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Structure of Growing Networks with Preferential Linking
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The model of growing networks with the preferential attachment of new links is generalized to include
initial attractiveness of sites. We find the exact form of the stationary distribution of the number of
incoming links of sites in the limit of long times, P�q�, and the long-time limit of the average connectivity
q�s, t� of a site s at time t (one site is added per unit of time). At long times, P�q� � q2g at q ! `

and q�s, t� � �s�t�2b at s�t ! 0, where the exponent g varies from 2 to ` depending on the initial
attractiveness of sites. We show that the relation b�g 2 1� � 1 between the exponents is universal.

PACS numbers: 84.35.+i, 05.40.–a, 05.50.+q, 87.18.Sn
It was observed recently that the distributions of several
quantities in various growing networks have a power-law
form. This scaling behavior was observed in the World
Wide Web, in neural and social networks, in nets of cita-
tions of scientific papers, etc.; see [1–14], and references
therein. These observations challenge us to find the general
reasons of such behavior. It is only recently that scien-
tists became aware of the ever increasing impact of vari-
ous evolving networks on everyone’s life. Earlier studies
[15–20] concentrated on simple random networks, and it
was recently discovered that many complex networks are
hierarchically organized [5,6,21].

Mostly, the interest is concentrated on the distribution of
shortest paths between the different sites of a network [1]
and on the distribution of the number of connections with
a site [2–6]. The second quantity is obviously simpler to
obtain than the first one but even for it, in the case of the
networks with scaling behavior, no exact results are known.

The only known mechanism of self-organization of a
growing network into a free-scale structure is preferential
linking [7–9], i.e., new links are preferentially attached to
sites with high numbers of connections. A simple model of
a growing network with preferential linking was proposed
by Barabási and Albert [7] (BA model). At each time step
a new site is added. It connects with old sites by a fixed
number of links. The probability of an old site to get a new
link is proportional to the total number of connections with
this site. It was found in [7,8] that the distribution of the
number of links has a power-law form at long times. The
value of the corresponding scaling exponent, g, obtained
using a mean-field approach, equals 3. This value is close
to that one observed in the network of citations [3], but
other examples of evolving networks show different values
of g. Introduction of the aging of sites changes g [22] and
may even break the scaling behavior [13,22].

In the present Letter, we generalize the BA model and
find the exact form of the distribution of incoming links of
sites in the limit of large sizes of the growing network. We
derive a scaling relation connecting the scaling exponent of
the distribution of incoming links and the exponent of the
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temporal behavior of the average connectivity, and demon-
strate that it applies for a large class of evolving networks.

The model.—At each time step a new site appears (see
Fig. 1). Simultaneously, m new directed links coming out
from nonspecified sites are introduced. Let the connectiv-
ity qs be the number of incoming links to a site s, i.e., to a
site added at time s. The new links are distributed between
sites according to the following rule. The probability that
a new link points to a given site s is proportional to the
following characteristic of the site:

As � A 1 qs , (1)

thereafter called its attractiveness. All sites are born with
some initial attractiveness A $ 0, but afterwards it in-
creases because of the qs term. The introduced parame-
ter A, the initial attractiveness, governs the probability for
“young” sites to get new links.

We emphasize that we do not specify sites from which
the new links come out. They may come out from the new
site, from old sites, or even from outside of the network.
Our results do not depend on that. Therefore, the model
describes also the particular case when every new site is
the source of all the m new links like in the BA model.
In this case, every site has m outgoing links and the total
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FIG. 1. Illustration of the growing network under considera-
tion. Each instant a new site (open circle) and m (here, m � 2)
new directed links (dashed arrows) are added. These links are
distributed between the sites according to the rule introduced in
the text.
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number of its connections equals qs 1 m. This number
coincides with the attractiveness of the site, Eq. (1), if one
sets A � m. In this case, our rule for the distribution of
new links among sites coincides with the corresponding
rule of the BA model. Hence, the model that we consider
here is equivalent to the BA model in the particular case
of the initial attractiveness equal to m.

In fact, our model may be mapped to the following gen-
eral problem. Each instant, m new particles (i.e., incoming
links) have to be distributed between an increasing num-
ber (one per time step) of boxes (i.e., sites) acording to the
introduced rule.

