
# Sparse word representations

Prof Dr Marko Robnik-Šikonja Natural language processing, Edition 2022



#### Contents

- embeddings
- bag-of-words
- document similarity
- tf-idf weighting
- PPMI weighting
- use in document retrieval
- document retrieval evaluation

#### Distributional semantics



You shall know a word by the company it keeps

Firth, J. R. (1957). A synopsis of linguistic theory 1930–1955. In Studies in Linguistic Analysis, p. 11. Blackwell, Oxford.



"The meaning of a word is its use in the language"
Ludwig Wittgenstein, PI #43

#### Distributional semantics

- a baseline for a distributional word similarity
- first-order co-occurrence of words (syntagmatic association), words that are typically nearby each other: wrote, book, or poem
- second-order co-occurrence (paradigmatic association), words with similar neighbors: wrote, said, or remarked

#### We define a word as a vector

- Called an "embedding" because it's embedded into a space
- The standard way to represent meaning in NLP
- Fine-grained model of meaning for similarity
  - NLP tasks like sentiment analysis
    - With words, requires same word to be in training and test
    - With embeddings: ok if similar words occurred!!!
  - Question answering, conversational agents, etc

# Two kinds of embeddings

- sparse, e.g., tf-idf
  - A common baseline model
  - Sparse vectors
  - Words are represented by a simple function of the counts of nearby words
- dense, e.g., word2vec
  - Dense vectors
  - Representation is created by training a classifier to distinguish nearby and faraway words

# Word embeddings

 embeddings shall transform syntactic and semantic similarity of words into vector space (as distances and directions)

## Sparse vector representation

 An elephant is a mammal. Mammals are animals. Humans are mammals, too. Elephants and humans live in Africa.

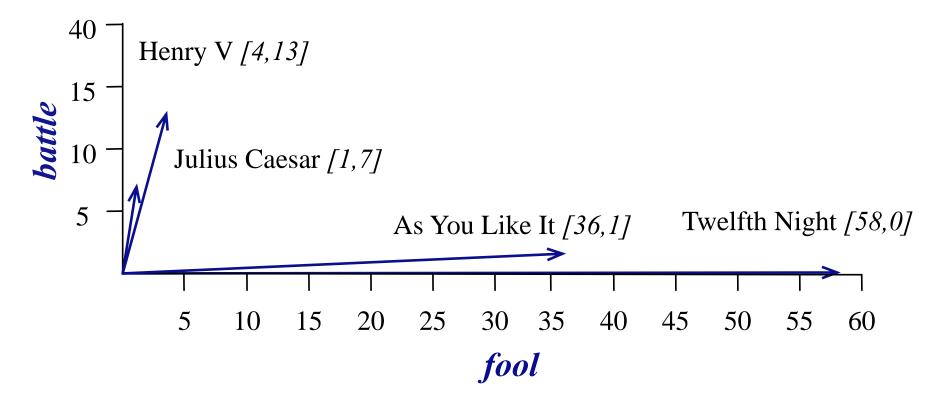
| Africa | animal | be | elephant | human | in | live | mammal | too |
|--------|--------|----|----------|-------|----|------|--------|-----|
| 1      | 1      | 3  | 2        | 2     | 1  | 1    | 3      | 1   |

9 dimensional vector (1,1,3,2,2,1,1,3,1)

In reality this is sparse vector of dimension |V| (vocabulary size in order of 10,000 dimensions)

Similarity between documents and queries in vector space.

#### Vectors and documents


- a word occurs in several documents
- a document contains several words
- both words and documents are vectors
- an example: Shakespeare

|        | As You Like It | Twelfth Night | Julius Caesar | Henry V |
|--------|----------------|---------------|---------------|---------|
| battle |                | 0             | 7             | 13      |
| good   | l 14           | 80            | 62            | 89      |
| fool   | 36             | 58            | 1             | 4       |
| wit    | 20             | 15            | 2             | 3       |

- term-document matrix, dimension |V| x |D|
- a sparse matrix

# Visualizing document vectors

• e.g., in two dimensional space



• the difference between dramas and comedies

#### Vectors are the basis of information retrieval

|        | As You Like It | Twelfth Night | Julius Caesar | Henry V |
|--------|----------------|---------------|---------------|---------|
| battle |                | 0             | 7             | 13      |
| good   | 114            | 80            | 62            | 89      |
| fool   | 36             | 58            | 1             | 4       |
| wit    | 20             | 15            | 2             | 3       |

