University of Ljubljana, Faculty of Computer and Information Science

Dense embeddings

man
woman

. T~ ~k
king o ~Q

queen

~—

Male-Female

walked

O swam
walking @

. o

swimming

Verb Tense

Italy
Canada Spain ,,.
) Q@ .} ’
Turk;y .’ .“ Rome
o Ottawa Madrid Germany
y 3
Ank’ara Sussia - o
' Berlin
@ —__-—-——_-_-_'—“—-—)-
Moscow Japan
Vietnam @)
@ R China
R & @
& oo
Tokyo s
Hanoi @
Beijing

Country-Capital

Prof Dr Marko Robnik-Sikonja

Natural language processing, Edition 2022

Contents

* Dense embeddings
* LSA embedding
* (Neural dense embeddings are covered later)

Why dense textual embeddings?

* Best machine learning models for text (SVM, deep neural networks) require
numerical input.

 Simple representations like 1-hot-encoding and bag-of-words do not preserve
semantic similarity.

 We need dense vector represenation for text elements.

banana ooooo.oooooo

mMango 0 0 0 0 0 0 0 0 0 . 0 0

Dense vector embeddings

e advantages compared to sparse embeddings:
* less dimensions, less space
 easier input for ML methods
* potential generalization and noise reduction

* potentially captures synonymy, e.g., road and highway are different
dimensions in BOW

* the most popular approaches
* matrix based transformations to reduce dimensionality (SVD or LSA)

* we will cover the following ones later:
* Brown clustering
* neural embeddings (word2vec, Glove)
e contextual neural embeddings (ELMo, BERT)

Meaning focused on similarity

e Each word = a vector
e Similar words are "nearby in space”

not good
- bad
0 % ‘ dislike -
S) -
that now are incredibly bad
a [you
than yith
very good incredibly good
amazing fantastic
terrific wonderful

nice

good

Dense Word Embeddings

* Word embeddings store semantic and syntactic information

* Word embeddings are currently the standard way to go with natural language

processing
0.
0. e
king ’ y O
/ queen
Male-Female

woman

walked
®©

O swam

walking , @

e

swimming

Verb tense

Spain \
Italy \Madrid

Germany B Rome

Berlin

Turkey \
Ankara

Russia —_—
Moscow

Canada Ottawa

J e S
e Tokyo

Vietnam Hanoi

China Beijing

Country-Capital

|dea of LSA — Latent Semantic Analysis

e decomposition of word-context matrix with SVD
e approximation with the most important dimensions

Word-word matrix (or "term-context matrix")

* Two words are similar in meaning if their context vectors are similar.

sugar, a sliced lemon, a tablespoonful of apricot jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened
well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

aardvark computer data pinch result sugar
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0

result

digital
[1,1]

Information

[6,4]

SVD for matrices

e SVD (singular value decomposition) for arbitrary matrices,
generalizes decomposition of eigenvalues

M =Uxy?

e approximation of N-dimensional space with lower dimensional
space (similarly to PCA)

* in ML used for feature extraction
* a rotation in the direction of the largest variance

Principal components analysis

* principal components analysis, PCA

e we iteratively find the orthogonal axes of the largest
variance

e we use the new dimensions to approximate the
original space

&V}
g [aV]
[.. 5 X
0] * @ Ke) o
= ° e) [° o
& ° £ ® o o o, ®
© .. ° 8 y ° 9 % .'o 4 ..: J
£ o %° © f oo S
g’ .! e o %_’ 6 :o
o e .3) = [a

°8 o @)

L]

Original Dimension 1 Original Dimension 1 PCA dimension 1
(a) (b) (©)

11

Latent semantic analysis

* [atent semantic analysis (LSA), also latent semantic indexing (LSI)

e use SVD on the term-document matrix X of dimension |V| x ¢, where V is a
vocabulary and c the number of documents (contexts)

e X =WZICT, where

* W is a matrix of dimension |V| x m;
rows represent words and columns are dimensions in new latent m-dimensional
space

e X is diagonal matrix of dimension m x m with singular values on diagonal

e CTis a matrix of dimension m x ¢, where columns are documents/context in a new
m dimensional latent space

