
Lab 4 - Advanced UI Elements 

By now you should be familiar with Activities and their more reusable counterparts - Fragments. In this                 
lab we are going to see one more way to organise Fragments, that is in tabs. In addition, we are going to                      
see advanced UI elements: FloatingActionButton & Snackbar, and CardView & RecyclerView. 

You don’t need to be a trained scientist to do science - members of the general public often contribute to                    
science with their observations, data processing, etc. This is called “citizen science”. In this lab we will                 
build a rough sketch of an app for astronomer citizen scientists. The app will have three sections: 

- Sky observations - where timestamped observations are collected 
- Planet Wiki - that provides information about planets 
- Notes - where a citizen scientist can take notes  

We are going to implement a rather advanced application in a short period of time, thus, we won’t start                   
from zero. Open a new project from GitHub https://github.com/vpejovic/pbd2020-lab-4 

Fragments in Tabs 
Examine the code. You should see the MainActivity, three Fragment classes (Tab1Fragment,            
Tab2Fragment, Tab3Fragment), and a RecyclerAdapter. Our MainActivity should host a placeholder           
for the Fragments and a bar that will let a user navigate among tabs. Each tab should be a Fragment,                    
something like this: 

 
 
What you see in this image is a larger AppBarLayout that contains a Toolbar (the part with the title)                   
and a TabLayout (with tabs). Open activity_main.xml and add a          
com.google.android.material.tabs.TabLayout element just below the Toolbar. Set its ID to          
tab_layout , app:tabMode  to “fixed” , and app:tabGravity  to “fill” . 

Note that this TabLayout will only render the bar, but will not actually cycle through the content. We                  
need another element for that. The element is ViewPager2 - go ahead and add it in                
activity_main.xml just under the AppBarLayout. Your ViewPager2 should stretch as much as            
possible in width and height (use match_parent ) and should have the following property             
app:layout_behavior="@string/appbar_scrolling_view_behavior" 

Stop for a moment to analyse your work. You have a TabLayout where the tab title should be shown                   
and where a user should make a selection. You also have a ViewPager2, think of it as a frame where                    
your Fragments can go. Now you need to connect the TabLayout with the ViewPager2 and the                
Fragments. 

To connect the fragments with the ViewPager2 we need to use an adapter, in particular               
FragmentStateAdapter (from androidx.viewpager2 ). Create a new class called TabPagerAdapter         
and make it extend FragmentStateAdapter. This class needs to implement createFragment and            
getItemCount functions, so go ahead and override them. The class also needs a constructor. Create               

public TabPagerAdapter(FragmentActivity fa, int numOfTabs) constructor. In it        

https://github.com/vpejovic/pbd2020-lab-4


call super(fa) and set a private class member tabCount (which you should declare beforehand) to               
numOfTabs ; 

The createFragment function takes an integer that indicates a position that a VewPager2 is “looking               
at” and returns the appropriate Fragment. Create a switch statement that will depending on the position                
(0, 1, 2) return either new Tab1Fragment(), new Tab2Fragment() , or new Tab3Fragment() . 

The getItemCount function should simply return the number of items (tabs), so go ahead and return                
tabCount . 

We have our fragments connected with the ViewPager2, so now we need to connect the ViewPager2                
and the TabLayout. Go to MainActivity and implement configureTabLayout function. First, create            
references to the TabLayout and the ViewPager2 (use findViewById() ). Then, create a new             
TabPagerAdapter that takes “this ” and NUM_OF_TABS as arguments. Set the ViewPager2’s adapter            
to the newly created adapter via ViewPager2’s .setAdapter method. To finally connect the             
TabLayout and ViewPager2 create a new TabLayoutMediator. It should look like this: 

new TabLayoutMediator(tabLayout, viewPager, 

        new TabLayoutMediator.TabConfigurationStrategy() { 

               @Override public void onConfigureTab(@NonNull TabLayout.Tab 

tab, int position) { 

                    // You should set tab titles here 

                 } 

}).attach(); 

The TabLayoutMediator will connect each Fragment in the ViewPager2 and will call 
onConfigureTab . Here you should set the titles for the tabs. Use a switch statement operating on 
“position ” and tab.setText()  to set the title String (e.g. “Sky Observations”, etc.) 

This is a good time to test your app and debug any issues.  

