
Regular Article

Information Visualization
12(3-4) 324–357
� The Author(s) 2012
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1473871612455749
ivi.sagepub.com

A survey of two-dimensional graph
layout techniques for information
visualisation

Helen Gibson, Joe Faith and Paul Vickers

Abstract
Many algorithms for graph layout have been devised over the last 30 years spanning both the graph drawing
and information visualisation communities. This article first reviews the advances made in the field of graph
drawing that have then often been applied by the information visualisation community. There then follows a
discussion of a range of techniques developed specifically for graph visualisations. Graph drawing algorithms
are categorised into the following approaches: force-directed layouts, the use of dimension reduction in
graph layout and computational improvements including multi-level techniques. Methods developed specifi-
cally for graph visualisation often make use of node-attributes and are categorised based on whether the
attributes are used to introduce constraints to the layout, provide a clustered view or define an explicit repre-
sentation in two-dimensional space. The similarities and distinctions between these techniques are examined
and the aim is to provide a detailed assessment of currently available graph layout techniques, specifically
how they can be used by visualisation practitioners, and to motivate further research in the area.

Keywords
Graph and network visualisation, network layout visualisation, graph layout, force-directed layout,
multi-attribute visualisation, 2D

Introduction

A graph can be defined as a set of nodes and a set of

edges such that an edge describes the existence of a

relationship between two nodes. Drawing a graph can

help make better sense of the structure of those rela-

tionships than simply looking at the data in tabular

form. Simply drawing the graph is not enough as how

the graph is drawn has a significant impact on how the

graph is understood. Owing to the gestalt principle of

proximity, developers of layout algorithms should be

aware that nodes placed close to one another will be

interpreted by the user as a true relationship whether

or not this relationship exists.1 This means the layout

and the arrangement of the nodes strongly influences

how the user perceives the relationships in the graph.

Therefore, finding a layout which can emphasise rela-

tionships, and which does so without misleading the

user, is crucial even if further interaction, filtering and

analysis may be necessary to discover why those rela-

tionships exist.

Even though it is nearly 50 years since Tutte2,3 pro-

posed his barycenter method (see ‘Force-directed lay-

outs’), how best to lay out a graph remains a current

problem, one that is still attracting attention. In fact,

Blythe et al.4 asserted that there is no best way to draw

a graph and that layout simply depends on which

School of Computing, Engineering & Information Sciences,
Northumbria University, Newcastle upon Tyne, UK

Corresponding author:
Helen Gibson, School of Computing, Engineering & Information
Sciences, Northumbria University, Pandon Building, Newcastle
upon Tyne, NE2 1XE, UK.
Email: helen.gibson@northumbria.ac.uk

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


features of the graph we wish to highlight. These may

be certain aspects of the structure of the graph itself,

particular measures of centrality or prominence, or

important attributes of the nodes or edges.

Graph drawing has evolved in two different direc-

tions: the heavily algorithmic side drawing from math-

ematical graph theory and the more interactive and

application-focused side from information visualisa-

tion, often termed network or graph visualisation.5

Graph drawing has accumulated a large body of

research and its own symposium, ‘Graph Drawing’,6

held annually for the past 20 years with articles con-

tinuously appearing in the Journal of Graph Algorithms

and Applications (JGAA). Published in 1999, and

building on their 1994 annotated bibliography, Di

Battista et al.’s book on graph drawing7 is regarded as

the key reference for an introduction to the algorith-

mic approach to graph drawing.

This review furthers their research by focusing on

the use of graphs in information visualisation through

the inclusion of computational improvements to previ-

ous methods and, by exploring what makes the key

difference between graph drawing and network visuali-

sation, the use of attributes for layout.8 The work is

restricted to two-dimensional (2D) graph layout

because techniques that are suitable for two dimen-

sions are not always generalisable to three dimensions;

for example, edge crossing is less of a problem in three

dimensions than two dimensions,9 but many 2D lay-

outs consider reducing edge crossings to be of central

importance. Other problems include node occlusion,

difficulties in finding the best ‘view’ in space and

difficulty in adapting to actions and interactions in

three-dimensional (3D) space.9,10

Di Battista et al.7 credit Knuth11 with the first appli-

cation for automatic graph layout. Knuth’s algorithm

visualised flowcharts with the aim of improving com-

puter program documentation, and since then network

visualisation has been applied to many application

areas. These include technological areas such as the

structure of the Internet and the hyperlink structure of

the web as well as social networks, bibliographic net-

works and biological networks.

Visualisation of networks should not just be for the

sake of it; it should aid the analysis and understanding

of the graph. In areas of network analysis, and particu-

larly social network analysis, interpretation and under-

standing of a graph’s structure can come from the

calculation of metrics associated with each node of the

graph and the graph as a whole,12 but the idea of draw-

ing a graph is to represent the structure of a graph

visually. Reasons to do this are given by Bezerianos

et al.,13 who suggest that visualisation can help with

‘detecting, understanding and identifying unexpected

patterns’ in social networks and, in fact, this could be

applied to all graphs. Henry and Fekete8 go even further

by suggesting that ‘computing a layout of a graph is nec-

essary to find insights’. This is why visualisation can be

useful: it can allow users to see relationships, such as

patterns and outliers,14 that would not be apparent

through a metrics-based analysis alone. For example, a

metrics-based analysis can tell the user which are the

most connected nodes or detect communities whereas a

visualisation allows the user to see whether the most

connected nodes influence different areas of the graph

or if there are outliers to a clustering (see Figure 1).

Graph layout algorithms serve to represent a graph sub-

ject to some rules or guidelines that should enable this

more effective analysis through visualisation.

In information visualisation particularly, drawing the

graph can enable both hypothesis generation and confir-

mation from the data. Much of the research into what

can be learnt from studying the properties of a graph

concentrates on either network analysis statistics or the

study of the topological, static display of the network.13

Layout that can also stem from interaction with the net-

work, integration of node-attributes (additional data we

know about the node) and node metrics (computed sta-

tistics that measure properties of the node) encourages

further exploration and understanding of the network.

The more information we have about the graph the

greater the emphasis on good layout algorithms to con-

vey the information in the graph in a way which is infor-

mative, accessible and comprehensible to instigate

interaction and engagement with the graph by the user.

In this survey ‘Family of force-directed and related

graph drawing algorithms’ covers the major graph

Figure 1. The three labelled nodes (A, B, C) appear
separated in the layout from other nodes detected as
being in their community.

Gibson et al. 325

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


drawing techniques that have been devised and used

over the past 30 years; these are divided into three

categories: force-directed, those based on dimension-

reduction and computational improvements such as

multi-level techniques. In the ‘Using node-attributes

for layout’ section techniques developed for using

node-attributes more specific to graph visualisation

are presented and discussed. Conclusions and scope

for further research are covered in ‘Discussion’.

Family of force-directed and related graph
drawing algorithms

Most algorithmic graph drawing is based on the force-

directed paradigm of modelling a graph as a physical

system where nodes are attracted and repelled accord-

ing to some force. The various forms of force-directed

graph drawing are among the most frequently used

and modified, meaning that they can be be applied to

graphs with many thousands of nodes. Although force-

directed and dimension reduction-based algorithms

are dimension independent, they are most commonly

used to produce layouts in two dimensions. The pre-

sentation and evaluation of these layouts in this paper

are given in a 2D context.

The original algorithm for force-directed graph draw-

ing and its multiple variations are explained in ‘Force-

directed layouts’. The use of dimension reduction for

graph layout shares many similarities with force-directed

methods and these similarities and some extensions are

discussed in ‘Dimension reduction for layout’. More

recently, it has become necessary to visualise much

larger graphs; thus, many suggestions, including multi-

level methods, have been proposed as computational

improvements to the layouts in the ‘Force-directed lay-

outs’ and ‘Dimension reduction for layout’ sections,

along with some spectral methods, which are mentioned

in ‘Computational improvements’. There are a number

of criteria that are used to evaluate the effectiveness of a

graph layout. These include computational complexity

or running time for the algorithm to execute, the size of

graph for which they are realistically able to produce a

layout, their ability to comply with certain layout princi-

ples or aesthetics, the user’s visual assessment and other

potentially desirable visual features such as clustering.

‘Evaluation of algorithmic layouts for graph visualisation’

discusses how the algorithms compare in terms of these

criteria and Table 1 gives a summary of this discussion.

Force-directed layouts

Force-directed algorithms were amongst the first to be

developed for automatic graph layout and are some of

the most commonly used methods today. Based on a

physical model of attraction and repulsion, the aim is

to lay out the graph optimally. This optimality agreed

with criteria put forward as graph drawing aesthetics,

as discussed in ‘Graph drawing aesthetics’. A forerun-

ner to force-directed methods was Tutte’s2,3 barycen-

tre method. The barycentre between two objects is the

point at which the gravitational forces exerted by those

two objects cancel each other out. The method was

developed for drawing tri-connected and planar graphs

in which at least three nodes had a fixed initial position

on the external face of a polygon. The unfixed nodes

are placed at the barycentre of their neighbours with

optimisation through Newton–Raphson iteration.

Quinn and Breuer15 also proposed a force method for

placing components on a printed circuit board. It was

Eades’16 spring-embedded force-directed layout that

became accepted and inspired many other layout algo-

rithms. Force-directed techniques remain so popular

because, in their simplest form, they are not difficult

to understand and are easily implemented in code.7

Graph drawing aesthetics. Classic force-directed pla-

cement approaches apply a set of rules that are said to

produce aesthetic graphs. In this context, aesthetics

are associated with improving the readability (causing

Dunne and Shneiderman17 to rename them readabil-

ity metrics) of the drawing18 on the premise that if the

layout makes the relationships in the graph more read-

able then it is more comprehensible to the user. Good

aesthetic properties should ensure that a graph is dis-

played more effectively and allow the user to easily

perceive the topological structure of a graph.19 This is

different from analysing the structure computationally.

For example, a user may determine that the connectiv-

ity of the nodes follow a power-law distribution or

form a small-world network, but visualisation can give

greater insight into their structure,20 such as seeing

which clusters in a small-world network are linked or

placed close to one another in the layout. Table 2

shows the aesthetic criteria most commonly used in

force-directed graph layout with explanations as to

why they are considered to produce a good graph lay-

out. However, these criteria are considered intuitive22

rather than being derived from experimental data.

Incorporating all of these aesthetics into one opti-

mal layout is infeasible because of their competitive

nature, as achieving one often requires breaking

another.7 Additionally, there is a distinction between

what is shown to be computationally aesthetic and

what is subjectively ‘aesthetically pleasing’ to each

user;16 in order to distinguish between these two

meanings, from now on the aesthetic graph drawing

criteria will be termed principles of graph drawing and

aesthetically pleasing will refer to the user’s feeling

326 Information Visualization 12(3-4)

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


T
a

b
le

1
.

A
su

m
m

a
ry

o
f

h
o

w
th

e
g

ra
p

h
d

ra
w

in
g

a
lg

o
ri

th
m

s
in

th
is

a
rt

ic
le

co
m

p
a

re
.

A
ch

e
ck

m
a

rk
a

g
a

in
st

a
g

ra
p

h
d

ra
w

in
g

p
ri

n
ci

p
le

in
d

ic
a

te
s

th
a

t
it

w
a

s
co

n
si

d
e

re
d

in
th

e
d

e
si

g
n

o
f

th
e

a
lg

o
ri

th
m

.

G
ra

p
h

d
ra

w
in

g
p

ri
n

ci
p

le
s

A
lg

o
ri

th
m

P
e

rf
o

rm
a

n
ce

E
d

g
e

cr
o

ss
in

g
s

S
ym

m
e

tr
y

E
ve

n
n

o
d

e
d

is
tr

ib
u

ti
o

n
U

n
if

o
rm

e
d

g
e

S
iz

e
N

o
te

s

S
p

ri
n

g
E

m
b

e
d

d
e

r
G

o
o

d
fo

r
g

ra
p

h
s

o
f

u
p

to
5

0
n

o
d

e
s

U
A

ch
ie

ve
s

th
is

fo
r

sm
a

ll
g

ra
p

h
s

U
S

m
a

ll
g

ra
p

h
s

h
a

ve

e
ve

n
e

d
g

e
le

n
g

th
s

5
0

n
o

d
e

s
a

n
d

sh
o

u
ld

n
o

t
b

e
d

e
n

se

B
e

st
fo

r
fe

w
e

r
th

a
n

3
0

n
o

d
e

s

F
ru

ch
te

rm
a

n
a

n
d

R
e

in
g

o
ld

(F
R

)

A
im

w
a

s
fo

r
sp

e
e

d
a

n
d

si
m

p
li

ci
ty

b
u

t
sl

o
w

e
r

th
a

n
G

E
M

U
P

e
rf

o
rm

s
w

o
rs

e

th
a

n
T

u
n

k
e

la
n

g
’s

a
lg

o
ri

th
m

o
n

e
d

g
e

cr
o

ss
in

g
s

U
S

h
o

w
s

sy
m

m
e

tr
y

U
U

T
h

is
w

a
s

o
n

e
o

f

th
e

ir
a

im
s

b
u

t
th

e
y

d
id

n
o

t
th

in
k

th
e

y

a
ch

ie
ve

d
it

;
b

u
t

it
is

b
e

tt
e

r
th

a
n

S
A

a
n

d
T

u

fo
r

d
e

n
se

g
ra

p
h

s

A
b

le
to

d
ra

w
g

ra
p

h
s

w
it

h
th

o
u

sa
n

d
s

o
f

n
o

d
e

s
b

u
t

sl
o

w
ly

,
a

n
d

d
o

e
s

n
o

t
o

ft
e

n
re

su
lt

in
a

g
o

o
d

la
yo

u
t

D
o

e
s

n
o

t
re

q
u

ir
e

p
a

ra
m

e
te

rs
to

b
e

o
p

ti
m

is
e

d

G
E

M
M

u
ch

fa
st

e
r

th
a

n
F

R

a
n

d
K

K

U
A

lt
h

o
u

g
h

th
e

y
sa

y

th
e

y
d

id
n

o
t

e
xp

li
ci

tl
y

m
in

im
is

e
th

is

U
S

h
o

w
s

sy
m

m
e

tr
y

w
e

ll

U
S

im
il

a
r

p
e

rf
o

rm
a

n
ce

to
F

R
a

n
d

K
K

U
S

im
il

a
r

to
F

R
a

n
d

K
K

H
a

n
d

le
s

la
rg

e
(.

1
2

8

n
o

d
e

s)
b

e
tt

e
r

th
a

n
F

R

a
n

d
K

K

P
ro

d
u

ce
s

si
m

il
a

r

re
su

lt
s

to
F

R
a

n
d

K
K

w
h

e
n

co
m

p
a

re
d

u
si

n
g

th
e

g
ra

p
h

d
ra

w
in

g

p
ri

n
ci

p
le

s

K
a

m
a

d
a

a
n

d
K

a
w

a
i

(K
K

)

M
u

ch
sl

o
w

e
r

th
a

n

G
E

M
fo

r
g

ra
p

h
s

o
f

.
3

0
n

o
d

e
s

U
M

a
in

a
im

a
n

d
is

sh
o

w
n

in
la

yo
u

ts

U
p

to
3

0
n

o
d

e
s,

b
e

tt
e

r

re
su

lt
s

th
a

n
G

E
M

o
n

sm
a

ll
sp

a
rs

e
g

ra
p

h
s

fo
r

g
ra

p
h

d
ra

w
in

g

p
ri

n
ci

p
le

s

E
u

cl
id

e
a

n
d

is
ta

n
ce

sh
o

u
ld

a
p

p
ro

xi
m

a
te

g
ra

p
h

th
e

o
re

ti
c

d
is

ta
n

ce

S
im

u
la

te
d

A
n

n
e

a
li

n
g

(S
A

)

C
o

n
si

d
e

re
d

to
b

e
to

o

sl
o

w
to

b
e

u
se

d

p
ra

ct
ic

a
ll

y

U
P

e
rf

o
rm

s
w

o
rs

e

th
a

n
F

R
a

n
d

T
u

C
a

n
sh

o
w

sy
m

m
e

tr
y

U
P

e
rf

o
rm

s
w

o
rs

e

th
a

n
F

R
a

n
d

T
u

U
P

e
rf

o
rm

s
w

o
rs

e

th
a

n
F

r
a

n
d

T
u

C
a

n
b

e
u

se
d

fo
r

g
ra

p
h

s
o

f
u

p
to

6
0

n
o

d
e

s
w

it
h

si
m

il
a

r

p
e

rf
o

rm
a

n
ce

to
F

R
,

K
K

a
n

d
G

E
M

A
ls

o
tr

ie
s

to
p

re
ve

n
t

n
o

d
e

s
co

m
in

g
to

o

cl
o

se
to

e
d

g
e

s.