The master equation.—Let us derive the equation for
the distribution p�q, s, t� of the connectivity q of the site
s. At time t (t � 1, 2, . . .) the network consists of t sites
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connected by m�t 2 1� directed links (it is convenient to
assume that initially (t � 1) we have one site with m in-
coming links — the resulting behavior at long times is in-
dependent of the initial condition). The total attractiveness
of the network at time t is AS � �m 1 A�t � �1 1 a�m,
where a � A�m. Note that one may allow multiple links,
i.e., the connectivity of a given site may increase simulta-
neously by more than one. That is not essential for long
times, when probability to receive simultaneously more
than one link of the m is vanishing. The probability that a
new link is connected with the site s equals As�AS. The
probability for the site s to receive exactly l new links of
the m injected is P

�ml�
s � �m

l � �As�AS�l�1 2 As�AS�m2l .
Hence, the connectivity distribution of a site obeys the fol-
lowing master equation:
p�q, s, t 1 1� �
mX

l�0

P �ml�
s p�q 2 l, s, t� �

mX
l�0

µ
m
l

∂ ∑
q 2 l 1 am
�1 1 a�mt

∏l∑
1 2

q 2 l 1 am
�1 1 a�mt

∏m2l

p�q 2 l, s, t� . (2)

Equation (2) is supplied with the initial condition p�q, s, s� � d�q�, which means that sites are born with zero connec-
tivity (i.e., without incoming links in our definition).

The connectivity distribution of the entire network is P�q, t� �
Pt

u�1 p�q, u, t��t. Summing up Eq. (2) over s from
1 to t, one gets

�t 1 1�P�q, t 1 1� 2 p�q, t 1 1, t 1 1� �

µ
t 2

q 1 am
1 1 a

∂
P�q, t� 1

q 2 1 1 am
1 1 a

P�q 2 1, t� 1 O

µ
P
t

∂
. (3)

At long times, we obtain

�1 1 a�t
≠P
≠t

�q, t� 1 �1 1 a�P�q, t� 1 �q 1 am�P�q, t� 2 �q 2 1 1 am�P�q 2 1, t� � �1 1 a�d�q� . (4)

Finally, assuming that the limit P�q� � P�q, t ! `� exists, we get the following equation for the stationary connectivity
distribution:

�1 1 a�P�q� 1 �q 1 ma�P�q� 2 �q 2 1 1 ma�P�q 2 1� � �1 1 a�d�q� . (5)
The stationary distribution.—To solve Eq. (5) one may
use the Z transform of the distribution function:

F�z� �
X̀
q�0

P�q�zq. (6)

Then one gets from Eq. (5)
z�1 2 z�
dF

dz
1 ma�1 2 z�F 1 �1 1 a�F � 1 1 a .

(7)

The solution of Eq. (7) that is analytic at z � 0 has the
following form:
F�z� � �1 1 a�z212�m11�a�1 2 z�11a
Z z

0
dx

x�m11�a

�1 2 x�21a
�

1 1 a
1 1 �m 1 1�a 2F1�1, ma; 2 1 �m 1 1�a; z� , (8)

where 2F1� � is the hypergeometric function. Using its expansion [23] in z, we obtain, comparing with Eq. (6),

P�q� � �1 1 a�
G��m 1 1�a 1 1�

G�ma�
G�q 1 ma�

G�q 1 2 1 �m 1 1�a�
, (9)
that is our main result (see Fig. 2). In particular, when
a � 1, that corresponds to the case As � m 1 qs, studied
in [7,8], we get

P�q� �
2m�m 1 1�

�q 1 m� �q 1 m 1 1� �q 1 m 1 2�
. (10)
This expression in the limit q ! ` approaches the corre-
sponding result of [7,8] obtained in the frames of an ap-
proximate scheme, but the prefactors are different. In fact,
the “mean field” approach, used in [8], is equivalent to
the continuous-q approximation in our discrete-difference
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equations. Indeed, if we replace the finite difference with a
derivative over q, we get the expression obtained in [7,8].

For ma 1 q ¿ 1, the distribution function (9) takes the
form

P�q� � �1 1 a�
G��m 1 1�a 1 1�

G�ma�
�q 1 ma�2�21a�.

(11)
Therefore, we find the scaling exponent g of the distribu-
tion function:

g � 2 1 a � 2 1 A�m , (12)

where A is the initial attractiveness of a site.
The distribution p�q, s, t�.— Let us find the connectivity

distribution p�q, s, t� for the site s. At long times t ¿ 1,
keeping only two leading terms in 1�t in Eq. (2), one gets
p�q, s, t 1 1� �

∑
1 2

q 1 am
�1 1 a�t

∏
p�q, s, t� 1

q 2 1 1 am
�1 1 a�t

p�q 2 1, s, t� 1 O

µ
p
t2

∂
. (13)

Assuming that the scale of time variation is much larger than 1, we can replace the finite t difference with a derivative

�1 1 a�t
≠p
≠t

�q, s, t� � �q 2 1 1 am�p�q 2 1, s, t� 2 �q 1 am�p�q, s, t� . (14)

Finally, using the Z transform in the similar way as before, we obtain the solution of Eq. (14), i.e., the connectivity
distribution of individual sites:

p�q, s, t� �
G�am 1 q�

G�am�q!

