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Lecture outline

• text preprocessing and normalization

• regular expressions and finite automata

• context dependent grammars

• Chomsky hierarchy

Read Chapter 2 of 
Daniel Jurafsky & James H. Martin. Speech and Language 
Processing, 3rd edition, 2021. 

Some slides from this source
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Basic text preprocessing for the classical NLP 
pipeline

• document → paragraphs → sentences → words

• words and sentences  POS tagging

• sentences  syntactical and grammatical analysis
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Text preprocessing

• text normalization: transformation into a standard (canonic) form or any 
useful form, e.g., from non-standard language to standard

• upper/lower casing

• rediacritisation (for Slovene)

• notation of acronyms

• standard form of dates, time, and numbers

• stress marks, quotation marks, punctuation, 

• non-informative words

• spelling, e.g., US or GB

• emoticons, emoji, hashtags, web links

• editing and presentation markup, e.g., html tags

• spelling correction

• usually start with tokenization
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Token, type, term

• A token is an instance of a sequence of characters in some particular 
document that are grouped together as a useful semantic unit for 
processing. 

• A type is the class of all tokens containing the same character sequence. 

• A term is a (perhaps normalized) type that is included in the system’s 
dictionary. The set of index terms could be entirely distinct from the tokens, 
e.g., term can be semantic identifiers in a taxonomy, but in practice they are 
strongly related to the tokens in the document. However, they are usually 
derived from them by various normalization processes.

• To sleep perchance to dream, 

• 5 tokens, 4 types (2 instances of to)

• if to is omitted from the index (as a stop word), then there will be only 3 
terms: sleep, perchance, and dream



Is this this simple?

## tokenizing a piece of text

doc = "I wrote this sentence"

for i, w in enumerate(doc.split(" ")):

print("Token " + str(i) + ": " + w)

Token 0: I

Token 1: wrote

Token 2: this

Token 3: sentence
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Words, lemmas, word forms, stems

• I do uh main- mainly business data processing
• Fragments, filled pauses

• Seuss’s cat in the hat is different from other cats! 
• Lemma: same stem, part of speech, rough word sense

• cat and cats = same lemma

• Wordform: the full inflected surface form
• cat and cats = different wordforms



Words

• Lexical analysis (tokenizer, word segmented), not just spaces

• 1,999.00€    1.999,00€!  

• Ravne na Koroškem 

• Port-au-prince

• Lebensversicherungsgesellschaft 

• Generalstaatsverordnetenversammlungen

• I’m rock ‘n’ roll    

• Languages without spaces (e.g., Chineese)

• Rules, finite automata, statistical models, dictionaries (of  proper 
names), lexicons, ML models
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How many words?

N = number of tokens

V = vocabulary = set of types, |V| is size of vocabulary

Heaps Law = Herdan's Law:  𝑉 = 𝑘𝑁𝛽 where often .67 < β < .75

i.e., vocabulary size grows with > square root of the number of word tokens

Tokens = N Types = |V|

Switchboard phone conversations 2.4 million 20 thousand

Shakespeare 884,000 31 thousand

COCA 440 million 2 million

Google N-grams 1 trillion 13+ million



Corpora

• Words don't appear out of nowhere. 

• A text is produced by a specific writer(s), at a specific time, in a 
specific variety of a specific language, for a specific function.



Corpora vary along dimension like

• Language: 7097 languages in the world
• Variety, like African American Language varieties.

• AAL Twitter posts might include forms like "iont" (I don't)

• Code switching, e.g., Spanish/English, Hindi/English:
S/E: Por primera vez veo a @username actually being hateful! It was 
beautiful:) 
[For the first time I get to see @username actually being hateful! it was 
beautiful:) ] 
H/E: dost tha or ra- hega ... dont wory ... but dherya rakhe
[“he was and will remain a friend ... don’t worry ... but have faith”] 

• Genre: newswire, fiction, non-fiction, scientific articles, 
Wikipedia

• Author demographics: writer's age, gender, race, 
socioeconomic status, etc. 



Corpus datasheets

• Motivation: Why was the corpus collected, by whom, and who 
funded it? 