A
d

a
p

ta
b

le

T
u

n
k

e
la

n
g

(T
u

)
S

im
il

a
r

to
F

R
;

1
0

0

n
o

d
e

s
in

le
ss

th
a

n
3

s

U
P

e
rf

o
rm

s
b

e
tt

e
r

th
a

n
F

R
a

n
d

S
A

o
n

th
is

m
e

tr
ic

D
o

e
s

n
o

t
sh

o
w

sy
m

m
e

tr
y

a
t

a
ll

F
o

r
d

e
n

se
g

ra
p

h
s

F
R

p
e

rf
o

rm
s

b
e

tt
e

r

U
F

o
r

d
e

n
se

g
ra

p
h

s

F
R

p
e

rf
o

rm
s

b
e

tt
e

r

T
e

st
e

d
o

n
g

ra
p

h
s

u
p

to
6

0
n

o
d

e
s,

sp
a

rs
e

a
n

d
d

e
n

se
.

R
e

su
lt

s

a
re

b
e

tt
e

r
o

n
th

e

sp
a

rs
e

r
g

ra
p

h
s

A
im

s
to

p
la

ce
n

o
n

-

a
d

ja
ce

n
t

n
o

d
e

s
fu

rt
h

e
r

fr
o

m
e

a
ch

o
th

e
r.

If

o
th

e
r

fo
rc

e
-d

ir
e

ct
e

d

la
yo

u
ts

d
o

n
o

t
p

ro
d

u
ce

a
g

o
o

d
re

su
lt

th
e

n
tr

y

th
is

a
lg

o
ri

th
m

.

L
in

L
o

g
G

o
e

s
a

g
a

in
st

th
is

cr
it

e
ri

o
n

to
sh

o
w

cl
u

st
e

ri
n

g

V
io

la
te

s
u

n
if

o
rm

e
d

g
e

le
n

g
th

s
in

o
rd

e
r

to

e
m

p
h

a
si

se
cl

u
st

e
ri

n
g

A
b

le
to

d
ra

w
g

ra
p

h
s

w
it

h
m

a
n

y
th

o
u

sa
n

d
s

o
f

n
o

d
e

s

R
e

su
lt

s
in

g
ra

p
h

s
w

it
h

m
o

re
o

b
vi

o
u

s
cl

u
st

e
rs

th
a

n
K

K
a

n
d

F
R

F
o

rc
e

A
tl

a
s

S
p

e
e

d
ca

n
b

e

sa
cr

if
ic

e
d

fo
r

g
re

a
te

r

p
re

ci
si

o
n

o
r

vi
ce

ve
rs

a
.

In
te

rm
s

o
f

n
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s

re
q

u
ir

e
d

to
la

y
o

u
t

th
e

g
ra

p
h

it
ta

k
e

s
fe

w
e

r

th
a

n
F

R

A
ls

o
tr

ie
s

to
o

p
ti

m
is

e

cl
u

st
e

ri
n

g
b

u
t

to
a

le
ss

e
r

e
xt

e
n

t
th

a
n

L
in

L
o

g

E
d

g
e

s
sh

o
u

ld
b

e
a

s

sh
o

rt
a

s
p

o
ss

ib
le

T
e

st
e

d
o

n
g

ra
p

h
s

w
it

h

m
o

re
th

a
n

2
0

,0
0

0

n
o

d
e

s

(c
on

ti
n

u
ed

)

Gibson et al. 327

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


T
a

b
le

1
.

(c
o

n
ti

n
u

e
d

)

G
ra

p
h

d
ra

w
in

g
p

ri
n

ci
p

le
s

A
lg

o
ri

th
m

P
e

rf
o

rm
a

n
ce

E
d

g
e

cr
o

ss
in

g
s

S
ym

m
e

tr
y

E
ve

n
n

o
d

e
d

is
tr

ib
u

ti
o

n
U

n
if

o
rm

e
d

g
e

S
iz

e
N

o
te

s

P
iv

o
t

M
D

S
C

a
n

la
y

o
u

t
a

g
ra

p
h

w
it

h
1

0
0

,0
0

0
n

o
d

e
s

in

1
1

s

A
p

p
ro

xi
m

a
ti

o
n

to
a

cl
a

ss
ic

M
D

S
te

ch
n

iq
u

e

w
h

ic
h

re
p

ro
d

u
ce

s

g
ra

p
h

th
e

o
re

ti
c

d
is

ta
n

ce
s

a
s

E
u

cl
id

e
a

n

d
is

ta
n

ce
s.

N
o

d
e

d
is

tr
ib

u
ti

o
n

is

p
ro

p
o

rt
io

n
a

l
th

e
g

ra
p

h

th
e

o
re

ti
c

d
is

tr
ib

u
ti

o
n

M
o

re
th

a
n

1
0

0
,0

0
0

n
o

d
e

s

H
D

E
S

h
o

u
ld

b
e

e
xt

re
m

e
ly

fa
st

;
1

m
il

li
o

n
n

o
d

e
s

in

le
ss

th
a

n
a

m
in

u
te

O
ft

e
n

p
ro

d
u

ce
s

la
yo

u
t

w
it

h
m

a
n

y
e

d
g

e

cr
o

ss
in

g
s

S
im

il
a

r
to

P
iv

o
t

M
D

S

a
n

d
p

la
ce

s
a

d
ja

ce
n

t

n
o

d
e

s
cl

o
se

to
g

e
th

e
r

a
n

d
n

o
n

-a
d

ja
ce

n
t

fu
rt

h
e

r
a

p
a

rt

L
a

rg
e

va
ri

a
ti

o
n

in
e

d
g

e

le
n

g
th

s
in

la
rg

e
r

a
n

d

m
o

re
ch

a
ll

e
n

g
in

g

g
ra

p
h

s

M
o

re
th

a
n

1
m

il
li

o
n

n
o

d
e

s

S
ta

ti
c

la
yo

u
ts

ca
n

b
e

m
u

ch
w

o
rs

e
th

a
n

tr
a

d
it

io
n

a
l

fo
rc

e
-

d
ir

e
ct

e
d

a
lg

o
ri

th
m

s.

T
ri

e
s

to
a

ch
ie

ve
th

e

g
ra

p
h

d
ra

w
in

g

p
ri

n
ci

p
le

s
in

a
h

ig
h

e
r

d
im

e
n

si
o

n
a

l
sp

a
ce

.

A
C

E
L

ik
e

H
D

E
,

it
is

a
b

le
to

d
ra

w
g

ra
p

h
s

q
u

ic
k

ly

b
u

t
a

la
yo

u
t

is
n

o
t

a
lw

a
ys

a
b

le
to

b
e

co
m

p
u

te
d

D
o

e
s

w
e

ll
a

t

co
m

p
u

ti
n

g
g

ra
p

h
s

w
it

h

fe
w

e
d

g
e

cr
o

ss
in

g
s

N
o

d
e

s
m

a
y

e
n

d
u

p

b
e

in
g

p
la

ce
d

to
o

cl
o

se

to
g

e
th

e
r

E
sp

e
ci

a
ll

y
w

it
h

la
rg

e

g
ra

p
h

s
e

d
g

e
le

n
g

th

u
n

if
o

rm
it

y
is

p
o

o
r

U
p

to
a

b
o

u
t

5
0

0
0

n
o

d
e

s

R
u

n
n

in
g

ti
m

e
s

ca
n

g
ro

w
a

s
g

ra
p

h
s

g
e

t

m
o

re
ch

a
ll

e
n

g
in

g

IS
O

M
K

n
o

w
n

to
b

e

co
m

p
u

ta
ti

o
n

a
ll

y

e
ff

ic
ie

n
t

U
U

O
n

ly
te

st
e

d
o

n
g

ra
p

h
s

u
p

to
2

5
n

o
d

e
s

M
a

p
g

ra
p

h
th

e
o

re
ti

c

d
is

ta
n

ce
s

to
E

u
cl

id
e

a
n

d
is

ta
n

ce
s

W
a

ls
h

a
w

F
a

ir
ly

fa
st

,
co

m
p

u
te

d

la
yo

u
t

in
le

ss
th

a
n

3
0

s
fo

r
a

g
ra

p
h

w
it

h

fe
w

e
r

th
a

n
1

0
,0

0
0

n
o

d
e

s

U
G

iv
e

n
e

n
o

u
g

h
ti

m
e

ca
n

co
m

p
u

te
la

yo
u

ts
fo

r

g
ra

p
h

s
w

it
h

1
0

0
,0

0
0

n
o

d
e

s

L
a

yo
u

t
p

ro
ce

d
u

re
is

b
a

se
d

o
n

F
R

.

G
R

IP
A

b
le

to
la

y
o

u
t

g
ra

p
h

s

w
it

h
m

o
re

th
a

n
1

0
,0

0
0

n
o

d
e

s
in

le
ss

th
a

n
1

m
in

u
te

U
T

h
e

p
ro

je
ct

io
n

fr
o

m

th
e

h
ig

h
e

r

d
im

e
n

si
o

n
a

l
sp

a
ce

sh
o

u
ld

a
id

sy
m

m
e

tr
y.

S
ca

le
s

w
e

ll
to

la
rg

e
r

g
ra

p
h

s

F
M

S
A

ro
u

n
d

2
m

in
u

te
s

fo
r

a
g

ra
p

h
w

it
h

6
0

0
0

n
o

d
e

s
b

u
t

1
0

,0
0

0

n
o

d
e

s
a

t
th

e
m

o
st

N
o

t
co

n
si

d
e

re
d

b
e

ca
u

se
o

f
th

e
u

se
o

f

K
K

’s
a

lg
o

ri
th

m

U
S

in
ce

b
a

se
d

o
n

K
K

a
n

d
th

is
w

a
s

th
e

ir

m
a

in
a

im
.

L
o

ca
ll

y

a
e

st
h

e
ti

c.

A
b

le
to

co
m

p
u

te

la
yo

u
ts

w
it

h
a

u
n

if
o

rm

e
d

g
e

le
n

g
th

M
o

re
th

a
n

6
0

0
0

n
o

d
e

s
T

h
e

g
ra

p
h

sh
o

u
ld

b
e

a
e

st
h

e
ti

c
b

u
t

sp
e

ci
fi

c

cr
it

e
ri

a
a

re
n

o
t

d
e

fi
n

e
d

.
P

a
rt

ly
b

a
se

d

o
n

K
K

(c
on

ti
n

u
ed

)

328 Information Visualization 12(3-4)

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


T
a

b
le

1
.

(c
o

n
ti

n
u

e
d

)

G
ra

p
h

d
ra

w
in

g
p

ri
n

ci
p

le
s

A
lg

o
ri

th
m

P
e

rf
o

rm
a

n
ce

E
d

g
e

cr
o

ss
in

g
s

S
ym

m
e

tr
y

E
ve

n
n

o
d

e
d

is
tr

ib
u

ti
o

n
U

n
if

o
rm

e
d

g
e

S
iz

e
N

o
te

s

F
M

3
N

o
t

a
s

fa
st

a
s

H
D

E
b

u
t

st
il

l
q

u
ic

k
a

n
d

a
b

le
to

p
ro

d
u

ce
la

yo
u

ts
fo

r

e
ve

n
ve

ry
la

rg
e

g
ra

p
h

s

P
e

rf
o

rm
s

th
e

m
o

st

su
cc

e
ss

fu
ll

y
o

u
t

o
f

F
M

S
,

A
C

E
,

H
D

E
,

F
R

a
n

d
G

R
IP

o
n

e
d

g
e

le
n

g
th

u
n

if
o

rm
it

y

A
b

le
to

d
ra

w
g

ra
p

h
s

w
it

h
.

1
0

,0
0

0
n

o
d

e
s

in

\
2

5
s

a
n

d
1

0
0

,0
0

n
o

d
e

s
in

\
5

m
in

u
te

s.

P
ro

d
u

ce
s

th
e

m
o

st

vi
su

a
ll

y
a

p
p

e
a

li
n

g

la
yo

u
ts

fr
o

m
F

M
S

,

A
C

E
,

H
D

E
,

F
R

a
n

d

G
R

IP

H
u

S
p

e
e

d
is

si
m

il
a

r
to

W
a

ls
h

a
w

a
n

d
F

M
3

a
n

d

u
se

s
B

a
rn

e
s–

H
u

t
fo

r

o
p

ti
m

is
a

ti
o

n

U
U

U
C

a
n

la
y

o
u

t
.

1
0

0
,0

0

n
o

d
e

s
in

\
1

m
in

u
te

L
a

yo
u

ts
a

re
si

m
il

a
r

to

W
a

ls
h

a
w

a
n

d
F

M
3

b
u

t

ca
n

b
e

m
o

re
vi

su
a

ll
y

a
p

p
e

a
li

n
g

th
a

n

W
a

ls
h

a
w

’s

O
p

e
n

O
rd

H
a

s
a

p
a

ra
ll

e
l

im
p

le
m

e
n

ta
ti

o
n

to

im
p

ro
ve

p
e

rf
o

rm
a

n
ce

U
U

U
U

A
b

le
to

la
y

o
u

t
g

ra
p

h
s

w
it

h
.

5
0

0
,0

0
0

n
o

d
e

s

A
d

h
e

re
n

ce
to

th
e

g
ra

p
h

d
ra

w
in

g

p
ri

n
ci

p
le

s
is

im
p

li
e

d

si
n

ce
th

e
a

lg
o

ri
th

m

e
xt

e
n

d
s

F
R

a
n

d

si
m

u
la

te
d

a
n

n
e

a
li

n
g

b
u

t
a

im
s

to
p

ro
d

u
ce

a

cl
u

st
e

re
d

g
ra

p
h

T
o

p
o

L
a

yo
u

t
W

o
rs

t
ca

se
co

m
p

le
xi

ty

o
f

O
(n

3
)

U
C

ro
ss

in
g

re
d

u
ct

io
n

fo
r

e
a

ch
to

p
o

lo
g

ic
a

l

fe
a

tu
re

M
o

re
th

a
n

7
0

,0
0

0

n
o

d
e

s

P
ro

d
u

ce
s

vi
su

a
ll

y

a
p

p
e

a
li

n
g

la
yo

u
ts

u
su

a
ll

y
d

if
fe

re
n

t
to

th
o

se
p

ro
d

u
ce

d
b

y

o
th

e
r

a
lg

o
ri

th
m

s

Gibson et al. 329

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


about the view of the graph. Following this, it is not

always the graphs that adhere to these principles which

are the most comprehensible; in fact they can lead to

graphs which are ambiguous or unintuitive to the user.

The two graphs in Figure 2 provide an example in

which symmetry is more important than the avoidance

of edge crossings. Conversely, Purchase24 conducted a

user study on the effect of these principles on the

understanding (with graph-theoretic type tasks) of the

graph and found that minimising edge crossing was

the most important criterion whereas symmetry was

less so. This shows one of the problems with trying to

use these principles for layout: no one is really sure

which criteria are the most useful or in which situa-

tions they are most applicable.17

The designers of the graph drawing software tool

Nicheworks25 noted that trying to follow these graph

drawing principles does not always create a better

graph layout. Their software was designed to reflect

edge weights, avoid the high computational cost of

dealing with edge crossings and show clustering.

However, most force-directed algorithms are popular

because of their adherence to these principles and are

generally evaluated on that basis.

There are two approaches to force-directed layouts:

those based on Eades’ spring-embedder and those

which are solutions to optimisation problems. Eades’

spring-embedded approach uses a spring-electrical

system to find an equilibrium in the system so that the

total force on each node is zero. The other approach,

still inspired by Eades, treats the layout problem as an

optimisation problem, which minimises an energy

function (also known as the cost or objective function)

designed with respect to the properties of the graph to

be displayed.

Spring-electrical based approaches. Eades’ spring-

embedder16 is the basis for almost all force-directed

techniques. Nodes are modelled as steel rings and

edges as springs; the system is put into a random initial

configuration and released, leaving the system to reach

Table 2. A list of aesthetic considerations often used in graph layout and the motivation behind their use.

Aesthetic Reason

Minimise edge crossings Improves readability and aids the user in following paths. Edge crossings can also
conceal important information and make a graph appear less approachable to the
user21

Symmetry Symmetry aids in the understanding of the structure of a graph
Uniform edge lengths For a regular structure that prevents the graph becoming distorted
Uniform node distribution For a regular structure, visual appeal and to prevent the graph feeling cluttered22

Separate non-adjacent nodes Proximity implies a relationship and so adjacent nodes should appear more related
than non-adjacent nodes

Node–edge overlap Avoids visual elements appearing too clustered together and ambiguity as to where
the edge ends22

Figure 2. Two layouts of one graph. Both layouts are symmetrical, but users find the layout on the left easier to
understand than that on the right, despite the fact that it breaks the principle of having no edge crossings. (Reproduced
from Kamada and Kawai23.).

330 Information Visualization 12(3-4)

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


a stable state where the force on each node is zero.

The force on each node is the sum of attractive,

fa = c1 log d
c2

, and repulsive, fr =
c3

d2, forces on each

node, where d is the length of the spring and c1, c2, c3

are constants. From experimentation, Eades made the

decision to use springs of logarithmic strength, claim-

ing that linear strength springs were too strong.

Connected nodes are attracted to one another whereas

all other nodes, modelled as electrical charges, repel.

The resulting layout should have edges of uniform

length and symmetry. An example of spring-embedded

layout is shown in Figure 3.

Despite its wide use, Eades16 stressed his method’s

suitability only for graphs with fewer than 50 nodes

with underlying structures such as grids, trees and

sparse graphs rather than those with a dense structure.

