
Platform-Based Development: 
Background Processing

BS UNI studies, Spring 2019/2020

Dr Veljko Pejović
Veljko.Pejovic@fri.uni-lj.si



Concurrency in Android

• Java Threads
– The most general method

• Service
– Runs without the UI, however, by default on the same 

thread as the UI
• IntentService
– Background work on a separate thread, to contact the 

UI use local broadcast
• AsyncTask
– Background work on a separate thread, but with a 

tight integration with the UI



Threads

• A UI (Main) Thread is created and started when 
an application is launched
– Listens for events on UI components
– Loops infinitely 

• Your code (by default) runs on 
the UI Thread

• Intensive work (database access, 
networking) can prevent the 
UI thread from processing 
UI interaction tasks

There are no 
separate 

threads for 
components



Threads

• Instead, run heavy/slow operations in 
background threads

• Background thread processing supported by:
– Threads + Handlers
– IntentService
– AsyncTask
– Thread + Service

• Different abstractions for different goals, e.g.:
– A music player that runs in the background
– An online social network post button 



Thread and Handlers

• Java Threads + a Handler that enables 
communication among the threads 

• A straightforward solution:
– Create a worker Thread 
– Put an infinite loop in it and listen for new tasks
– De-queue the tasks, for each task:

• Execute
• Report results back to the UI Thread via a Handler 

– Break the loop to kill the thread 



Thread and Handlers Example



Looper, Message Queue, Handler

• Looper keeps the Thread alive in an infinite loop
– Automatically created for the UI Thread 
– For custom threads, create it yourself or use 

HandlerThread
• Looper.prepare(); 
• Looper.loop();
• Looper.quit();

• MessageQueue holds Messages/Runnables for 
a Thread
– Message – for passing data to a thread 
– Runnable – a task that is executed when the thread is 

free (or after a predefined delay)



Looper, Message Queue, Handler

• Handler
– Associated with a particular Thread (e.g. UI Thread)
– Allows you to send Messages/Runnables to the 

MessageQueue and process them
– Post a Message/Runnable immediately via 

sendMessage(Message m)/post(Runnable r) or after 
a delay via postDelayed(Runnable r, int msDelay) 
new Handler(Looper.getMainLooper())

.post(new Runnable() {
@Override
public void run() {

// this will run in the main thread
}

});



UI Thread

Thread and Handlers

Looper

Message 
Queue

Message

Message

Worker 
Thread

Handler
Message



HandlerThread

• A Thread that has a Looper
• Example use:
– Instantiate a HandlerThread
– Attach a Handler to your thread 

HandlerThread handlerThread = 
new HandlerThread("MyHandlerThread");

handlerThread.start();
Looper looper = handlerThread.getLooper();
Handler handler = new Handler(looper); 

Call .quit() to 
shut the 

thread down



HandlerThread Example



Services

• Activities run on the UI (main) thread and have a 
UI attached (layout)
– Processing-heavy functions on the main thread 

impact the responsiveness 
• Services can run on either the main or separate 

threads and do not have a UI attached
– Run outside UI, for long-running operations 

• Services are often more convenient than custom 
Threads for tasks than need to be “independent” 
and run even when the Activity is destroyed



Background and Foreground 
Service

• Background Service
– For actions that do not have to be noticed by the user 

(e.g. sensing a user’s physical activity)
• Foreground Service
– For actions that the user needs be aware of and 

should the control of (e.g. a music player app)
– A foreground service must show a notification in the 

notification bar



Starting/Stopping a Service

• Services can be created:
– Explicitly using Context.startService()
– Implicitly, if not already running, when a client 

requests connection to a Service via
Context.bindService()

• Services can be stopped:
– From within the Service with stopSelf() 
– From another component with Context.stopService()



Services

• Multiple startService
calls do not nest – you 
only have one service; 
however, 
onStartCommand() will 
be called repeatedly 

• Service will be stopped 
only once with 
Context.stopService() 
or stopSelf()



Services – Bound 

• Bound Services – like servers in a client-server 
paradigm 

• Services started through binding, do not call 
onStartCommand()

• Return IBinder object from onBind(Intent) so 
that connected clients can call the Service

• The service remains running as long as the 
connection is established



Broadcast

• Messages sent from other components of your 
app, other apps or from the Android system

