saw a van) >> P(eyes awe of an)

• + Summarization, question-answering, etc., etc.!!

Why?

Probabilistic Language Modeling

•Goal: compute the probability of a sentence or sequence of
words:

P(W) = P(w1,w2,w3,w4,w5…wn)

• Related task: probability of an upcoming word:
P(w5|w1,w2,w3,w4)

•A model that computes either of these:
P(W) or P(wn|w1,w2…wn-1) is called a language model.

• A better name would be: the grammar model

• But language model or LM is standard

How to compute P(W)

• How to compute this joint probability:

P(its, water, is, so, transparent, that)

• Intuition: let’s rely on the Chain Rule of Probability

Reminder: The Chain Rule

•Recall the definition of conditional probabilities

p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)

•More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

•The Chain Rule in General

P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)

The Chain Rule applied to compute joint
probability of words in sentence

P(“its water is so transparent”) =

P(its) × P(water|its) × P(is|its water)

× P(so|its water is) × P(transparent|its water is so)

 −=
i

iin wwwwPwwwP)|()...(12121

How to estimate these probabilities

• Could we just count and divide?

• No! Too many possible sentences!

• We’ll never see enough data for estimating these

P(the | its water is so transparent that) =

Count(its water is so transparent that the)

Count(its water is so transparent that)

Markov Assumption

•The memory is short

•First order Markov assumption

•The second order Markov assumption

P(the | its water is so transparent that) » P(the | that)

P(the | its water is so transparent that) » P(the | transparent that)

Andrei Markov

Using Markov Assumption

•In other words, we approximate each
component in the product

 −−
i

ikiin wwwPwwwP)|()...(121

)...|()...|(1121 −−− ikiiii wwwPwwwwP

Simplest case: Unigram model

fifth, an, of, futures, the, an, incorporated, a,

a, the, inflation, most, dollars, quarter, in, is,

mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some automatically generated sentences from a unigram model

i

in wPwwwP)()...(21

Condition on the previous word:

Bigram model

texaco, rose, one, in, this, issue, is, pursuing, growth, in,

a, boiler, house, said, mr., gurria, mexico, 's, motion,

control, proposal, without, permission, from, five, hundred,

fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

)|()...|(1121 −− iiii wwPwwwwP

N-gram models

•We can extend to trigrams, 4-grams, 5-grams
• In general this is an insufficient model of language

• because language has long-distance dependencies:

“The computer(s) which I had just put into the machine room
on the fifth floor is (are) crashing.”

•But we can often get away with N-gram models, at least
in English.
•Why not in Slovene and many other languages?

Estimating bigram probabilities

• The Maximum Likelihood Estimate

P(wi |wi-1) =
count(wi-1,wi)

count(wi-1)

P(wi |wi-1) =
c(wi-1,wi)

c(wi-1)

An example

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

P(wi |wi-1) =
c(wi-1,wi)

c(wi-1)

More examples:
Restaurant sentences

• can you tell me about any good cantonese restaurants close by

• mid priced thai food is what i’m looking for

• tell me about chez panisse

• can you give me a listing of the kinds of food that are available

• i’m looking for a good place to eat breakfast

• when is caffe venezia open during the day

Raw bigram counts

• Out of 9222 sentences

Raw bigram probabilities

• Normalize by unigrams:

• Result:

Bigram estimates of sentence probabilities

P(<s> I want english food </s>) =
P(I|<s>)
× P(want|I)
× P(english|want)
× P(food|english)
× P(</s>|food)

= .000031

What kinds of knowledge?

•P(english|want) = .0011

•P(chinese|want) = .0065

•P(to|want) = .66

•P(eat | to) = .28

•P(food | to) = 0

•P(want | spend) = 0

•P (i | <s>) = .25

Practical Issues

•We do everything in log space
•Avoid underflow
•(also adding is faster than multiplying)

log(p1 ´ p2 ´ p3 ´ p4) = log p1 + log p2 + log p3 + log p4

Google Book N-Grams, 2006

Google N-Gram Release

• serve as the incoming 92

• serve as the incubator 99

• serve as the independent 794

• serve as the index 223

• serve as the indication 72

• serve as the indicator 120

• serve as the indicators 45

• serve as the indispensable 111

• serve as the indispensible 40

• serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Language Modeling Tools

• are ngram language models still useful?