Therefore, it often produces poor layouts for large

graphs and these problems are replicated in algorithms

that build on Eades’ approach.

The first adaptation, which was for speed and sim-

plicity, of the spring-embedder algorithm was by

Fruchterman and Reingold.26 This was subject to the

properties of connected nodes appearing close to one

another (but not too close), aiming for a layout which

conformed to the principles of even node distribution,

few edge crossings, uniform edge length, symmetry

and fitting the drawing to the frame. As with Eades,

connected nodes attract while all nodes repel through

a three-step process. The attractive, fa =
d2

k
, then

repulsive, fr = � k2

d
, forces are calculated, followed by

the ‘temperature’ governing the distance each node

can move during an iteration. d is the distance between

the two nodes and k=C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

area
numberofnodes

p
is the optimal

distance between the two nodes where area is the space

available and C is an experimentally determined

constant.

The algorithm is not guaranteed to converge, so

Fruchterman and Reingold suggest that 50 iterations

of the algorithm is sufficient for an optimum layout.

Their goal was for the algorithm to work well without

requiring the user to tune various parameters to pro-

duce a satisfactory layout. They considered it to be

fast, laying out most graphs in less than one second,

but restricted these graphs to a maximum of 100

nodes. An example of a graph laid out using

Fruchterman and Reingold’s algorithm is shown in

Figure 4(a).

Fruchterman and Reingold sped up their layout

through a modification known as the Grid Variant

Algorithm (GVA). The graph frame is divided into a

grid and for each node the repulsive forces are calcu-

lated only between those nodes that are in the same or

neighbouring grid squares; this was later altered to just

being inside a specified radius. Repulsive forces are

now

fr =
k2

d
u(2k� 1) where u(x)=

1 x . 0

0 otherwise

�

This speeds up the algorithm without affecting the

quality of the graph and in some cases may improve

the quality of the layout according to the graph draw-

ing principles by preventing the nodes from becoming

too widely spread, although Fruchterman and

Reingold expected this modification to be useful only

for larger graphs.

The algorithm is still used for graph layout with

Genc and Dogrusoz27 basing their model for laying

out biological pathways in PATIKA28 on it, and Garcia

et al.29 extending it to use as a basis for their layout for

displaying gene ontology class structure of nodes in a

protein–protein interaction network.

The final example of a spring-electrical-based sys-

tem is the graph-embedder (GEM) algorithm. Frick

et al.30 wanted to produce a layout that conforms to

the graph drawing principles for larger and more com-

plex graphs but with ‘interactive speed’. The exact

principles are not explicitly defined but are said to be

similar to the concepts for other spring layouts and the

system is evaluated on edge crossings, edge lengths

and node distribution.

Figure 3. The spring embedder algorithm drawn using
Cytoscape. The graph is a protein–protein interaction
network with 283 nodes and 1749 edges and will be used
as the standard graph for all running examples in this
section unless otherwise specified.

Gibson et al. 331

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


GEM uses forces similar to those used by

Fruchterman and Reingold, plus gravitational forces,

which pull nodes towards the barycentre of their

neighbours. Fruchterman and Reingold believed that

a better cooling schedule could have significantly

improved their algorithm and so Frick et al. imple-

mented an adaptive schedule with local and global

temperatures. The lower the local temperature of a

node the closer it should be to its final position in the

layout and the shorter the distance it can move in each

iteration. A node’s local temperature is dependent on

its temperature in the previous iteration and whether

the node is oscillating between positions or part of a

rotating sub-graph. The global temperature is the

mean of all local temperatures and the iterations stop

when global temperature reaches a specified value or a

fixed number of iterations have passed. The tempera-

ture is therefore adaptive to the state of the graph and,

because of this, differs from cooling schedules such as

those simulated annealing.31 The quality of the layout

should be similar to those of Fruchterman and

Reingold and Kamada and Kawai (‘Energy-based

approaches’). This includes minimising edge crossings

despite not being explicitly designed to do so. An

example of the layout produced by GEM is shown in

Figure 4(b).

Energy-based approaches. Energy-based approaches

consider layout to be the minima of an optimisation

problem in which an energy function encodes the

desired properties of the graph. Solutions which result

in local rather than global minima are not the optimal

solution and, in this case, will not produce the optimal

layout. As with the spring GEM algorithm, some

energy-based layouts can temporarily move to higher

energy configurations to reach the global minimum.

The two main methods using this approach are from

Kamada and Kawai23 and Davidson and Harel’s31

simulated annealing algorithm.

Kamada and Kawai23 use a spring approach with

the key concept that Euclidean distance in the layout

should approximate the graph-theoretic distance, i.e.

the shortest path length between two nodes. The prin-

ciple of symmetry is most important in this layout (see

Figure 2) and the cost function represents the ‘degree

of imbalance’ (lack of symmetry) in the layout and is

based on Hooke’s law (where the force exerted by a

spring is linear and proportional to its displacement

from its natural length). Optimisation requires solving

partial differential equations based on the sum of the

squares of the difference between the Euclidean and

graph-theoretic distances of pairs of nodes. In each

iteration only one node is moved and minimisation is

carried out through Newton–Raphson iteration and

the resulting layouts are symmetrical with few edge

crossings. An example of a layout produced with

Kamada and Kawai’s algorithm is shown in Figure 5.

There are similarities between this approach and those

of multi-dimensional scaling, and these are further dis-

cussed in ‘Dimension reduction for layout’.

Davidson and Harel’s31 simulated annealing also

uses an energy-based approach. Annealing is the pro-

cess of cooling a liquid slowly so that it forms a mini-

mal energy crystalline structure. Their approach is for

drawing graphs that comply with the graph-drawing

(a) (b)

Figure 4. The protein interaction network laid out using Fruchterman and Reingold’s algorithm (a) and the graph
embedder (GEM) (b).

332 Information Visualization 12(3-4)

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


principles of evenly distributed nodes, uniform edge

lengths and minimised edge crossings. They created

an explicit cost function comprising parts which gov-

ern node distribution, borderlines (distance from the

edge of the available layout area), edge lengths, edge

crossings and near node-edge crossings, which can be

weighted to prioritise specific aesthetics. The algo-

rithm begins from an initial configuration and global

temperature. In each iteration only one node is moved.

The distance a node can move decreases with each

iteration, and the temperature is recalculated at each

step. The process continues until a termination condi-

tion, such as iterating through a fixed number of

stages, is satisfied. Fine tuning of the graph can then

follow.

Davidson and Harel admit that the algorithm does

not perform well for graphs with over 60 nodes, but

performance is similar to the models by Fruchterman

and Reingold, Kamada and Kawai, and GEM. They

also concede that the algorithm was coded for func-

tionality rather than performance; consequently, the

algorithm is often not used practically because it is too

slow to be deemed useful.19 Exceptions to this are

from Li and Kurata,33 who implemented it in their

CADLIVE system for laying out biochemical net-

works, the jGraph34 layouts of Cytoscape35 and its use

in OpenOrd.36

Three other notable energy-based techniques are

from Tunkelang,19 Noack’s LinLog layouts37,38 and

ForceAtlas39 from Gephi.40 Tunkelang’s initial

approach is distinctive in that it requires computation

of a minimum spanning tree (a tree which connects all

nodes of the graph) to decide the order in which nodes

are placed. Optimisation of node position is based on

what he calls the aesthetic cost function encoding the

principles of uniform edge lengths, even distribution

of nodes and minimal number of edge crossings. It fol-

lows the approach of Fruchterman and Reingold in

using a grid to speed up computation of repulsive

forces. It also outperformed simulated annealing and

Fruchterman and Reingold in terms of minimising

edge crossings for all graphs, while for edge lengths

and node distribution Tunkelang’s approach performs

better on sparse graphs with Fruchterman and

Reingold’s better for denser graphs.

Noack37,38 takes an alternative to the principles-

based approach as his main aim is to highlight cluster-

ing in a graph. Other force-directed algorithms usually

miss this by striving for uniform edge lengths, but lon-

ger edges are required to separate clusters. The weak

connection between using graph-theoretic distance

and identifying low coupling between parts of the

graph also hinders clustering.38

Noack proposes two models, both with linear

attractive forces between adjacent nodes and logarith-

mic repulsive forces. In the node repulsion model

repulsive forces are calculated between all nodes in the

graph, again using their Euclidean distances, whereas

in the edge repulsion model repulsive forces act on

edges by weighting the calculation according to the

degree (number of edges connected to the node) of

each node. The edge model removes the node model’s

bias towards attraction by ensuring that nodes which

are strongly attracting are also strongly repelling; simi-

larly for those nodes with weak attraction. Therefore,

nodes with a high degree are less likely to be clumped

in the centre of the graph and, in comparison with

Fruchterman and Reingold’s layout, it is much more

clearly able to show any underlying clustered structure

in the graph.

The final energy layout has strong associations with

Noack’s. ForceAtlas39 was developed for use in

Gephi40 as their users were dissatisfied with given lay-

out algorithms. Rather than a layout, Jacomy et al. call

their method a ‘spatialization’, which is defined as the

act of projecting data onto space. The method aims to

optimise the speed versus precision approximation.

The forces in the algorithm are between Noack’s edge

repulsion model (logarithmic attractive force, linear

repulsive force) and Fruchterman and Reingold’s lay-

out (quadratic attractive, linear repulsive force) with

both linear attractive and repulsive forces. Attractive

forces are again distances between nodes and repulsive

forces are based on distances and node degree plus

one. This ensures that all nodes have at least some

repulsive force, unlike Noack’s model, and so poorly

Figure 5. The protein interaction graph laid out using the
Kamada–Kawai algorithm in Ondex.32

Gibson et al. 333

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


connected nodes are brought closer to well-connected

ones reducing visual clutter. The algorithm maximises

speed until it is clear that some nodes are unstable, at

which point it slows and emphasises precision. Jacomy

et al. also particularly wanted the layout to be interac-

tive for the user and so there are many options that

can be configured even while the layout is running,

which may alter the layout but also give users a better

understanding of how the algorithm can be manipu-

lated by the user to produce a layout that is most suit-

able for them.

In general, ForceAtlas produces better quality (in

terms of a normalised edge length metric proposed by

Noack41 based on size and graph density) with fewer

iterations for most graphs than Fruchterman and

Reingold and Yifan Hu (see ‘Computational improve-

ments’) and the results were even more convincing when

the technique was combined with Noack’s edge repul-

sion model; a comparison of the ForceAtlas layout with

and without the LinLog adjustment can be seen in

Figure 6. Performance improvements have also been

made by utilising the Barnes–Hut algorithm42 (explained

further in ‘Computational Improvements’) and multi-

threading.

Dimension reduction for layout

Dimension reduction is the process of taking data

expressed in high-dimensional space and projecting

it onto a lower-dimensional space. The challenge is

to try to retain the information that is in the

high-dimensional space and capture it in the lower-

dimensional representation. Most dimension reduc-

tion techniques currently used for graph layout use the

graph-theoretic distance between a pair of nodes

as the information that is to be preserved. This

section provides an overview of dimension reduction

techniques in graph drawing, in particular multi-

dimensional scaling (MDS), linear dimension reduc-

tion and self-organising graphs.

MDS involves minimising the difference between

the Euclidean and graph-theoretic distances. There

are two approaches of MDS to solve this problem: dis-

tance scaling and classical scaling.

Distance scaling is more common and the idea is to

directly compute an approximation of the difference

(the dissimilarity) between the graph-theoretic and the

Euclidean distance for each pair of nodes in the layout.

The sum of the squares of the difference is called the

‘stress’ of the layout and the aim is to minimise this

stress through an optimisation procedure. If the stress

is considered to be too high then this can be taken as an

indication that the layout is not an accurate representa-

tion of the original dissimilarities.43 This stress function

is regarded as being almost identical to Kamada and

Kawai’s energy function for force-directed layouts. The

difference between the two is that Kamada and Kawai

use Newton–Raphson iteration to find the minima

whereas distance scaling minimises the stress through

the statistical technique of stress majorisation.44

Distance scaling was first used for graph drawing by

Kruskal and Seery45 for social network layout and

since then it has also been used by Freeman43 to show

relationships between workers in a department store.

In addition, Buja et al.46 have implemented it as part

of the XGvis system.

With distance scaling the optimisation procedure

may result in a local minima solution. However,

(a) (b)

Figure 6. The protein interaction network laid out using the ForceAtlas layout. The layout on the left is the ForceAtlas
style only and on the right the layout uses Noack’s LinLog algorithm to aid the clustering of nodes. Both algorithms
produce layouts with a similar shape, with the LinLog adjustment resulting in a layout that requires a greater area.

334 Information Visualization 12(3-4)

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


classical (or Torgerson–Gower) scaling follows a method

of fitting inner products to the dissimilarities and finding

an exact solution through the spectral decomposition.

Formally, the spectral decomposition is the representa-

tion of the matrix of graph-theoretic dissimilarities

between node-pairs as the matrix of its eigenvectors and

a diagonal matrix of corresponding eigenvalues. By

choosing the largest d eigenvalues (where d corresponds

to the number of dimensions one wants to reduce to)

the lower dimensional representation of Euclidean dis-

tances between node-pairs can be found.

Brandes and Pich47,48 proposed that classical scaling

should provide a good alternative to distance scaling,

but its quadratic running time is prohibitive to imple-

mentation. They proposed a sampling approximation

technique known as Pivot MDS. In Pivot MDS some

nodes are assigned to be pivots (the first pivot is chosen

randomly and subsequent ones are chosen by being the

node with the greatest graph-theoretic distance from all

selected pivots so far). Non-pivots are positioned based

on their distances to the pivot nodes whereas the pivot

nodes can use the distances both to other pivot nodes

and non-pivot nodes to determine their position. This

is able to approximate the results of classical scaling

but in linear time. Brandes and Pich also recognised

that selecting the number of pivots was a key problem

and so implemented a second method, progressive

MDS, in which the number of pivots required could be

defined along the way.

Brandes and Pich48 recognise the importance of dis-

tance scaling, noting that it is more successful at show-

ing local details than classical scaling, which is more

suited to capturing global structure. They recommend

using a version of classical scaling for initial layout fol-

lowed by refinement through weighted distance scaling

(in fact they recommend this refinement for any layout

method). They also warn about the merits of approxi-

mating Euclidean to graph-theoretic distances, point-

ing out that if the structure of the graph is not well

captured by these distances then whichever layout

method is used the resulting layout will not be good.

Example layouts produced through both distance and

classic scaling are shown in Figure 7.

Although the technique uses principal component

analysis (PCA) for dimension reduction, Harel and

Koren’s49 high dimensional embedding (HDE) has

strong similarities with Pivot MDS. The aim of this

layout was to follow the convention of placing adjacent

nodes close together and non-adjacent nodes further

apart. The graph is first embedded in a high-

dimensional space by choosing 50 nodes as pivots and

associating each pivot with a dimension; nodes are then

expressed in high-dimensional space as graph-theoretic

distances from pivots. Then the graph is linearly pro-

jected onto two dimensions using PCA (although pro-

jection onto any lower dimensional space is possible).

PCA maps the data onto the first two principal compo-

nents, which account for the most variance in the data.

HDE is one of the quickest layout techniques available

and is implemented in both Topolayout50 and

Visone,51 although it does seem to come at the cost of

quality, in terms of edge lengths, co-located nodes and

edge crossings.52 Brandes and Pich48 note that both

algorithms have similar running times, although the

quality of Pivot MDS is higher than HDE. Koren53

improves upon the HDE method by replacing PCA

(a) (b)

Figure 7. The distance (a) and classical scaling (b) layouts for the protein interaction network.

Gibson et al. 335

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


with subspace optimisation, the aim of which is to find

a subspace of low dimensionality that can display the

graph with what they call a ‘nice’ (short edge lengths

and uniform node distribution) layout.

Spectral graph drawing also reduces dimensions by

using the eigenvectors associated with the two largest

eigenvalues of the graph-theoretic distance matrix

found via the spectral decomposition.54 The method

is also sped up by using only a sample of the nodes to

compute the graph theoretic distances, much like

HDE and Pivot MDS.55

Self-organising maps (SOM) can be used to draw a

self-organising graph. Here an unsupervised neural net-

work is formed to project high-dimensional data onto a

lower-dimensional space. For each node its neighbour-

hood is defined to be all connected nodes. There exists a

set of two-dimensional, uniformly distributed training vec-

tors and so each node is also described as a position in

2D space. The system tries to learn the distribution of the

training vectors by selecting a training vector followed by

its closest node. This node and all its neighbours’ posi-

tions are updated by moving the nodes closer to the posi-

tion of the training vector. This method tends to be easy

to implement and efficient because it has no computation-

ally expensive iterations. Bonabeau’s56,57 method can be

used as a standalone graph layout or as a pre-processing

step to provide initial layout. Owing to the difficulty in

training smaller graphs the method actually works better

for larger graphs. Meyer’s58 inverted self-organising map

(ISOM) fits graph-theoretic to Euclidean distances to lay

out the graph using an SOM method utilising their strong

clustering and structure detection capabilities.