• Situation: In what situation was the text written?

• Collection process: If it is a subsample how was it sampled? Was 
there consent? Pre-processing?

• +Annotation process, Language variety, speaker demographics

• See, e.g., corpora on Clarin.si



Text Normalization

•Most NLP task need text normalization: 
1. Segmenting/tokenizing words in running text
2. Normalizing word formats
3. Segmenting sentences in running text



Simple Tokenization in UNIX

• (Inspired by Ken Church’s UNIX for Poets.)

• Given a text file, output the word tokens and their frequencies

• Command tr (translate)

tr -sc ’A-Za-z’ ’\n’ < shakes.txt

| sort 

| uniq –c 

1945 A

72 AARON

19 ABBESS

5 ABBOT

... ...

25 Aaron

6 Abate

1 Abates

5 Abbess

6 Abbey

3 Abbot

....   …

Change all non-alpha to newlines

Sort in alphabetical order

Merge and count each type



Issues in Tokenization

• Can't just blindly remove punctuation:
• m.p.h., Ph.D., AT&T, cap’n. 

• prices ($45.55) and dates (01/02/06); URLs; (http://www.stanford.edu), 
hashtags (#nlproc), email addresses (someone@cs.colorado.edu). 

• Clitics: a part of a word that can't stand on its own
• we're→ we are, French j'ai, l'honneur

• Can "Multiword Expressions (MWE) be words?
• New York, rock ’n’ roll 



Issues in Tokenization

• Finland’s capital → Finland Finlands Finland’s ?

• what’re, I’m, isn’t  → What are, I am, is not

• Hewlett-Packard    → Hewlett Packard ?

• state-of-the-art      → state of the art ?

• Lowercase → lower-case lowercase lower case ?

• San Francisco → one token or two?

• m.p.h., PhD. → ??



Tokenization in NLTK

Bird et al. (2009)



Tokenization: language issues

• French
• L'ensemble→ one token or two?

• L ? L’ ? Le ?

• Want l’ensemble to match with un ensemble

• German noun compounds are not segmented
• Lebensversicherungsgesellschaftsangestellter
• ‘life insurance company employee’
• German information retrieval needs compound 

splitter



Word Tokenization in Chinese

• Also called Word Segmentation

• Chinese words are composed of characters called hanzi

• Each one represents a meaning unit called a morpheme.
• Characters are generally 1 syllable and 1 morpheme.

• Average word is 2.4 characters long.

• But deciding what counts as a word is complex and not agreed upon

• Standard baseline segmentation algorithm: 
• Maximum Matching  (also called Greedy)

• So in Chinese it's common not to do word segmentation at all

• But in Thai and Japanese, it's required

• The standard algorithms are neural sequence models trained by 
supervised machine learning.



How to do word tokenization in Chinese?

•姚明进入总决赛 “Yao Ming reaches the finals”

•3 words?
•姚明 进入 总决赛
•YaoMing reaches  finals 

•5 words?
•姚 明 进入 总 决赛
•Yao    Ming reaches overall    finals 

•7 characters? (don't use words at all):
•姚 明 进 入 总 决 赛
•Yao Ming enter enter overall decision game 



Maximum Matching Word Segmentation 
Algorithm

• Given a wordlist of Chinese, and a string.

1) Start a pointer at the beginning of the string

2) Find the longest word in dictionary that matches the string 
starting at pointer

3) Move the pointer over the word in string

4) Go to 2



Max-match segmentation illustration

• Thecatinthehat

• Thetabledownthere

• Doesn’t generally work in English!

• But works astonishingly well in Chinese
• 莎拉波娃现在居住在美国东南部的佛罗里达。

• 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达

• Modern probabilistic segmentation algorithms even better

the table down there

the cat in the hat

theta bled own there



Tokenization: language issues

• Chinese and Japanese no spaces between words:
• 莎拉波娃现在居住在美国东南部的佛罗里达。

• 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达

• Sharapova now     lives in       US       southeastern     Florida

• Further complicated in Japanese, with multiple alphabets intermingled
• Dates/amounts in multiple formats

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji Romaji

End-user can express query entirely in hiragana!



