
Lab 5 - Bound Service

Android applications we wrote so far have all relied on direct interaction with the user and no “hidden”
processing. Often, however, applications have to conduct some work in the background independently
on the user interaction. For instance, a music player should play music even when you don’t interact with
the app and when the screen is off; your emails should be downloaded without you actively refreshing
the app, etc.

Android has a number of classes that help us with background processing. These include:

● Service - for long-running background tasks
● IntentService - for shorter background tasks
● AsyncTasks - for shorter background tasks tightly connected with the user interface
● Workers - for periodic background tasks
● Threads, Handlers, and HandlerThreads - lower-level classes for background processing

In this lab we will see how we can perform long-running processing in the background and at the same
time keep updating the UI using a Bound Service. Bound Service is a concept that includes a regular
Service that is bound to another component (usually an Activity or a Fragment). This other component
can then call methods of the Service.

We will write an app that counts seconds since a button was pushed. The counting should continue even
if the app is not visible on the screen. We will see what happens if the counting code is in the Activity,
then we will move it to the Service (so it runs in the background), and finally, we will run the Service in
the foreground to ensure that the time is counted even when the app is closed.

This is going to be a rather long lab, thus we will split it in two - you only be graded once, though. To
speed things up, we will start with the initial code you can find here:
https://github.com/vpejovic/pbd2020-lab-5

PART 1

Processing in Activity
Open MainActivity.java file. Find runButtonClick .
This function is called when a user clicks the button. The
boolean variable isTimerRunning tells us whether the timer
is ticking or not. If not, the startTimer function is called to
take note of the starting time. The updateUiStartRun is then
called to set the text of the button to “Stop ”, so that the user
can stop the count using the same button.

Run the app - you will notice that besides the button text
change, nothing else happens.

We need to refresh the TextView every once a while to see the
time ticking. For that, we will use a Handler. This class is
associated with a Thread (in this case the main thread) and
contains a queue where messages can be posted and later

https://github.com/vpejovic/pbd2020-lab-5

processed. We can post messages with a delay equal to our desired UI refresh delay (say 1000
milliseconds) and when handling them simply update the TextView and post another message to refresh
the TextView again after a given delay.

The code already contains the UIUpdateHandler that extends Handler. Uncomment the code where the
Handler is defined, the code where the Handler is instantiated, and the code where messages are
posted and cleared from the Handler queue (in updateUIStartRun and updateUIStopRun).

Test the application again - you should see the timer ticking when you click on the start button. However,
if you exit the app or rotate the screen, the timer will be reset. This is not the desired behaviour - let’s fix
it!

Processing in Service and Binding
Open TimerService.java file. This is a Service that will be started from the Activity and the
Activity will bind to the Service. When a user clicks on the button this Service will note the starting time
of the click. The Activity will also query the Service periodically to get the information on how many
seconds have elapsed since the starting moment.

Move the fields startTime , endTime , and isTimerRunning to TimerService class. Set these to
zero or false (as appropriate) in the service’s onCreate method. Move functions startTimer ,
stopTimer , isTimerRunning , and elapsedTime from MainActivity to TimerService class.

The Service can now do the counting, but we need to communicate with it somehow. For that, we
should create a Binder in the Service and return it when an Activity binds to Service, which is
signalled by onBind method. Define a new internal public class called RunServiceBinder that extends
Binder, it should look like this:

public class RunServiceBinder extends Binder {

 TimerService getService() {

 return TimerService.this;

 }

}

When the Activity gets this binder it will call getService to get a reference to a running service. In
TimerService instantiate a private final field serviceBinder of type IBinder and assign a new
instance of RunServiceBinder to it. Return this serviceBinder from onBind (instead of returning
null).

The Service should be started when the Activity starts. Create an Intent i with
TimerService.class component and start it using startService(i) . To bind the Activity to the
Service, we need a ServiceConnection object which will ensure that we get a reference to a
RunServiceBinder “channel” to our Service. First, create two more fields in MainActivity:
timerService of type TimerService and serviceBound of type boolean . Then uncomment the
code that defines and instantiates a ServiceConnection object.

