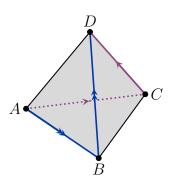
$\begin{array}{c} {\rm Computational \ topology} \\ {\rm Lab \ work, \ 8^{th} \ week} \end{array}$

1. The simplicial complexes X and Y are given as lists of simplices:

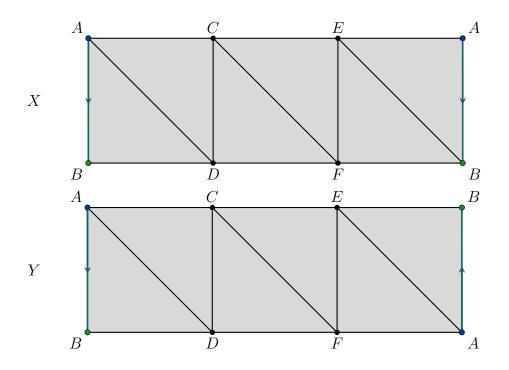
$$X = \{A, B, C, AB, AC, BC\},\$$

$$Y = \{A, B, C, D, AB, AD, BC, CD\}$$

- (a) Construct the cones CX and CY by listing all the simplices.
- (b) Find the sequences of collapses that simplify CX and CY as much as possible.
- (c) Is CX a collapsible complex for all X?
- 2. Let $X = \Delta^3$ be the standard 3-simplex (tetrahedron) with vertices A, B, C and D. We obtain Y by identifying the edges AB and BD and the edges AC and CD (preserving the ordering of vertices). Show that Y collapses onto a Klein bottle.



3. Given the following triangulations of the cylinder X and the Moebius band Y, find a sequence of elementary collapses that simplifies them as much as possible, then compute the homology groups $H_*(X)$ and $H_*(Y)$.



- 4. For the simplicial complex X in the figure below
 - (a) write down the chain groups \mathcal{C}_n ,
 - (b) determine the boundary homomorphisms $\partial_n \colon \mathfrak{C}_n \to \mathfrak{C}_{n-1}$,
 - (c) find the cycles $Z_n = \ker \partial_n$,
 - (d) find the boundaries $B_n = \mathrm{im}\partial_n$,
 - (e) determine the simplicial homology groups with \mathbb{Z} coefficients, $H_n(X;\mathbb{Z})$,
 - (f) determine the simplicial homology groups with \mathbb{Z}_2 coefficients, $H_n(X; \mathbb{Z}_2)$,
 - (g) determine the Betti numbers of X and
 - (h) compute the Euler characteristic of X.

