
Platform-Based Development: 
Network Communication

BS UNI studies, Spring 2019/2020

Dr Veljko Pejović
Veljko.Pejovic@fri.uni-lj.si



Course Administration

• Next week’s lecture (Wed May 20th) 
starts at 17:00

• Lab 8 due Friday, May 15th, 7pm
• Mini App 3 due Sunday, May 24th, 23:59
• Final Exam
– No specific guidelines from the University, yet
– Exchange students – please inform us via email if 

you are not in Slovenia 



Wireless Data Transmission

• Concept: 
– Information is encoded as the variability of the 

electromagnetic fields
– Waves are propagated from a sender (Tx) to a 

receiver (Rx)
• Transmitter circuit – includes an oscillator, DAC
• Receiver circuit – includes an oscillator, ADC 
• Antennas – convert electric current 

to EM waves and vice versa 



Wireless Data Transmission

• Basic parameters:
– Frequency (f) – how fast 

does the wave oscillate 
– Wavelength (𝝀) –

distance between 
consecutive wave 
repetitions (inverse of 
frequency)

– Bandwidth – the width 
of a range of 
frequencies used for the 
transmission

Depends 
on the 

oscillator

Depends 
on the ADC 

and DAC



Wireless Data Transmission

• Physical properties:
– Antenna length should 

be proportional to 𝝀
• higher 𝝀, longer antenna

– The irradiated power 
drops with the square 
of frequency
• higher f, shorter range 

– More bandwidth –
more information 
transmitted 
(higher throughput)



Smartphone Wireless Interfaces

• Near Field Communication (NFC)
– Very low power 

• Tags don’t even need to 
be powered 

– Very short range (~10cm)
– Low throughput (~400 kbps)
– Applications: security tags, location-based services, 

payment systems 



Smartphone Wireless Interfaces

• Bluetooth/Bluetooth Low Energy (BLE)
– Low power 

• ~10 mW for BLE

– Short range (~10 m)
– Low throughput (~1 Mbps)
– Applications: connection with 

peripherals, wearables (smartwatch), 
medical equipment, vehicle systems



Smartphone Wireless Interfaces

• WiFi
– Medium power consumption

• ~100 mW

– Relatively short range (~100 m)
– High throughput (~100s Mbps)
– Applications: home entertainment,

large downloads, system updates
– WiFi is usually an unmetered network 

(more data transferred ≠ more cost)



Smartphone Wireless Interfaces

• Cellular network 
– Medium-high power consumption

• ~200 mW

– Long range (~1000 m)
– Varying throughput 

• ~40 kbps with 2G
• ~1 Gbps with 5G

– Applications: ubiquitous connectivity, real-time 
updates, Voice-over-IP (VoIP), smart metering 
(occasionally)



Building Wireless Solutions

• Wireless interface selection impacts:
– Capabilities of your app 

• How much data will you be able to pull/push
• Coverage area
• If peer-to-peer, maximum range between peers 

– Cost for the user 
• Monetary cost for using cellular services

– Power consumption
• Think about low power solutions or a mix of high power and 

low power communication when possible



Android Networking Support

• Manage different physical interfaces (e.g scan 
for networks, associate with a network, get info 
about the network/link, etc.)
– NfcManager
– BluetoothManager
– WifiManager
– TelephonyManager

• ConnectivityManager
– Monitors network connections, manages failovers, 

notifies when connectivity changes



Networking Abstractions

• Sockets 
– Standard Java sockets:

• Socket (TCP)
• DatagramSocket (UDP) 

TCP sockets

src: https://www.wut.de/e-58www-16-apus-000.php

Refresh your socket programming 
knowledge to understand Android 

networking. 

However, socket programming on 
Android is rarely used –

Web abstractions! 



Web Abstractions

• Http(s)URLConnection
– (Dis)connect using HTTP(S)
– Send HTTP requests, obtain responses
– Connection pooling

• Sockets can be reused

– Response caching
– Cookie management
– Supports secure communication via Transport Layer 

Security (TLS)



Http(s)URLConnection
Example



Web Abstractions

• OkHttp (a third-party library)
– Advanced HTTP client

• Includes pretty much all the HttpsURLConnection
functionalities

– Automatic network connection recovery
– Retries 
– Data compression

Fun fact: the current version of 
HttpURLConnection is based 

on an earlier version of OkHttp! 