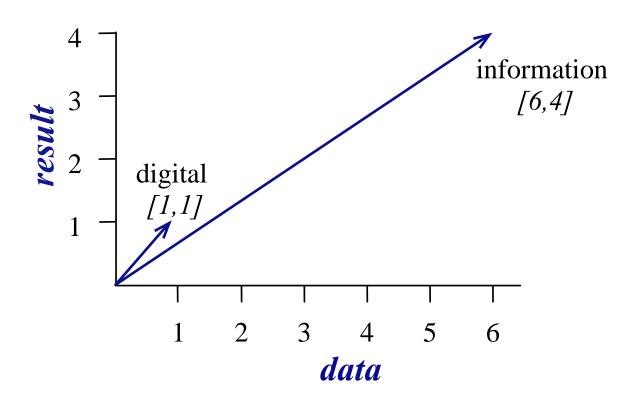
- Vectors are similar for the two comedies
- Different than the history
- Comedies have more fools and wit and fewer battles.

#### Words can be vectors too

|        | As You Like It | Twelfth Night | Julius Caesar | Henry V |
|--------|----------------|---------------|---------------|---------|
| battle | 1              | 0             | 7             | 13      |
| good   | 114            | 80            | 62            | 89      |
| fool   | 36             | 58            | 1             | 4       |
| wit    | 20             | 15            | 2             | 3       |

battle is "the kind of word that occurs in Julius Caesar and Henry V"

fool is "the kind of word that occurs in comedies, especially Twelfth Night"


# More common: word-word matrix (or "term-context matrix")

• Two words are similar in meaning if their context vectors are similar

sugar, a sliced lemon, a tablespoonful of **apricot** their enjoyment. Cautiously she sampled her first **pineapple** well suited to programming on the digital **computer**.

jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from for the purpose of gathering data and **information** necessary for the study authorized in the

|             | aardvark | computer | data | pinch | result | sugar | ••• |
|-------------|----------|----------|------|-------|--------|-------|-----|
| apricot     | 0        | 0        | 0    | 1     | 0      | 1     |     |
| pineapple   | 0        | 0        | 0    | 1     | 0      | 1     |     |
| digital     | 0        | 2        | 1    | 0     | 1      | 0     |     |
| information | 0        | 1        | 6    | 0     | 4      | 0     |     |



# Reminders from linear algebra

dot-product
$$(\vec{v}, \vec{w}) = \vec{v} \cdot \vec{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + \dots + v_N w_N$$

vector length 
$$|\vec{v}| = \sqrt{\sum_{i=1}^{N} v_i^2}$$

# Cosine as a similarity metric

- -1: vectors point in opposite directions
- +1: vectors point in same directions
- 0: vectors are orthogonal



 Frequency is non-negative, so cosine range 0-1

# Document similarity

- Assume orthogonal dimensions
- Cosine similarity
- Dot (scalar) product of vectors

$$\cos(\Theta) = \frac{A \cdot B}{|A||B|}$$

# But raw frequency is a bad representation

- Frequency is clearly useful; if *sugar* appears a lot near *apricot*, that's useful information.
- But overly frequent words like the, it, or they are not very informative about the context
- Need a function that resolves this frequency paradox!

#### tf-idf: combine two factors

• tf: term frequency. frequency count (usually log-transformed):

$$tf_{t,d} = \begin{cases} 1 + \log_{10} count(t,d) & \text{if } count(t,d) > 0 \\ 0 & \text{otherwise} \end{cases}$$

• Idf: inverse document frequency: tf-

$$\mathrm{idf}_i = \log\left(\frac{N}{\mathrm{df}_i}\right)$$

Words like "the" or "good" have very low idf

# of docs that have word i

tf-idf value for word t in document d:

$$w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$$

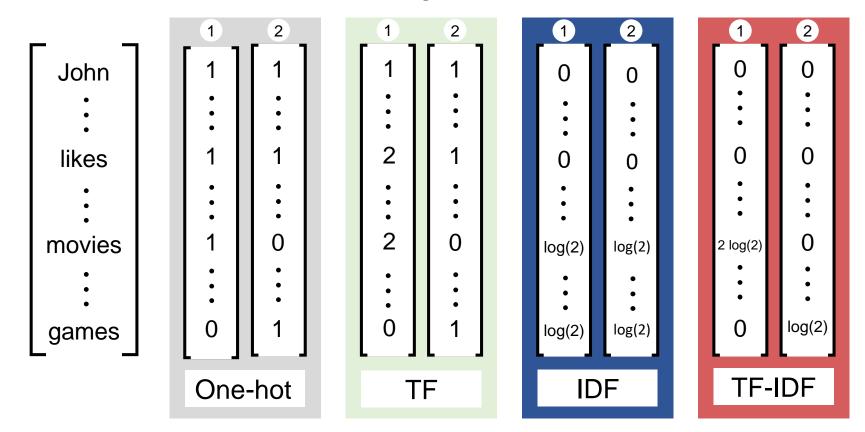
# tf-idf similarity

- Compare two words using tf-idf cosine to see if they are similar
- Compare two documents
  - Take the centroid of vectors of all the words in the document
  - Centroid document vector is:

