
Text similarity

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja

Edition 2022

Contents

• string similarity

• word and document similarity

Text similarity

• morphological (respect-respectful, podoba-podobnost)

• spelling (theater-theatre, poskus - poizkus)

• sinonymy (talkative-chatty, zgovoren - gostobeseden)

• homophony (raise-raze-rays, vrat 1. skl in 2. sk vrata)

• semantic (cat-tabby, mačka-siamka)

• sentence (paraphrases)

• document (two news of the same event)

• cross-lingual (Japan-Nipon, or translated document)

3

How similar are two strings?

• Spell correction
• The user typed “graffe”

Which is closest?
• graf
• graft
• grail
• giraffe

• Computational Biology
• Align two sequences of nucleotides

• Resulting alignment:

• Also for Machine Translation, Information Extraction, Speech Recognition

AGGCTATCACCTGACCTCCAGGCCGATGCCC

TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Edit Distance

• The minimum edit distance between two strings is the minimum
number of editing operations

• Insertion

• Deletion

• Substitution

• needed to transform one into the other

• Example: intention and execution

Minimum Edit Distance

• Two strings and their alignment:

Minimum Edit Distance

• If each operation has cost of 1
• Distance between these is 5

• If substitutions cost 2 (Levenhstein)
• Distance between them is 8

Alignment in Computational Biology

• Given a sequence of bases

• An alignment:

• Given two sequences, align each letter to a letter or gap

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

AGGCTATCACCTGACCTCCAGGCCGATGCCC

TAGCTATCACGACCGCGGTCGATTTGCCCGAC

Other uses of Edit Distance in NLP

• Evaluating Machine Translation and speech recognition
R Spokesman confirms senior government adviser was shot

H Spokesman said the senior adviser was shot dead

S I D I

• Named Entity Extraction and Entity Coreference
• IBM Inc. announced today
• IBM profits
• Stanford President John Hennessy announced yesterday
• for Stanford University President John Hennessy

How to find the Min Edit Distance?

• Searching for a path (sequence of edits) from the start string to the
final string:

• Initial state: the word we’re transforming

• Operators: insert, delete, substitute

• Goal state: the word we’re trying to get to

• Path cost: what we want to minimize: the number of edits

10

Minimum Edit as Search

• But the space of all edit sequences is huge!
• We can’t afford to navigate naïvely

• Lots of distinct paths wind up at the same state.
• We don’t have to keep track of all of them

• Just the shortest path to each of those revisited states.

11

Defining Min Edit Distance

• For two strings
• X of length N

• Y of length M

• We define D(i,j)
• the edit distance between X[1..i] and Y[1..j]

• i.e. the first i characters of X and the first j characters of Y

• The edit distance between X and Y is thus D(N, M)

Dynamic Programming for
Minimum Edit Distance

• Dynamic programming: A tabular computation of D(n,m)

• Solving problems by combining solutions to subproblems.

• Bottom-up
• We compute D(i,j) for small i,j

• And compute larger D(i,j) based on previously computed smaller values

• i.e. compute D(i,j) for all i (0 < i < N) and j (0 < j < M)

Defining Min Edit Distance (Levenshtein)

• Initialization

D(i,0) = i

D(0,j) = j

• Recurrence Relation:
For each i = 1…M

For each j = 1…N

D(i-1,j) + 1

D(i,j)= min D(i,j-1) + 1

D(i-1,j-1) + 2; if X(i) ≠ Y(j)

0; if X(i) = Y(j)

• Termination:

D(N,M) is distance

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

15

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

16

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

Edit Distance

17

N 9 8 9 10 11 12 11 10 9 8

O 8 7 8 9 10 11 10 9 8 9

I 7 6 7 8 9 10 9 8 9 10

T 6 5 6 7 8 9 8 9 10 11

N 5 4 5 6 7 8 9 10 11 10

E 4 3 4 5 6 7 8 9 10 9

T 3 4 5 6 7 8 7 8 9 8

N 2 3 4 5 6 7 8 7 8 7

I 1 2 3 4 5 6 7 6 7 8

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

18

Computing alignments

• Edit distance isn’t sufficient
• We often need to align each character of the two strings to each other

• We do this by keeping a “backtrace”

