
Platform-Based Development:
Data Storage

BS UNI studies, Spring 2019/2020

Dr Veljko Pejović
Veljko.Pejovic@fri.uni-lj.si

Partly based on “Programming Handheld Systems”,
Adam Porter, University of Maryland

Data Storage

• SharedPreferences

• Internal storage

• External storage

• SQLite database

SharedPreference

• Preserve a small amount of primitive type (int,
float, String, Boolean) data on a device
– Data are saved as key-value pairs
– Should be read/written by your app only
– Stored for as long as the app is installed on a device

• Common use:
– User preferences – username, customisations, such

as preferred WiFi AP, preferred theme, etc.
– Variables for conditional app execution

• When the app is launched for the first time set “launched” to
True; next time, check if “launched” was set or not

http://developer.android.com/reference/android/content/SharedPreferences.html

Accessing SharedPreferences

• Reading

• Need to know the type of data:
– getBoolean()
– getString()
– getAll() returns a Map of key-value pairs

SharedPreferences settings = getApplicationContext()
.getSharedPreferences(“preferences”, MODE_PRIVATE);

boolean wasLaunched = settings.getBoolean(“launched”, false);

Always use
MODE_PRIVATE

Accessing SharedPreferences

• Writing

• Different put methods for different data types
• Don’t forget to save changes by calling
– editor.commit() – synchronous

(avoid calling on the main thread) or
– editor.apply() – changes the in-memory object

immediately, but writes to disk asynchronously

SharedPreferences settings = getApplicationContext()
.getSharedPreferences(“preferences”, MODE_PRIVATE);

SharedPreferences.Editor editor = settings.edit();
editor.putBoolean(“launched”, true);
editor.commit();

PreferenceFragmentCompat

• A special Fragment that connects XML
preference hierarchy with SharedPreferences

<androidx.preference.PreferenceScreen
xmlns:app="http://schemas.android.com/apk/res-auto">

<SwitchPreferenceCompat
app:key="notifications"
app:title="Enable message

notifications"/>

<Preference
app:key="feedback"
app:title="Send feedback"
app:summary="Report technical
issues or suggest new features"/>

</androidx.preference.PreferenceScreen>

https://developer.android.com/guide/topics/ui/settings.html

PreferenceFragmentCompat

• Inflate the hierarchy in a Fragment
(PreferenceFragmentCompat):

• Note: a part of Android X, don’t confuse with the
same class from the old support library or with
PreferenceFragment – a deprecated class

public class MySettingsFragment extends PreferenceFragmentCompat {
@Override
public void onCreatePreferences(Bundle savedInstanceState, String

rootKey) {
setPreferencesFromResource(R.xml.preferences, rootKey);

}
}

https://developer.android.com/guide/topics/ui/settings.html

File Storage

• Android uses the common Java File API
• Files saved as internal or external files

INTERNAL EXTERNAL

Always available. Not always available – a user
can mount the external storage
as USB storage

Files saved here are accessible
by only your app by default.

World-readable, so files saved
here may be read outside of
your control.

When the user uninstalls your
app, the system removes all
your app's files from internal
storage.

When the user uninstalls your
app, the system removes your
app's files from here only if you
save them in the directory from
getExternalFilesDir().

http://developer.android.com/reference/android/content/Context.html%2523getExternalFilesDir(java.lang.String)

Internal vs External

• What we have in mind:
– Internal – on-device (non-removable) storage
– External – SD card (removable)

• What Google has in mind:
– Internal – a part of non-removable storage that is not

shared among apps
– External – either removable or non-removable

storage that is shared among apps

Internal Files

• Find where to save files
– getFilesDir() an internal directory for your app
– getCacheDir() an internal directory for your app's

temporary cache files
• File createTempFile() – to create a unique filename
• If the system begins running low on storage,

it may delete these cache files

• Read/write methods
– FileOutputStream openFileOutput (String name,

int mode) opens file for writing (creates it if needed)
– FileInputStream openFileInput (String name) opens a

file for reading

External Files

• Public external files –accessible by other
applications as well
– Remain on the device even after your app is

uninstalled
– getExternalStoragePublicDirectory() to get a

directory where these files live
– Use Environment class constants for storing files in

appropriate directories
File file = new File(Environment

.getExternalStoragePublicDirectory(
Environment.DIRECTORY_PICTURES),albumName);

External Files

• Private external files –accessible by your
application only
– Removed when your application is uninstalled
– getExternalFilesDir() to get a directory where these

files live
– Use Environment class constants for storing files in

appropriate directories

File file = new File(context.getExternalFilesDir(
Environment.DIRECTORY_PICTURES), albumName);

External Files

• Reading and writing to external storage requires
permissions

• Before working with external storage, check if
the storage is mounted
public boolean isExternalStorageWritable() {

String state = Environment.getExternalStorageState();
if (Environment.MEDIA_MOUNTED.equals(state)) {

return true;
}
return false;

}

<manifest ...>
<uses-permission

android:name="android.permission.WRITE_EXTERNAL_STORAGE”/>
</manifest>

SQLite

• A relational database implementation for
embedded systems
– A library added to an app, rather than a standalone

client-served DB engine
– The whole database is kept in a single file, and a

write operation gets an exclusive lock over the file
(no concurrent writing)

– SQL-92 language standard implemented (mostly)
– Supports ACID transactions (Atomic, Consistent,

Isolated and Durable)

When to Use SQLite

• Persistent storage (just like internal files)
• Use Android’s SQLite database for structured

data, especially if SQL queries can be used for
improved data presentation

• Note: the database will be removed once your
application is uninstalled

Working with SQLite

• Work directly via the following key classes:
– SQLiteOpenHelper

• To create, open, modify the tables in the database

– SQLiteDatabase
• To query the database

• Work indirectly through an Object Relational
Mapping (ORM):
– Room – Google’s own ORM
– Greendao
– ORMlite

SQLiteOpenHelper

• Subclass SQLiteOpenHelper for your database
– Define your schema - formal declaration of how the

database is organized, and the SQL statements that
you use to create your database

• Call super() from the subclass constructor to
initialize the underlying database

• Execute database creation in onCreate()
– onCreate() of the helper is called when a component

tries to access a not-yet-existing database
– SQLiteOpenHelper abstracts the costly DB creation

operations, and does not run them when not needed

SQLiteOpenHelper

• Access the database via SQLiteOpenHelper:
– getReadableDatabase()
– getWritableDatabase()

These operations may take
some time, thus, run them
on a background thread

using AsyncTask or
IntentService

SQLiteOpenHelper Example

Use _id for
the primary key

SQLiteOpenHelper Example

• Use in Activity:

SQLiteDatabase

• Insert into database by calling insert() with
ContentValues key-value pairs

• Query the database with query() and rawQuery()

SQLiteDatabase

• ListViews populated with Adapters connected to
the database are often the most convenient way
of displaying DB content

Examining DB Content

• Databases stored in /data/data/<package
name>/databases/

• Can examine database with sqlite3
adb -s emulator-5554 shell
sqlite3
/data/data/si.uni_lj.fri.lrss.databaseexample/data
bases/ contacts_db

Examining DB Content

Note, you might have to run
the emulator as root

(adb root)

