
Lab 8 - Android Architecture Components
[based on Android Studio 3.3. Development Essentials by Neil Smyth]

Android Architecture Components are a new set of classes and libraries designed to make certain
common tasks in Android programming more efficient and safer (i.e. fewer crashes). While so far we
used to put pretty much all our programme’s logic in Activity and Fragment classes, with the new classes
we can achieve a higher level of the separation of concerns. Thus, different sections of our programme
(different classes) will handle completely different roles. This is very important in mobile programming,
as Activities and Fragments can be destroyed any time - you do not have any control over their lifecycle,
the way a user interacts with your app and the way OS manages the memory decide the life of your
Activites and Fragments. Thus, we want to minimise our dependency on Activities and Fragments and
use other classes for, say, controlling the data that a user sees on the screen.

We have the following new classes for this purpose:

● ViewModel - to provide data for UI elements, without being aware of their existence
● LiveData - to allow data values to be observable by other components
● Repository - technically, not a new Android framework class, but a one that you create and that

is used to provide access to the data, irrespective of where the data physically resides
● Room - an ORM database

The figure below displays the relationship among the mentioned classess (as well as remote data
fetching using Retrofit, but we will not deal with it in this lab).

Task overview
We will develop an inventory application that lets a user store items in the inventory, find them there, and
delete them, if needed. The inventory is persisted in a Room database on the device.

To shortcut the development process, download code from https://github.com/vpejovic/pbd2020-lab-8

Our app will have a single Activity/Fragment where a user
can enter the product, its quantity, and store it in the
inventory. The interface also allows the user to search for a
product by name or to delete a product. The list of products
is shown at the bottom and is updated immediately after
any changes in the inventory. The data should persist even
when the application is killed.

The Database
The Room database allows us to store the data without
writing tedious SQL queries. The access is provided
through Database Access Objects (DAOs), which
represent an interface between Java objects and the
database. The “shape” of the database, the tables, are
provided by Entities. In the figure below you see the usual
way of interaction with a Room database [from Android
Studio 3.3. Development Essentials by Neil Smyth]:

1. The repository interacts with the Room Database to
get a database instance which, in turn, is used to
obtain references to DAO instances.

2. The repository creates entity instances and configures them with data before passing them to the
DAO for use in search and insertion operations.

3. The repository calls methods on the DAO passing through entities to be inserted into the
database and receives entity instances back in response to search queries.

4. When a DAO has results to return to the repository it packages those results into entity objects.
5. The DAO interacts with the Room Database to initiate database operations and handle results.
6. The Room Database handles all of the low level interactions with the underlying SQLite

database, submitting queries and receiving results.

https://github.com/vpejovic/pbd2020-lab-8

Entity

We need to create Entities (data tables) for our project. We are storing only one type of information -
products - thus we need to create a single entity. Create a new public Java class called Products in
package si.uni_lj.fri.pbd.lab8 . The class should contain the following fields:

● private int id;

● private String name;

● private int quantity;

Create public getters and setters for each of these fields.

The class is not yet an Entity class, to become that, we need to add @Entity(tableName =

"products") just above the “public class Product ” line. Now, this class can be used to create
a new table in a Room database and that table will be named “products ”.

The underlying SQLite database is a relational database, which means we must at the minimum define
the primary key. You can do that with more annotations: @PrimaryKey(autoGenerate = true)
above the declaration of the field you would like to use for the primary key.

Finally, annotation @ColumnInfo(name = “SOMETHING”) above the declaration of the field you
want to use in your queries tells SQLite that the filed should be stored under the SOMETHING column
name in the database. Put this annotation above id and name fields and name these fields’ columns
“productId ” and “productName ” respectively.

Data Access Object

The next step is creating the Data Access Object (DAO). Create a new public interface called
ProductDao. Adding @Dao annotation above the “public interface ProductDao ” line tells
Android that this class will be used as a DAO. You now need to create a specific access methods:

- For inserting a Product in the database add:
@Insert

void insertProduct(Product product);

- For finding a product with a specific name in a database:
@Query("SELECT * FROM products WHERE productName = :name")

List<Product> findProduct(String name);

- For deleting a product with a specific name from the database:
@Query("DELETE FROM products WHERE productName = :name")

void deleteProduct(String name);

- For returning a LiveData object with a list of all products in the database:
@Query("SELECT * FROM products")

LiveData<List<Product>> getAllProducts();”

Spend some time trying to understand how the annotations and the function declarations tell Android
what exactly to do when these functions are called.

Room Database

A Room Database is handled through an abstract class that extends RoomDatabase. Create a new
public abstract class ProductRoomDatabase that extends RoomDatabase. Putting
@Database(entities = {Product.class}, version=1) above the “public abstract

class ProductRoomDatabase ” tells Android that this class will define the database. Note how it tells
that Product.class defines the (only) entity/table we have in the database.

We need to add a static reference to this database. “Static” because you want to make sure you have
only one such database. Add:

private static ProductRoomDatabase INSTANCE;

The field is private, so we need to create an access method. Add:

static ProductRoomDatabase getDatabase(final Context context) {

 if (INSTANCE == null) {

 synchronized (ProductRoomDatabase.class) {

 if (INSTANCE == null) {

INSTANCE =

Room.databaseBuilder(context.getApplicationContext(),

 ProductRoomDatabase.class,

 "product_database").build();

 }

 }

 }

 return INSTANCE;

}

getDatabase returns a reference to the database instance and it makes sure that the instance is
created if it is not already. Note “synchronized ” - this ensures that the code is not executed in parallel
via multiple calls, which may have catstrophic consequences for the database.