Subword Encoding tokenization

• Learn tokenization based on statistics

• Relevant for modern neural networks

• Use the data to tell us how to tokenize.

• Subword tokenization (because tokens are often parts of words)

• Can include common morphemes like -est or -er. 
• (A morpheme is the smallest meaning-bearing unit of a language; unlikeliest 

has morphemes un-, likely, and -est.) 

• Essential for morphologically-rich languages such as Slovene



Subword tokenization

•Three common algorithms:
• Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
• unigram language modeling tokenization (Kudo, 

2018)
• WordPiece (Schuster and Nakajima, 2012)

• All have 2 parts:
• A token learner that takes a raw training corpus and 

induces a vocabulary (a set of tokens). 
• A token segmenter that takes a raw test sentence and 

tokenizes it according to that vocabulary



Byte Pair Encoding (BPE)

Let vocabulary be the set of all individual characters 

= {A, B, C, D,…,a, b, c, d….}

• Repeat:
• choose the two symbols that are most frequently adjacent in training corpus 

(say ‘A’, ‘B’), 

• adds a new merged symbol ‘AB’ to the vocabulary

• replace every adjacent ’A’ ’B’ in corpus with ‘AB’. 

• Until k merges have been done.



BPE token learner algorithm



Byte Pair Encoding (BPE)

• Most subword algorithms are run inside white-space separated 
tokens. 

• So first add a special end-of-word symbol '__' before whitespace in 
training corpus

• Next, separate into letters.



BPE token learner

Original (very fascinating🙄) corpus:

low low low low low lowest lowest newer newer newer        newer newer newer wider 
wider wider new new

Add end-of-word tokens and segment:



BPE token learner

Merge e r to er



BPE

Merge er  _ to er_



BPE

Merge n  e  to ne



BPE

The next merges are:



BPE token learner algorithm

• On the test data, run each merge learned from the training data:
• Greedily

• In the order we learned them

• (test frequencies don't play a role)

• So: merge every e r to er, then merge er _ to er_, etc.

• Result: 
• Test set "n e w e r _" would be tokenized as a full word 

• Test set "l o w e r _" would be two tokens: "low er_"



Normalization

• Need to “normalize” terms 
• Information Retrieval: indexed text & query terms must have the same form.

• We want to match U.S.A. and USA

• uhhuh or uh-huh

• Fed or fed

• am, is be, are 

• We implicitly define equivalence classes of terms
• e.g., deleting periods in a term

• Alternative: asymmetric expansion:
• Enter: window Search: window, windows

• Enter: windows Search: Windows, windows, window

• Enter: Windows Search: Windows

• Potentially more powerful, but less efficient



Case folding

• Applications like IR: reduce all letters to lower case
• Since users tend to use lower case
• Possible exception: upper case in mid-sentence?

• e.g., General Motors

• Fed vs. fed

• SAIL vs. sail

• For sentiment analysis, MT, information extraction
• Case is helpful (US versus us is important)



Lemmatization

• Reduce inflections or variant forms to base form

• am, are, is → be

• car, cars, car's, cars'→ car

• the boy's cars are different colors→ the boy car be different color

• Lemmatization: have to find correct dictionary headword form

• Machine translation
• Slovene hočem (‘I want’), hočeš (‘you want’) the same lemma as hoteti ‘want’



Morphology

• Morphemes:
• The small meaningful units that make up words
• Stems: The core meaning-bearing units
• Affixes: Bits and pieces that adhere to stems

• Often with grammatical functions

•Morphological Parsers:
• Parse cats into two morphemes cat and s

• Parse Spanish amaren (‘if in the future they would love’) into morpheme 
amar ‘to love’, and the morphological features 3PL and future subjunctive. 



Lemmatization
• Lemmatization  is the process of grouping together the different inflected forms 

of a word so they can be analyzed as a single item.

