
Lab 6 - Location Sensing

This lab we are going to introduce the localisation of a mobile user. You will create an application that
uses Location API (from Google Play Services) to infer a user’s location, and show the result back to the
user.

NOTE: In 2017 Google Play Services 11.0.0 introduced a new way to access LocationServices. This
simplifies the way to get a device’s location and reduces chances for null exceptions. In this lab we will
concentrate on this new method. You might find different ways to access location in online tutorials.

Showing a Map
Google Play Services are a powerful Android library provided
by Google that helps with tasks related to Google Maps,
Google Drive, and many other purposes. To use the services,
you need to add them to your Android Studio (SDK manager
-> SDK tools -> Google Play Services) and then to the gradle
file (implementation 'com.google.android.gms:

play-services-maps:17.0.0' , or whatever version you
have installed, to your dependencies). To simplify this, and
since we are going to use a map in this assignment, let’s just
start a new project with a brand new Google Maps Activity.
Android Studio creates boilerplate code for us. Copy-paste
the link that’s shown to you in Android Studio
(google_maps_api.xml) to obtain the key you need to paste
in, for Google to allow your app to access its services.

If you haven’t modified the defaults, you have activity_maps
layout, so open it and let’s edit it. At the moment you have a
single SupportMapFragment here. Create a new
LinearLayoutCompat and put it around the Fragment. In
addition, add two TextViews and a Button after the fragment,
so that your layout looks something like this:

<androidx.appcompat.widget.LinearLayoutCompat...

 <Fragment...

 <TextView...

 <TextView…

 <Button…

</androidx.appcompat.widget.LinearLayoutCompat>

The end goal is to have a screen with a map, and two TextViews that will show a user’s latitude and
longitude, and a button that will query for the user’s location. To fit all these into one screen we need to

modify the layout parameters. First, we need to set the LinearLayoutCompat’s
android:orientation to “vertical ”. Then we will set android:layout_width of the
Fragment, TextViews and Button to "match_parent" , extending to fit the screen. We will set
android:layout_height of the TextViews and the Button to "wrap_content " so they are as tall as
the letters are. Finally, we will set android:layout_height of the Fragment to "0dp" , and its
android:layout_weight to "1" . This will tell the View System to span the Fragment height to
whatever is left of the screen after the TextViews and the Button are drawn. Needless to say, give your
Views nice descriptive IDs and set Button text to a String “Get location”

This is a good moment to stop and check if everything compiles and runs on your phone/emulator. The
most common errors stem from the incompatibility between Google Play Services version installed on
the phone/emulator and the one used for compilation. You can check your Google Play services version
on the phone/emulator in Settings->Apps->Google Play Services.

Getting Location Information
Google play services location API is the preferred way of obtaining a user’s location. Not only do these
services abstract the tedious work of turning different sensors on and off, but they also ensure that the
energy spent for getting the location is minimised. The services manage location querying across
applications, thus if one application requested a user’s location, another application, requesting the
same info immediately after, will be served the already queried result, and therefore save time and
energy for querying the sensors again.

To use the services, just like with the Google Maps API, you need to add them to your Android Studio
(SDK manager -> SDK tools -> Google Play Services) and then to the gradle file (implementation

'com.google.android.gms:play-services-location:17.0.0' , or whatever version you
have installed, to your dependencies).

We are going to access the location info by connecting to the services in our MapsActivity. Open the
activity and add a private field mFusedLocationProviderClient of type
FusedLocationProviderClient. This is the key object that will help us interact with Google Play
Location Services. Instantiate it in onCreate() method, i.e. set it to
LocationServices.getFusedLocationProviderClient(this);

We want to show the last known location on the map. For this, create a new function void

showLastKnownLocation() . FusedLocationProviderClient’s getLastLocation() method lets you
connect an (anonymous) OnSuccessListener that will have its onSuccess(Location location)
method called when the result is ready. A really easy way for asynchronous location querying! Add it to
showLastKnownLocation() :

mFusedLocationProviderClient.getLastLocation()

 .addOnSuccessListener(new OnSuccessListener<Location>() {

@Override

 public void onSuccess(Location location) {

// This is where a map marker will be added

 }

 });

The resulting Location object contains the latitude and longitude of the sensed location. Once the result
is ready, we can show it as a marker on the map, together with the exact time when the location was
taken:

mMap.addMarker(new MarkerOptions()

 .position(new LatLng(location.getLatitude(), location.getLongitude()))

 .title(getResources().getString(R.string.time_updated) +

 DateFormat.getTimeInstance().format(new

Date(location.getTime()))));

Note: the above DateFormat and Date objects are from java.text and java.util packages.

