
Platform-Based Development: 
Android Architecture Components

BS UNI studies, Spring 2019/2020

Dr Veljko Pejović
Veljko.Pejovic@fri.uni-lj.si

Partly based on: Smyth, Neil. “Android Studio 3.3 Development 
Essentials - Android 9 Edition”



Android Architecture Components

• Introduced in 2017 to make common mobile 
programming tasks easier, efficient, reliable

• Common tasks:
– Lifecycle-dependent tasks
– Store data in a database
– Preserve data when a component is killed
– Display data changes in UI
– Bind UI views to the code and the data
– Load data over a network
– Perform background computations

Some of these 
tasks already 

tackled by third-
party libraries, e.g. 

Butterknife



Android Architecture Components

• New programming paradigms:
– From Model-View-Controller (MVC) to Model-View-

ViewModel (MVVM)
• New classes/methods/libraries:
– LifecycleOwner and LifecycleObserver
– RoomDatabase
– ViewModel
– LiveData
– Data binding
– Paging library
– WorkManager



From MVC to MVVM

• MVC in Android

• Drawbacks:
– Controller and View are tightly connected - change 

the view, you have to change the controller
– Controller depends on user interactions (Activity)

View

activity_main.xml 
(Button, 

TextView)

Controller

MainActivity.java
(onClickListener, 
editTxt.setText())

Model

SQLite database

Notify

Interact 
with

Setup 
view



From MVC to MVVM

• MVVM in Android

• Key points:
– ViewModel is responsible for wrapping the model 

and preparing observable data 
• Does not know who is observing, can be more than one view

– View binds to observable data invokes actions 
exposed by the ViewModel

View

activity_main.xml 
MainActivity.java

ViewModel

MainViewModel

Model

Room database

Invoke 
action

Interact 
with

Bind to 
data



Lifecycle-Awareness with Architecture 
Components Library

• Components that need to be aware of an 
Activity’s lifecycle state can use 
androidx.lifecycle package classes

• LifecycleObserver
– Get notified when a LifecycleOwner (such as an 

Activity) moves to ON_START, ON_RESUME, etc.

• Note: a similar functionality can be achieved 
within the lifecycle methods, but this is more 
elegant



ViewModel Class

• Problems:
– Handling data in Activity/Fragment:

• Prone to loss as the component may get destroyed (e.g. on 
screen rotation)

• Prone to memory leaks as an asynchronous call from 
Activity/Fragment may return to a destroyed component

– The same data might be needed at different views, 
Activity/Fragment is tightly connected with views

• Solution:
– A new class that 

• Survives Activity/Fragment lifecycle changes
• Provides the data, but is not aware of views using the data



ViewModel Class

• ViewModel
– Scoped to the 

ViewModelProvider’s
Lifecycle
• Survives Activity onDestroy

calls, but not application 
killed events!

– In-memory data, not 
preserved on the long run!

• Implementation: 
– We usually extend 

AndroidViewModel class



ViewModel Class

• Pros
– Data survives screen 

orientation changes
– Multiple views can use the 

same ViewModel
– No data leakage 

• Cons:
– Views must query the 

ViewModel to detect any 
changes in the data



LiveData Class

• Problem:
– Data (e.g. financial stocks) is updated frequently, the 

view must constantly check for the updates in an 
infinite loop

– Views (or other entities) might want to update the 
data in the ViewModel – the info should be 
propagated to the Model

• Solution:
– A new class that:

• Holds the data, allows the data to be observed, notifies the 
observer when the data changes

• Is lifecycle-aware – no updates if the observer is paused



LiveData Class

• Pros:
– Data (e.g. financial stocks) 

is updated frequently, the 
view must constantly check 
for the updates in an infinite 
loop

• Cons:
– Code still needs to be 

written to set and get View 
properties (e.g. TextViews) 
when the data changes



Data Binding

• Data Binding library
– Allows for data from a ViewModel to be directly 

mapped to specific views in the XML layout file 
– Often used in conjunction with LiveData from a 

ViewModel

• More than just view binding (e.g. ButterKnife)
– If you need just view binding:

android {
...
viewBinding {

enabled = true
}

}



Using Data Binding

• Modify Gradle file

• Modify XML to have <layout> as a root view
• Add <data> variables in the layout
– These will be connected with the actual objects

• Example layout:

android {
dataBinding {enabled = true}

}

<layout> 
<data>

<variable
name="myViewModel”
type="si.uni_lj.fri.lrk.myapp.MainViewModel" />

</data>
<ConstraintLayout>…</ConstraintLayout>
…
</layout>



Using Data Binding

• Binding classes are automatically generated
– E.g. MainFragmentBinding for main_fragment.xml

• Instantiate the binding class
– E.g. 