• yes, e.g., in speech processing

• mostly replaced by neural LMs

• many variants of adapted neural LMs exist, e.g., word2vec,
fastText, ELMo, BERT

Evaluation: How good is our model?

• Does our language model prefer good sentences to bad
ones?
• Assign higher probability to “real” or “frequently observed”

sentences
• Than “ungrammatical” or “rarely observed” sentences?

• We train parameters of our model on a training set.

• We test the model’s performance on data we haven’t seen.
• A test set is an unseen dataset that is different from our training set,

totally unused.

• An evaluation metric tells us how well our model does on the test
set.

• Two types of evaluation
• intrinsic (internal)

• extrinsic (external, on a downstream task)

Extrinsic evaluation of N-gram models

•Best evaluation for comparing models A and B
• Put each model in a task

• spelling corrector, speech recognizer, MT system
• Run the task, get an accuracy for A and for B

• How many misspelled words corrected properly
• How many words translated correctly

• Compare accuracy for A and B

Difficulty of extrinsic (in-vivo) evaluation of
N-gram models

•Extrinsic evaluation
• Time-consuming; can take days or weeks

•So
• Sometimes use intrinsic evaluation: perplexity
• Bad approximation

• unless the test data looks just like the training data
• So generally only useful in pilot experiments

• But is helpful to think about.

Intuition of Perplexity

• The Shannon Game:
• How well can we predict the next word?

• Unigrams are terrible at this game. (Why?)

• A better model of a text
• is one which assigns a higher probability to the word that actually

occurs

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100

Perplexity

Perplexity is the inverse probability of
the test set, normalized by the number
of words:

Chain rule:

For bigrams:

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts an unseen test set

• Gives the highest P(sentence)

PP(W) = P(w1w2...wN)
-

1

N

 =
1

P(w1w2...wN)
N

Perplexity as branching factor

• Let’s suppose a sentence consisting of random digits

• What is the perplexity of this sentence according to a model that
assign P=1/10 to each digit?

Lower perplexity = better model

•Training 38 million words, test 1.5 million words, WSJ

N-gram
Order

Unigram Bigram Trigram

Perplexity 962 170 109

The Shannon Visualization Method

• Choose a random bigram

(<s>, w) according to its
probability

• Now choose a random bigram
(w, x) according to its probability

• And so on until we choose </s>

• Then string the words together

<s> I

I want

want to

to eat

eat Chinese

Chinese food

food </s>

I want to eat Chinese food

Approximating Shakespeare

Shakespeare as corpus

•N=884,647 tokens, |V|=29,066

•Shakespeare produced 300,000 bigram types out of
|V|2= 844 million possible bigrams.
•So 99.96% of the possible bigrams were never seen

(have zero entries in the table)

•Quadrigrams worse: What's coming out looks like
Shakespeare because it is Shakespeare

The Wall Street Journal

What is the source of these random 3-gram
sentences?

• They also point to ninety nine point six billion dollars from two
hundred four oh six three percent of the rates of interest stores
as Mexico and gram Brazil on market conditions

• This shall forbid it should be branded, if renown made it empty.

• “You are uniformly charming!” cried he, with a smile of
associating and now and then I bowed and they perceived a
chaise and four to wish for.

36

The perils of overfitting

•N-grams only work well for word prediction if the
test corpus looks like the training corpus
• In real life, it often doesn’t
•We need to train robust models that generalize!
•One kind of generalization: Zeros!
•Things that don’t ever occur in the training set
•But occur in the test set

Zeros

•Training set:
… denied the allegations
… denied the reports
… denied the claims
… denied the request

P(“offer” | denied the) = 0

• Test set
… denied the offer
… denied the loan

Zero probability bigrams

•Bigrams with zero probability
•mean that we will assign 0 probability to the test

set!

•And hence we cannot compute perplexity (can’t
divide by 0)!