Also, set the latitude and longitude TextViews to the values from the location object.

Permissions

By now you have probably noticed that we haven’t asked the user for a permission, yet. Beginning with
Android 6.0 (API 23) users grant permissions when the app is running, before that, they would grant the
permission only at the time the app is installed. This gives more control to the user to decide which
permissions to grant. Unfortunately, this requires a bit more effort from the developer’s side.

First, make sure that both ACCESS_FINE_LOCATION and ACCESS_COARSE_LOCATION are listed
as required in the Manifest.

We are going to handle the permission requests as follow:

● In showLastKnownLocation() check whether the user has already given a permission
○ If not, check whether a user should be shown a rationale

■ If yes, show the rationale and ask for the permission if the user agrees to the
rationale

■ If not, just ask for the permission
○ If yes, continue with location sensing

● When the request results are received, check whether the answer is “PERMISSION_GRANTED”
and if so, call showLastKnownLocation() again

Let’s go step by step. At the beginning of showLastKnownLocation() put a check, to see if
permissions for fine and coarse location are not given yet, and if so, request them from the user:

if(ActivityCompat.checkSelfPermission(this,Manifest.permission.ACCESS_FINE_LOCATION) !=

PackageManager.PERMISSION_GRANTED &&

ActivityCompat.checkSelfPermission(this, Manifest.permission.ACCESS_COARSE_LOCATION) !=

PackageManager.PERMISSION_GRANTED) {

If the user needs to be shown an explanation of why a permission is necessary, display a Snackbar with
the description (something like “To show map markers, this app needs your location information”).
Note, you have to compile the Material Design library in order to use the Snackbar. In the build.gradle
file add: implementation 'com.google.android.material:material:1.1.0' (or whatever
version you’re using).

if (ActivityCompat.shouldShowRequestPermissionRationale(this, Manifest.permission

.ACCESS_COARSE_LOCATION) || ActivityCompat.shouldShowRequestPermissionRationale (this,

Manifest.permission.ACCESS_FINE_LOCATION)){

// we need to show the explanation to the user, so we show the Snackbar

Snackbar.make(findViewById(R.id.layout_maps), R.string.permission_location_rationale,

Snackbar.LENGTH_INDEFINITE)

 .setAction(R.string.ok, new View.OnClickListener() {

 @Override

 public void onClick(View view) {

// If the user agrees with the Snackbar, proceed with asking for the permissions:

 ActivityCompat.requestPermissions(MapsActivity.this,

 new String[]{Manifest.permission.ACCESS_COARSE_LOCATION,

 Manifest.permission.ACCESS_FINE_LOCATION},

 REQUEST_ID_LOCATION_PERMISSIONS);

 }

 }).show();

}

REQUEST_ID_LOCATION_PERMISSIONS is an internal code (static final int) we use to discern among
different requests.

The permission request result will be available through a onRequestPermissionResult method of
ActivityCompat.OnRequestPermissionsResultCallback interface. So, ensure that your
MapsActivity class implements the interface and overrides the method. If the user has granted the
permission (you will see that PackageManager.PERMISSION_GRANTED is in grantResults), go
ahead and call showLastKnownLocation() again. Finally, don’t forget to connect the button with
showLastKnownLocation() function.

Time to test your app! Play with location reported by the emulator (“...” icon on the emulator right-hand
side). Click on the markers to see the update times. You might realise that it makes sense to tweak it a
bit, for example, add map zoom controls. More info here:
https://developers.google.com/maps/documentation/android-sdk/controls

Happy coding!

https://developers.google.com/maps/documentation/android-sdk/controls