• Configure data binding variables
– E.g. 

• Binding Expressions
– Define how Views interact with bound objects

• E.g. Which function of the bound object is called onClick, 
which data stored in a ViewModel is show in a TextView

MainFragmentBinding binding;
binding = DataBindingUtil.inflate(inflater, R.layout.main_fragment, 

container, false);

binding.setVariable(viewModel, myViewModel);



Using Data Binding – Binding 
Expressions

• One-way
– The view is updated with the data from the binding, 

but changes in the view are not propagated to the 
data (i.e. a ViewModel) 

– E.g.

• Two-way
– The data is updated in response to changes in the 

view
– E.g. 

• Event and listener binding
– E.g. 

android:text=”@{myViewModel.result}”

android:text=”@={myViewModel.result}”

android:onClick=”@{()->myViewModel.methodOne()}”



ViewModel, LiveData, Data Binding 
Example



Managing Data Flow

• Modern Android Architecture
– MVVM
– Data can come from multiple

source
• Database
• SharedPreferences
• Remote API

– Use Repository
• Not a part of Android framework, but 

a class you create to handle data storing



Object-relational Mapping
ORM 

• Problem: 
– Object-oriented languages work with objects that can 

be relatively complex
– (Relational) databases store and manipulate simple 

scalar values in tables 
– Converting objects to table entries is cumbersome 

and prone to errors 
• Solution 
– Object-Relational Mapping (ORM)



Room Database

• Data storage
– Underlying Android SQLite database

• Object files (Entities)
– Annotated Java models 

• Data Access Object (DAO)
– Interface between the database and 

Java objects
• Note: this is not another database, 

but a layer over your SQLite DB!



Room Database

• Data Flow
– Repository gets Room DB

instance, obtain references
to DAO instances

– Repository creates entity
instances, passes them to the DAO

– Repository calls methods on the DAO passing 
through entities to be inserted in the DB and receives 
entity instances back in response to search queries

– When DAO has results it packages them into entity 
objects



Room Database

• Data Flow
– DAO interacts with Room

DB to initiate database 
operations and handle 
results

– Room DB handles all 
low-level interactions with the underlying SQLite DB,
submitting queries and receiving results 



Room DB – Entities

• Each DB table needs an associated Entity class
– Defines the schema for the table
– A standard Java class with Room annotations

public class Customer {

private int id;
private String name;

…

@Entity(tableName=“customers”
public class Customer {

@PrimaryKey(autoGenerate=“true”)
@NonNull
@ColumnInfo(name=“customerId”)
private int id;
@ColumnInfo(name=“customerName”)
private String name;

…



Room DB – Data Access Object (DAO)

• Provides a way to access the data stored within 
the database

• A standard Java interface with additional 
annotations

@Dao
public interface CustomerDao {

@Query(”SELECT * FROM customers”)
LiveData<List<Customer>> getAllCustomers();

…
}

Queries that will be 
executed

LiveData enables the 
Repository to observe 
changes in the data 



Room DB – Database Instance

• Helper class for accessing the SQLite DB
• Extends RoomDatabase + additional annotation

@Database(entities = {Customer.class}, version = 1)
public class CustomerRoomDatabase extends RoomDatabase {

public abstract CustomerDao customerDao();
private static CustomerRoomDatabase INSTANCE;
static CustomerRoomDatabase getDatabase(final Context context) {

if (INSTANCE == null) {
synchronized (CustomerRoomDatabase.class) {

if (INSTANCE == null) {
INSTANCE = Room.databaseBuilder(

context.getApplicationContext(),
CustomerRoomDatabase.class, "customer_database")
.build();

}
}

}
return INSTANCE;

}
}



Room DB – Practical Considerations

• Running on the main thread is considered a bad 
practice
– Disabled by default, enable with 

allowMainThreadQueries()
– Use Executors instead (see Lab 8)

• Repository should handle Database 
instantiation public class CustomerRepository {

private CustomerDao customerDao;
private CustomerRoomDatabase db;
public CustomerRepository(Application application) {

db = CustomerRoomDatabase.getDatabase(application);
customerDao = db.customerDao();

}
…
}


