Text similarity

Prof Dr Marko Robnik-Šikonja
Edition 2022

Contents

- string similarity
- word and document similarity

Text similarity

- morphological (respect-respectful, podoba-podobnost)
- spelling (theater-theatre, poskus - poizkus)
- sinonymy (talkative-chatty, zgovoren - gostobeseden)
- homophony (raise-raze-rays, vrat 1. skl in 2. sk vrata)
- semantic (cat-tabby, mačka-siamka)
- sentence (paraphrases)
- document (two news of the same event)
- cross-lingual (Japan-Nipon, or translated document)

How similar are two strings?

- Spell correction
- The user typed "graffe" • Align two sequences of nucleotides
- Computational Biology
- graf
- graft
- grail
- giraffe

AgGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

- Resulting alignment:
- AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

- Also for Machine Translation, Information Extraction, Speech Recognition

Edit Distance

- The minimum edit distance between two strings is the minimum number of editing operations
- Insertion
- Deletion
- Substitution
- needed to transform one into the other
- Example: intention and execution

Minimum Edit Distance

- Two strings and their alignment:

I NTE*NTION
 * E X E C U T O N

Minimum Edit Distance

```
INTE * NTION
```



```
* E X E C U T I ON
d s s i s
```

- If each operation has cost of 1
- Distance between these is 5
- If substitutions cost 2 (Levenhstein)
- Distance between them is 8

Alignment in Computational Biology

- Given a sequence of bases

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

- An alignment:
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACC G C--GGTCGATTTGCCCGAC
- Given two sequences, align each letter to a letter or gap

Other uses of Edit Distance in NLP

- Evaluating Machine Translation and speech recognition

R	Spokesman confirms	senior government	adviser was shot	
H Spokesman said	the senior		adviser was shot dead	
	S	I	D	

- Named Entity Extraction and Entity Coreference
- IBM Inc. announced today
- IBM profits
- Stanford President John Hennessy announced yesterday
- for Stanford University President John Hennessy

How to find the Min Edit Distance?

- Searching for a path (sequence of edits) from the start string to the final string:
- Initial state: the word we're transforming
- Operators: insert, delete, substitute
- Goal state: the word we're trying to get to
- Path cost: what we want to minimize: the number of edits

Minimum Edit as Search

- But the space of all edit sequences is huge!
- We can't afford to navigate naïvely
- Lots of distinct paths wind up at the same state.
- We don't have to keep track of all of them
- Just the shortest path to each of those revisited states.

Defining Min Edit Distance

- For two strings
- X of length N
- Y of length M
- We define $D(i, j)$
- the edit distance between $\mathrm{X}[1 . . i]$ and $\mathrm{Y}[1 . . j]$
- i.e. the first i characters of X and the first j characters of Y
- The edit distance between X and Y is thus $D(N, M)$

Dynamic Programming for Minimum Edit Distance

- Dynamic programming: A tabular computation of $D(n, m)$
- Solving problems by combining solutions to subproblems.
- Bottom-up
- We compute $D(i, j)$ for small i, j
- And compute larger $D(i, j)$ based on previously computed smaller values
- i.e. compute $\mathrm{D}(\mathrm{i}, \mathrm{j})$ for all $\mathrm{i}(0<i<N)$ and $j(0<j<M)$

Defining Min Edit Distance (Levenshtein)

- Initialization
$D(i, 0)=i$
$D(0, j)=j$
- Recurrence Relation:

$$
\begin{aligned}
& \text { For each i }=1 \ldots M \\
& \text { For each } j=1 \ldots \text {...N } \\
& \qquad D(i, j)=\min \left\{\begin{array}{l}
D(i-1, j)+1 \\
D(i, j-1)+1 \\
D(i-1, j-1)+\left\{\begin{array}{l}
2 ; \\
0 ; \\
\text { if } X(i) \neq Y(j)
\end{array}\right.
\end{array} \begin{array}{l}
\text { if } X(i)=Y(j)
\end{array}\right.
\end{aligned}
$$

- Termination:

D(N,M) is distance

The Edit Distance Table

N	9									
O	8									
I	7									
T	6									
N	5									
E	4									
T	3									
N	2									
I	1									
$\#$	0	1	2	3	4	5	6	7	8	9
	$\#$	E	X	E	C	U	T	I	O	N

The Edit Distance Table

N	9									
O	8									
I	7									

$$
D(i, j)=\min \left\{\begin{array}{l}
D(i-1, j)+1 \\
D(i, j-1)+1 \\
D(i-1, j-1)+\left\{\begin{array}{l}
2 ; \text { if } S_{1}(i) \neq S_{2}(j) \\
0 ; \text { if } S_{1}(i)=S_{2}(j)
\end{array}\right.
\end{array}\right.
$$