Computational improvements

While force-directed techniques are generally not suit-

able for graphs with node numbers in the hundreds or

thousands, when evaluated qualitatively or against the

aesthetic principles on graphs with up to 40 nodes,

they do give good results.19,30 Above that size, multi-

level (or multi-scale) algorithms are one option that

can be used to make force-directed techniques more

efficient.37 The idea behind multi-level techniques is

to find a sequence of coarser representations of a

graph, optimise the drawing in the coarsest representa-

tion, and propagate that layout back through to the

original graph. The coarser representations are created

by collapsing connected nodes whose edges becomes

the union of the edges of all the nodes it comprises.

The inspiration for using a multi-level technique for

graph drawing came from Hendrickson and Leland,59

although the original idea came from particle phy-

sics.60 Their idea was to use a multi-level technique to

solve the graph partitioning problem of how to divide

the nodes of the graph into sets such that there are as

few edges crossing between the sets as possible.

Hendrickson and Leland solved this problem using

the coarsest representation of the graph to define the

partitions. An example of the stages of a multi-level

graph layout algorithm can be seen in Figure 8.

Once the graph has been reduced to its coarsest

level the method to actually lay out the coarse graph

varies. This can be using a force-directed algo-

rithm,60,62–64 a dimension reduction approach65 or a

spectral approach.66,67 Computational improvements

are not limited to multi-level methods and other tech-

niques are also successful.

Multi-level methods vary not only by the layout

algorithm used but also by the coarsening scheme

implemented. Cohen65 developed the first multi-level

technique and it has similarities to GRIP.60 The algo-

rithm follows the recurring theme that graph distances

should be reflected in Euclidean distances by using an

incremental layout approach with MDS. Instead of

(a) (b) (c) (d)

Figure 8. Four stages of a multi-level algorithm produced using Hu61 in Gephi.40 Each image, from left to right, shows
the layout propagated back up through each less coarse version of the graph, i.e. (a) is the coarsest version of the graph
while (d) is the final layout.

336 Information Visualization 12(3-4)

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


modelling the Euclidean distances on graph-theoretic

distances between nodes, Cohen opts to use the linear-

network distance. The linear-network distance reduces

the distance between nodes if there are multiple paths

between them, further emphasising the structure of

the graph; in particular, this strategy makes clusters in

the graph more prominent in the drawing.

Walshaw,64 GRIP (Graph Drawing by Intelligent

Placement)60,68 and Hu61 all share the idea of using

maximum independent vertex sets (MIVS) for their

coarsening procedures where an IVS is formed if there

are no two nodes connected by an edge in the subset,

and it is said to be maximal if the addition of any edge

to the subset would break this property. One of Hu’s61

contributions is a hybrid approach that allows the algo-

rithm to follow a simple edge collapsing coarsening

scheme typically but if more than 50% of the nodes

remain after the edge collapsing then the algorithm

reverts to the MIVS coarsening scheme. FMS’s (fast

multi-scale method)63 coarsening method is based on

an approximation to the k-centres problem-forming

clusters, which are then shrunk to single nodes while

its predecessor69 creates the hierarchy based on cluster

number, degree number and homotopic number. In

FM3(fast-multi-pole, multi-level method) Hachul and

Jünger62 use a novel method based on solar systems, in

which each node is classified as a sun, planet or moon

and each solar system is collapsed to one node.

Many of the multi-level algorithms are variations of

the force-directed layouts and since force-directed lay-

outs are modelled as physical simulations they can be

described as n-body problems. So, along with using a

multi-level scheme to improve computation, a Barnes–

Hut42 simulation can be used with a quad-tree to

improve the order of complexity of the calculation

from O(n2) to O(nlogn). A square is placed over the

initial layout of the graph and is divided into four. If

there is more than one node inside a sub-square then

it is divided into four. This procedure continues recur-

sively until each square contains at most one node.

Nodes are then clustered based on their position in

the quad-tree and those clusters considered to be far

from the node of interest form a super-node whose

forces can be considered as one reducing the complex-

ity of the force calculation.

In terms of the force-directed methods used in

multi-level algorithms, Walshaw’s method is quick and

is able to lay out a graph of 500,000 nodes in only a

few minutes using a modified version of Fruchterman

and Reingold’s algorithm. GRIP initially uses Kamada

and Kawai’s algorithm followed by Fruchterman and

Reingold’s for refinement, but the difference with

GRIP is that the layout can be done in any dimension

and Gajer et al. then suggest projecting down to two

dimensions at the end to create a smoother layout.

FMS (Figure 9(a)) also uses Kamada and Kawai’s lay-

out technique aiming to conform to the graph layout

principles at both the local and global levels. Hu61

(Figure 9(b)) claims to produce layout with a similar

speed to Walshaw but with better results for certain

graphs. He utilises the Barnes–Hut approximation but

can limit the number of recursive divisions, and adds

an adaptive cooling scheme to a general force-directed

model where step length remains constant until there

are five consecutive energy reductions, in which case

the step size is increased, or if there is an energy

increase then step length is decreased. FM3 is the final

multi-level force model which also uses the quad-tree

(a) (b) (c)

Figure 9. Three layouts of the protein interaction network produced using algorithms that aim to provide computational
improvements over traditional force-directed methods (a) is FMS, (b) is Yifan Hu’s and (c) is OpenOrd.

Gibson et al. 337

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


to approximate repulsive forces by rapidly evaluating

potential fields on each node. Further computational

improvements of FM3 have involved implementing a

version of it on the GPU for speed resulting in layouts

that were at least 20 times and up to 60 times faster.70

Spectral graph drawing approaches can also use

eigenvectors of the Laplacian matrix to produce a pro-

jection of the layout via the spectral decomposition.

For a general undirected graph the Laplacian matrix is

symmetrical with node degrees along the diagonal,

zero where there is no edge between two nodes or the

negative weight of the edge between the two nodes if

there is. If the graph is not weighted all edges can be

taken to have equal weight.

The algebraic multi-grid computation of eigenvec-

tors (ACE)66,71 algorithm is able to draw graphs with

millions of nodes in under one minute. It does this by

stating Hall’s72 placement algorithm as the eigen-

projection problem as in Equation (1), where L is the

Laplacian matrix, x is a vector of coordinates of the

position of each node and 1n = 11 . . . 1ð ÞT 2 Rn. ACE

then requires the coarsening phase, known as the alge-

braic multi-grid technique, to simplify and solve the

problem. Here the coarsening phase is based on stat-

ing the problem initially in a high dimension and then

to keep restating the problem in lower dimensions.

Once expressed in the lower dimension the problem

can be solved in that dimension and the solution can

be projected back up through the increasingly less

coarsened graphs to the original problem.

min
x

xT Lx

given xT x= 1

in the subspace xT � 1n = 0 ð1Þ

Frishman and Tal67 also suggested using a spectral

approach for layout, which used a sequence of coar-

sened graphs that were then partitioned. Layouts for

each partition, followed by a layout for the whole

graph, were found. This showed a greater clustering

ability than GRIP and sped up their technique further

by also implementing it on the GPU.

OpenOrd36 is a graph layout based on the VxOrd73

algorithm and implemented in the graph drawing soft-

ware Gephi. It is specifically designed to uncover glo-

bal structure, improve the visual appeal and shorten

the running time of force-directed graphs. It is based

on the phases of simulated annealing and incorporates

node clustering by ignoring or cutting long edges in

the layout (because of the force calculation, domina-

tion of the repulsive force gives more clustering). The

multi-level part uses Walshaw’s algorithm but instead

of using random initial positions for coarsening,

average-link clustering is used, which makes use of

both edge weights and graph distance to find clusters

to collapse. The algorithm can be implemented in

both serial and parallel. They have tested the layout

on real-world datasets with over 500,000 nodes and

found that the serial and parallel implementations pro-

duce similar results that were more visually appealing

than VxOrd. As can be seen from Figure 9(c) the

OpenOrd algorithm produces a layout markedly dif-

ferent to the others, clearly showing an overview and

clustered structure of the graph.

Chen and Buja74 also use a combined approach in

a method which can be applied to dimension reduc-

tion as well as to graph drawing problems. They do

this by taking a force-directed function and modelling

the attractive and repulsive forces with box-cox trans-

formations, which results in a generalisation of many

previously published energy functions in graph draw-

ing such as Noack’s LinLog. In this case the parameter

(such as clustering) that we wish to optimise in the

algorithm can be tuned.

Topolayout50 is a completely different approach to

finding coarser representations of the graph whereby

the algorithm detects topological features in the graph

(such as trees, clusters and complete graphs) and col-

lapses them into a single node. This is done repeatedly

until the coarsest graph is reached and then each fea-

ture is assigned its own layout algorithm and laid out

accordingly. These include circular layouts, the GEM

algorithm and also detecting and using the high-

dimensional embedding (HDE) layout algorithm dis-

cussed in ‘Dimension reduction for layout’. In their

evaluation they found it performed better, in general,

than FM3, ACE and HDE in terms of speed and a

visual assessment of the quality of the layout produced.

Evaluation of algorithmic layouts for graph
visualisation

Force-directed, dimension reduction and multi-level

algorithms are often evaluated to determine which

gives the ‘best’ layout. Typically, it is the adherence to

some of the principles of graph drawing, along with

the time taken to draw the graph, which are used to

determine which layout is best, although sometimes

only a visual inspection of the graph is used to assess

visual quality, as in Hachul and Jünger75 and

Archambault et al.50

The criticism of force-directed methods is wide and

varied but that does not seem to have prevented them

from becoming popular. The two main criticisms are

that they have a high running time, and therefore

become unsuitable for large graphs, and the second is

their tendency to get trapped in local minima (even

with some improvements added).60 These problems

338 Information Visualization 12(3-4)

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


are magnified in larger graphs resulting in layouts with

many edges crossing, node occlusion and labels on

nodes which are unreadable. Ultimately this leads to

nodes being placed in arbitrary positions76 or layouts

which have led to the term ‘giant hairball’ being

applied, an example of which can be seen in Figure 10.

They are also often unpredictable and may produce

very different graph layouts for graphs which differ

only slightly in structure,10 a problem known as ‘pre-

serving the mental map’.77

However, not all algorithms perform equally, so a

number of comparisons between layouts measuring

running time and other criteria have been conducted.

Tunkelang19 was the first to perform a quantitative

evaluation of his layout, comparing it with

Fruchterman and Reingold’s and simulated annealing.

He evaluated on the principles of uniformity of edge

lengths, uniformity of node distribution and number

edge crossings on a range of graphs. Small graphs had

about 16 nodes and large graphs between 50 and 60.

Sparse graphs have nodes with degree at most three

and dense graphs with degree greater than four. In

both small and large sparse graphs Tunkelang’s

method outperformed Fruchterman and Reingold’s

and simulated annealing on all three measures. On the

dense graphs Fruchterman and Reingold’s produced a

graph with more uniform edge lengths and node dis-

tribution than Tunkelang’s. Simulated annealing gives

the worst performance out of the three.

Frick et al.30 evaluated their GEM algorithm

against Fruchterman and Reingold’s and Kamada and

Kawai’s on 30 graphs on the criteria of running time

and the quality metrics of edge crossings, mean edge

length, edge length deviation and node distribution.

GEM was always the fastest algorithm, being at least

four times faster that Fruchterman and Reingold’s.

Kamada and Kawai’s layout slowed considerably once

graph size was larger than 30 nodes. In terms of the

principles the three algorithms produced similar

results, though GEM fared slightly better than

Fruchterman and Reingold’s while Kamada and

Kawai’s did better than GEM on the aesthetic criteria

with the smaller, sparse graphs.

Brandenburg et al.78 compared Fruchterman and

Reingold, Kamada and Kawai, GEM, simulated

annealing and Tunkelang’s approaches on general,

undirected graphs with straight lines. They found that

most graphs drawn conformed to the aesthetic princi-

ples of graph drawing, in particular uniform node dis-

tribution and edge length, while also stating them to

be empirically visually appealing. The layouts were also

stable, producing much the same graph each time the

chosen algorithm was run. However, the graphs were

small with no graph having more than 150 nodes plus

edges in total. Fruchterman and Reingold, Kamada

and Kawai, GEM and simulated annealing all pro-

duced relatively similar graphs, especially showing

symmetry, whereas Tunkelang’s generally produced a

different drawing with no symmetry. They suggest

using Tunkelang’s method as an option if the other

methods are unable to produce an adequate layout.

Kamada and Kawai’s and GEM were found to be the

quickest, followed by Fruchterman and Reingold’s if

the graphs were kept small. Simulated annealing is a

flexible method because of how it can be weighted to

prioritise specific aesthetic principles, but a lot of time

and patience is needed to configure these parameters

and then run the algorithm. Ultimately, they recom-

mend that Kamada and Kawai’s or GEM should be

used first, followed by Tunkelang’s and then simulated

annealing.

Hachul and Jünger52,75 evaluated the same six lay-

out algorithms twice; they were Fruchterman and

Reingold’s grid variant algorithm (GVA), FM3, GRIP,

FMS, HDE and ACE. Firstly, they evaluated only on

the basis of run time and their own visual inspection.

A total of 28 graphs were chosen on which to perform

the evaluation and were classified as artificial or real-

world and kind or challenging. In general, GVA was

always the slowest algorithm and took over 5 hours to

compute for the largest graph. FM3 was generally

faster and GRIP up to nine times faster again. FMS

produced layouts within a similar time period to FM3,

but it is restricted to graphs of fewer than 10,000

Figure 10. A larger protein interaction network
(approximately 1800 nodes) laid out using the GEM
algorithm. The algorithm produces a layout for the graph,
which would be termed a giant hairball.

Gibson et al. 339

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


nodes. Except on the two most challenging graphs,

ACE computed layouts in less than 10 seconds and

HDE computed most in under 1 second and all in

under 5 seconds. In inspected visual quality terms they

considered GVA to always produce a poor layout with

all other methods able to produce visually pleasing

results for the kind graphs. Despite being the quickest,

ACE and HDE suffer from node occlusion. GVA,

FM3 and HDE were the only algorithms able to pro-

duce layouts for all graphs and they considered that

FM3 always produces a pleasing layout.

In Hachul and Jünger’s52 second evaluation they

used the same layouts and test bed of graphs but

replaced the visual assessment with quantitative mea-

sures of uniform edge length, number of edge cross-

ings and non-overlapping of nodes and edges. For the

kind graphs, GVA, FM3, FMS, HDE and ACE all

produced layouts with uniform edge length; however,

ACE and HDE produced much more variation for the

challenging graphs. In terms of edge crossings all

graphs performed better than GVA and particularly

ACE and then FM3. FMS and HDE produced graphs

with a range of edge crossings while those plus FMS

also gave layouts with many overlapping nodes and

edges. Again they reported FM3 to be the most gener-

ally pleasing layout in terms of complying with the

graph drawing principles. Ultimately, the authors rec-

ommended that when attempting to lay out a graph

HDE should be used first, followed by ACE, but if

neither produces acceptable results then FM3 should

be used.

As mentioned at the end of the ‘Energy-based

approaches’ section, Jacomy et al.39 compared the

ForceAtlas layout with the ForceAtlas layout with a

LinLog implementation, Fruchterman and Reingold’s

layout and the layout produced by the non-multi-level

implementation of Hu.61 ForceAtlas in general pro-

duced better quality graphs (in terms of a normalised

edge length metric41) in fewer iterations. When com-

bined with the LinLog implementation, ForceAtlas,

for long-term quality (letting the algorithm run for

750 iterations), was shown to produce the highest

quality in terms of Noack’s metric. This is perhaps not

a surprise considering the LinLog layout was devel-

oped for this optimising metric.

There are few comparisons of the dimension reduc-

tion techniques against other algorithms but a compar-

ison from Brandes and Pich48 between HDE, FM3,

GRIP and classic MDS notes that each of the layouts

can be improved by applying up to 60 iterations of dis-

tance scaling to the layout as a post-processing refine-

ment to any original algorithm.

User studies of the effect of layout are less common,

but one exception to this is the comparison of three

force-directed layouts by Purchase.24 She found that

for three layouts tested (Fruchterman and Reingold,

Kamada and Kawai, and Tunkelang) there was little

variation in users’ understanding of the graph between

layouts despite the fact the each layout emphasised a

different aesthetic principle. This could indicate that

the use of these criteria in layout is not as important as

first thought; however, the graphs tested had only 17

nodes and 29 edges and so the graphs may not have

been large enough distinguish between the principles,

the principles were competing with each other or the

graphs were too small to produce much variability in

the layout or difficulties to overcome.

What is interesting, though, is the type of tasks she

asked her users to complete. These were finding the

shortest paths, identifying nodes to remove in order to

disconnect the graph and identifying edges to remove

in order to disconnect the graph. A particular consid-

eration is whether these tasks are representative of

those carried out by users in visual network analysis.

The readability and graph drawing principles quali-

ties emphasised by most force-directed methods seem

to support this style of task, and are feasible on the

small graphs for which force-directed layouts work

optimally, but it is unclear whether these types of

accurate, precise measurements are typical analysis

tasks for graphs with hundreds or thousands of nodes.