FloatingActionButton and Snackbar 
In the first Fragment we have a ListView (confirm that in fragment_tab1.xml ). This list is going to 
be populated with timestamps of planet observations when a user clicks on a floating button. In addition, 
the user will be shown info that an item has been added to the list and will have an option to undo the 
action. The picture below should give you an idea: 

 
The floating button should be implemented via FloatingActionButton from         
com.google.android.material . In fragment_tab1.xml  add the button right after the ListView: 

<com.google.android.material.floatingactionbutton.FloatingActionButton 

 android:id="@+id/fab" 

 android:layout_width="wrap_content" 

 android:layout_height="wrap_content" 

 android:layout_gravity="bottom|end" 

 android:layout_margin="@dimen/fab_margin" 



 app:layout_constraintBottom_toBottomOf="parent" 

 app:layout_constraintEnd_toEndOf="parent" 

 app:srcCompat="@drawable/ic_add_entry" /> 

 
Go to Tab1Fragment. Here you already have your ListView connected with an ArrayAdapter. This              
adapter defines that an ArrayList of Strings called listItems is shown in myListView and that               
android.R.layout.simple_list_item_1 is used to define the rendering of each item. Further,           
we have already implemented a function addListItem  that adds an observation to the list.  

To define what happens when a user clicks on the floating button, in onCreateView find your                
FloatingActionButton (use findViewById on “view ”) and set an OnClickListener (just like you did             
with any other button) and there in onClick call addListItem() . Furthermore, add the following line               
to show a snackbar to the user: 

Snackbar.make(view, "Item added to list", Snackbar.LENGTH_LONG) 

 .setAction("Undo", undoOnClickListener).show();  

Notice that the snackbar also sets an action, called Undo on which an undoOnClickListener is               
called. This we have already implemented for you, but please check it and make sure you understand it -                   
it removes the newly added item.  

Just like with any major change - go ahead and test your app now. You should be able to add                    
observations to the list and to remove them if you click on the Undo action in the Snackbar.  

CardView & RecyclerView 

Remember how Android destroys your views when an Activity         
goes in the background? Of course, it does this to preserve           
memory. However, you could still use a lot of memory if you have             
a lot of items in your ListView. Not all of these items can be shown               
on the screen at the same time, so perhaps it makes more sense             
to dynamically create the items as a user is scrolling along the list.             
This is exactly why we have the RecyclerVIew! 

In the second Fragment we are going to use a RecyclerView to            
list cards with info about different planets. The cards will be           
implemented using the CardView. 

We have already added RecyclerView for you - open         
fragment_tab2.xml to check it and get familiar with it. A          
RecyclerView uses an Adapter to get connected with the data.          
Open RecyclerAdapter class. This is a partly implemented class         
that connects planet information with the RecyclerView.  

As a user scrolls through the information in a RecyclerView, the           
adapter creates ViewHolders and populates them with       
information when onBindViewHolder is called. Here we are        
extending the default RecyclerView.ViewHolder and     
implementing the one that shows cards that can be clicked on.           
Notice an inner class CardViewHolder that extends RecyclerView.ViewHolder. 



But how does the CardViewHolder know how to render the information? In card_layout.xml we              
have defined the layout of a single card - please check it. Then, in onCreateViewHolder use the                 
following to inflate the card view:  

LayoutInflater.from(viewGroup.getContext()).inflate(R.layout.card_layout, 

viewGroup, false); 

The View returned by the above call should be used to instantiate a new CardViewHolder, that should                 
then be returned from the function.  

This makes sure we have a CardViewHolder created when needed, but to connect it with the data in                  
each new CardViewHolder we need a reference to an image, title, and detail text. In the                
CardViewHolder constructor set the itemImage , itemTitle , and itemDetail to refer to the            
corresponding views from card_layout.xml . Finally, to show a Snackbar every time a user clicks on               
an item, call setOnClickListener method of itemView and show a Snackbar, just like in the first                
fragment. In the shown text state the position of the card by using getAdapterPosition() .  

The only thing we are left with is setting the actual data. This happens in onBindViewHolder . Use the                  
above defined references itemTitle , itemDetail , and ItemImage of viewHolder , and their           
setText or setImageResource methods to set the values to titles[i] , details[i] , and            
images[i] .  

 

 
 

Happy coding! 
 
 
 