$$d = \frac{w_1 + w_2 + \dots + w_k}{k}$$

# Weighted similarity

Between query and document


$$sim(q,d) = \frac{\sum_{b} w_{b,d} \cdot w_{b,q}}{\sqrt{\sum_{b} w_{b,d}^{2}} \cdot \sqrt{\sum_{b} w_{b,q}^{2}}}$$

Ranking by the decreasing similarity

# Weights in text representations

#### Sentences

- 1."John likes to watch movies. Mary likes movies too."
- 2."John also likes to watch football games."



#### An alternative to tf-idf

- Ask whether a context word is **particularly informative** about the target word.
- Positive Pointwise Mutual Information (PPMI)

#### Pointwise Mutual Information

#### **Pointwise mutual information:**

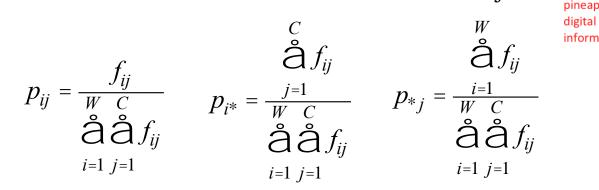
Do events x and y co-occur more than if they were independent?

$$PMI(X, Y) = \log_2 \frac{P(x, y)}{P(x)P(y)}$$

#### PMI between two words: (Church & Hanks 1989)

Do words x and y co-occur more than if they were independent?

$$PMI(word_1, word_2) = \log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}$$


#### Positive Pointwise Mutual Information

- PMI ranges from  $-\infty$  to  $+\infty$
- But the negative values are problematic
  - Things are co-occurring less than we expect by chance
  - Unreliable without enormous corpora
    - Imagine w<sub>1</sub> and w<sub>2</sub> whose probability is each 10<sup>-6</sup>
    - Hard to be sure  $p(w_1, w_2)$  is significantly different than  $10^{-12}$
  - Plus it's not clear people are good at "unrelatedness"
- So we just replace negative PMI values by 0
- Positive PMI (PPMI) between word1 and word2:

$$PPMI(word_1, word_2) = \max \left( \log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}, 0 \right)$$

# Computing PPMI on a term-context matrix

- Matrix F with W rows (words) and C columns (contexts)
- $\boldsymbol{f}_{ij}$  is # of times  $\boldsymbol{w}_i$  occurs in context  $\boldsymbol{c}_j$



|           | aardvark | computer | data | pinch | result | sugar |
|-----------|----------|----------|------|-------|--------|-------|
| pricot    | 0        | 0        | 0    | 1     | 0      | 1     |
| ineapple  | 0        | 0        | 0    | 1     | 0      | 1     |
| igital    | 0        | 2        | 1    | 0     | 1      | 0     |
| formation | 0        | 1        | 6    | 0     | 4      | 0     |

$$pmi_{ij} = \log_2 \frac{p_{ij}}{p_{i*}p_{*j}} \qquad ppmi_{ij} = \begin{cases} pmi_{ij} & \text{if } pmi_{ij} > 0 \\ 0 & \text{otherwise} \end{cases}$$

# Weighting PMI

- PMI is biased toward infrequent events
  - Very rare words have very high PMI values
- Two solutions:
  - Give rare words slightly higher probabilities
  - Use add-one smoothing (which has a similar effect)

# Weighting PMI: Giving rare context words slightly higher probability

• Raise the context probabilities to  $\alpha = 0.75$ :

$$PPMI_{\alpha}(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P_{\alpha}(c)}, 0)$$

$$P_{\alpha}(c) = \frac{count(c)^{\alpha}}{\sum_{c} count(c)^{\alpha}}$$

- This helps because  $P_{\alpha}(c) > P(c)$  for rare c
- Consider two events, P(a) = .99 and P(b)=.01

• 
$$P_{\alpha}(a) = \frac{.99^{.75}}{.99^{.75} + .01^{.75}} = .97 \ P_{\alpha}(b) = \frac{.01^{.75}}{.01^{.75} + .01^{.75}} = .03$$

# Use Laplace (add-1) smoothing

relative frequency based probability

$$P(w_i) = \frac{c_i}{N}$$

• Laplace smoothing (add-1)

$$P_{\text{Laplace}}(w_i) = \frac{c_i + 1}{N + V}$$

Add-k smoothing
 k=0.5, 0.1, 0.05, 0.01 ?