• Lemmatization difficulty is language dependent i.e., depends on morphology

• English
• walk, walked, walking, walks,  ne pa walker
• go, goes, going, gone, went

• Slovene
• priti, pridem, prideš, pride, prideva, prideta, pridejo, pridemo, pridete, pridejo, ne pa 

prihod, prihodnost, prihajanje, prišlec
• vlak, vlaka, vlaku, vlakom, vlakov,vlakoma,vlakih,vlaki, vlake
• jaz, mene, meni, mano
• Gori na gori gori!
• Gori, na gori gori!

• Use rules, dictionaries, lexicons, machine learning models

• Ambiguity resolution may be difficult

Meni je vzel z mize (zapestnico).

• Quick solutions and heuristics, in English just remove suffixes:  –ing, -ation, -ed, 
…

• essential approach for morphologically rich languages (Slavic, Arabic, Turkish, 
Spanish, etc)
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Dealing with complex morphology is 
sometimes necessary

• Some languages requires complex morpheme segmentation
• Turkish

• Uygarlastiramadiklarimizdanmissinizcasina

• `(behaving) as if you are among those whom we could not civilize’

• Uygar `civilized’ + las `become’ 
+ tir `cause’ + ama `not able’ 

+ dik `past’ + lar ‘plural’

+ imiz ‘p1pl’ + dan ‘abl’ 

+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’ 



Stemming

• stem: the root or main part of a word, to which inflections or formative 
elements are added

• in English

• simple solution: remove affixes 

•

• Stemmer operates on a single word without knowledge of the context, 
and therefore cannot discriminate between words which have different 
meanings depending on part of speech (meeting: a lemma is to meet or 
a meeting). Speed!

• Potter algorithm
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for example compressed 

and compression are both 

accepted as equivalent to 

compress.

for exampl compress and

compress ar both accept

as equival to compress



Porter’s algorithm

• Commonest algorithm for stemming English
• Results suggest it’s at least as good as other stemming options

• Conventions + 5 phases of reductions
• phases applied sequentially

• each phase consists of a set of commands

• sample convention: Of the rules in a compound command, select the one that 
applies to the longest suffix.

Sec. 2.2.4



Typical rules in Porter algorithm

• sses→ ss

• ies→ i

• ational→ ate

• tional→ tion

• Weight of word sensitive rules

• (m>1) EMENT →
• replacement → replac

• cement → cement

Sec. 2.2.4



Porter’s algorithm
The most common English stemmer

Step 1a
sses → ss caresses → caress

ies  → i ponies   → poni

ss   → ss caress   → caress

s    → ø         cats      → cat

Step 1b
(*v*)ing → ø    walking   → walk

sing      → sing

(*v*)ed  → ø    plastered → plaster

…

Step 2 (for long stems)
ational→ ate relational→ relate

izer→ ize digitizer → digitize

ator→ ate operator  → operate

…

Step 3 (for longer stems)
al    → ø      revival    → reviv

able  → ø      adjustable → adjust

ate   → ø  activate   → activ

…



Errors of Porter algorithm
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Sentences

• sentence delimiters – punctuation marks and capitalization are  
insufficient

• E.g., remains of  1. Timbuktu from 5c BC, were discovered by  
dr.  Barth.

• Regular expressions, rules, manually segmented corpora
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Sentence Segmentation

• !, ? are relatively unambiguous

• Period “.” is quite ambiguous
• Sentence boundary

• Abbreviations like Inc. or Dr.

• Numbers like .02% or 4.3

• Build a binary ML classifier
• Looks at a “.”

• Decides EndOfSentence/NotEndOfSentence

• Classifiers: hand-written rules, regular expressions, or machine-learning



Determining if a word is end-of-sentence: a 
Decision Tree



More sophisticated decision tree features

• Case of word with “.”: Upper, Lower, Cap, Number

• Case of word after “.”: Upper, Lower, Cap, Number

• Numeric features
• Length of word with “.”
• Probability(word with “.” occurs at end-of-s)
• Probability(word after “.” occurs at beginning-of-s)



Implementing Decision Trees

• A decision tree is just an if-then-else statement

• The interesting part is choosing the features

• Setting up the structure is often too hard to do by hand
• Hand-building only possible for very simple features, 

domains
• For numeric features, it’s too hard to pick each 

threshold
• Instead, structure usually learned by machine learning 

from a training corpus



Decision Trees and other classifiers

• We can think of the questions in a decision tree

• As features that could be exploited by any kind of 
classifier

• Logistic regression
• SVM
• Neural Nets
• etc.



