
Lab 7 - Machine Learning in Android
Mobile phone sensors provide raw data, e.g. GPS coordinates, and machine learning is used to link the
sensed data with higher level concepts, e.g. whether a person is at home or work. In this lab we will use
periodic accelerometer sensing and recognise certain phone movements (gestures) using a Naive
Bayesian classifier.

Task overview
To shortcut the development process, you can download code from
https://github.com/vpejovic/pbd2020-lab-7

We are going to sample the accelerometer every five seconds. These samples will contain X, Y, and Z
axis measurements of the acceleration. We are then going to calculate representative features - the
mean, variance, and mean crossing rate (MCR) - of the acceleration. We are going to train a Naive
Bayesian classifier to learn how these features change depending on a gesture that a user performs with
the phone. Finally, we will use our trained classifier to recognise the gestures in real time.

The user interface consists of a Switch that tells whether the application should be in the training mode
(picture on the left) and use the accelerometer samples and the selected training activity to teach the
machine learning model what the selected training activity “looks” like, or whether it should be in the
testing mode (picture on the right) and use the accelerometer samples to infer the gesture that a user is
performing. The button on the bottom instructions the application to start (or stop) the accelerometer
sensing.

The core classes of this project are going to be AccSenseService , an IntentService for sensing
the accelerometer, and TrainClassifierService , an IntentService for training the classifier.
The code for controlling the training and inference will live in MainActivity . A BroadcastReceiver
called AccBroadcastReceiver will be used to get the accelerometer sensing results from
AccSenseService to MainActivity .

https://github.com/vpejovic/pbd2020-lab-7

Periodic accelerometer sensing
To periodically sense the accelerometer in MainActivity we will use a Handler that will every five
seconds post a task - to run AccSenseService which will collect accelerometer sensing data.

Find startSensing() function in MainActivity and instruct it to call AccSenseService every
five seconds:

handler.post(new Runnable() {

 public void run() {

 Intent intent = new Intent(getApplicationContext(),

 AccSenseService.class);

 startService(intent);

 handler.postDelayed(this, 5000);

 }

});

Open AccSenseService to understand how the sensing happens. Every time we start this service it
registers itself as a listener for accelerometer data. When the data is received (in onSensorChanged) it
checks whether it accumulated 50 samples and if so, it calculates the mean, variance and the mean 1

crossing rate (MCR) of the accelerometer data. These data should be sent via an Intent that is
broadcast locally. The data will then be received in MainActivity , via AccBroadcastReceiver .
First, implement the sending part in AccSenseService :

Intent localIntent = new Intent(

 MainActivity.AccBroadcastReceiver.ACTION_SENSING_RESULT);

localIntent.putExtra(MainActivity.AccBroadcastReceiver.MEAN, mean);

localIntent.putExtra(MainActivity.AccBroadcastReceiver.VARIANCE, variance);

localIntent.putExtra(MainActivity.AccBroadcastReceiver.MCR, mcr);

LocalBroadcastManager.getInstance(this).sendBroadcast(localIntent);

Next, the data should be received in MainActivity . In onStart you should register a local broadcast
receiver:

LocalBroadcastManager.getInstance(this).registerReceiver(mBcastRecv,

 new IntentFilter(AccBroadcastReceiver.ACTION_SENSING_RESULT));

And then unregister it in onStop , the code is trivially similar to the above.

Recognising different movement patterns
Different phone movements, for example, a rapid motion, a slow motion, or a circular motion, result in
different accelerometer values’ recordings. Our hypothesis is that different movements will result in
different values of accelerometer mean, variance and MCR. We will use a third-party machine learning
library to manage the movement pattern classifier.

Add the Android machine learning library to your project, by putting the following line in the app’s gradle
file:

1 It needs roughly ten seconds to get that many samples, because it is subscribed using
SENSOR_DELAY_NORMAL.

implementation 'si.uni_lj.fri.lrss.machinelearningtoolkit:mltoolkit:1.2'

The machine learning library lets you create classifiers, train them with labelled data, and then query
them to infer high level information from the sensed raw data. The complete code for the library can be
found here: https://github.com/vpejovic/MachineLearningToolkit/

Instantiating a classifier

A classifier is instantiated through the MachineLearningManager . The manager requires a context:
MachineLearningManager mManager =

MachineLearningManager.getMLManager(getApplicationContext());

A classifier is defined by its Signature , i.e. the features it connects, and the indicator of the class
feature (the one we are trying to predict). Features can be numeric (i.e. expressed through real numbers,
can be ordered), or nominal (i.e. representing different categories, cannot be ordered). An example of a
numeric feature is the accelerometer mean value. An example of a nominal feature is our class, a
particular movement (e.g. “rapid”, “slow”, “circular”, etc.).

The machine learning library supports a few different classifier types, and exposes certain configuration
options. We will keep it simple and instantiate a default Naive Bayesian classifier. The following code
instantiates a Naive Bayesian with one numeric feature and one nominal class feature with two values.