Therefore, if force-directed layouts are optimal for a

particular task and these tasks are completed only on a

certain size of graph then extending force-directed

techniques to larger graphs would produce a layout

that is only perceived to be optimal for those tasks. So

if those kinds of tasks become infeasible because of the

volume of nodes and edges then the better layouts

should support the user for a different set of tasks.

Noack’s38 LinLog layout is optimised for clustering

to give a clear representation of the structure in the

network, and van Ham and Rogowitz79 found users

tried to optimise clustering ahead of any other aes-

thetic metric, which also indicated that users are more

concerned with overall structure. Another aim for lay-

out should, then, be to support users in tasks con-

cerned with overview, structure, exploration, patterns

and outliers.80 Algorithmic layouts which tend towards

this motivation for layout are Noack’s LinLog and

OpenOrd.

Away from direct comparisons, a general problem

noticed by Gansner and North81 is that most force-

directed algorithms were drawn with ‘point’ nodes in

mind (nodes that are drawn as a dot rather than a disc)

whereas many graphs in information visualisation

require nodes to be shown with varying size, colour

and shape, and for them to be labelled or interactive.

Archambault et al.50 call this being ‘area-aware’. This

is particularly prevalent in network visualisations,

where being able to interact with and explore the graph

340 Information Visualization 12(3-4)

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


is more common than with graph drawing only. An

alternative to simply scaling up the diagram is to use a

post-processing solution of constructing a Voronoi dia-

gram over the graph. A Voronoi diagram is constructed

by partitioning a plane into convex polygons such that

there is one node in each polygon known as a cell.

Nodes are then moved to the centroid of their cell,

which is the point most removed from all other nodes;

thus, they no longer overlap but neither do they lose

the relative distance between each other. Additionally,

the straight line edges are then replaced with smooth

curves to prevent node-edge overlaps, which has been

found to improve readability.82,83

Running time aside, it is still the graph drawing

principles on which most graph layouts are judged.

However, studies on user requirements and the impact

of these principles are lacking, especially on graphs of

any significant size. This means that the layout algo-

rithms used may not be satisfying anyone’s require-

ments at all.

Because of this dissatisfaction with standard layout

outputs, new techniques have been developed. These

techniques often make use of node-attribute data.

Node-attributes are additional pieces of data that may

be known about each node, which can be used to

enrich the understanding of the graph. The evaluation

of these techniques is more focused on what can be

learnt or what insights can be made through using this

layout than on conforming to specific principles.

Techniques that take advantage of node-attributes are

discussed in the next section.

Using node-attributes for layout

Graphs that are defined along with attributes from

their nodes are termed multi-variate graphs. Graphs

that have this kind of structure are actually quite com-

mon.35,43,84,85 The most popular way of visualising

these underlying data is to use retinal variables such as

the colour (and colour gradients), shape and size of

the drawings of the nodes; additionally, glyphs can also

be used.

Here we take an attribute to mean:

(a) a piece of data about a node (or edge) that

already exists;

(b) a derived item of data about a node such as a

computed centrality metric or a cluster gener-

ated from an algorithm; or

(c) a user-defined restriction that they want the

graph to portray.

As stated above, users strongly interpret the prox-

imity of a node in relation to others as the existence of

a relationship or similarity between two nodes.

Similarity of attributes would also imply a similarity

between two nodes. Therefore, introducing attributes

is one way of relating the layout of the graph to the

properties of its nodes. Being able to make inferences

about correlations between the structure of a graph

and node-attributes is one way of increasing the poten-

tial insight to be gained from visualising it.86

Using attributes to influence the layout of the graph

is not such a recent idea. As far back as the 1930s

Jacob Moreno realised that ‘variations in the locations

of points could be used to stress important structural

patterns in the data’;87 for example, simply separating

boys and girls when graphing friendships between

classmates or placing American football players in

their positions on the field in a pass network gives valu-

able insight into the structure of relationships in the

graph.88 Lundberg and Steele89 and Northway90 used

sociometric status for determining node position.

Lundberg and Steele used those with high status as the

nuclei of the network and placed others in a ring

around them for presenting their research on social

patterns in a village. Northway used a layout of con-

centric circles, known as a target sociogram, putting

nodes with higher values close to the centre for dis-

playing relationships between pupils in a classroom. A

similar method has also been used by Brandes and

Wagner51 and Brandes et al.91 to show the preventative

measures for HIV introduced by local organisations in

Germany where various node centrality measures were

used to show status.

Recently, it has become even more common to use

node-attribute data for layout of graphs. There are

three main ways in which attributes can be used in

graph layout: one is to impose a set of restrictions on

the placement of nodes; a second is to use membership

of a group or cluster to position the nodes; and a third

is to directly map an attribute (or attributes) to a coor-

dinate in the layout space (e.g. x and y in a Cartesian

system).

Constraint-based layouts

As with multi-level techniques, constraint-based meth-

ods often make use of force-directed algorithms.7 As

shown in the section ‘Family of force-directed and

related graph drawing algorithms’, force-directed algo-

rithms and their derivatives use aesthetic principles as

motivation, in their implementation and for their eva-

luation. Constraint-based techniques impose some

user-defined placement criteria on all or a selection of

the nodes in addition to using a layout algorithm.

These can be constraints such as fixing node position,

separating certain groups of nodes or adding layout

Gibson et al. 341

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


constraints to a fixed sub-graph. These constraints

often come from node-attributes in the data.

Probably the most well-known use of constraints in

graph drawing is the Sugiyama et al.92 approach for

hierarchical structures. The hierarchy can already exist

in a directed graph or could be induced from a set of

node-attributes. It results in a layered style in which

vertical positions are assigned first, followed by hori-

zontal ones to reduce edge crossings. A version of this

has also been applied by Brandes et al.93 using the ver-

tical attribute to depict a person’s status in a social net-

work and by Brandes and Wagner51 by clustering and

using each cluster as a layer.

A similarly inspired method by Koren and Harel94

is an application of one-dimensional layout optimisa-

tion by axis separation. A one-dimensional layout is

computed, in which the layout of nodes on each axis

can come from a node-attribute, a particular aesthetic

consideration or the application of an existing layout

algorithm to one dimension (Koren and Harel give an

example of using Kamada and Kawai’s), each of which

provides a one-dimensional coordinate. The second

dimension can then be left to show hierarchy or clus-

tering in the data, another node-attribute or, as the

authors propose, a web-based example in which the

same nodes emit two different graphs (one showing

hyperlink structure and the other page similarity) and

produce a one-dimensional layout for each, then com-

bine the axes into a two-dimensional plot.

Mapping nodes to one axis is also the rationale

behind Krzywinski et al.’s Hive plots.95 Multiple axes

are positioned radially and nodes are divided between

axes according to some attribute or their connectivity

structure and then distributed along each axis accord-

ing to another attribute. An edge is drawn as a curved

line between axes and nodes may appear more than

once in a layout in order to clarify structure. They call

the layout a ‘rational visualisation of networks’ and a

panel of hive plots can be created to view multiple

attributes at the same time. The main aim of hive plots

is to uncover structure in the graph that could not be

previously seen with other network diagrams and to be

able to do so for graphs of any size. In Figure 11 a hive

plot shows the dependencies between classes in the

Flare visualisation tool-kit. Nodes are clustered by

class type and the two distinct axes show nodes which

are either only source or only target nodes. The dupli-

cated axes show nodes which are both source and tar-

get nodes.

Most constraint-based layouts take the form of sol-

ving an optimisation problem subject to some con-

straints. He and Marriott96 recognised that adding

constraints to the layout could aid interactivity through

preserving the user’s mental map of the layout when

nodes are moved. Realising that adherence to graph

drawing principles was restricting users’ understanding

of the underlying semantics of the graph, they pro-

posed three implementations (plus one for trees). The

first was a constrained version of Kamada and Kawai’s

algorithm and the second a polynomial approximation

to this constrained version. The third combines the

two methods by initially applying the polynomial

approximation method to the graph, which gives per-

formance benefits (up to four times faster) followed by

the full method, which optimises the layout to better

adhere to some of the graph drawing principles.

Much of the work on constraint-based layout

methods has been done by Dwyer and various

co-collaborators, though initially they focused only on

direction as an attribute in DiG-CoLa (constrained

layout of digraphs)97,98 basing it on Sugiyama’s

method but adding a further optimisation procedure

for consideration of the aesthetic principles. They

extended this by adding orthogonal ordering con-

straints, which imply relative node position in relation

to all other nodes (a kind of spatial arrangement attri-

bute), again preserving the user’s mental map.99

A more generic method from Dwyer et al.100 is IP-

Sep CoLa (Incremental Procedure for Separation

Constraint Layout of graphs). This method forces a

separation between nodes by adding constraints such

as organisation into horizontal or vertical layers, con-

tainment in a fixed area (as shown in Figure 12), fixing

node positions and non-overlapping nodes by

Figure 11. A hive plot showing dependencies between
classes of the Flare visualisation tool-kit implemented in
d3.js. (Image based on http://bost.ocks.org/mike/hive/).

342 Information Visualization 12(3-4)

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


considering certain attributes. This method was sug-

gested as being useful for displaying protein interac-

tion networks by Barsky et al.101 and Jianu et al.,102

but both found that its adaptability is negated by its

complexity; however, Dwyer et al.103 make use of the

method interactively by implementing it in the

detailed view for overview+detail graph exploration.

It is further extended by its use for continuous layout

in the diagramming tool ‘Dunnart’ by preserving

topology in response to user interaction.104,105

The biology community is a particular driving-force

behind the use of node-attribute data for constrained

graph layout.27,101,102 This is often because there are

already conventions that depend on node-attributes

(from when layouts were drawn manually) that failed

to be satisfied by automatic layout algorithms.

Examples are Cerebral from Barsky et al.101 for the

inclusion of sub-cellular localisation, which positioned

the regions in layers with a modified version of simu-

lated annealing. Jianu et al.102 and Genc and

Dogrusoz27 required signalling pathway drawing con-

ventions in their interaction network (see Figure 13)

and Jourdan and Melancon107 required the use of con-

ventions from metabolic and regulatory pathways. As

Barsky et al.101 put it, the nodes need to be positioned

in a ‘biologically meaningful’ manner.

MagnetViz108 also blends force-directed techniques

with attributes for layout. Initially the graph is laid out

as an adapted version of Tunkelang’s19 force-directed

layout from which point the layout become interactive.

A user can then assign a virtual magnet to represent a

particular attribute and decides where to place this on

the graph. Nodes then rearrange their locations

depending on the presence of that attribute. Those

nodes which have that attribute are attracted towards

the magnet and it is up to the user to decide how

strongly attracting each magnet can be; the user can

also define a boundary inside which all nodes with that

attribute should be. Multiple magnets can be used in

the layout, which support the use of logical operators

for combinations of attributes. After each addition of a

magnet the graph reorganises its layout to reflect the

new forces in the graph. Problems with the approach

mainly lie on the user’s side in that the user cannot be

relied upon to create layouts that are necessarily the

most useful for the the tasks they want to accomplish,

may put magnets in inappropriate positions or not

select the best combinations of attributes to use.

Spritzer and Freitas accept that the tool can have a

steep learning curve, but they have also proposed a

number of improvements they will make to the tool

including limiting the strength of the magnets, chang-

ing the boundary size in proportion to the number of

nodes included within it, adding filters to hide nodes

and incorporating different layouts for nodes attracted

to different magnets. However, if the method is cor-

rectly applied then it can produce layouts that are

‘aesthetically pleasing and semantically relevant’ that

Figure 12. A layout of a metabolic pathway with containment constraints (originally published by BioMed Central in
Schreiber et al.106).

Gibson et al. 343

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


enable the user to complete many of the graph analysis

tasks defined by Lee et al.80

A pure attribute-only-based generic constraint-

based layout technique is Shneiderman and Aris’s

NVSS (Network Visualisation by Semantic

Substrates).76,109 Nodes are placed in non-overlapping

regions according to the value of a particular attribute;

nodes inside these regions can then be further posi-

tioned with respect to other attributes. Each region is

described as a semantic substrate, and proportioning

substrate size to the number of nodes it contains

allows a quick and easy comparison of category sizes

while the use of the regions makes it easier to identify

links between categories and to follow connections. It

has proved useful in the analysis of legal precedent

data, and an example network is shown in Figure 14.

Genetic algorithms provide another way of encod-

ing constraints into graph layout. Like some force-

directed methods they do not solve the optimisation

problem directly but follow the genetic operations of

mating and mutation. The idea is that good genes will

thrive and bad genes will die out. In graph layout this

is akin to reaching the optimal layout according to the

specified constraints.110 Kosak et al.111 specified that

perceptual organisation (the principles of grouping

from Gestalt laws) was more important than layout

aesthetics and proceeded to lay out the graph using a

genetic algorithm according to conformation to these

features (such as clusters or zones, sequences,

alignment and symmetry), syntactic validity (overlap-

ping nodes or intersection of nodes and edges) and

also some graph drawing principles. The genetic algo-

rithm was more successful than following these rules

alone and its strengths lie in being able to handle mul-

tiple interacting visual organisational features and aes-

thetics, while at the same time claiming to produce

layouts of excellent quality. Two drawbacks of the

method are that the genetic algorithm may never find

a valid layout and that the algorithm may take a long

time to converge. Branke et al.112 combined each

iteration of a genetic algorithm with the spring embed-

der until it no longer improved the quality of the

graph. They tested it on graphs that are usually diffi-

cult for the spring-embedder to lay out successfully

alone and found that it was able to produce graphs

that reduced the number of edge crossings compared

with the force-directed layout.

As some constraint-based layouts include one or

more of the graph drawing principles as a constraint,

some of these layouts can be analysed in a similar

respect to those in ‘Family of force-directed and

related graph drawing algorithms’. Sugiyama et al.’s

layout, for example, considers the principles of edge

crossings and keeping adjacent vertices close, and can

lay out graphs with more than 500 vertices. Brandes

and Wagner built on Sugiyama et al.’s layout to con-

sider the constraint of clustering. Hive plots do not

follow the graph drawing principles and once all the

Figure 13. A screenshot of a protein interaction network overlaid on a signalling pathway where the pathway provides a
scaffold for the network to be positioned around.102

344 Information Visualization 12(3-4)

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


data for the axes are computed it takes less than one

second to lay out a graph with many thousands of

nodes. In an application-based context hive plots have

been compared to the ForceAtlas layout, demonstrat-

ing how they are able to more clearly show certain

structural features of the graph. The addition of con-

straints to the Kamada–Kawai method by He and

Marriott96 does not significantly affect running time

and they were even able to combine it with a polyno-

mial approximation.

DiG-CoLa97 was tested against a Sugiyama-style

layout and, while it produced more edge crossings for

smaller graphs, DiG-CoLa had fewer edge crossings

for the larger graphs. Dig-CoLa’s edge lengths were

also more uniform and it took seven minutes to lay out

approximately 2000 nodes. Meanwhile, IP-Sep CoLa

also included support for clustering, preventing node–

label overlap and various positioning constraints. In

100 seconds IP-Sep CoLa can lay out 10,000 nodes.

Barsky et al.’s Cerebral can lay out a few thousand

nodes if the number of attributes is kept to around 12

or fewer. They considered edge crossings, node-edge

crossings, edge-lengths and also biological proximity

in the optimisation of their layout. MagnetViz reported

that their method was able to produce an aesthetically

pleasing graph whereas NVSS focused on clustering,

groups and filtering. The genetic algorithms did not

consider specific principles; only that the user could

incorporate whichever principle he or she may wish

into the optimisation.

Clustering-based attribute layout

Showing clustering in the layout of the graph is one of

the most efficient ways of communicating structure in

a graph to users. Users even completely neglect

the aesthetic of edge crossing in favour of clustering

the graph.79 ‘Energy-based approaches’ reviewed

Noack’s37,38 proposal for a force-directed approach for

showing clustering (although the clusters were deter-

mined by the algorithm rather than being a defined

attribute). The OpenOrd36 layout mentioned in

‘Computational improvements’ also groups nodes into

clusters according to topology. Methods do exist, how-

ever, to either explicitly show clusters already encoded

as attributes or to show clusters that have been inferred

from attribute similarity.

Extending the semantic substrate idea from

‘Constraint-based layouts’ is the Group-in-a-Box lay-

out113 (as shown in Figure 15), which groups each

cluster into the rectangle of a treemap and each cluster

is then laid out individually inside each rectangle.

Figure 14. Network visualisation by semantic substrates. The data set visualised is one used for analysing legal
precedents where each node represents a citation in either the supreme or circuit courts. Reproduced with the
permission of Shneiderman and Aris.109

Gibson et al. 345

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


Other treemap approaches have also been used.

Fekete et al.114 took the idea of decomposing every

graph into a tree structure plus some remaining edges

and then using this tree structure to display the graph

as a treemap upon which the links between nodes can

be overlaid, as did Muelder and Ma.115 However,

while Fekete et al. put all nodes that did not fit into

the computed hierarchy into a separate section,

Muelder and Ma used hierarchical clustering to com-

pute the tree structure, so that all nodes were part of

the treemap. Muelder and Ma115 showed their

approach scales to over 300,000 vertices and that it

can be used both independently and as an initiation

strategy for force-directed layouts.

