
Platform-Based Development: 
Background Processing

BS UNI studies, Spring 2019/2020

Dr Veljko Pejović
Veljko.Pejovic@fri.uni-lj.si



Broadcast

• Messages sent from other components of your 
app, other apps or from the Android system

• Messages are wrapped in Intents

• Send broadcasts
– System sends certain broadcasts when an event 

happens, e.g. ACTION_BOOT_COMPLETED
– Send custom broadcasts via sendBroadcast()

Intent intent = new Intent();
intent.setAction(ACTION);
intent.putExtra(STOP_SERVICE_BROADCAST_KEY, RQS_STOP_SERVICE);
sendBroadcast(intent);



Broadcast

• Broadcasts are captured in an app/component 
if a BroadcastReceiver is dynamically registered 
in the code:
– Create a BroadcastReceiver and impl. onReceive()

– Register for receiving certain kinds of Intents

public class NotifyServiceReceiver extends BroadcastReceiver{

@Override
public void onReceive(Context arg0, Intent arg1) {

…
}

}

IntentFilter intentFilter = new IntentFilter();
intentFilter.addAction(ACTION);
registerReceiver(notifyServiceReceiver, intentFilter);



Broadcast

• Broadcasts are captured in an app if a 
BroadcastReceiver is statically registered in 
AndroidManifest.XML and onReceive() is 
implemented in the code:

<receiver android:name=".MyBroadcastReceiver” android:exported="true">
<intent-filter>

<action android:name="android.intent.action.BOOT_COMPLETED"/>
<action android:name="android.intent.action.INPUT_METHOD_CHANGED”/>

</intent-filter>
</receiver>

public class MyBroadcastReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {

…. 

Not available for all 
system bcasts



IntentService

• A Service that
– Runs on a separate thread
– Queues up requests and processes them one by one

• Suitable for long running one-off tasks when we 
don’t want to affect the UI responsiveness

• IntentService survives Activity lifecycle changes
• Called using explicit Intent
• Starts on demand, stops when it runs out of 

work 



IntentService

• Define in AndroidManifest.XML

• Extend the class in your Java code

<service
android:name=".FetchAddressIntentService"
android:exported="false"/>

public class FetchAddressIntentService extends 
IntentService {



Invoking IntentService

• Create an explicit Intent for your IntentService
• Use startService() to start the IntentService
• Add additional data if needed with the extra field 



Handling Results – from 
IntentService to Activity (1)

• BroadcastReceiver in your Activity
– Subclass BroadcastReceiver, implement onReceive
– Register the receiver for a particular action 

for times when you would like to handle IntentService
results (usually when your Activity is in the 
foreground)

• Broadcast from your IntentService
– sendBroadcast() from your IS using the same Intent 

action as the above



Handling Results – from 
IntentService to Activity (2)

• ResultReceiver in your Activity
– Subclass ResultReceiver, implement onReceiveResult

– Pass ResultReceiver through Intent when starting IS

class AddressResultReceiver extends ResultReceiver {
public AddressResultReceiver(Handler handler) {

super(handler);
}

@Override
protected void onReceiveResult(int resultCode, 

Bundle resultData) {…}

Intent intent = new Intent(this, FetchAddressIntentService.class);
intent.putExtra(Constants.RECEIVER, mResultReceiver);
intent.putExtra(Constants.LOCATION_DATA_EXTRA, mLastLocation);
startService(intent);



Handling Results – from 
IntentService to Activity (2)

• Set ResultReceiver result
– IntentService sends results to ResultReceiver in a 

Bundle with send() method

• Example 
– Display location address

http://developer.android.com/training/location/display-address.html

Bundle bundle = new Bundle();
bundle.putString(Constants.RESULT_DATA_KEY, message);
mReceiver.send(resultCode, bundle);



IntentService Example

Based on:
https://www.vogella.com/tutorials/AndroidServices/article.html



AsyncTask

• For short, more interactive tasks
• Runs on a separate worker thread, but keeps a 

link with the main UI thread via:
– onPreExecute
– onProgressUpdate
– onPostExecute

• Define what we want to do in the background in:
– doInBackground

• Start with YourTask().execute()