µ
s
t

∂am��11a�∑
1 2

µ
s
t

∂1��11a�∏q

. (15)
Hence, this distribution has an exponential tail. Now one
may get also the expression for the average connectivity of
a given site:

q�s, t� �
X̀
q�0

qp�q, s, t� � am

∑µ
s
t

∂
21��11a�

2 1

∏
.

(16)

Thus, at a fixed time t the average connectivity of an old
site s ø t depends upon its age as �s2b , where the ex-
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FIG. 2. Log-log plot of the distribution of the incoming links
of sites for m � 1 and m � 5 (the curves for m � 5 are dis-
placed down by 15). (1) a � 0.001, (2) a � 0.05, (3) a � 1.0
(BA model), (4) a � 2.0, (5) a � 4.0.
ponent b � 1��1 1 a�. Therefore, we have the following
relation between the exponents of the considered network:

b�g 2 1� � 1 , (17)

that was previously obtained in the continuous approxi-
mation [22].

We can show that Eq. (17) is universal and may be
obtained from the most general considerations. In fact,
we assume only that the averaged connectivity q�s, t� and
the connectivity distribution P�q� show scaling behavior.
Then, in the scaling region, the quantity of interest, i.e.,
the probability p�q, s, t�, has to be of the following form:
p�q, s, t� � �s�t�D1f�qD2�s�t�D3�. Obviously, one can set
D2 � 1. D1 � D3 because of the normalization condition
for p�q, s, t� at a fixed s,

P`
q�0 p�q, s, t� � 1. Then, the

relation q�s, t� ~ �s�t�2b leads to D1 � D3 � b [we use
the definition (16)], and finally, inserting p�q, s, t� in such
a form into the relation P�q� ~ q2g at large q and t, one
gets the relation (17).

The network that we consider here belongs to the class
of scale-free growing networks (we use the classification of
growing networks presented in [13]). For the known real
networks of this class (see the most complete description
[13]), no data for the variation of the average connectivity
of a site with its age are available yet. These data are
necessary to obtain the exponent b. It would be intriguing
to study this quantity in the real scale-free networks and to
check Eq. (17). One should note that, for the network with
aging of sites, the relation (17) was already confirmed by
the simulation [22].

The particular form of the scaling function f�j�, j �
q�s�t�2b , depends on the specific model of the growing
network. In the case under consideration, it follows from
Eq. (15) that

f�j� �
1

G�am�
jam21 exp�2j� (18)
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for s�t ! 0, q ! ` and the fixed q�s�t�b . (Here, we use
the asymptote: G�am 1 q��q! ! qam21 at q ! `.)

Discussion.— In the limit of zero initial attractiveness of
sites (a � 0) all the links lead to the first site since all oth-
ers have no chance to get a new incoming link. In this case,
Eqs. (12) and (17) give g � 2 and b � 1. For a � 1,
i.e., for the BA model, g � 3 and b � 1�2 [7,8]. Fi-
nally, when a ! `, i.e., all sites have equal attractivity all
the time, and the scaling breaks, one sees from Eqs. (12)
and (17) that g ! ` and b ! 0. In the last case, our
system appears to be out of a class of networks with pref-
erential linking. Note that the ranges of variation of g,
2 , g , `, and b, 1 , b , 0, are the same as for the
scale-free network with aging of sites [22]. Note also that
the observed value of the scaling exponent of the distribu-
tion of incoming links in the World Wide Web, 2.1 [5,9],
is in this range.

We see that the approach of [7,8] based on the
continuous-q approximation gives the proper values for
the critical exponents (see also [22] for the network with
aging of sites). Thus, this approximation is effective for
calculation of the exponents of the scale-free networks.

A two-parameter fitting was proposed in [24] to describe
the observed distribution for the citations of scientific pa-
pers [3]. One sees that the connectivity distribution of the
considered growing networks is of quite different form.
It seems that the difference occurs because we study the
growing structure unlike the approach [24].

In conclusion, in the limit of long times (large sizes of
the growing networks), we have found the exact solution of
the master equation for the distribution of incoming links.
This solution demonstrates the existence of the scaling re-
gion in a class of the growing networks with the preferen-
tial linking.

The considered growing networks are self-organized
into free-scale structures. The input flow of the new links
is distributed between the increasing number of sites. The
scaling exponents are determined by the value of the initial
attractiveness ascribed to every new site. Depending on
this quantity, the scaling exponent g of the connectivity
distribution takes values from 2 to `. We have shown that
the relation (17) between the scaling exponents g and b

is valid for a wide class of growing networks.
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Note added.—After submission of this manuscript we
learned of Krapivsky and co-workers’ work [25] which
overlaps some of our results.
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