Following their treemap layout method Muelder

and Ma116 went on to propose the use of a space-

filling curve for layout. The nodes are positioned along

the curve according to some computed node ordering

to maximise the usage of space. For weighted graphs

single linkage clustering is used and for unweighted

graphs a community structure algorithm is used to

decide the node orderings. Muelder and Ma demon-

strate that the technique can be used for graphs with

over one million nodes. They compare two of their

space-filling layouts with a treemap layout115 and vari-

ous algorithmic layouts (LinLog, GVA, FM3, GRIP,

ACE and HDE) on a graph with 6000 nodes. While

ACE and HDE were clearly the quickest (about 3.5

times faster than the space-filling layouts) their layouts

showed no structure at all. GVA, LinLog, GRIP and

FM3 were all slower (1.5 s for GRIP to three minutes

for LinLog) and produced hairball-type layouts. The

treemap and two space-filling layouts all computed in

a similar time of under one second. Their layouts were

clearly able to show a clustered structure because a

clustering algorithm was used as part of the layout to

decide the node ordering in the space-filling case and

for the treemap in the other case. This leaves a depen-

dency on being able to detect a clustering in the graph,

but if one exists the method is very useful for visualis-

ing the overall structure of the network. Itoh et al.117

also used a similar space-filling approach for multi-

category graphs (i.e. many attributes) that computes a

clustering hierarchy from similarities between node-

attributes. The graph of clusters is then laid out using

a simple force-directed method and nodes within each

cluster are delineated by a rectangle and laid out using

a space-filling algorithm.

Figure 15. The Group-in-a-Box layout from NodeXL of the clustered protein interaction network.

346 Information Visualization 12(3-4)

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


Both GOlorize29 and GraphScape118 extend force-

directed methods to use attributes to show clustering.

GOlorize adds a virtual node to the graph to represent

each cluster. Virtual edges are then added from the

virtual cluster node to members of that cluster. This

then drags apart the clusters using Fruchterman and

Reingolds’s force-directed algorithm, which is very

similar to the general method proposed by Huang and

Eades.119 With GraphScape, nodes are clustered

based on attribute similarity first and then a modified

version of the spring-embedder algorithm is applied to

reflect this similarity. Additionally, running time is

improved if the FADE120 algorithm is implemented

alongside layout and certain attributes are emphasised

through a mountainous landscape metaphor where

height represents some attribute value.

Pretorius121,122 proposes two attribute layouts

based on a hierarchical clustering procedure. The

first is applied to a large (. 50,000 nodes) state tran-

sition graph for which the user initially selects a

number of attributes they are interested in an order

of importance. The nodes are divided into clusters

based on their values for the most important attri-

bute; these clusters are then sub-divided according

to their value of the second attribute. This recursive

sub-partitioning continues for each attribute and the

hierarchy is pictured as the background to the graph.

Nodes are placed horizontally along the bottom of

the hierarchy according to their attributes. For

numerical attributes bar charts show the presence of

these attributes below the graph and correspond to

the levels in the clustering hierarchy. The transitions

between states are then shown as arcs, which indicate

direction enabling the user to combine the attributes

and the graph to identify recurring patterns in the

data.

In the second multi-variate graph visualisation

Pretorius122 again uses the context of a state transi-

tion graph. In this case all nodes are placed in a verti-

cal line on both the left (as a source) and right (as a

target) sides of the graph in order to indicate direc-

tion. As the technique can also visualise edge attri-

butes, labels describing the types of edges are placed

between the two sets of nodes. Each edge of that type

must pass through its corresponding label’s box. The

order in which the nodes appear depends on their

attributes and, much like the previous method, there

is a recursive clustering approach of partitioning

based on the first attribute and then on the second,

and so on. The method scales to more than 10,000

nodes and users were able to analyse the state transi-

tion graphs more effectively. This suggested to the

authors that the technique could be applied to multi-

variate social networks and even be generalisable to

all multi-variate graphs.

Mapping attributes directly to 2D space

Perhaps the most obvious use of node-attributes

in graph layout is using an attribute that already repre-

sents a position. This may be a position such as

geo-coordinates, which allow the graph to be superim-

posed over an image such as a map,123,124 or placed as

they would line up on a soccer125 or an American foot-

ball pitch.88 However, just because a node has a spatial

attribute does not mean that it is necessarily the most

informative projection of the data; for example, the

most interesting patterns might not be geographic

ones.126

The direct mapping of two attributes to Cartesian

coordinates in 2D space is also possible. By way of

example, consider the aggregated graph layout,

PivotGraph.127 PivotGraph is based on the idea of

pivot tables from spreadsheets and uses an OLAP

(Online Analytical Processing) database model in

order to produce a grid-based graph showing two cate-

gorical attributes with node sizes representing the

number of nodes with that attribute. This technique

allows the exploration of the relationships between

attributes in the graph through collapsing and expand-

ing the attribute nodes; however, it can also obscure

the topology of the graph by making graphs appear

connected or cyclical when they are not.

Two similar methods for SNA (Social Network

Analysis) are given by Bezerianos et al.13 and Viau

et al.128 Bezerianos et al.’s GraphDice builds on a simi-

lar technique for scatterplots called ScatterDice129 and

aims to be more of an exploratory tool than other SNA

visualisation tools, which tend to be confirmatory.

Like Viau et al.,128 it provides two views of the data.

One is an overview scatterplot matrix (seen on the left

in Figure 16), which shows a small multiple of each

possible combination of attributes, while the other

larger graph view (seen to the right) shows a full image

of the graph based on the two currently selected attri-

butes. GraphDice uses attributes that are application

specific (e.g. in a co-authorship network, papers writ-

ten, citation count, field) as well as node centrality

metrics. Viau et al.128 also allow parts of the graph to

be laid out manually or using a force-directed layout.

GraphDice received positive feedback from a user

working in the history domain while Viau et al.’s imple-

mentation also received praise from the biologists with

whom they were working, who claimed it could prove

to be a valuable part of their work flow.

There is no limit to the number of attributes a node

can have. Therefore, it should be possible to use all of

these attributes for layout. A number of techniques

using dimension reduction have been proposed, the

first of which was a multi-dimensional visualisation of

state transition graphs by Pretorius and van Wijk,130 in

Gibson et al. 347

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


which the graph is composed of the state transitions

and the attributes are the variables of each state. A

user then selects a subset of variables to be included in

the visualisation and five possible projections into two

dimensions are offered: uniform distribution, manual

distribution, hypergrids, rotated hypergrids and a PCA

projection. However, ultimately for this application

they found that simply visualising the state variables as

parallel histograms enabled them to fulfil the tasks they

wished to carry out with the graph most successfully.

The PCA projection allowed them to see the different

phases of the system easily, but they were unable to

find correlations between the graph and variables.

Since Pretorius and van Wijk’s attempt there have

been more successful efforts at using dimension reduc-

tion for visualisation of graphs using node-attributes.

GeoSOM131 (geodesic self-organising map) was a

hybrid approach to laying out graphs using both node-

attributes and properties of the graph based on a world

metaphor. The SOM is trained to place vertices with

similar attributes close to one another and the algo-

rithm was improved in order to non-linearly take into

account the graph distances between vertices (the

same approach as Kamada and Kawai’s23 force-

directed method), resulting in a layout that reflects

both the graph’s structure and its attributes.

Evaluating their layout, they found that the non-linear

incorporation of graph distance rather than linear132

decreased the number of edge crossings in the layout.

From a user study they also found that users were able

to combine the structure and the attributes to extract

useful information from the graph better than they

were able to using a force-directed layout and a glyph

approach for the presentation of the attributes. An

example of the GeoSOM layout for an international

metal trading network is shown in Figure 17.

Two recent methods that also use the idea of

dimension reduction are EdgeMaps by Dork et al.133

and Gibson and Faith’s134 application of targeted pro-

jection pursuit (TPP) to graph layout. The aim of

EdgeMaps was to unite the visualisation of node–link

diagrams that show the explicit relationships between

nodes in the graph and multi-dimensional scaling

techniques used to visualise implicit relationships, i.e.

attribute data. The layout is produced from an MDS

projection of attributes onto a Cartesian space and

position is double encoded by hue and saturation. In

particular, three application areas are explored: influ-

ence relationships of philosophers, musicians and art-

ists on others in their field. Implicit relationships are

Figure 16. GraphDice.13 A screenshot of the GraphDice tool showing a graph using the InfoVis 2004 contest data set, in
which nodes are positioned based on rank and the last date of the conference.

348 Information Visualization 12(3-4)

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


those such as interests, musical genres or artistic

movements. Only one node’s links are shown at a time

for readability, which means that the user can explore

only one set of influences at a time and cannot, for

example, easily explore influence similarity between

two nodes. In addition there is no indication as to

which attributes have resulted in two philosophers

being placed close to each other. An example of the

projection is shown in Figure 18(a) and the influence

edges in Figure 18(b).

Targeted projection pursuit for graphs134 also con-

siders multiple node-attributes and relates each one to

a dimension. Initially, nodes are laid out using a PCA

projection based on the node-attributes. From this the

users can begin to explore the graph. A user can grab

any set of nodes and try to reposition them to reflect

some intuitive idea or hypothesis they have about the

data. The nodes will move to this position only if there

exists some projection from the original data space to

two dimensions that results in a view equal to the tar-

get view, i.e. the view desired by the user. Otherwise

the projection that is the nearest match to the target

view is found. The technique is particularly useful if

the user has some clustering in mind for the data; he

or she can try to separate each of the clusters while

observing the pattern of edges between those clusters

and determining whether the attribute data follow the

same pattern as those clusters or another pattern alto-

gether. This separation can also be automated to find

the maximum separation between clusters. The user

then can additionally assess which attributes are most

significant in the chosen layout aiding the feedback

loop between the graph’s topological structure and the

attributes of the nodes. Figure 19 shows an image of

how the graph can be clustered according to its

attributes. Although the technique shows promise for

future applications so far, its usefulness has been

demonstrated on only a small synthetic data set repli-

cating a small-world graph.

Discussion of the use of node-attributes in
layout

Clearly there is some potential in using node-attributes

for layout. As more data are collected, understanding

how they combine to form a whole is an important

task. For example, Bezerianos et al.13 state that nodes

in social networks can have as many as 30 attributes;

knowing how these attributes affect or even govern the

interactions in a social network can have a significant

impact on how it is analysed or the insight gained from

it. Other advocates of this idea have also identified its

potential to create a deeper understanding of the graph

as a whole including the potential correlations between

graph topology and the underlying attributes.86

There do not have to be as many as 30 node-

attributes to be able to use them for layout. Graphs

which have only a few attributes are prime candidates

for graph visualisation through one of the constraint-

or clustering-based methods. Hive plots, for example,

require only one attribute for their layout and the user

can then define how they want to partition that attri-

bute to form the axes of the layout. They are useful for

focusing on one attribute and its relationship to the

graph’s structure. Being able to understand and ana-

lyse their output requires a steep learning curve; how-

ever, they are able to visualise large graphs with many

thousands of nodes and provide a structural perspec-

tive that other layouts do not. In biology, utilising a

few attributes for layout can prove extremely fruitful

Figure 17. The GeoSOM layout for an international metal trading network (source: http://rp-www.cs.usyd.edu.au/
~chwu/CerealMetal.htm).

Gibson et al. 349

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


and exactly what users want. One such case was

Barsky et al.’s101 layout, which provided a clear way to

separate proteins in a cell and a visual indication of

which part of the cell they exist in. However, even this

technique quickly runs into problems where there are

parts of the cell are contained inside other parts, e.g.

mitochondria inside the cytoplasm.

MagnetViz gives users a lot of control over the lay-

out and by combining it with a force-based layout

some of the topological structure of the graph remains

in the layout. The interaction and observing how the

graph rearranges itself as magnets are added or taken

away may also improve the user’s understanding of the

relationship between the attributes and the graph’s

structure. NVSS allows multiple types of nodes, each

with different attributes, to appear in the same layout,

which means that there are even fewer restrictions on

the data that can be included in the graph, though the

technique is difficult to scale to larger graphs without

interactive filtering.

When manually drawing graphs users tend to

neglect aesthetic criteria in favour of displaying the

clustering of the graph;79 thus, layouts that automati-

cally cluster the nodes according to some predefined

criteria have a good chance of being useful to the user

and are an important structural feature for under-

standing the graph. Layouts that show clustering range

from the Group-in-a-Box layout, which delineates

each cluster into a box that can then be laid out,

Muelder and Ma’s treemap and space-filling

approaches, which scale to hundreds of thousands of

nodes and give that all-important strong overview of

the structure of the graph.

Sometimes using just a few attributes is not enough.

To begin with, a user might be visualising the graph to

gain a better understanding of the data in it and may

not know which attributes should be focused on – an

issue identified by Shneiderman and Aris109 in NVSS.

In that case, moving between scatterplot matrices,

such as in GraphDice, provides one way of having

Figure 18. The EdgeMaps133 graph visualisation of philosopher’s influence relationships (images created from http://
mariandoerk.de/edgemaps/demo/). (a) is the initial layout presented to the user and (b) the edges shown when Marx is
selected.

Figure 19. The targeted projection pursuit layout for
graphs (from ref. 134).

350 Information Visualization 12(3-4)

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


multiple attributes for layout at a user’s fingertips.

However, the user can still investigate a relationship

between only two attributes at a time, and too many

attributes would make the scatterplot matrix unread-

able and negate its utility.

GeoSOM, EdgeMaps and TPP are three methods

which try to overcome this limit on the number of

attributes by utilising dimension reduction techniques

to project the graph onto a 2D space. They all con-

sider multiple attributes and, therefore, multiple

dimensions at once, but all three also leave room for

improvement. GeoSOM is the only method that takes

into account topological structure when computing

the layout as well as the attributes, but using the world

metaphor means it is difficult to comprehend edges

that leave the graph on one side of the world and reap-

pear on the other. Also from Figure 17, it can be seen

that if the size of graph were to increase any more it

would become quite difficult to read.

EdgeMaps restricts the display of links at any one

time and, while this improves readability, it also results

in a loss of context if a user wishes to compare two or

more nodes or to look for a similarity between attribute

structure and topological structure. Even simply allow-

ing multiple selections of nodes to be in focus would,

in part, solve this problem and at least allow the user

to explore edge patterns between nodes. Although

attributes are used in the MDS projection the user

then has no idea how the attributes have influenced

the positions of the nodes in the final projection, so

some of the insights that could have been gained from

this layout are lost.

TPP, on the other hand, does show all of the links

in the graph and allows the user to interact directly

with the graph to find a layout and form hypotheses

based on how influential certain attributes are in the

current projection to provide an automatic way to

determine relationships between node-attributes and

cluster membership. This method now needs to be

validated on real-world data with many more nodes

and edges in order to assess its effectiveness as a net-

work visualisation technique.

Graph layout that combines node-attributes and

dimension reduction provides one solution for produc-

ing an overview layout with meaningful positions for

nodes that can communicate a structure of the graph

related to specific properties of the nodes. This sort of

overview is particularly suited to tasks of exploring the

data, finding clusters and identifying patterns and out-

liers.80 Using node-attributes for layout should

improve this insight that can be gained from the graph

by allowing the user to make visual inference from the

links between nodes, their positions in space and the

combination of the two. In almost all these cases,

though, there needs to be more evidence of application

to specific use cases, extensions to larger datasets, eva-

luation against other methods and specific criteria as

to when these methods are best applied.

Discussion

Over the past 30 years many solutions to the problem

‘What is the best way to draw a graph?’ have been put

forward. Initially, most of these algorithms were force-

directed approaches and these have remained consis-

tently popular over this time. As such, they have found

themselves integrated into many graph visualisation

tools, thereby reinforcing their popularity. These algo-

rithms gained acceptance by drawing a graph that is

said to conform to several graph drawing aesthetic

principles. The drawing of graphs with these algo-

rithms often suffers from high running times and the

production of a non-optimal graph layout. Beyond

that there is also a problem with validation of the use

of these principles for layout in terms of aiding users’

understanding and enabling them to extract meaning

from the graph. Studies assessing the impact these

principles have on layout tend to be limited to a small

set of nodes (fewer than 20) and a limited set of tasks

that are not necessarily applicable to a much larger

graph. Even Huang and Eades135 in their eye tracking

study said that they did not know if their results would

scale with the size and complexity of the graph.

Force-directed methods seem to be optimised for a

particular type of task, such as those indicated by

Purchase24 and Lee et al.80 (e.g. counting node

degrees and identifying adjacent nodes and further

connections). However, both Dunne and

Shneiderman17 and Salvini et al.136 comment on the

lack of knowledge about the relationship between

drawing principles, layout and task.

One effort to overcome this lack of understanding is

Purchase’s24 study on how the principles, such as sym-

metry and edge crossings, and layout are related to the

ability to complete three tasks. These tasks were find-

ing the shortest path between two nodes and identify-

ing which nodes, and, separately, edges, that would, if

removed, disconnect part of a graph. She found that

for the three force-directed graph layouts studied little

variation was found in the time taken to complete the

tasks or in the errors made when answering with

respect to each different layout method. This indicates

that where graph size is small, there is no reason to

choose one layout over another, at least in the case of

performing those three tasks.