N	9									
O	8									
I	7									
T	6									
N	5									
E	4									
T	3									
N	2									
I	1									
$\#$	0	1	2	3	4	5	6	7	8	9
	$\#$	E	X	E	C	U	T	I	O	N

The Edit Distance Table

N	9	8	9	10	11	12	11	10	9	8
O	8	7	8	9	10	11	10	9	8	9
I	7	6	7	8	9	10	9	8	9	10
T	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
E	4	3	4	5	6	7	8	9	10	9
T	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
I	1	2	3	4	5	6	7	6	7	8
$\#$	0	1	2	3	4	5	6	7	8	9
	$\#$	E	X	E	C	U	T	I	O	N

Computing alignments

- Edit distance isn't sufficient
- We often need to align each character of the two strings to each other
- We do this by keeping a "backtrace"
- Every time we enter a cell, remember where we came from
- When we reach the end,
- Trace back the path from the upper right corner to read off the alignment

$$
D(i, j)=\min \left\{\begin{array}{l}
D(i-1, j)+1 \\
D(i, j-1)+1 \\
D(i-1, j-1)+
\end{array}\right.
$$

Table for ED

N	9									
O	8									
I	7									
T	6									
N	5									
E	4									
T	3									
N	2									
I	1									
$\#$	0	1	2	3	4	5	6	7	8	9
	$\#$	E	X	E	C	U	T	I	O	N

MinEdit with Backtrace

n	9	$\downarrow 8$	$\checkmark \leftarrow \downarrow 9$	$<\leftarrow \downarrow 10$	$<\leftarrow \downarrow 11$	$<\leftarrow \downarrow 12$	$\downarrow 11$	$\downarrow 10$	$\downarrow 9$	\checkmark
O	8	$\downarrow 7$	$\checkmark \leftarrow \downarrow$	$\swarrow \leftarrow \downarrow 9$	$\leftharpoonup \leftarrow \downarrow 10$	$<\leftarrow \downarrow 11$	$\downarrow 10$	$\downarrow 9$	\checkmark	$\leftarrow 9$
i	7	$\downarrow 6$	$\measuredangle \leftarrow 7$	$\swarrow \leftarrow \downarrow$	$\iota \leftarrow 19$	$<\leftarrow 10$	$\downarrow 9$	\checkmark	$\leftarrow 9$	$\leftarrow 10$
t	6	$\downarrow 5$		$\swarrow \leftarrow \downarrow 7$	$\swarrow \leftarrow \downarrow 8$	$\iota \leftarrow \downarrow 9$	\checkmark	$\leftarrow 9$	$\leftarrow 10$	$\leftarrow \downarrow 11$
n	5	$\downarrow 4$	$\wedge \leftarrow \downarrow$	$\downarrow \leftarrow \downarrow$	$\swarrow \leftarrow \downarrow 7$	$\checkmark \leftarrow 1$	< $\leftarrow \downarrow$	$<\leftarrow \downarrow 10$	$\angle \leftarrow \downarrow 11$	$\checkmark \downarrow 10$
e	4	$\checkmark 3$	$\leftarrow 4$	$\checkmark 5$	$\leftarrow 6$	$\leftarrow 7$	$\leftarrow \downarrow 8$	$\llcorner\leftarrow \downarrow 9$	$<\leftarrow \downarrow 10$	$\downarrow 9$
t	3	$\llcorner\vdash \downarrow$		$\swarrow \leftarrow \downarrow 6$	$\llcorner\leftarrow \downarrow 7$	$\llcorner\leftarrow \downarrow$	$\checkmark 7$	$\leftarrow \downarrow 8$	$\checkmark \leftarrow \downarrow 9$	$\downarrow 8$
n	2	$\checkmark \leftarrow 13$	$\wedge \leftarrow \downarrow 4$	$\swarrow \leftarrow \downarrow$	$\downarrow \leftarrow \downarrow 6$	$\swarrow \leftarrow \downarrow 7$	< $\leftarrow 8$	$\downarrow 7$	$\llcorner\leftarrow \downarrow$	$\checkmark 7$
i	1	$\llcorner\leftarrow \downarrow 2$	$\llcorner\leftarrow \downarrow 3$	$\llcorner\leftarrow \downarrow 4$	$\downarrow \leftarrow \downarrow$	$\llcorner\leftarrow \downarrow$	< $\leftarrow 7$	$\checkmark 6$	$\leftarrow 7$	$\leftarrow 8$
\#	0	1	2	3	4	5	6	7	8	9
	\#	e	\mathbf{x}	e	c	u	t	i	o	n