We just have to fix a few methods that take care of the UI in MainActivity. runButtonClick is used to
check whether the timer is running and if not, it would start the timer, otherwise it would stop the timer.
However, the timer is now moved to the Service, thus, you should fix the function so that it checks
whether the service is bound (use serviceBound field) and whether
timerService.isTimerRunning() is false or true and then either start the timer (using
timerService.startTimer()) or stop the timer (using timerService.stopTimer()). Pair

these calls with updateUIStartRun() and updateUIStopRun() as before. updateUITimer
should be fixed to get the elapsed time from timerService.elapsedTime() but only if the service
is bound. Finally, when the Activity is stopped it should unbind the Service - write the unbinding code in
onStop :

 if (serviceBound) {

unbindService(mConnection);

 serviceBound = false;

}

Run the app now. You will see that rotating the screen or exiting and re-entering the app does not
prevent the timer from ticking. Unlike the Activity, the Service does not get stopped when a user
navigates back from the app.

PART 2

Processing in Foreground Service
Nevertheless, there is still a high chance that a Service is killed if it runs in the background.
Furthermore, a user should probably know whether the timer is ticking or not, even if the app is not open.
After all, you have an indicator that a music player is playing music even when you don’t use the app
directly - there is a persistent notification in the notification bar that tells you that the player is active. This
notification indicates that a so-called “foreground service” is active. We will now move our Service to the
foreground when a user exits the Activity.

First, we need permission to run a Service in the foreground. Open the AndroidManifest.xml file
and add the following line just before the application tag:

<uses-permission android:name="android.permission.FOREGROUND_SERVICE" />

Next, we need a notification to show when the service is in the foreground. Go to TimerService and
uncomment the code for creating a notification. The code might look daunting, but it’s really not that
complex. First, you have createNotificationChannel . Starting from Android API 26 you need to
specify one or more channels that your app uses for notifications. This is so that users can block certain
channels and allow some others (e.g. block “commented”
but allow “liked” notifications from the Facebook app). Here
we create a single channel with the ID channelID and use
it to show our notification - call
createNotificationChannel at the end of onCreate
in the Service.

The second function createNotification builds a
notification and attaches a PendingIntent to it. This
PendingIntent will start the MainActivity once a user clicks
on the notification.

To start a notification in the foreground let’s define a
public void foreground() function in our Service
and put startForeground(NOTIFICATION_ID,

createNotification()) in it. The first parameter is a

constant integer of your choice. To move the Service to the background create public void

background() function and put stopForeground(true) in it.

Who decides whether the Service should run in the foreground or not? The MainActivity. If the
MainActivity is bound to the Service that means that the user is actively interacting with the app, thus
the Service should be in the background. In onServiceConnected add
timerService.background() immediately after you finish with binding the Service.

If the user is leaving the MainActivity and the timer is running, the Service should be moved to the
foreground. If the user is leaving the MainActivity but the timer is not running, then the Service should
be stopped. Thus, in onStop , if the Service is bound, check whether the service is running
(timerService.isTimerRunning()) and if so, move the service to foreground
(timerService.foreground()). Otherwise, stop the service using stopService(new

Intent(this, TimerService.class));

Test the app. When you start the counter and exit the MainActivity you should get a notification
indicating that the Service is still alive and ticking.

Foreground Service Notification Action Button

Let’s finish the lab by adding an action button to the notification. This button will let the user quickly stop
the service. We will stop the service by sending an Intent as if we are starting the Service. However, we
will add an action of type ACTION_STOP . Any Intent to start the Service calls onStartCommand . Thus,
in this function we will check whether the Intent that called the Service contains an action of type
ACTION_STOP . If so, we will stop the Service.

In createNotification define the Intent and add the action to it:

Intent actionIntent = new Intent(this, TimerService.class);

actionIntent.setAction(ACTION_STOP);

PendingIntent actionPendingIntent = PendingIntent.getService(this, 0,

actionIntent, PendingIntent.FLAG_UPDATE_CURRENT);

Then, create an action button in the notification by adding:

.addAction(android.R.drawable.ic_media_pause, "Stop",

actionPendingIntent);

At the end of the notification building expression.

To stop the service when ACTION_STOP arrives, in
onStartCommand check whether the Intent contains
ACTION_STOP action (use intent.getAction()) and if
so, call stopForeground(true) and stopSelf() to
stop the Service. Note that we should also modify the
Intent to start the Service in MainActivity by giving it a
different action. E.g. add

i.setAction(TimerService.ACTION_START)

in onStart of the MainActivity.

Finally, test the code. When a user clicks on the button the timer should tick. When the user leaves the
app, a notification should demonstrate that the Service is still active. Finally, clicking on “STOP ” will stop
the Service.

Happy coding!