• Every time we enter a cell, remember where we came from

• When we reach the end,
• Trace back the path from the upper right corner to read off the alignment

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

Table for ED

20

MinEdit with Backtrace

Adding Backtrace to Minimum Edit Distance

• Base conditions: Termination:

D(i,0) = i D(0,j) = j D(N,M) is distance

• Recurrence Relation:
For each i = 1…M

For each j = 1…N

D(i-1,j) + 1

D(i,j)= min D(i,j-1) + 1

D(i-1,j-1) + 2; if X(i) ≠ Y(j)

0; if X(i) = Y(j)

LEFT

ptr(i,j)= DOWN

DIAG

insertion

deletion

substitution

insertion

deletion

substitution

The Distance Matrix

Slide adapted from Serafim Batzoglou

y0 ……………………………… yM

x
0

…
…

…
…

…
…

…
…

x

N
Every non-decreasing path

from (0,0) to (M, N)

corresponds to
an alignment
of the two sequences

An optimal alignment is composed

of optimal subalignments

Result of Backtrace

• Two strings and their alignment:

Performance

• Time: O(NM)

• Space: O(NM)

• Backtrace: O(N+M)

Weighted Edit Distance

• Why would we add weights to the computation?
• Spell Correction: some letters are more likely to be mistyped than others

• Biology: certain kinds of deletions or insertions are more likely than others

Confusion matrix for spelling errors

Weighted Min Edit Distance

• Initialization:
D(0,0) = 0

D(i,0) = D(i-1,0) + del[x(i)]; 1 < i ≤ N

D(0,j) = D(0,j-1) + ins[y(j)]; 1 < j ≤ M

• Recurrence Relation:
D(i-1,j) + del[x(i)]

D(i,j)= min D(i,j-1) + ins[y(j)]

D(i-1,j-1) + sub[x(i),y(j)]

• Termination:
D(N,M) is distance

Where did the name, dynamic programming, come from?

…The 1950s were not good years for mathematical research. [the] Secretary of Defense …had a
pathological fear and hatred of the word, research…

I decided therefore to use the word, “programming”.

I wanted to get across the idea that this was dynamic, this was multistage… I thought, let’s … take a word
that has an absolutely precise meaning, namely dynamic… it’s impossible to use the word, dynamic, in a
pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It’s
impossible.

Thus, I thought dynamic programming was a good name. It was something not even a Congressman could
object to.”

Richard Bellman, “Eye of the Hurricane: an autobiography” 1984.

Word and document
similarity

Motivation: document retrieval

• Historical: keywords

• Now: whole text search

• How to: organize a database, index, design search algorithms

• Input: a query (of questionable quality, ambiguity, answer quality)

31

Document indexing

• Collect all words from all documents, use lemmatization

• Full text search index is called inverted file

• For each word keep
• Number of appearing documents

• Overall number of appearances

• For each document
• Number of appearances

• Location

32

33

Construction of inverted file

Query processing: AND

• Consider processing the query:
Brutus AND Caesar

• Locate Brutus in the Dictionary;
• Retrieve its postings.

• Locate Caesar in the Dictionary;
• Retrieve its postings.

• “Merge” the two postings (intersect the document sets):

35

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3

The merge

• Walk through the two postings simultaneously, in time linear in the
total number of postings entries

36

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

If the list lengths are x and y, the merge takes O(x+y)

operations.

Crucial: postings sorted by docID.

Sec. 1.3

Full text search engine

• Most popular: Apache Lucene/Solr

• full-text search, hit highlighting, real-time indexing, dynamic
clustering, database integration, NoSQL features, rich document (e.g.,
Word, PDF) handling.

• distributed search and index replication, scalability and fault
tolerance.

38

Search with logical operators

• AND, OR, NOT

• jaguar AND car
jaguar AND NOT animal

• Some system support neighborhood search (e.g., NEAR) and
stemming (!)
paris! NEAR(3) fr!
president NEAR(10) bush

• libraries, concordancers

39

Logical operator search is limited

• A large number of results

• Large specialized incomprehensible queries

• Problems with synonyms

• Sorting of results?

• No partial matching

• No weighting of query terms

40

Ranking based search

• Web search

• Less frequent terms are more informative

• Sentence input - stop words, lemmatization

• Vector based representation of documents and queries (bag-of-words
or dense embeddings)

41