* we approximate m original dimensions with the most important k
dimensions

* matrix W, of dimension |V| x k represents embedding of words in lower k
- dimensional space

Diagram of LSA

V]xc _|V|><k_

-0'1 0O O

0 (0)p) 0

X W 0 0 o3

0 0 0
mXxXm

V| xc V| xm
(o1 0 0 0
0O oo O 0
X B Wi 0 0 o3 0
0 0 0 ... 0
k Xk

k X c

mXxc

13

(Vg
Q0
=
e
e
D
O
-
)
S
O
(€
A
=
)

LSA parameters

 usually k=300 or k=500
* weighting with local and global weights

* local weight of each word i is log of its frequency in document j:
1+ log f(i, j)

 global weight of each word is a variant of entropy, where ndocs is the
number of documents

logndocs

Dense embeddings

Dense. Dim = 200 (for example

In [67]:

Out[67]:

print(vec['banana'])
plt.plot(vec['banana'])

[-0.065091, ©.037847, -0.040299, -0.022862, 0.046481, 0.204306, 0.132157, 0.000275, -0.069716, 0.014626, 0.038425, ©.053029, -
0.024947, -0.013991, 0.010317, 0.012735, -0.094237, 0.007101, -0.007268, -0.091869, 0.097138, -0.002357, -0.065102, -0.089856,
-0.813727, -0.074923, ©.007938, -0.066188, 0.064525, -8.0436, -0.001177, -0.140017, -0.803096, -0.086315, -0.0763, -0.671214,
-0.051458, 0.123467, 0.031151, 0.068839, -0.039029, 4e-06, -0.127185, -0.049415, -0.007708, 0.035502, 0.009538, -0.075545, 0.0
69583, 0.062794, -8.821556, ©.031155, ©.087352, 0.117663, ©.034883, ©.104613, ©.004534, ©.037999, -0.058016, -0.118679, -0.0353
5, -0.012488, -0.0924, ©.126315, ©.080949, -0.040334, 0.047046, -0.182169, -0.1268, 0.082376, 0.082963, 0.110073, -0.031732, 0.
822219, -0.054332, ©.015394, -0.019853, -0.04169, -8.106969, -0.134253, 0.093094, 0.094716, ©.002643, ©.017417, 6.00309, -0.014
145, 0.078464, ©.041464, 0.026328, ©.12988, -0.02715, ©.027002, -0.014312, -0.017305, -0.066002, ©.002747, 0.033995, 0.053829,
0.040628, 0.127369, 0.648216, 0.845803, -0.003395, -0.024843, 0.052411, -0.039267, ©.043378, 0.110868, 0.067947, -0.056505, O.
019753, -0.094825, 0.094058, ©.057547, ©.045447, -0.016258, -0.102323, ©.080506, -0.219969, -0.053595, -0.069609, -0.120579, -
0.048799, -0.019837, -0.109987, -0.002571, ©.031825, -0.124037, -0.024646, -0.102276, 0.038512, ©.835166, 0.031713, 0.008979,
0.114415, 0.0421, -0.034152, 0.014497, -0.04199, -0.018534, -0.065822, -0.020059, 0.019861, -0.159393, -0.03374, 0.083666, -0.
025234, -0.058921, -0.014924, 6.035292, 0.050979, 0.831609, ©.0322, ©.015638, ©.146793, -0.062475, 0.842192, 6.157684, 0.00237
1, -0.035507, 0.08275, 0.173776, ©.007175, ©.016044, 0.025942, 0.137863, 0.094541, -0.013125, 0.065621, 0.040823, -0.010574, ©.
007796, -0.085031, -0.003617, ©.102267, 0.018647, 0.037613, -0.056187, ©.036693, 0.053867, 0.094616, ©.015941, -6.041536, 0.005
796, -0.03694, -0.063241, -0.067796, -0.026023, ©.069142, -0.008786, ©.042428, -0.017718, 0.03318, -0.052277, ©.114812, 0.08154
2, 0.063282, -0.012149, -0.134274, -0.118431]

[¢<matplotlib.lines.Line2D at @x12a60774e48>]

03

02

01

00

banana

/! mango

v