Tools

• every NLP library has a tokenizer, sentence delimiter, lemmatizer, 
e.g., NLTK, spacy

• for Slovene 

• https://www.cjvt.si/viri/

• https://github.com/clarinsi

• for nonstandard Slovene (twits, forum messages)
• Nikola Ljubešić, Tomaž Erjavec, Darja Fišer: Orodja za procesiranje 

nestandardne slovenščine. V Fišer, D. (ur). 2018. Viri, orodja in metode za 
analizo spletne slovenščine. Ljubljana: Znanstveni založbi Filozofske 
fakultete Univerze v Ljubljani. 

53

https://www.cjvt.si/viri/
https://github.com/clarinsi


Regular expressions - a quick resume 1/3

• standard notation for characterizing text sequences

• used in all kinds of text processing and information extraction tasks

• many different syntaxes (Perl, grep, sed, awk, Python, etc)

• let‘s use regular expressions (RE) from python

• if A and B are REs then AB is RE

• a,b,…,z, A, B,… Z,0,1,…,9 are REs

• e.g. abeceda is RE

• . matches any character, e.g.:  va.a matches vaba or vaza or vaya

• ^ matches the start of a string; ^.oga matches noga or joga, but not  nadloga 

• $ matches the end of a string

• * matches 0 or more repetitions of the previous RE: ab* matches a, ab, abb, …

• + matches 1 or more repetitions of the previous RE: ab+ matches ab, abb, … 
but not a

54



Regular expressions 2/3

• ? matches 0 or 1 repetitions of the previous RE: ab? matches a or ab

• *, + and ? are greedy: they match the longest possible string, e.g., 
<.*> on the string <a> b <c> matches the whole string

• *?, +?, ?? cause minimal matching of *, +, and ?, e.g.,.: <.*?> on the 
string <a> b <c> will match <a>

• {m} matches m repetitions of a previous RE: b{5} matches only bbbbb

• {m,n} matches from m to n repetitions of a previous RE

• {,n} is the same as {0,n}

• {m,} is the same as {m,∞}

• {m,n}? is a non-greedy variant of  {m,n}

• \ is an escape character, it makes the next character special, e.g.,  
\\ matches \
\* matches *

55



Regular expressions 3/3
• [] represents a set of characters, e.g., [abc] matches a, b, or c;

with [] we can represent a sequence of characters, e.g.,  [a-z] 
matches all lowercase letters from a to z
special characters inside the set are not special, e.g., ?,+,* 

• [^] (^ as the first character) represents a complement of a set, e.g.,  
[^abc] matches all characters except a, b, and c

• | in A|B, where A and B are REs, means that RE matches A or B, 
several REs separated with | is tested from left to right, 
operator | is not greedy

• (…) matches RE in the parenthesis and marks a group, which can 
be used later or retrieved with \group_number

• (?aiLmsux), where after ? there are one or more letters means:
a – only ASCII matches, i – ignore lower/uppercase, L – depend on 
the local settings, m – multi-line, s – the dot matches everything, 
etc. – check the manual

• many other useful details
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Example

• Find me all instances of the word “the” in a text.
the

Misses capitalized examples
[tT]he

Incorrectly returns other or theology
[^a-zA-Z][tT]he[^a-zA-Z]



Errors

• The process we just went through was based on 
fixing two kinds of errors:

1. Matching strings that we should not have matched 
(there, then, other)

False positives (Type I errors)

2. Not matching things that we should have matched 
(The)

False negatives (Type II errors)



Errors cont.

• In NLP we are always dealing with these kinds of 
errors.

• Reducing the error rate for an application often 
involves two antagonistic efforts: 

• Increasing accuracy or precision (minimizing false 
positives)

• Increasing coverage or recall (minimizing false negatives).