AsyncTask <?, ?, ?> 
“?” param types for input, 

progress, output



AsyncTask Example

Just before the 
task starts

This is done in the 
background, and the status 

is communicated via 
publishProgress() 

https://github.com/googlesamples/android-play-location/tree/master/ActivityRecognition

private class PostTask extends AsyncTask<String, Integer, String> {
@Override
protected void onPreExecute() {

super.onPreExecute();
ProgressBar bar=(ProgressBar)findViewById(R.id.progressBar);
bar.setVisibility(View.VISIBLE);
bar.setProgress(0);

}

@Override
protected String doInBackground(String... params) {

String url=params[0];
for (int i = 0; i <= 10; i += 1) {

try {
Thread.sleep(1000);

} catch (InterruptedException e) {
e.printStackTrace();

}
publishProgress(i);

}
return "All Done!";

}



AsyncTask Example

Connects with 
the UI thread

Immediately after
the task is 
finished

@Override
protected void onProgressUpdate(Integer... values) {

super.onProgressUpdate(values);
ProgressBar bar=(ProgressBar)findViewById(R.id.progressBar);
bar.setVisibility(View.VISIBLE);
bar.setProgress(values[0]);

}

@Override
protected void onPostExecute(String result) {

super.onPostExecute(result);
ProgressBar bar=(ProgressBar)findViewById(R.id.progressBar);
bar.setVisibility(View.GONE);
TextView text = (TextView) findViewById(R.id.status);
text.setText(R.string.after);

}



AsyncTask Example



Periodic/Occasional Task 
Scheduling

• Numerous situations in which we require 
occasional processing:
– Tracking physical activity throughout

a day – e.g. Google Fit
• Sampling sensors periodically

– Synchronizing data with the server
• Send data periodically, when there is 

WiFi connectivity

– Reminding a user when in 
a particular location
• Geofenced reminder 



Periodic/Occasional Task 
Scheduling

• Limited battery capacity is the main issue in 
mobile computing 

• Long and frequent background processing is the 
main reason for inefficient energy use:
– Users are often unaware of background processes 

and their intentions, cannot easily shut them down
– Processes consume computational and memory 

resources 
– Processes prevent a device from going to 

a low-power mode



Periodic/Occasional Task 
Scheduling

• Android’s general direction is towards limited 
and controlled background processing 

• In the old days (API<19): 
– schedule a periodic job to be executed every 15 mins

• Today:
– schedule a job and Android will aggregate jobs of all 

apps, schedule them for a particular time slot (that 
you have no control off), if the app is used only rarely 
it might have to wait for 24 hours, and forget about 
getting location updates more than a few times per 
hour (if in background), getting notified when there is 
connectivity, etc.



Tools for Periodic/Occasional 
Task Scheduling

• Wake lock 
• Foreground Service
• AlarmManager
• WorkManager (JobScheduler++)
• DownloadManager
• SyncAdapter



Wake Lock

• App prevents the phone from going
to a low-power sleep mode

• Needs a special permission

• Acquire a wake lock

• Release:

<uses-permission android:name="android.permission.WAKE_LOCK" />

PowerManager powerManager = (PowerManager)
getSystemService(POWER_SERVICE);

WakeLock wakeLock = powerManager
.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,

"MyApp::MyWakelockTag");
wakeLock.acquire();

wakelock.release() This does not prevent the screen 
from going dark! 

(use FLAG_KEEP_SCREEN_ON)



AlarmManager

• Running periodic operations at specified times 
or with a specified time interval 

• Use when you need your tasks done at (almost) 
exact times between them

• Do not use for:
– Periodic backups to the server
– Checking for new notifications/

messages from the server 

Use SyncAdapter

Use Firebase 
messaging if 

possible



AlarmManager

• Alarm types (exactness):
– Inexact – Android will decide how to group alarms 

coming from multiple apps in order to optimize 
energy use 

– Exact – Your alarm will be executed at the prescribed 
time, unless the device is “sleeping”

– Exact while idle - Your alarm will be executed at the 
prescribed time (+/- 9 minutes), even if the device is 
“sleeping”

• Alarm types (clock):
– RTC – real time clock
– ELAPSED_REALTIME – time since booted 



AlarmManager

• Using AlarmManager
– Create a BroadcastReceiver that manages the task 

you wish to perform when the alarm is ready
– Set alarm

• Define the type (exact/inexact, one off/repeating, 
RTC/ELAPSED)

• Define the starting time
• Define the repeating interval (optionally) 
• Supply Intent that starts the above BroadcastReceiver

– Alarms can be cancelled 



AlarmManager

• Restoring alarms when the device is rebooted
– Acquire the necessary permission

– Create a receiver 

– Register in the manifest

public class SampleBootReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {

if (intent.getAction()
.equals("android.intent.action.BOOT_COMPLETED")) {
// Set the alarm here.

