University of Ljubljana, Faculty of Computer and Information Science

Text similarity

Prof Dr Marko Robnik-Šikonja Edition 2022

Contents

- string similarity
- word and document similarity

Text similarity

- morphological (respect-respectful, podoba-podobnost)
- spelling (theater-theatre, poskus poizkus)
- sinonymy (talkative-chatty, zgovoren gostobeseden)
- homophony (raise-raze-rays, vrat 1. skl in 2. sk vrata)
- semantic (cat-tabby, mačka-siamka)
- sentence (paraphrases)
- document (two news of the same event)
- cross-lingual (Japan-Nipon, or translated document)

How similar are two strings?

- - The user typed "graffe" Which is closest?
 - graf
 - graft
 - grail
 - giraffe

- Spell correction
 Computational Biology
 - Align two sequences of nucleotides

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

• Resulting alignment:

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Also for Machine Translation, Information Extraction, Speech Recognition ٠

Edit Distance

- The minimum edit distance between two strings is the minimum number of editing operations
 - Insertion
 - Deletion
 - Substitution
- needed to transform one into the other
- Example: intention and execution

Minimum Edit Distance

• Two strings and their **alignment**:

INTE * NTION | | | | | | | | | | * EXECUTION

Minimum Edit Distance

INTE * NTION | | | | | | | | | | * EXECUTION dss is

- If each operation has cost of 1
 - Distance between these is 5
- If substitutions cost 2 (Levenhstein)
 - Distance between them is 8

Alignment in Computational Biology

• Given a sequence of bases

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

• An alignment:

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

• Given two sequences, align each letter to a letter or gap

Other uses of Edit Distance in NLP

- Evaluating Machine Translation and speech recognition
- R Spokesman confirms senior government adviser was shot
 H Spokesman said the senior adviser was shot dead
 S I
 D
 I
- Named Entity Extraction and Entity Coreference
 - IBM Inc. announced today
 - IBM profits
 - Stanford President John Hennessy announced yesterday
 - for Stanford University President John Hennessy

How to find the Min Edit Distance?

- Searching for a path (sequence of edits) from the start string to the final string:
 - Initial state: the word we're transforming
 - **Operators**: insert, delete, substitute
 - Goal state: the word we're trying to get to
 - Path cost: what we want to minimize: the number of edits

Minimum Edit as Search

- But the space of all edit sequences is huge!
 - We can't afford to navigate naïvely
 - Lots of distinct paths wind up at the same state.
 - We don't have to keep track of all of them
 - Just the shortest path to each of those revisited states.

Defining Min Edit Distance

- For two strings
 - X of length N
 - Y of length M
- We define D(*i*,*j*)
 - the edit distance between X[1..*i*] and Y[1..*j*]
 - i.e. the first *i* characters of X and the first *j* characters of Y
 - The edit distance between X and Y is thus D(N, M)

Dynamic Programming for Minimum Edit Distance

- **Dynamic programming**: A tabular computation of D(*n*,*m*)
- Solving problems by combining solutions to subproblems.
- Bottom-up
 - We compute D(i,j) for small i,j
 - And compute larger D(i,j) based on previously computed smaller values
 - i.e. compute D(i,j) for all i (0 < i < N) and j (0 < j < M)

Defining Min Edit Distance (Levenshtein)

• Initialization

• Recurrence Relation:

For each
$$i = 1...M$$

For each $j = 1...N$
 $D(i,j) = min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 1 \end{cases}$
 $(2; if X(i) \neq Y(j)) \\ 0; if X(i) = Y(j) \end{cases}$

• Termination:

D(N,M) is distance

The Edit Distance Table

Ν	9									
0	8									
Ι	7									
Т	6									
Ν	5									
Е	4									
Т	3									
Ν	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Х	Е	С	U	Т	Ι	0	Ν

The Edit Distance Table

$$\begin{array}{l} D(i,j) = \min \ \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \\ \begin{array}{l} 2; \ \text{if } S_1(i) \neq S_2(j) \\ 0; \ \text{if } S_1(i) = S_2(j) \end{cases} \end{array}$$

Ν	9									
0	8									
Ι	7									
Т	6									
Ν	5									
Е	4									
Т	3									
Ν	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Х	Е	С	U	Т	Ι	0	Ν

The Edit Distance Table

Ν	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
Ι	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
Ν	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
Ν	2	3	4	5	6	7	8	7	8	7
Ι	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	E	Х	E	С	U	Т	Ι	0	Ν

Computing alignments

- Edit distance isn't sufficient
 - We often need to **align** each character of the two strings to each other
- We do this by keeping a "backtrace"
- Every time we enter a cell, remember where we came from
- When we reach the end,
 - Trace back the path from the upper right corner to read off the alignment

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \begin{cases} 2; \text{ if } S_1(i) \neq S_2(j) \\ 0; \text{ if } S_1(i) = S_2(j) \end{cases}$$

Table for ED

Ν	9									
0	8									
Ι	7									
Т	6									
Ν	5									
Е	4									
Т	3									
Ν	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	E	Х	E	С	U	Т	Ι	0	Ν