We also need to provide our DAO for modifying the database. All you need to do is to add one more
abstract function:

public abstract ProductDao productDao();

Finally, in Mini App 3 you are provided the code for accessing the database on the main thread. This is
not the best practice. To access it in the background, you can use the Executors. Add the following to
the ProductRoomDatabase class:

private static final int NUMBER_OF_THREADS = 4;

static final ExecutorService databaseWriteExecutor =

 Executors.newFixedThreadPool(NUMBER_OF_THREADS);

We will call database queries on this executor.

Repository

The repository will be responsible of interacting with the database on behalf of the ViewModel. The class
ProductRepository is partly provided for you. However, you need to add a reference to a DAO you will
use to access the database:

private ProductDao productDao;

Further, when we instantiate the repository we should also instantiate the database. Put the following
constructor in the repository:

public ProductRepository(Application application) {

 ProductRoomDatabase db;

 db = ProductRoomDatabase.getDatabase(application);

 productDao = db.productDao();

 allProducts = productDao.getAllProducts();

}

The functions to insert, delete, and find a product need to be completed. Note, the queries on the
database need to be ran in the background using the executor. In insertProduct function add:

 ProductRoomDatabase.databaseWriteExecutor.execute(new Runnable() {

 @Override

 public void run() {

 productDao.insertProduct(newproduct);

 }

 });

Completing deleteProduct should be straightforward.

Completing findProduct is a bit different - you run a query, but it might take some time to find the
result and it should then report it back to the searchResults object (of type MutableLiveData),
something like this should go in run() method of the Runnable:

searchResults.postValue(productDao.findProduct(name));

The User Interface
We have already created the MainActivity, MainFragment, ProductListAdapter, and the layouts for
you.

MainFragment has three fields (see the screenshot above) corresponding to the three views:
productId , productName , and productQuantity .

● If the views corresponding to productName and productQuantity are set by the user, who
then clicks on “Add ” button, a new Product instance should be created and added to the
database;

● If the view corresponding to productName is set by the user who then clicks on “Delete ”
button, the product with the given name is deleted from the database;

● If the view corresponding to productName is set by the user who then clicks on “Find ” button,
the product details (ID, name, quantity) are shown, if the product with this name exists in the
database;

Main_fragment.xml also contains a RecyclerView. This RecyclerView should show a list of all the
inventory. Check recyclerSetup() function in MainFragment to see how the RecyclerView is tied
to a ProductListAdapter.

ViewModel and LiveData

The main novelty we will encounter here is the ViewModel. The ViewModel will hold the data so that
even when the Fragment is stopped or killed the data stays in the memory and can be quickly retrieved
back. Open MainViewModel. It should hold two kinds of data (you should add these as private fields):

● LiveData<List<Product>> allProducts - a list of all Products that will be shown in the
RecyclerView

● MutableLiveData<List<Product>> searchResults - details about the product that we
search for (NOTE: technically, this is a list of Products because an SQL select statement returns
a list, but we will handle only the first element of this list)

These fields are of type LiveData, which allows them to notify an observer (which will reside in
Fragment) that there is a change in data. Thus, the UI does not need to be refreshed all the time - any
changes will be reported through LiveData immediately! Note that the searchResults filed is
MutableLiveData. This allows it to be modified outside the MainViewModel class. This is needed as the
findProduct function in ProductRepository is ran on a separate thread and reports the results when
they are ready (postValue), rather than returning them immediately.

We usually prefer that the ViewModel does not interact with the database directly, but through a
repository. Create a private field repository of type ProductRepository in MainViewModel.

Now, in the MainViewModel constructor set the repository to a new ProductRepository (give
application as an argument), set allProducts to repository.getAllProducts() and
searchResults to repository.getSearchResults() .

We need to expose the data held in the ViewModel to the outside world. Create the following functions:

MutableLiveData<List<Product>> getSearchResults() {

 return searchResults;

}

LiveData<List<Product>> getAllProducts() {

 return allProducts;

}

ViewModel should also use the repository to find, insert, and delete the data in the database. Create the
following functions as well:

public void insertProduct(Product product) {

 repository.insertProduct(product);

}

public void findProduct(String name) {

 repository.findProduct(name);

}

public void deleteProduct(String name) {

 repository.deleteProduct(name);

}

Setting the UI and LiveData Observers

We have put a ViewModel in our Fragment (the field has already been put for you) and we set
interaction through button click events. Open MainFragment and follow TODO instructions in the
listenerSetup function.

Finally, we set observers to monitor data changes. First, set an observer for
mViewModel.getAllProducts() . When this LiveData object changes, the adapter should set the

product list to the new data. E.g. in onChanged you should put:
adapter.setProductList(products);

Second, we set an observer for mViewModel.getSearchResults() . When this result changes, we
should populate the upper part of the UI (TextViews and EditTexts) with the found product data. Your
code should look something like this:

mViewModel.getSearchResults().observe(getViewLifecycleOwner(),

 new Observer<List<Product>>() {

 @Override

 public void onChanged(@Nullable final List<Product> products) {

 if (products.size() > 0) {

 productId.setText(String.format(Locale.US, "%d",

 products.get(0).getId()));

 productName.setText(products.get(0).getName());

 productQuantity.setText(String.format(Locale.US, "%d",

 products.get(0).getQuantity()));

 } else {

 productId.setText("No Match");

 }

 }

 });

That’s the whole lab! Run it and check whether adding, deleting, and searching for a product works as
expected.

Happy coding!