Substitutions

• Substitution in Python and UNIX commands:

• s/regexp1/pattern/ 

• e.g.:

• s/colour/color/ 



Simple Application: ELIZA

• Early NLP system that imitated a Rogerian psychotherapist 
(Weizenbaum, 1966). 

• Uses pattern matching to match, e.g.,:
• “I need X” 

and translates them into, e.g.
• “What would it mean to you if you got X? 



Simple Application: ELIZA

Men are all alike.
IN WHAT WAY

They're always bugging us about something or other. 
CAN YOU THINK OF A SPECIFIC EXAMPLE 

Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE 

He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED 



How ELIZA works

• s/.* I’M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE 
\1/ 

• s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE 
\1/

• s/.* all .*/IN WHAT WAY?/ 

• s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE?/ 



Summary

• Regular expressions play a surprisingly large role
• Sophisticated sequences of regular expressions are often 

the first model for any text processing text

• For hard tasks, we use machine learning classifiers
• But regular expressions are still used for pre-processing, 

or as features in the classifiers
• Can be very useful in capturing generalizations
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RE exercises

Write regular expressions for the following languages

• the set of all alphabetic strings;

• the set of all lower case alphabetic strings ending in a b

• the set of all strings with two consecutive repeated words (e.g., 
“Humbert

• Humbert” and “the the” but not “the bug” or “the big bug”);

• the set of all strings from the alphabet a,b such that each a is 
immediately

• preceded by and immediately followed by a b;

• all strings that start at the beginning of the line with an integer and that 
end at the end of the line with a word;

• all strings that have both the word grotto and the word raven in them 
(but not, e.g., words like grottos that merely contain the word grotto);
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Formal Languages and Models

• Language: a (possibly infinite) set of strings made up of symbols 
from a finite alphabet

• Model of a language: can recognize and generate all and only the 
strings from the language

• Serves as a definition of the formal language

• Alphabet Σ is a finite set of symbols, e.g., Σ ={0,1} or Σ={a,b,c,d}.

• String is a sequence of symbols from alphabet

• ε is an empty set

• Σ  ΣΣ is a set of all strings of length 1 or 2

• Σ* is a set of all strings from alphabet 

• imprecise notation, e.g., 0 is a symbol and 0 is a string, depending on the 
context
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Language

• Language is a subset of Σ* for an alphabet Σ.

• Example: language of 0 and 1, where there are no two 
consecutive 1s

• L = {ε, 0, 1, 00, 01, 10, 000, 001, 010, 100, 101, 0000, 0001, 
0010, 0100, 0101, 1000, 1001, 1010, . . . }
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Chomsky Hierarchy

• Regular language
• Model: regular expressions, finite state automata

• Context free language

• Context sensitive language

• Unrestricted language
• Model:  Turning Machine
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Regular Expressions and Languages

• A regular expression pattern can be mapped to a set of strings

• A regular expression pattern defines a language (in the formal sense) 
– the class of this type of languages is called a regular language
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An example of non-regular language

L1 = {0n1n | n ≥ 1}

L1 = {01, 0011, 000111,…}
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An example

L2 = {w | w  {(, )}* with balanced brackets}.

E.g.: (), ()(), (()), (()()),…
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Context Free Grammars (CFG)

• A context-free grammar is a notation for describing languages.

• It is more powerful than finite automata or RE’s, but still cannot 
define all possible languages.

• Useful for nested structures, e.g., parentheses in programming 
languages.

• Basic idea is to use “variables” to stand for sets of strings (i.e., 
languages).

• These variables are defined recursively, in terms of one another.

• Recursive rules (“productions”) involve only concatenation.

• Alternative rules for a variable allow union.



Example: CFG for { 0n1n | n > 1} 

• Productions:
S -> 01

S -> 0S1

• 01 is part of a language

• if w is in the language, so is 0w1
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Syntax

• Syntax = rules describing how words can connect to each other

• that and after year last

• I saw you yesterday

• colorless green ideas sleep furiously

• the kind of implicit knowledge of your native language that you had 
mastered by the time you were 3 or 4 years old without explicit 
instruction

• not necessarily the type of rules you were later taught in school.