The intuition of smoothing

• When we have sparse statistics:

• Steal probability mass to generalize better

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

7 total

al
le

ga
ti

o
n

s

re
p

o
rt

s

cl
ai

m
s

a
tt
a
c
k

re
q

u
es

t

m
a
n

o
u
tc

o
m

e

…

al
le

ga
ti

o
n

s

a
tt
a
c
k

m
a
n

o
u
tc

o
m

e

…al
le

ga
ti

o
n

s

re
p

o
rt

s

cl
ai

m
s

re
q

u
es

t

Add-one estimation

•Also called Laplace smoothing

•Pretend we saw each word one more time than we did

• Just add one to all the counts!

•MLE estimate:
(maximum likelihood)

•Add-1 estimate:

PMLE (wi |wi-1) =
c(wi-1,wi)

c(wi-1)

PAdd-1(wi |wi-1) =
c(wi-1,wi)+1

c(wi-1)+V

Add-1 estimation is a blunt instrument

• Add-1 isn’t used for N-grams (why?)
• We’ll see better methods

• But add-1 is used to smooth other NLP models
• For text classification
• In domains where the number of zeros isn’t so huge.

Backoff and Interpolation

• Sometimes it helps to use less context
• Condition on less context for contexts you haven’t learned

much about

• Backoff:
• use trigram if you have good evidence,
• otherwise bigram, otherwise unigram

• Interpolation:
• mix unigram, bigram, trigram

• Interpolation works better

Linear Interpolation

•Simple interpolation

• Lambdas conditional on context:

How to set the lambdas?

• Use a held-out corpus

• Choose λs to maximize the probability of held-out data:
• Fix the N-gram probabilities (on the training data)
• Then search for λs that give largest probability to held-out set:

Training Data Held-Out
Data

Test
Data

Training Data Held-Out
Data

Test
Data

logP(w1...wn |M(l1...lk)) = logPM (l1...lk)(wi |wi-1)
i

å

Unknown words:
Open versus closed vocabulary tasks

• If we know all the words in advanced

• Vocabulary V is fixed

• Closed vocabulary task

• Often we don’t know this

• Out Of Vocabulary = OOV words

• Open vocabulary task

• Instead: create an unknown word token <UNK>

• Training of <UNK> probabilities

• Create a fixed lexicon L of size V

• At text normalization phase, any training word not in L changed to <UNK>

• Now we train its probabilities like a normal word

• At decoding time

• If text input: Use UNK probabilities for any word not in training

Brown clustering

• An agglomerative clustering algorithm that clusters words based
on which words precede or follow them

• These word clusters can be turned into a kind of vector

• We’ll give a very brief sketch here.

47

Brown language model

• the class-based language model based on clusters

• each word belongs to a class (cluster) with probability p(w|c)

• language models is defined based on transitions between
clusters and not words

• probability of corpus is computed as

𝑝 𝑐𝑜𝑟𝑝𝑢𝑠 𝐶 = ෑ

𝑖=1

𝑛

𝑃 𝑐𝑖 𝑐𝑖−1 𝑃(𝑤𝑖|𝑐𝑖)

• this LM is not good enough for machine translation or speech
recognition(better exist, including n-gram LM) but suitable for
clustering

48

Brown clustering algorithm

• Each word is initially assigned to its own cluster.

• We now consider consider merging each pair of clusters.
Highest quality merge is chosen.
• Quality = merges two words that have similar

probabilities of preceding and following words
• More technically:

quality = smallest decrease in the likelihood of the corpus
according to a class-based language model

• Clustering proceeds until all words are in one big cluster.

49

Brown clusters as vectors

• By tracing the order in which clusters are merged, the model
builds a binary tree from bottom to top.

• Each word represented by binary string = path from root to
leaf

• Each intermediate node is a cluster

• Chairman is 0010, “months” = 01, and verbs = 1

50

Brown Algorithm

• Words merged according to contextual

similarity

• Clusters are equivalent to bit-string prefixes

• Prefix length determines the granularity of

the clustering

011

president

walk

run sprint
chairman

CEO November October

0 1

00 01

00110010

001

10 11

000 100 101010

Brown cluster examples

51