When looking at this study the first thing to con-

sider is how appropriate the tasks were for analysing

layout. Were the tasks chosen representative of tasks

where it is essential to have a good layout to complete

Gibson et al. 351

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


or are there other tasks on which layout has more

impact? The second is whether the principles used to

create these layouts are actually successful in aiding

users to carry out this type of task. Third, are the

results the same for much larger graphs or is there a

more perceptible difference on task completion and

are the differences between the layouts more apparent?

Graph size in general is a very important consider-

ation when analysing the success of the effect of lay-

out. Newer layout algorithms developed have tried to

improve upon the results given by force-directed lay-

outs; these included multi-level techniques that make

force-directed approaches more efficient for graphs of

larger size and the use of dimension reduction tech-

niques, which make use of graph-theoretic distance for

computing node position, resulting in layouts similar

to force-directed ones. These techniques still tend to

keep the guiding graph drawing principles as a goal

and because of this are likely to produce good layouts

for only sparsely connected graphs or those which

form a mesh or grid-like structure.50 Except in these

cases, they are unlikely to produce layouts that are a

sufficient improvement on the force-directed ones.

What comes from this is the question of how do the

principles apply in terms of graph sizes? Force-

directed methods are still a very good option for graph

layout when the graph is small and it is true that for

small graphs these principles are successful in comput-

ing a comprehensible layout. But it is not understood

whether they are as applicable to producing a good

layout for larger graphs. For example, Henry and

Fekete8 make the point that finding a good overview is

challenge for large graphs and crucial to the following

exploration process. This overview should then be

connected to a layout which gives a good representa-

tion of the high-level structure of a graph placing more

emphasis on identifying and analysing spatial group-

ings, clustering, patterns and outliers but a good over-

view does not necessarily translate to one that

conforms well to the principles of graph drawing.

More successful recent force-directed based tech-

niques have actually been the ones that have ignored

certain principles to show off other structural proper-

ties of the graph such as the LinLog, ForceAtlas and

OpenOrd layouts. All three are still based on the idea

of a physical system but the principle they have tried

to optimise is one of clustering rather than than being

concerned with edge lengths or uniform node distribu-

tions, for example. Clustering is only one potential

new principle and there may be others that the layout

can be optimised to show. For example, decreasing the

number of edge crossings is usually an aim for layout

but in parallel coordinate plots they are used to high-

light an inverse relationship between two dimensions;

thus, rather than attempting to minimise the number

of edge crossings perhaps they could also be used to

emphasise a particular structural feature or relation-

ship. Additionally, with the adaptation of force-

directed techniques for clustering it shows that using a

physical system model can still be a very strong option

for layout if applied in the right way.

Given that there has been such a large body of

research on the simulation of physical systems for

graph layout and the optimisation of force-directed

algorithms, this work should be utilised. Thus, by

identifying and then changing the emphasis on which

properties of the graph the layout should reflect, force-

directed methods could be redesigned to highlight

some of these other features of the graph. This should

be done in conjunction with an investigation into alter-

native graph drawing principles and whether they can

be principles that can be applied generally, to graphs

with certain topological structure or for specific graph

sizes. An extension of this would be if to investigate if

there is a relationship between the principles used and

the type of task the user wants carry out with the visua-

lisation or that can be best solved using a particular

layout style.

Even some of the studies on smaller graphs have

recognised the importance of presenting a good struc-

tural overview. Van Ham and Rogowitz79 observed

users preferring to cluster nodes in their layouts of a

graph; most participants in an experiment by Dwyer

et al.137 selected graphs that showed a clique; and

semantic grouping and considerations of semantics in

general have been considered important for improving

user understanding of graph visualisations in informa-

tion visualisation contexts.138,139

The lack of semantic considerations has also been

highlighted by users, with many communicating their

dissatisfaction at the inability of force-directed tech-

niques to produce a comprehensible layout either

because it resembles a ‘giant hairball’ or because it

lacks any context. This is particularly true of users in

the biology community who have already expressed

their desire, and made some attempts, to have a graph

layout that is meaningful and improves their

understanding.33,101,106,140

This includes layout methods making use of attri-

butes. Typically, there is a lot of information available

on the nodes, more than just how they are connected

to other nodes. Developing computational methods

using this philosophy of laying out graphs according to

their attributes has potential, with the correct algo-

rithm, to assess the correlations, contradictions and

trade-offs between the attributes and focus them into

a comprehensible, informative layout.

Layouts that require the incorporation of node-

attributes are becoming more frequent and are able to

give users a context they cannot get from purely

352 Information Visualization 12(3-4)

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


algorithmic methods, no matter how good the layout

might be. Layouts with attributes also range from the

very simple, showing only one additional attribute

(such as a cluster or the separation of axes based on

numerical values that can be achieved using hive

plots), to dimension reduction methods in which there

is no theoretical limit on the number of dimensions

that can be incorporated into the layout. They provide

a connection between the graph and all the other data

that are potentially available, and allow the user to not

only answer questions (e.g. whether A and B are con-

nected) but also to determine if there is something

about their attributes that is able tell them why they

are connected.

However, node-attribute-based layouts do not

escape criticism and leave plenty of room for improve-

ment. A major drawback of some of these methods so

far is their lack of demonstrated scalability to larger

datasets. Those layouts, such as EdgeMaps and TPP,

can visualise high numbers of attributes but they also

need to show that they can effectively use those attri-

butes to visualise high numbers of nodes and edges. In

addition to aiding the exploration of the relationship

between the topological structure and the attributes

they should also facilitate the completion of tasks

related to the graph’s structure.

There are three other potential methods for improv-

ing node-attribute layouts further. The first is to follow

the promising leads of GeoSOM and MagnetViz so

that both the graph’s topological structure and its attri-

butes influence the layout; a pure node-attribute layout

might miss some interesting topological features. This

can even be by adding graph theoretical distances

between nodes as additional dimensions for the dimen-

sion reduction techniques. Dimension reduction is a

well-studied area and so a further enhancement may

be to utilise some of the state-of-the-art dimension

reduction techniques for visualisation and use them for

layout. Finally, it has also been suggested that interac-

tion, or at least user involvement, in the layout process,

as found with MagnetViz and TPP, is a promising

approach to creating new layouts.141

This review has presented some of the most com-

monly used and implemented techniques for graph

layout in information visualisation. This was followed

by a discussion of the current state of graph layout,

which emphasised in particular those techniques that

make use of node-attributes for layout. It has discussed

some of the merits and deficiencies in both of these

approaches to graph layout and has suggested some

directions for further research, particularly in regard to

understanding what users want from a layout, which

tasks are to be completed with the layout and how the

size of the graph to be laid out affects the layout and

the actions of the user. In addition, it has proposed

that, although a good start has been made on incor-

porating attributes for layout, in order to enrich the

graph’s layout further research should do more to both

validate and extend these techniques.

Funding

This research received no specific grant from any fund-

ing agency in the public, commercial, or not-for-profit

sectors.

References

1. McGrath C, Blythe J and Krackhardt D. Seeing groups

in graph layouts. Connections 1996; 19: 22–29.

2. Tutte WT. Convex representations of graphs. P Lond

Math Soc 1960; s3–10: 304–320.

3. Tutte WT. How to draw a graph. P Lond Math Soc

1963; s3–13: 743–767.

4. Blythe J, McGrath C and Krackhardt D. The effect of

graph layout on inference from social network data. In:

Proceedings of the symposium on graph drawing, GD ’95,

Passau, Germany, 20–22 September 1995, pp. 40–51.

London, UK: Springer-Verlag.

5. Wong PC, Foote H, Mackey P, et al. A space-filling

visualization technique for multivariate small-world

graphs. IEEE T Vis Comput Gr 2011, 18(5): 797–809.

6. Graph Drawing. http://www.graphdrawing.org/ (1990,

accessed 25 October 2011).

7. Di Battista G, Eades P, Tamassia R, et al. Graph draw-

ing: algorithms for the visualization of graphs. Prentice-

Hall, Upper Saddle River, New Jersey, USA, 1999.

8. Henry N and Fekete JD. MatrixExplorer: a dual-

representation system to explore social networks. IEEE

T Vis Comput Gr 2006; 12: 677–684.

9. Teyseyre AR and Campo MR. An overview of 3D

software visualization. IEEE T Vis Comput Gr 2009; 15:

87–105.

10. Herman I, Melancon G and Marshall MS. Graph visua-

lization and navigation in information visualization: a

survey. IEEE T Vis Comput Gr 2000; 6: 24–43.

11. Knuth DE. Computer-drawn flowcharts. Commun ACM

1963; 6: 555–563.

12. Wasserman S and Faust K. Social network analysis: meth-

ods and applications. Cambridge University Press: Cam-

bridge, 1994.

13. Bezerianos A, Chevalier F, Dragicevic P, et al. Graph-

Dice: a system for exploring multivariate social networks.

Computer Graphics Forum, 2010; 29: 863–872.

14. Perer A and Shneiderman B. Integrating statistics and

visualization. ACM Press: New York 2008, 265 pp.

15. Quinn NR and Breuer MA. A forced directed compo-

nent placement procedure for printed circuit boards.

IEEE T Circuits Syst 1979; 26: 377–388.

16. Eades P. A heuristic for graph drawing. Congressus

Numerantium 1984; 42: 149–160.

17. Dunne C and Shneiderman B. Improving graph

drawing readability by incorporating readability metrics: a

software tool for network analysts. Technical Report no.

Gibson et al. 353

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


HCIL-2009-13, 2009, http://www.cs.umd.edu/localphp/

hcil/tech-reports-search.php?number=2009-13

18. Di Battista G, Eades P, Tamassia R, et al. Algorithms for

drawing graphs: an annotated bibliography. Comp Geom-

Theor Appl 1994; 4: 235–282.

19. Tunkelang D. A practical approach to drawing undirected

graphs. Carnegie Mellon University, Pittsburgh, PA,

USA. 1994.

20. Van Ham F and Van Wijk J. Interactive visualization of

small world graphs. In: IEEE symposium on information

visualization, Austin, TX, 10–12 October 2004, pp. 199–

206, IEEE.

21. Huang W. Exploring the relative importance of number

of edge crossings and size of crossing angles: a quantita-

tive perspective. Int J Adv Int 2011; 3: 25–42.

22. Bennett C, Ryall J, Spalteholz L, et al. The aesthetics of

graph visualization. In: Proceedings of computational aes-

thetics in graphics, visualization, and imaging, Banff,

Alberta, Canada, 20–22 June 2007, vol. 5, pp. 1–8,

Eurographics Association.

23. Kamada T and Kawai S. An algorithm for drawing gen-

eral undirected graphs. Inform Process Lett 1989; 31:

7–15.

24. Purchase HC. Effective information visualisation: a

study of graph drawing aesthetics and algorithms. Inter-

act Comput 2000; 13: 147–162.

25. Wills GJ. Nicheworks-interactive visualization of very

large graphs. J Comput Graph Stat 1999; 8: 190–212.

26. Fruchterman TM and Reingold EM. Graph drawing by

force-directed placement. Software Pract Exper 1991; 21:

1129–1164.

27. Genc B and Dogrusoz U. A layout algorithm for signal-

ing pathways. Inform Sciences 2006; 176: 135–149.

28. Demir E, Babur O, Dogrusoz U, et al. PATIKA: an inte-

grated visual environment for collaborative construction

and analysis of cellular pathways. Bioinformatics 2002;

18: 996–1003.

29. Garcia O, Saveanu C, Cline M, et al. GOlorize: a cytos-

cape plug-in for network visualization with gene

ontology-based layout and colouring. Bioinformatics

2007; 23: 394–396.

30. Frick A, Ludwig A and Mehldau H. A fast adaptive lay-

out algorithm for undirected graphs. In: Tamassia R and

Tollis I (eds) Graph drawing, lecture notes in computer sci-

ence, vol. 894. Berlin/Heidelberg: Springer, 1995, pp.

388–403.

31. Davidson R and Harel D. Drawing graphs nicely using

simulated annealing. ACM T Graphic 1996; 15: 301–331.

32. Kohler J, Baumbach J, Taubert J, et al. Graph-based

analysis and visualization of experimental results with

ONDEX. Bioinformatics 2006; 22: 1383–1390.

33. Li W and Kurata H. A grid layout algorithm for auto-

matic drawing of biochemical networks. Bioinformatics

2005; 21: 2036–2042.

34. Benson D and Adler G. jGraph 2002. http://

www.jgraph.com/ (2002, accessed 10 November 2011).

35. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a soft-

ware environment for integrated models of biomolecular

interaction networks. Genome Res 2003; 13: 2498–2504.

36. Martin S, Brown WM, Klavans R, et al. OpenOrd: an

open-source toolbox for large graph layout. In: Proceed-

ings of SPIE, San Francisco, CA, United States, 23–27

January 2011, vol. 7868, pp. 786–806, SPIE.

37. Noack A. An energy model for visual graph clustering. In:

Liotta G (ed.) Graph drawing, lecture notes in computer science,

vol. 2912. Berlin/Heidelberg: Springer, 2003, pp. 425–436.

38. Noack A. Energy models for graph clustering. J Graph

Algorithm Appl 2007; 11: 453–480.

39. Jacomy M, Heymann S, Venturini T, et al. ForceAtlas2,

A graph layout algorithm for handy network visualiza-

tion. Pre-print 2011; 1–21. http://www.medialab.

sciences-po.fr/publications/Jacomy_Heymann_Venturini-

Force_Atlas2.pdf

40. Bastian M, Heymann S and Jacomy M. Gephi: an open

source software for exploring and manipulating net-

works. In: Third international AAAI conference on weblogs

and social media, San Jose, California, 17-20 May 2009,

pp. 361–362, Association for the Advancement of Artifi-

cial Intelligence (AAAI).

41. Noack A. Unified quality measures for clusterings, layouts,

and orderings of graphs, and their application as software

design criteria. PhD Thesis, Brandenburg University of

Technology, Germany, 2007.

42. Barnes J and Hut P. A hierarchical O(N logN) force-

calculation algorithm. Nature 1986; 324: 446–449.

43. Freeman LC. Graphical techniques for exploring social

network data. In: Carrington PJ, Scott J and Wasserman S

(eds) Models and methods in social network analysis. Cam-

bridge University Press: Cambridge, 2005, pp. 249–269.

44. Gansner ER, Koren Y and North S. Graph drawing

by stress majorization. In: Pach J (ed.) Graph drawing,

lecture notes in computer science, vol. 3383. Berlin/

Heidelberg: Springer, 2004, pp. 239–250.

45. Kruskal JB and Seery JB. Designing network diagrams.

In: Proceedings first general conference on social graphics,

Washington, D.C., July 1980, pp. 22–50, U. S. Depart-

ment of the Census. Bell Laboratories.

46. Buja A, Swayne DF, Littman ML, et al. Data visualiza-

tion with multidimensional scaling. J Comput Graph Stat

2008; 17: 444–472.

47. Brandes U and Pich C. Eigensolver methods for pro-

gressive multidimensional scaling of large data. In: Kauf-

mann M and Wagner D (eds) Graph drawing, lecture

notes in computer science, vol. 4372. Berlin/Heidelberg:

Springer, 2007, pp. 42–53.

48. Brandes U and Pich C. An experimental study on

distance-based graph drawing. In: Tollis I and Patrignani

M (eds) Graph drawing, lecture notes in computer science, vol.

5417. Berlin/Heidelberg: Springer, 2009, pp. 218–229.

49. Harel D and Koren Y. Graph drawing by high-dimensional

embedding. J Graph Algorithm Appl 2004; 8: 207–219.

50. Archambault D, Munzner T and Auber D. Topolayout:

multilevel graph layout by topological features. IEEE T

Vis Comput Gr 2007; 13: 305–317.

51. Brandes U and Wagner D. Visone: analysis and visualiza-

tion of social networks. In: Junger M and Mutzel P (eds)

Graph drawing software. Springer-Verlag: Berlin, 2004,

pp. 321–340.

354 Information Visualization 12(3-4)

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


52. Hachul S and Jünger M. Large-graph layout algorithms

at work: an experimental study. J Graph Algorithm Appl

2007; 11: 345–369.

53. Koren Y. Graph drawing by subspace optimization. In:

Proceedings of the 6th joint eurographics – IEEE TVCG sym-

posium on visualization, Konstanz, Germany, 19–21 May

2004, pp. 65–74, Eurographics Association.

54. Civril A, Magdon-Ismail M and Bocek-Rivele E. SDE:

graph drawing using spectral distance embedding. In:

Healy P and Nikolov N (eds) Graph drawing, lecture notes

in computer science, vol. 3843. Berlin/Heidelberg:

Springer, 2006, pp. 512–513.

55. Civril A, Magdon-Ismail M and Bocek-Rivele E. SSDE:

fast graph drawing using sampled spectral distance

embedding. In: Graph drawing, lecture notes in computer

science, vol. 4372. Berlin/Heidelberg: Springer, 2007, pp.

30–41.