Syntax

• Why should you care?
• Grammar checkers

• Question answering 

• Information extraction

• Machine translation
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CFG Formalism

• Terminals = symbols of the alphabet of the language being defined.

• Variables = nonterminals = a finite set of other symbols, each of 
which represents a language.

• Start symbol = the variable whose language is the one being defined.

• A production has the form variable -> string of variables and 
terminals.

• Convention:
• A, B, C,… are variables.

• a, b, c,… are terminals.

• …, X, Y, Z are either terminals or variables.

• …, w, x, y, z are strings of terminals only.

• , , ,… are strings of terminals and/or variables.
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Example: Formal CFG

• Here is a formal CFG for { 0n1n | n > 1}.

• Terminals = {0, 1}.

• Variables = {S}.

• Start symbol = S.

• Productions =
S -> 01

S -> 0S1
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Derivations – Intuition

• We derive strings in the language of a CFG by starting with the start 
symbol, and repeatedly replacing some variable A by the right side of 
one of its productions.

• That is, the “productions for A” are those that have A on the left side of the ->.
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Derivations – Formalism

• We say A =>  if A ->  is a production.

• Example: S -> 01; S -> 0S1.

• S => 0S1 => 00S11 => 000111.
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Iterated Derivation

• =>* means “zero or more derivation steps.”

• Basis:  =>*  for any string .

• Induction: if  =>*  and  => , then  =>* .
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Example: Iterated Derivation

• S -> 01; S -> 0S1.

• S => 0S1 => 00S11 => 000111.

• So S =>* S; S =>* 0S1; S =>* 00S11; S =>* 000111.
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Language of a Grammar

• If G is a CFG, then L(G), the language of G, is {w | S =>* w}.
• Note: w must be a terminal string, S is the start symbol.

• Example: G has productions S -> ε and S -> 0S1.

• L(G) = {0n1n | n > 0}.

• Note: ε is a legitimate right side.
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Context-Free Languages

• A language that is defined by some CFG is called a context-free 
language.

• There are CFL’s that are not regular languages, such as the example 
just given.

• But not all languages are CFL’s.

• Intuitively: CFL’s can count two things, not three.
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Parse Trees

• Parse trees are trees labeled by symbols of a particular CFG.

• Leaves: labeled by a terminal or ε.

• Interior nodes: labeled by a variable.
• Children are labeled by the right side of a production for the parent.

• Root: must be labeled by the start symbol.
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Example: Parse Tree

S -> SS | (S) | ()

S

SS

S )(

( )

( )
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Ambiguous Grammars

• A CFG is ambiguous if there is a string in the language that is the 
yield of two or more parse trees.

• Example: S -> SS | (S) | ()

• Two parse trees for ()()() on next slide.
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Example

S

SS

S S

( )

S

SS

SS

( )( )

( ) ( )

( )
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Ambiguity is a Property of Grammars, not 
Languages

• For the balanced-parentheses language, here is another CFG, which 
is unambiguous.

B -> (RB | ε

R -> ) | (RR

B, the start symbol,
derives balanced strings.

R generates strings that
have one more right bracket
than left.
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Inherent Ambiguity

• It would be nice if for every ambiguous grammar, there were some 
way to “fix” the ambiguity, as we did for the balanced-parentheses 
grammar.

• Unfortunately, certain CFL’s are inherently ambiguous, meaning that 
every grammar for the language is ambiguous.
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Example: Inherent Ambiguity

• The language {0i1j2k | i = j or j = k} is inherently ambiguous.