#### Add-2 Smoothed Count(w,context

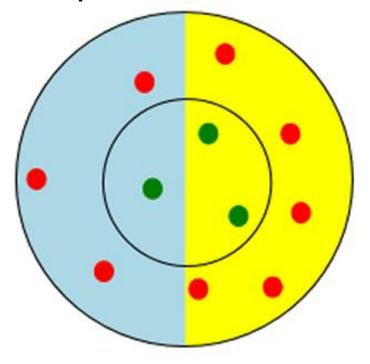
|             | computer | data | pinch | result | sugar |
|-------------|----------|------|-------|--------|-------|
| apricot     | 2        | 2    | 3     | 2      | 3     |
| pineapple   | 2        | 2    | 3     | 2      | 3     |
| digital     | 4        | 3    | 2     | 3      | 2     |
| information | 3        | 8    | 2     | 6      | 2     |

|             | F        | p(w) |       |        |       |      |
|-------------|----------|------|-------|--------|-------|------|
|             | computer | data | pinch | result | sugar |      |
| apricot     | 0.03     | 0.03 | 0.05  | 0.03   | 0.05  | 0.20 |
| pineapple   | 0.03     | 0.03 | 0.05  | 0.03   | 0.05  | 0.20 |
| digital     | 0.07     | 0.05 | 0.03  | 0.05   | 0.03  | 0.24 |
| information | 0.05     | 0.14 | 0.03  | 0.10   | 0.03  | 0.36 |
| p(context)  | 0.19     | 0.25 | 0.17  | 0.22   | 0.17  |      |

#### Evaluation of document retrieval

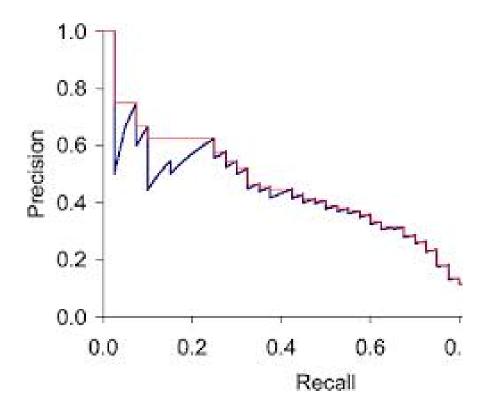
 How to compare different text representations, weighting, algorithms, etc?

#### Performance measures for document retrieval


- Subjective measures
- Statistical measures
- Precision, recall
- A contingency table analysis of precision and recall

|               | Relevant  | Non-relevant  |                   |
|---------------|-----------|---------------|-------------------|
| Retrieved     | а         | Ь             | a + b = m         |
| Not retrieved | С         | d             | c + d = N - m     |
|               | a + c = n | b + d = N - n | a + b + c + d = N |

#### Precision and recall


- N = number of documents in collection
- n = number of important documents for given query q
- *m* = number of retreived documents
- Search returns *m* documents including *a* relevant ones
- Precision P = a/m proportion of relevant document in the obtained ones
- recall R = a/n proportion of obtained relevant documents in all relevant documents

# An example: low precision, low recall



- Returned Results
- Not Returned Results
- Relevant Results
- Irrelevant Results

# Precision-recall graphs



#### F-measure

combine both P and R

$$F_{\beta} = \frac{(1+\beta^2) \cdot P \cdot R}{\beta^2 P + R} \text{ for } \beta > 0$$

$$F_{1} = \frac{2 \cdot P \cdot R}{P + R}$$

- Weighted precision and recall
- $\beta$ =1 weighted harmonic mean
- Also used  $\beta$ =2 or  $\beta$ = 0.5

### Precision@k

- for large number of returned document, the precision may no longer be a relevant measure (why)
- Precision@k is a precision achived for the first k returned documents

# Document retrieval: Improvements to search

- Use dictionary, thesaurus, synonyms (e.g., Wordnet, learn from corpus)
- Query expansion with relevance information
  - User feedback
  - Personalization
  - Trusted document sources
- Semantic search

# Web search problems

- No contents control
- Different quality of documents
- Up-to-date?
- (in)valid links
- Search engine manipulation

# Specific improvements

- Specific types of queries require specific approaches
- Trustful sources -Wikipedia
- Hubs with relevant links (e.g., Yahoo)
- Graph theory and analysis, virtual communities,
- Additional information: titles, meta-information, URL
- Ranking of documents based on links