56. Bonabeau E. Self-organizing maps for drawing large

graphs. Inform Process Lett 1998; 67: 177–184.

57. Bonabeau E. Graph multidimensional scaling with self-

organizing maps. Inform Sciences 2002; 143: 159–180.

58. Meyer B. Competitive learning of network diagram lay-

out. In: Proceedings. 1998 IEEE symposium on visual lan-

guages, Nova Scotia, Canada, 1–4 September, 1998, pp.

56–63, IEEE Press.

59. Hendrickson B and Leland R. A multi-level algorithm

for partitioning graphs. In: Proceedings of the IEEE/ACM

conference on supercomputing, San Diego, CA, United

States, 4–8 December 1995, 28 pp, ACM.

60. Gajer P, Goodrich M and Kobourov SG. A multi-

dimensional approach to force-directed layouts of large

graphs. In: Marks J (ed.) Graph drawing, lecture notes in

computer science, vol. 1984. Berlin/Heidelberg: Springer,

2001, pp. 211–221.

61. Hu Y. Efficient, high-quality force-directed graph draw-

ing. Math J 2005; 10: 37–71.

62. Hachul S and Jünger M. Drawing large graphs with a

potential-field-based multilevel algorithm. In: Pach J

(ed.) Graph drawing, lecture notes in computer science, vol.

3383. Berlin/Heidelberg: Springer, 2005, pp. 285–295.

63. Harel D and Koren Y. A fast multi-scale method for draw-

ing large graphs. In: Proceedings of the working conference on

advanced visual interfaces, AVI ’00, Palermo, Italy, 23-26

May 2000, pp. 282–285, ACM Press.

64. Walshaw C. A multilevel algorithm for force-directed

graph drawing. Lecture Notes in Computer Science. In:

Joe M (ed) Graph Drawing, vol. 1984: 31–55, 2001,

Springer Berlin/Heidelberg.

65. Cohen JD. Drawing graphs to convey proximity: an

incremental arrangement method. ACM T Comput-Hum

Int 1997; 4: 197–229.

66. Koren Y, Carmel L and Harel D. ACE: a fast multiscale

eigenvectors computation for drawing huge graphs. Pro-

ceedings of the IEEE Symposium on Information Visualiza-

tion (InfoVis’02), Boston, Massachussets, 28-29

October 2002; 137–144, IEEE.

67. Frishman Y and Tal A. Multi-level graph layout on the

GPU. IEEE T Vis Comput Gr 2007; 13: 1310–1319.

68. Gajer P and Kobourov SG. GRIP: graph drawing with

intelligent placement. J Graph Algorithm Appl 2001; 6:

222–228.

69. Hadany R and Harel D. A multi-scale algorithm for draw-

ing graphs nicely. Discrete Appl Math 2001; 113: 3–21.

70. Godiyal A, Hoberock J, Garland M, et al. Rapid multi-

pole graph drawing on the GPU. In: Tollis I and Patri-

gnani M (eds) Graph drawing, lecture notes in computer

science, vol. 5417. Berlin/Heidelberg: Springer, 2009, pp.

90–101.

71. Koren Y, Carmel L and Harel D. Drawing huge graphs

by algebraic multigrid optimization. Multiscale Model Sim

2003; 1: 645–673.

72. Hall KM. An r-dimensional quadratic placement algo-

rithm. Manage Sci 1970; 17: 219–229.

73. Davidson GS, Hendrickson B, Johnson DK, et al.

Knowledge mining with VxInsight: discovery through

interaction. J Intell Inf Syst 1998; 11: 259–285.

74. Chen L and Buja A. Energy/stress functions for dimen-

sion reduction and graph drawing: power laws and their

clustering properties. 2009, http://stat.yale.edu/~lc436/

papers/Chen_Buja_energy_2009.pdf

75. Hachul S and Jünger M. An experimental comparison

of fast algorithms for drawing general large graphs. In:

Healy P and Nikolov N (eds) Graph drawing, lecture notes

in computer science, vol. 3843. Berlin/Heidelberg:

Springer, 2006, pp. 235–250.

76. Aris A and Shneiderman B. Designing semantic sub-

strates for visual network exploration. Inform Visual

2007; 6: 281–300.

77. Misue K, Eades P, Lai W, et al. Layout adjustment

and the mental map. J Visual Lang Comput 1995; 6:

183–210.

78. Brandenburg FJ, Himsholt M and Rohrer C. An experi-

mental comparison of force-directed and randomized

graph drawing algorithms. In: Proceedings of the sympo-

sium on graph drawing, GD ’95, Passau, Germany, 20-22

September 1995, pp. 76–87, London, UK: Springer-

Verlag.

79. Van Ham F and Rogowitz B. Perceptual organization in

user-generated graph layouts. IEEE T Vis Comput Gr

2008; 14: 1333–1339.

80. Lee B, Plaisant C, Parr CS, et al. Task taxonomy for

graph visualization categories. In: Proceedings of the 2006

AVI workshop on BEyond time and errors: novel evaluation

methods for information visualization, BELIV ’06, Venice,

Italy, 23 May 2006, pp. 1–5, ACM.

81. Gansner ER and North SC. An open graph visualization

system and its applications to software engineering. Soft-

ware Pract Exper 2000; 30: 1203–1233.

82. Brandes U and Wagner D. Using graph layout to visua-

lize train interconnection data. In: Whitesides S (ed.)

Graph drawing, lecture notes in computer science, vol. 1547.

Berlin/Heidelberg: Springer, 1998, pp. 44–56.

83. Finkel B and Tamassia R. Curvilinear graph drawing

using the force-directed method. In: Pach J (ed.) Graph

drawing, lecture notes in computer science, vol. 3383. Ber-

lin/Heidelberg: Springer, 2005, pp. 448–453.

Gibson et al. 355

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


84. Gehlenborg N, O’Donoghue SI, Baliga NS, et al.

Visualization of omics data for systems biology. Nat

Methods 2010; 7: s56–s68.

85. Yildirim MA, Goh KI, Cusick ME, et al. Drug-target

network. Nat Biotechnol 2007; 25: 1119–1126.

86. Heer J and Perer A. Orion: a system for modeling,

transformation and visualization of multidimensional

heterogeneous networks. In: Visual analytics science and

technology (VAST), 2011.

87. Freeman LC. Visualizing social networks. J Soc Struct

2000; 1.

88. Moreno JL. Who will survive. Nervous and Mental Dis-

ease Publishing Company, 1934; Washington D.C.,

USA.

89. Lundberg GA and Steele M. Social attraction-patterns

in a village. Sociometry 1938; 1: 375–419.

90. Northway ML. A method for depicting social relation-

ships obtained by sociometric testing. Sociometry 1940;

3: 144–150.

91. Brandes U, Kenis P and Wagner D. Communicating

centrality in policy network drawings. IEEE T Vis Com-

put Gr 2003; 9: 241–253.

92. Sugiyama K, Tagawa S and Toda M. Methods for

visual understanding of hierarchical system structures.

IEEE T Syst Man Cyb 1981; 11: 109–125.

93. Brandes U, Raab J and Wagner D. Exploratory net-

work visualization: simultaneous display of actor status

and connections. J Soc Struct 2001; 4.

94. Koren Y and Harel D. One-dimensional layout optimi-

zation, with applications to graph drawing by axis

separation. Comput Geom 2005; 32: 115–138.

95. Krzywinski M, Birol I, Jones SJ, et al. Hive plots –

rational approach to visualizing networks. Brief Bioinform

2011. DOI 10.1093/bib/bbr069.

96. He W and Marriott K. Constrained graph layout. Con-

straints 1998; 309: 1895–1908.

97. Dwyer T and Koren Y. DiG-CoLa: directed graph lay-

out through constrained energy minimization. In: IEEE

symposium on information visualization, Minneapolis,

Minnesota, USA, 23-25 October 2005, pp. 65–72,

IEEE.

98. Dwyer T, Koren Y and Marriott K. Drawing directed

graphs using quadratic programming. IEEE T Vis Com-

put Gr 2006; 12: 536–548.

99. Dwyer T, Koren Y and Marriott K. Stress majorization

with orthogonal ordering constraints. In: Healy P and

Nikolov N (eds) Graph drawing, lecture notes in computer

science, vol. 3843. Berlin/Heidelberg: Springer, 2006,

pp. 141–152.

100. Dwyer T, Koren Y and Marriott K. IPSep-CoLa: an

incremental procedure for separation constraint layout

of graphs. IEEE Vis Comput Gr 2006; 12: 821–828.

101. Barsky A, Munzner T, Gardy J, et al. Cerebral: visua-

lizing multiple experimental conditions on a graph with

biological context. IEEE T Vis Comput Gr 2008; 14:

1253–1260.

102. Jianu R, Yu K, Cao L, et al. Visual integration of quan-

titative proteomic data, pathways, and protein interac-

tions. IEEE T Vis Comput Gr 2010; 16: 609–620.

103. Dwyer T, Marriott K, Schreiber F, et al. Exploration of

networks using overview+detail with constraint-based

cooperative layout. IEEE T Vis Comput Gr 2008; 14:

1293–1300.

104. Dwyer T, Marriott K and Wybrow M. Dunnart: a

constraint-based network diagram authoring tool. In:

Tollis IG and Patrignani M (eds) Graph drawing, lecture

notes in computer science, vol. 5417. Berlin/Heidelberg:

Springer, 2009, pp. 420–431.

105. Dwyer T, Marriott K and Wybrow M. Topology pre-

serving constrained graph layout. In: Tollis I and Patri-

gnani M (eds) Graph drawing, lecture notes in computer

science, vol. 5417. Berlin/Heidelberg: Springer, 2009,

pp. 230–241.

106. Schreiber F, Dwyer T, Marriott K, et al. A generic algo-

rithm for layout of biological networks. BMC Bioinfor-

matics 2009; 10: 375.

107. Jourdan F and Melancon G. A tool for metabolic and

regulatory pathways visual analysis. Visualization and

Data Analysis 2003; 46–55.

108. Spritzer A and Freitas CMDS. Design and evaluation

of Magnetviz – a graph visualization tool. IEEE T Vis

Comput Gr 2011; 18: 822–835.

109. Shneiderman B and Aris A. Network visualization by

semantic substrates. IEEE T Vis Comput Gr 2006; 12:

733–740.

110. Masui T. Graphic object layout with interactive genetic

algorithms. In: Proceedings IEEE workshop on visual lan-

guages, Seattle, Washington, USA, 15-18 September

1992, pp. 74–80, IEEE .

111. Kosak C, Marks J and Shieber S. Automating the lay-

out of network diagrams with specified visual organiza-

tion. IEEE T Syst Man Cyb 1994; 24: 440–454.

112. Branke J, Bucher F and Schmeck H. A genetic algo-

rithm for drawing undirected graphs. In: Proceedings of

the third Nordic workshop on genetic algorithms and their

applications, Helsinki, Finland, 18-22 August 1997, pp.

193–206, Department of Information Technology and

Production Economics, University of Vaasa.

113. Rodrigues EM, Milic-Frayling N, Smith M, et al.

Group-in-a-box layout for multi-faceted analysis of

communities. In: Third IEEE conference on social com-

puting, MIT, Boston, USA, 9-11 October 2011.

114. Fekete JD, Wang D, Dang N, et al. Overlaying graph

links on treemaps. In: IEEE symposium on information

visualization 2003 poster compendium, Seattle, Washing-

ton, USA, 19-21 October 2003, pp. 82–83, IEEE.

115. Muelder C and Ma KL. A treemap based method for

rapid layout of large graphs. In: 2008 IEEE pacific visua-

lization symposium, Kyoto, Japan, 5-7 March 2008, pp.

231–238, IEEE.

116. Muelder C and Ma KL. Rapid graph layout using

space filling curves. IEEE T Vis Comput Gr 2008; 14:

1301–1308.

117. Itoh T, Muelder C, Ma KL, et al. A hybrid space-filling

and force-directed layout method for visualizing

multiple-category graphs. In: 2009 IEEE pacific visuali-

zation symposium, Beijing, China, 20-23 April 2009,

pp. 121–128, IEEE.

356 Information Visualization 12(3-4)

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


118. Xu K, Cunningham A, Hong S-H, et al. Graphscape:

integrated multivariate network visualization. In: 6th

international Asia-Pacific symposium on visualization, Syd-

ney, Australia, 5-7 February 2007, pp. 33–40, IEEE .

119. Huang M and Eades P. A fully animated interactive sys-

tem for clustering and navigating huge graphs, lecture notes

in computer science, vol. 1547. Berlin/Heidelberg:

Springer, 1998, pp. 374–383.

120. Quigley A and Eades P. Fade: graph drawing, cluster-

ing, and visual abstraction. In: Marks J (ed.) Graph

drawing, lecture notes in computer science, vol. 1984.

Berlin/Heidelberg:Springer, 2001, pp. 77–80.

121. Pretorius AJ and Van Wijk JJ. Visual analysis of multi-

variate state transition graphs. IEEE T Vis Comput Gr

2006; 12: 685–692.

122. Pretorius AJ. Visual inspection of multivariate graphs.

Comput Graph Forum 2008; 27: 967–974.

123. Becker RA, Eick SG and Wilks AR. Visualizing net-

work data. IEEE T Vis Comput Gr 1995; 1: 16–28.

124. Leydesdorff L and Persson O. Mapping the geography

of science: distribution patterns and networks of rela-

tions among cities and institutes. J Am Soc Inf Sci Tec

2010; 61: 1622–1634.

125. Dharmawirya M. Germany pass-networks (against

Australia) – 2010 FIFA World Cup 2010, http://scien-

tometrics.wordpress.com/2010/07/04/ger-pass-net

work-vs-aus/ (accessed 6 October 2010).

126. Ericson M. When maps shouldn’t be maps 2011, http://

www.ericson.net/content/2011/10/when-maps-shouldnt-

be-maps/ (accessed 16 December 2011).

127. Wattenberg M. Visual exploration of multivariate

graphs. In: Proceedings of the SIGCHI conference on

human factors in computing systems, CHI ’06, Quebec,

Canada, 22-27 April 2006, pp. 811–819, ACM Press.

128. Viau C, McGuffin MJ, Chiricota Y, et al. The FlowViz-

Menu and parallel scatterplot matrix: hybrid multidi-

mensional visualizations for network exploration. IEEE

T Vis Comput Gr 2010; 16: 1100–1108.

129. Elmqvist N, Dragicevic P and Fekete JD. Rolling the

dice: multidimensional visual exploration using scatter-

plot matrix navigation. IEEE T Vis Comput Gr 2008;

14: 1141–1148.

130. Pretorius AJ and Van Wijk J. Multidimensional visuali-

zation of transition systems. Proceedings of the Ninth

International Conference on Information Visualization

(IV05) , London, UK, 6–8 July 2005; 323–328, IEEE.

131. Wu Y and Takatsuka M. Visualizing multivariate net-

works: a hybrid approach. In: 2008 IEEE pacific visuali-

zation symposium, Kyoto, Japan, 5-7 March 2008, pp.

223–230, IEEE.

132. Wu Y and Takatsuka M. Visualizing multivariate net-

work on the surface of a sphere. Misue K, Sugiyama K

and Tanaka J (eds) Proceedings of the 2006 Asia-Pacific

Symposium on Information Visualisation pp. 77–83,

2006; 60.

133. Dork M, Carpendale S and Williamson C. Visualizing

explicit and implicit relations of complex information

spaces. Inform Visual 2011; 1: 5–21 .

134. Gibson H and Faith J. Node-attribute graph layout for

small-world networks. In: 15th international conference

on information visualisation, London, UK, 13–15 July

2011, pp. 482–487, IEEE .

135. Huang W and Eades P. How people read graphs. Darlin-

ghurst, NSW, Australia: Australian Computer Society,

Inc, 2005, pp. 51–58.

136. Salvini MM, Gnos A and Fabrikant SI. Cognitively

plausible visualisation of network data. In: Proceedings

of the 25th international cartographic conference, Paris,

France, 3–8 July 2011.

137. Dwyer T, Lee B, Fisher D, et al. A comparison of user-

generated and automatic graph layouts. IEEE T Vis

Comput Gr 2009; 15: 961–968.

138. Purchase HC, McGill M, Colpoys L, et al. Graph

drawing aesthetics and the comprehension of uml class

diagrams: an empirical study. In: Proceedings of the 2001

Asia-Pacific symposium on information visualisation, Syd-

ney, Australia, 3–4 December 2001, pp. 129–137, Aus-

tralian Computer Society .

139. Purchase HC, Carrington D and Allder JA. Empirical

evaluation of aesthetics-based graph layout. Empir Softw

Eng 2002; 7: 233–255.

140. Becker MY and Rojas I. A graph layout algorithm for

drawing metabolic pathways. Bioinformatics 2001; 17:

461–467.

141. Von Landesberger T, Kuijper A, Schreck T, et al. Visual

analysis of large graphs: State-of-the-Art and Future

Research Challenges, Computer Graphics Forum, 2011;

30(6): 1719–1749, Blackwell Publishing Ltd.

Gibson et al. 357

 at Narodna Univ Knjiznica on September 24, 2015ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/