Using the code below as template, instantiate your own classifier that takes the three numeric
accelerometer features (mean, variance, and MCR), and predicts one nominal feature with the
movements you want to predict (note: these should be defined in R.string.txt_gesture_*
variables):

Feature accMean = new FeatureNumeric("accMean");

// TODO: two more features should be defined here

ArrayList<String> classValues = new ArrayList<String>();

classValues.add(getResources().getString(R.string.txt_gesture_1));

classValues.add(getResources().getString(R.string.txt_gesture_2));

// TODO: one more class value should be added here

Feature movement = new FeatureNominal("movement", classValues);

ArrayList<Feature> features = new ArrayList<Feature>();

features.add(accMean);

// TODO: two other features should go here

features.add(movement);

Signature signature = new Signature(features, features.size()-1);

// TODO: a try-catch block is needed here

mManager.addClassifier(Constants.TYPE_NAIVE_BAYES, signature,

 new ClassifierConfig(),"movementClassifier");

Where to instantiate your classifier? You can do that in the MainActivity directly (we already created
the initClassifier function as a placeholder). The instantiation itself is not processing-heavy. On
the other hand, classifier training and querying might be, and should be done on a separate thread.

https://github.com/vpejovic/MachineLearningToolkit/

Training a classifier

Now, your classifier doesn’t know much, so let’s train it. First, we need to provide a label (gesture name)
for the sensed movement. When a user sets the Switch into the training position, we need to get the
label next to the selected radio button. This label, together with the current accelerometer feature values
will be used for training the classifier. Note, that we have defined the possible gestures as “rapid”, “slow”,
and “circular” in R.string.txt_gesture_* variables. However, you can easily change this to
recognise e.g. “forehand” and “backhand” movements for a virtual tennis game, or “Yes” and “No”
gestures for a distributed voting app, or any other gesture you fancy. Anyway, you can use:

RadioGroup rg = findViewById(R.id.radioGroup);

int selectedId = rg.getCheckedRadioButtonId();

RadioButton rb = (RadioButton) findViewById(selectedId);

String label = rb.getText().toString();

To get the label of the selected RadioButton (see recordAccData function).

Training a classifier can be processing heavy, so it should be performed in a separate thread. That’s why
we have created TrainClassifierService that extends IntentService . In its
onHandleIntent we will train the classifier. Here is an example of training a classifier with a class
value label (String), and a mean accelerometer value mean (double):

ArrayList<Value> instanceValues = new ArrayList<Value>();

Value meanValue = new Value((double)mean, Value.NUMERIC_VALUE);

instanceValues.add(meanValue);

// TODO: two other features should go here

Value classValue = new Value(label, Value.NOMINAL_VALUE);

instanceValues.add(classValue);

Instance instance = new Instance(instanceValues);

ArrayList<Instance> instances = new ArrayList<Instance>();

instances.add(instance);

// TODO: a try-catch block is needed here

MachineLearningManager mManager =

MachineLearningManager.getMLManager(ApplicationContext.getContext());

Classifier c = mManager.getClassifier("movementClassifier");

c.train(instances);

In your implementation, besides mean, add variance and MCR. To train a classifier in a separate service
we need to pass the information on the mean, variance, MCR and the label to the service in an Intent
from the MainService . This is not much different from the way we call AccSenseService when you
do periodic sensing. See recordAccData in MainActivity and find a suitable place to put:

Intent mIntent = new Intent(MainActivity.this,

TrainClassifierService.class);

mIntent.putExtra("accMean", mean);

mIntent.putExtra("accVar", variance);

mIntent.putExtra("accMCR", MCR);

mIntent.putExtra("label", label);

mIntent.setAction(ACTION_CLASSIFIER_TRAINING);

startService(mIntent);

Finally, in TrainClassifierService after the training you can check the state of your classifier by
calling the following (the results will be printed in LogCat):

c.printClassifierInfo()

Movement inference

Turn the Training switch on, start sensing, and ensure that you train your classifier with different phone
movements. I used an emulator with virtual sensors (see below) - moving the virtual phone left-right,
up-down, etc. works reasonably well.

Once done with training, switch the training off on the main screen, and let’s try to infer the movement -
is it rapid, slow, circular (or any category you want to recognise). Since we might be moving the phone
rapidly, printing the result in a TextView or showing a Toast with the inference label might not be
readable. Instead, I suggest that you also change the background colour of the parent
ConstraintLayout of the MainActivity (the ID of the View is container) depending on the
movement (e.g. let it be red for one gesture, blue for another, etc.).

The classification is done via classifier.classify() method, that requires an Instance consisting
of features -- mean, variance, MCR -- which we are trying to find a label for:

Classifier c = mManager.getClassifier("movementClassifier");

ArrayList<Value> instanceValues = new ArrayList<Value>();

Value meanValue = new Value((double) mean, Value.NUMERIC_VALUE);

instanceValues.add(meanValue);

// TODO: add two more features here

// TODO: a try-catch block is needed here

Value inference = c.classify(instance);

Value.getValue().toString() gives you the string value of the inference. Check whether this
value is equal to R.string.txt_gesture_1, R.string.txt_gesture_2, or

R.string.txt_gesture_3 and set the value of the R.id.tv_result TextView. Also, depending
on the inference, change the background of the screen:

View v = findViewById(R.id.container);

v.setBackgroundColor(Color.BLUE); // or any other colour

Where to do the inference? In this lab we will do it in MainActivity (see recordAccData function).
However, with more complex machine learning models, inference can be computationally expensive and
should be done in a separate IntentService .

Happy coding!