Adding Backtrace to Minimum Edit Distance

- Base conditions:

$$
D(i, 0)=i \quad D(0, j)=j
$$

- Recurrence Relation:

$$
\begin{aligned}
& \text { For each i = 1...M } \\
& \text { For each } j=1 \ldots . . \mathrm{N} \\
& \begin{array}{l}
D(i, j)=\min \begin{cases}D(i-1, j)+1 \\
D(i, j-1)+1 \\
D(i-1, j-1)+ & \text { deletion } \\
2 ; & \text { if } X(i) \neq Y(j) \text { substion } \\
0 ; & \text { if } X(i)=Y(j)\end{cases} \\
\operatorname{ptr}(i, j)= \begin{cases}\text { LEFT } & \text { insertion } \\
\text { DOWN } & \text { deletion } \\
\text { DIAG } & \text { substitution }\end{cases}
\end{array}
\end{aligned}
$$

The Distance Matrix

Every non-decreasing path
from $(0,0)$ to (M, N)
corresponds to
an alignment
of the two sequences

An optimal alignment is composed of optimal subalignments

Result of Backtrace

- Two strings and their alignment:

$$
\begin{aligned}
& \text { INTE*NTION } \\
& \text { | | | | | | | | | | } \\
& \text { * EXECUTION }
\end{aligned}
$$

Performance

- Time: O(NM)
- Space: O(NM)
- Backtrace: O(N+M)

Weighted Edit Distance

- Why would we add weights to the computation?
- Spell Correction: some letters are more likely to be mistyped than others
- Biology: certain kinds of deletions or insertions are more likely than others

пипшшния

Confusion matrix for spelling errors

$\operatorname{sub}[X, Y]=$ Substitution of X (incorrect) for Y (correct)

X																										
	a	b	c	d	e	f	g	h	I	j	k	1	m	n	0	p	q	r	S	t	u	v	w	x	y	Z
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
c	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
c	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
J	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
O	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
p	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
s	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
W	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
X	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
y	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
8	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	

Weighted Min Edit Distance

- Initialization:
$D(0,0)=0$
$D(i, 0)=D(i-1,0)+\operatorname{del}[x(i)] ; \quad 1<i \leq N$
$D(0, j)=D(0, j-1)+i n s[y(j)] ; \quad 1<j \leq M$
- Recurrence Relation:

$$
D(i, j)=\min \begin{cases}D(i-1, j) & +\operatorname{del}[x(i)] \\ D(i, j-1) & +i n s[y(j)] \\ D(i-1, j-1) & +\operatorname{sub}[x(i), y(j)]\end{cases}
$$

- Termination:

D (N,M) is distance

Where did the name, dynamic programming, come from?

...The 1950s were not good years for mathematical research. [the] Secretary of Defense ...had a pathological fear and hatred of the word, research...

I decided therefore to use the word, "programming".

I wanted to get across the idea that this was dynamic, this was multistage... I thought, let's ... take a word that has an absolutely precise meaning, namely dynamic... it's impossible to use the word, dynamic, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible.

Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to."

Richard Bellman, "Eye of the Hurricane: an autobiography" 1984.

Word and document similarity

Motivation: document retrieval

- Historical: keywords
- Now: whole text search
- How to: organize a database, index, design search algorithms
- Input: a query (of questionable quality, ambiguity, answer quality)

Document indexing

- Collect all words from all documents, use lemmatization
- Full text search index is called inverted file
- For each word keep
- Number of appearing documents
- Overall number of appearances
- For each document
- Number of appearances
- Location

Token DocCnt FreqCnt Head

Construction of inverted file

Query processing: AND

- Consider processing the query:

Brutus AND Caesar

- Locate Brutus in the Dictionary;
- Retrieve its postings.
- Locate Caesar in the Dictionary;
- Retrieve its postings.
- "Merge" the two postings (intersect the document sets):

The merge

- Walk through the two postings simultaneously, in time linear in the total number of postings entries

$$
\left\langle\begin{array}{|c|c|c|c||}
\hline 2 \rightarrow 4-16-32 \rightarrow 64-128 & \text { Brutus } \\
\hline 1-2 \rightarrow 3 \rightarrow 5 \rightarrow 8 \rightarrow 13-21-34 & \text { Caesar } \\
\hline
\end{array}\right.
$$

If the list lengths are x and y, the merge takes $O(x+y)$

operations.

Crucial: postings sorted by docID.

Full text search engine

- Most popular: Apache Lucene/Solr
- full-text search, hit highlighting, real-time indexing, dynamic clustering, database integration, NoSQL features, rich document (e.g., Word, PDF) handling.
- distributed search and index replication, scalability and fault tolerance.

Search with logical operators

- AND, OR, NOT
- jaguar AND car jaguar AND NOT animal
- Some system support neighborhood search (e.g., NEAR) and stemming (!) paris! NEAR(3) fr! president NEAR(10) bush
- libraries, concordancers

Logical operator search is limited

- A large number of results
- Large specialized incomprehensible queries
- Problems with synonyms
- Sorting of results?
- No partial matching
- No weighting of query terms

Ranking based search

- Web search
- Less frequent terms are more informative
- Sentence input - stop words, lemmatization
- Vector based representation of documents and queries (bag-of-words or dense embeddings)