• Intuitively, at least some of the strings of the form 0n1n2n must be 
generated by two different parse trees, one based on checking the 0’s 
and 1’s, the other based on checking the 1’s and 2’s.
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One Possible Ambiguous Grammar

S -> AB | CD

A -> 0A1 | 01

B -> 2B | 2

C -> 0C | 0

D -> 1D2 | 12

A generates equal 0’s and 1’s

B generates any number of 2’s

C generates any number of 0’s

D generates equal 1’s and 2’s

And there are two derivations of every string with equal numbers of 0’s, 1’s, and 2’s.  E.g.:
S => AB => 01B =>012
S => CD => 0D => 012



Exercises
• Write CFG for a language

• 𝐿 𝐺 = {all words of a form 𝑎𝑛𝑏𝑚𝑐𝑘, where 𝑛 + 𝑚 = 𝑘}

• 𝐿 𝐺 = {all words of a form 𝑎𝑛𝑏𝑚𝑐𝑘, where 𝑛 + 𝑘 = 𝑚}
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Chomsky Normal Form

• A CFG is said to be in Chomsky Normal Form if every production 
is of one of these two forms:

1. A -> BC (right side is two variables).

2. A -> a (right side is a single terminal).

• Theorem: If L is a CFL, then L – {ε} has a CFG in CNF.



Decision properties of CFG

1. w  L
2. L = {}
3. L is infinite
4. L1 = L2

5. L1  L2 = {}
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Algorithm CYK – testing membership

• CYK: Cocke – Younger – Kasami

• CFG={V,T,S,P}

• answers the question x L (or equivalently S * x)

• examples 
• is a given program correct according to the given 

grammar 
• is the given sentence grammatically correct

• requires CFG in Chomsky normal form  

• O(n3), where n = |w|.
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CYK Algorithm

• Let w = a1…an.

• We construct an n-by-n triangular array of sets of variables.

• Xij = {variables A | A =>* ai…aj}.

• Induction on j–i+1.
• The length of the derived string.

• Finally, ask if S is in X1n.
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CYK Algorithm – (2)

• Basis: Xii = {A | A -> ai is a production}.

• Induction: Xij = {A | there is a production A -> BC and an integer k, 
with i < k < j, such that B is in Xik and C is in Xk+1,j.



CYK example

• S → A B
A → BC | a
B → CC | b
C → a

• ? S → aaab 
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a a a b

1 A,C A,C A,C B

2 B B S

3 S,A /

4 S



CYK exercises

• S → P N | other
P → I E
I → if
E → expression
N → T S
T → then

• is the sentence correct
S → if expression then if expression then other
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• S → A C | B D | A E
C → B B
D → A A
E → B A | A B
A → a | A E | E A | B D
B → b | B E | E B | A C 

• ? S → baabba



Earley parser

• Jay Earley, 1968

• read symbol by symbol and tries all possible allowed production

• the parser stores a list of partially completed grammar rules for each position

• as words are taken in from the left-most position, the parser first determines 
what new grammar rules could start with a word of that type, and those rules are 
put into the list. 

• the parser determines if a partially-completed rule that is already in the list needs 
a word of that type in that position to complete itself further. 

• If so, the rule is taken out and replaced with the more complete version of itself. 

• When a word fully completes a rule, it is taken out, replaced with the non-
terminal corresponding to that rule, and the rule completion process is repeated, 
using the non-terminal to complete rules instead of the word. 

• When complete, any sentence non-terminals that encompass the entire string 
are treated as valid parses for the sentence.
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Earley parser - complexity

• O(n3) where n is the length of the parsed string, 

• O(n2) for unambiguous grammars

• O(n) for almost all LR(k) grammars. 

• performs particularly well when the rules are written left-recursively.
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Practical use of grammars

• gnu program bison and yacc

• based on CFG generates a recognizer code in C, C++, or java
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Chomsky hierarchy
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Order 3

• Order 3 grammars are regular languages

• Grammars of the form 

S → aA
S →a
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Order 2

• CFGs

• Form  A→

• is a string of terminals and nonterminals

• programming languages
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Order 1

• Context dependent grammars CDG

• Form  A→

• A is a variable, , , and  are strings of terminals 
and nonterminals

• and  can be empty,  has to be non-empty

• natural languages
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Order 0

• Unbounded (Turing) grammars and Turing languages, i.e., languages 
recognizable by Turing machines

• Form →

• There are languages unrecognizable with Turing machines –
diagonal proof
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