• Messages are wrapped in Intents

• Send broadcasts
– System sends certain broadcasts when an event 

happens, e.g. ACTION_BOOT_COMPLETED
– Send custom broadcasts via sendBroadcast()

Intent intent = new Intent();
intent.setAction(ACTION);
intent.putExtra(STOP_SERVICE_BROADCAST_KEY, RQS_STOP_SERVICE);
sendBroadcast(intent);



Broadcast

• Broadcasts are captured in an app/component 
if a BroadcastReceiver is registered in the code:
– Create a BroadcastReceiver and impl. onReceive()

– Register for receiving certain kinds of Intents

public class NotifyServiceReceiver extends BroadcastReceiver{

@Override
public void onReceive(Context arg0, Intent arg1) {

…
}

}
}

IntentFilter intentFilter = new IntentFilter();
intentFilter.addAction(ACTION);
registerReceiver(notifyServiceReceiver, intentFilter);



Broadcast

• Broadcasts are captured in an app/component 
if a BroadcastReceiver is registered in 
AndroidManifest.XML and onReceive() is 
implemented in the code:

<receiver android:name=".MyBroadcastReceiver” android:exported="true">
<intent-filter>

<action android:name="android.intent.action.BOOT_COMPLETED"/>
<action android:name="android.intent.action.INPUT_METHOD_CHANGED”/>

</intent-filter>
</receiver>

public class MyBroadcastReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {

…. 



BroadcastReceiver

• Receive events announced by other 
components 

• Events announced via Intents
– Not the same Intent as the one starting an Activity: 

this one remains in the background 
• Events can be announced within your app or 

publicly to every app on the phone
– Announce via sendBroadcast()

• Events captured if the receiver is registered:
– onReceiverRegistered() and then onReceive()



Service, BroadcastReceiver
Example



Note on Foreground Services

• Likely to see increased use
– Google aims to minimize background processing
– FS for immediate guaranteed tasks, such as mobile 

payments, apps for unlocking garages, etc. 
• In API 26 and above
– Starting a foreground service should be done with:
– startForegroundService() – a promise that it will go to 

foreground and show a notification
followed by

– startForeground() – the actual notification is shown 
Usually in the 

Service’s onCreate



IntentService

• A Service that
– Runs on a separate thread
– Queues up requests and processes them one by one

• Suitable for long running one-off tasks when we 
don’t want to affect the UI responsiveness

• IntentService survives Activity lifecycle changes
• Called using explicit Intent
• Starts on demand, stops when it runs out of 

work 



IntentService

• Define in AndroidManifest.XML

• Extend the class in your Java code

<service
android:name=".FetchAddressIntentService"
android:exported="false"/>

public class FetchAddressIntentService extends 
IntentService {



Invoking IntentService

• Create an explicit Intent for your IntentService
• Use startService() to start the IntentService
• Add additional data if needed with the extra field 



Handling Results – from 
IntentService to Activity (1)

• BroadcastReceiver in your Activity
– Subclass BroadcastReceiver, implement onReceive
– Register the receiver for a particular action 

for times when you would like to handle IntentService
results (usually when your Activity is in the 
foreground)

• Broadcast from your IntentService
– sendBroadcast() from your IS using the same Intent 

action as the above



Handling Results – from 
IntentService to Activity (2)

• ResultReceiver in your Activity
– Subclass ResultReceiver, implement onReceiveResult

– Pass ResultReceiver through Intent when starting IS

class AddressResultReceiver extends ResultReceiver {
public AddressResultReceiver(Handler handler) {

super(handler);
}

@Override
protected void onReceiveResult(int resultCode, 

Bundle resultData) {…}

Intent intent = new Intent(this, FetchAddressIntentService.class);
intent.putExtra(Constants.RECEIVER, mResultReceiver);
intent.putExtra(Constants.LOCATION_DATA_EXTRA, mLastLocation);
startService(intent);



Handling Results – from 
IntentService to Activity (2)

• Set ResultReceiver result
– IntentService sends results to ResultReceiver in a 

Bundle with send() method

• Example 
– Display location address

http://developer.android.com/training/location/display-address.html

Bundle bundle = new Bundle();
bundle.putString(Constants.RESULT_DATA_KEY, message);
mReceiver.send(resultCode, bundle);



IntentService Example

Based on:
https://www.vogella.com/tutorials/AndroidServices/article.html