MinEdit with Backtrace

n	9	↓ 8	$\swarrow \downarrow 9$	∠←↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓ 9	∠ 8	
0	8	↓ 7	∠←↓ 8	∠←↓9	∠←↓ 10	∠←↓ 11	↓ 10	↓ 9	∠ 8	$\leftarrow 9$	
i	7	↓ 6	∠←↓ 7	∠←↓ 8	∠←↓9	∠←↓ 10	↓ 9	∠ 8	← 9	$\leftarrow 10$	
t	6	↓ 5	∠←↓6	∠←↓ 7	∠←↓ 8	∠́⇔↓ 9	∠ 8	← 9	← 10	←↓ 11	
n	5	↓ 4	∠←↓ 5	∠←↓6	∠←↓ 7	∠́←↓ 8	∠←↓ 9	∠←↓ 10	∠←↓ 11	∠↓ 10	
e	4	∠ 3	← 4	∠ ← 5	← 6	← 7	$\leftarrow \downarrow 8$	9 ,,⊸∑	∠←↓ 10	↓ 9	
t	3	∠←↓4	∠←↓ 5	∠←↓6	∠←↓ 7	∠←↓ 8	∠ 7	$\leftarrow \downarrow 8$	9 ,,⊸∑	↓ 8	
n	2	∠←↓ 3	∠←↓4	∠←↓ 5	∠←↓6	∠←↓ 7	∠←↓ 8	↓ 7	∠←↓ 8	∠7	
i	1		∠←↓ 3	∠←↓ 4	∠←↓ 5	∠←↓ 6	∠←↓ 7	∠ 6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

Adding Backtrace to Minimum Edit Distance

- Base conditions:
 - D(i,0) = i D(0,j) = j D(N,M) is distance

Termination:

• Recurrence Relation:

The Distance Matrix

Every non-decreasing path

from (0,0) to (M, N)

corresponds to an alignment of the two sequences

An optimal alignment is composed of optimal subalignments

Result of Backtrace

• Two strings and their **alignment**:

INTE * NTION | | | | | | | | | | * EXECUTION

Performance

- Time: O(NM)
- Space: O(NM)
- Backtrace: O(N+M)

Weighted Edit Distance

- Why would we add weights to the computation?
 - Spell Correction: some letters are more likely to be mistyped than others
 - Biology: certain kinds of deletions or insertions are more likely than others

Confusion matrix for spelling errors

sub[X, Y] = Substitution of X (incorrect) for Y (correct)

X					51	TOF	 , 1	1	540	31111	1110			rrect)				• (1	.011)						
	a	b	с	d	e	f	g	ħ	i	j	k	1	m	n	0	р	q	r	S	t	u	v	w	х	У	z
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	Õ
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
с	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
с	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	-, 4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
р	0	11	1	2	0	6	5	0	2	9	0	2	- 7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
s	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
x	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
У	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

Weighted Min Edit Distance

• Initialization:

• Recurrence Relation:

$$D(i,j) = \min \begin{cases} D(i-1,j) + del[x(i)] \\ D(i,j-1) + ins[y(j)] \\ D(i-1,j-1) + sub[x(i),y(j)] \end{cases}$$

• Termination:

D(N,M) is distance

Where did the name, dynamic programming, come from?

...The 1950s were not good years for mathematical research. [the] Secretary of Defense ...had a pathological fear and hatred of the word, research...

I decided therefore to use the word, "programming".

I wanted to get across the idea that this was dynamic, this was multistage... I thought, let's ... take a word that has an absolutely precise meaning, namely **dynamic**... it's impossible to use the word, **dynamic**, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible.

Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to."

Richard Bellman, "Eye of the Hurricane: an autobiography" 1984.

Word and document similarity

Motivation: document retrieval

- Historical: keywords
- Now: whole text search
- How to: organize a database, index, design search algorithms
- Input: a query (of questionable quality, ambiguity, answer quality)

Document indexing

- Collect all words from all documents, use lemmatization
- Full text search index is called inverted file
- For each word keep
 - Number of appearing documents
 - Overall number of appearances
 - For each document
 - Number of appearances
 - Location

Token	DocCnt	FreqCnt	Head						
ABANDON	28	51							
ABIL	32	37	٩		POSTIN	IG			
ABSENC	135	185			DocNo	Freq	Word Posit	ion	
ABSTRACT	7	10		-	67	2	279 283		-•
					424	1	24		•
					1376	7	137 189 4	81	
									l
				200	6 1	1	70	-•	
				48	19 2	4	26 32		

Construction of inverted file

Query processing: AND

• Consider processing the query:

Brutus AND Caesar

- Locate *Brutus* in the Dictionary;
 - Retrieve its postings.
- Locate *Caesar* in the Dictionary;
 - Retrieve its postings.
- "Merge" the two postings (intersect the document sets):

The merge

• Walk through the two postings simultaneously, in time linear in the total number of postings entries

If the list lengths are x and y, the merge takes O(x+y) operations. Crucial: postings sorted by docID.

Full text search engine

- Most popular: Apache Lucene/Solr
- full-text search, hit highlighting, real-time indexing, dynamic clustering, database integration, NoSQL features, rich document (e.g., Word, PDF) handling.
- distributed search and index replication, scalability and fault tolerance.

Search with logical operators

- AND, OR, NOT
- jaguar AND car jaguar AND NOT animal
- Some system support neighborhood search (e.g., NEAR) and stemming (!) paris! NEAR(3) fr! president NEAR(10) bush
- libraries, concordancers

Logical operator search is limited

- A large number of results
- Large specialized incomprehensible queries
- Problems with synonyms
- Sorting of results?
- No partial matching
- No weighting of query terms

Ranking based search

- Web search
- Less frequent terms are more informative
- Sentence input stop words, lemmatization
- Vector based representation of documents and queries (bag-of-words or dense embeddings)