}

<uses-permission 
android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>

<receiver android:name=".SampleBootReceiver”>
<intent-filter>

<action android:name="android.intent.action.BOOT_COMPLETED"></action>
</intent-filter>

</receiver>



AlarmManager Example



Doze Mode

• If a device is not charging nor actively used, it 
enters Doze Mode 



Doze Mode

• The system sleeps most of the time
• Periodic maintenance periods when it wakes up 

and performs tasks from the backlog
• During the sleep time:
– Wake locks ignored
– Network access suspended
– AlarmManager deferred 

to later times 
– No WiFi scanning
– Jobs not scheduled (see WorkManager)
– Sync adapters don’t run 

unless 
setAndAllowWhileIdle() or 

setExactAndAllowWhileIdle()



Doze Mode

• To program with Doze Mode in mind, use 
– Firebase cloud messaging (FCM) for communication 

apps – a single connection is established 
• High priority messages can wake the device up

– Use WorkManager for scheduling jobs
– Request to be exempt from Doze

• Can acquire partial wake lock 
• Requires a special permission

• To test your apps in Doze Mode:
– Force a device/emulator to idle mode

adb shell dumpsys deviceidle force-idle

REQUEST_IGNORE_BATTERY_OPTIMIZATIONS

Use for very 
specific apps 

only!



WorkManager

• Idea:
– Guaranteed deferrable execution
– Constraint-aware execution (e.g. run when on WiFi)
– Respect system restrictions

• Implementation:
– Part of Android Jetpack (introduced in 2018)

• Add as a dependency to your app

– Backwards compatible
• Uses JobScheduler for newer APIs
• Uses AlarmManager for older APIs 



WorkManager

• Worker – a unit of work
public class UploadWorker extends Worker {

public UploadWorker(
@NonNull Context context,
@NonNull WorkerParameters params) {
super(context, params);

}

@Override
public Result doWork() {

// Do the work here, e.g. upload the images.
uploadImages()

// Indicate whether the task finished successfully
return Result.success()

}
}

By default runs on a 
background thread



WorkManager

• WorkRequest – set constraints, types of 
execution for your work, e.g.

Constraints constraints = new Constraints.Builder()
.setRequiresDeviceIdle(true)
.setRequiresCharging(true)
.build();

// ...then create a OneTimeWorkRequest that uses those constraints
OneTimeWorkRequest compressionWork =

new OneTimeWorkRequest.Builder(CompressWorker.class)
.setConstraints(constraints)
.build();



WorkManager

• Running tasks
WorkManager.getInstance().enqueue(uploadWorkRequest);



WorkManager Example



When to Use What?

• Best effort execution
– E.g. updating an ImageView based on an API call
– Need to update UI, which may or may 

not be available (a user can navigate 
back from your app)

• Guaranteed execution at the current moment 
– E.g. the user hits a “Pay” button, the transaction is 

processed, and the user is notified
– We must ensure that the payment 

goes through and the user informed

HandlerThread or 
IntentService, 

perhaps AsyncTask

(but be careful) 

ForegroundService is 

the most reliable 



When to Use What?

• Guaranteed eventual execution
– E.g. reminding a user to exercise
– Should be executed every 

once a while
• Guaranteed execution at exact (periodic) times 
– E.g. control an oven through an Android app 
– Extremely difficult, if not impossible on certain 

devices

Work Manager

Make your app exempt from battery 

optimization; use foreground service; use 

AlarmManager exact alarms (9 min granularity), 

use Firebase Cloud Messaging 



When to Use What?

• Specialised solutions for particular use cases
– E.g. synchronise data with a server
– E.g download large content 

in the background 
– E.g. remind a user to 

buy milk when at a grocery store 

Sync Adapter

Geofencing from 

GooglePlayServices

Download Manager