OkHttp Example



Web Abstractions

• Retrofit (a third-party library)
– REST Client for Android 

• Define a model
• Define possible REST operations
• Define converter
• Define adapter
• Define authentication mechanism
• Build client!

– Uses OkHttp under the hood

Remember REST: stateless, 
cacheable, client-server, 

layered architecture for Web 
services



Web Abstractions

• Volley
– REST Client for Android 
– Compared to Retrofit:

• Does not treat REST API calls as simple java methods (more 
complex to write)

• Retrofit has more response parsing options
• Volley has in-built support for image loading 
• Volley has a good caching mechanism
• Volley supports retries and backoffs
• Retrofit supports multipart uploads



Best Practices in Android 
Networking

• Run network operations on a separate thread
– You must do this in Android API 11+

• Reduce the amount of data transferred 
– Low resolution content when possible
– Compress the data
– Design a REST API that allows intelligent querying 

• Sends you what you need, not more

– Cache static content 
– Cache dynamic content and check expires/last-modify

• Caching directories: getExternalCacheDir, getCacheDir



Best Practices in Android 
Networking

• Push, don’t pull
– Rather than checking the server for new data, get 

notified when new data is available
• Firebase Cloud Messaging

• Reuse network connections
– Rather than open/close frequently
– But don’t leave them hanging on forever

• Secure data and the connection
– Use SSL and use it right
– Minimize transfer of sensitive data



Best Practices in Android 
Networking

• Energy-efficient networking
– Wireless radio power consumption is not directly 

proportional to the amount of sent data because of the 
power tail (especially 3G and LTE)
• Instead of short frequent

transfers, bundle the data
together and send less
frequently

– Use WorkManager
• Leaves the phone in 

the doze mode

“Power states of LTE”
from 

“A Close Examination of Performance and Power 
Characteristics of 4G LTE Networks” by Huang et al.



Best Practices in Android 
Networking

• Adapt to the physical connection
– Reduce data transfer when on a slower network 
– Prefetch more data when on WiFi

• Predict user requests: monitor behavior, most popular content

– Postpone non-critical downloads and uploads to 
periods when a user is on WiFi

– Detecting connectivity
• ConnectivityManager
• TelephonyManager



Best Practices Case Study –
News Reader App

• Balancing UX, data and energy
– Option 1: download headlines only after 

a news category has been selected
• saves data
• radio drains energy – always active
• poor user experience

– Option 2: download a set of headlines
for most common categories, load
articles shown on the page in a 
background thread
• less frequent requests allow the radio to sleep
• smoother user experience
• data used for content that may never be seen

by Emir Hasanbegović



Backend for Mobile Apps

• Android (or iOS for that matter) do not lock you 
into a particular backend technology 
– PHP, Node.js, Java Web apps, etc. 
– AWS, Google Cloud Platform, etc. 

• Some solution easier to work with than others
– Firebase
– Parse Server (Back4App) 

Backend for Mobile Apps

• Android (or iOS for that matter) do not lock you 
into a particular backend technology 
– PHP, Node.js, Java Web apps, etc. 
– AWS, Google Cloud Platform, etc. 

• Some solution easier to work with than others
– Firebase
– Parse Server (Back4App) 



Firebase

• Mobile and Web app development platform 
supported by Google 



Firebase

• Mobile and Web app development platform 
supported by Google 

• Great for:
– Authentication with Google ID (you have to use it)
– Notifications (chat-like apps)
– Crashlytics
– Machine learning support (ML Kit)

implementation 'com.google.firebase:…'



Parse Server

• Open source backend as a service (BaaS) 
platform initially developed by Facebook 
– Back4App is a Parse Server hosting platform

• Great for:
– Building different REST APIs
– Cron Jobs – schedule server jobs
– User management (auto emails, social login)
– Multiple SDKs

• Including for Android



Back4App

• NoSQL database
• REST API to access data
• Access via HTTP using different 

languages/platforms 
• Different pricing tiers, but the free one is 

sufficient for prototyping 
• Android library 

implementation "com.github.parse-community.Parse-SDK-Android:parse:1.24.1"



Back4App – Create Backend 

• Go to back4app.com, log in, and create a new 
application 
– Manage via a dashboard
– Add collections (tables)
– Add custom code
– Initiate communication (notifications)

• Get the following (and put in your Android app) in 
order to access the backend:
– Application ID 
– Client Key 



Back4App Example


