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STRUCTURAL EQUIVALENCE OF INDIVIDUALS
IN SOCIAL NETWORKS†

FRANCOIS LORRAIN, HARRISON C. WHITE
Harvard University

The aim of this paper is to understand the interrelations among relations within concrete social groups.
Social structure is sought, not ideal types, although the latter are relevant to interrelations among
relations. From a detailed social network, patterns of global relations can be extracted, within which
classes of equivalently positioned individuals are delineated. The global patterns are derived
algebraically through a 'functorial' mapping of the original pattern. Such a mapping (essentially a
generalized homomorphism) allows systematically for concatenation of effects through the network.
The notion of functorial mapping is of central importance in the 'theory of categories,' a branch of
modern algebra with numerous applications to algebra, topology, logic. The paper contains analyses
of two social networks, exemplifying this approach.

By interrelations among relations is meant the way in which relations among the
members of a social system occur in characteristic bundles and how these bundles
of relations interlock and determine one another. % By understanding is meant distilling
simpler patterns at a higher level of abstraction—simpler not only in having fewer
constituents but also in exhibiting interrelations which are more regular or transparent.

Practicable ways of carrying out analyses with data have been developed, in the
form of computer programs (Heil 1970). However this approach is not just a novel
technique of data reduction; rather, as will presently be explained, it follows from
our concern with a set of sociological problems.

Our treatment, which stems from a tradition of algebraic analysis of kinship
systems (Weil 1949, White 1963, Courrege 1965, Boyd 1969), differs from other

†This work was supported under grants GS-448 and GS-2689 to H. C. White from the National
Science Foundation, which is gratefully acknowledged. Special thanks are due to Scott Boorman,
whose unfailing criticism gave us much cause for reflection and led us to numerous revisions.
Discussions, in seminars or otherwise, particularly with Daniel Bertaux, Mark Granovetter, and
John MacDougall, have also been helpful. However, the undersigned are clearly responsible for
any imperfections that may remain. This paper is the product of the synthesis of an unpublished
paper by H. C. White ('Notes on Finding Models of Structural Equivalence', 1969) and certain
results taken from an unpublished paper by F. Lorrain (Tools for the Formal Study of Networks, I.',
1968) and from the latter's doctoral dissertation (Lorrain 1970, in press). The determinant stimulus
that led us to the ideas set forth in the present paper came from Boyd's 1966 dissertation (the core of
which was subsequently published—Boyd 1969), where the decisive step was made, introducing
and exemplifying a particular type of reduction of a network. FriedelTs (1967) notion of 'office
Structures' within organizations also pointed in the same direction.

‡For a brilliant formulation of the problem, see Nadel 1957. However he emphasizes mainly
cultural interrelations of role sets.

49

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f F

lo
rid

a]
 a

t 0
9:

06
 2

2 
N

ov
em

be
r 2

01
3 



50 F. LORRAIN AND H. WHITE

approaches to the analysis of networks—such as graph theory, the theory of electric
circuits, or production scheduling—in that it handles the points of view of all nodes
simultaneously. It also differs from other approaches in the study of social networks
in that it consists of concurrent dual treatments of individuals on the one hand and
relations on the other. Although the elements of our framework are stable expectations
held by persons, it should be possible to deal in this way with macroscopic flows
either of material resources or of abstractions—such as information, uncertainty,
attitudes—as seen by an observer. Such flows involve aggregates of individuals in
equivalent positions within the abstract global structure. Moreover these aggregates
will vary according to the particular abstract point of view taken; many such over-
lapping global patterns can coexist or conflict at the same time.

In order to do justice at least in part to the bewilderingcomplexity of social structure,
it is important to take into account the possibly very long and devious chains of effects
propagating within concrete social systems through links of various kinds. It is partly
owing to these indirect effects, together with the largely extrinsic driving force of
membership renewalf, that social structures and processes can so vastly transcend
the individual consciousness of actors and investigators. Another consequence is
that cultural systems of cognitive orientations, or of values, or of norms, however
complex and however crucial, can only constitute a small part of the social phenome-
non. Although some global structural aspects may be culturally recognized and be
expressed in strong and important social norms, this is not necessarily so for all such
aspects. It is exceedingly important to realize that, as soon as an abstract cultural
framework is inscribed within a set of concrete persons, coming and going, being
born and dying, wholly unanticipated consequences may result. Thus when we speak
of the global network structure of a social system, we have in mind the overall
objective logic of this system as it exists concretely in a population of so many indi-
viduals related in such and such ways. This is why simultaneous treatment of indi-
viduals and of relations is essential. One of the deepest misunderstandings in prevailing
sociological theories is their failure to distinguish effectively between individuals and
social positions.

RELATIONS AND GRAPHS

The total role of an individual in a social system has often been described as consisting
of sets of relations of various types linking this person as ego to sets of others (see
for example Gross et al. 1958). Let us represent individuals as nodes which are not
distinguished by intrinsic attributes such as sex; this restriction will be discussed
later. Let us draw an arrow with a label from one person to another to represent a
type of role relation. Thus total roles will appear as sets of variously labelled arrows,
not as higher order structures. 'Counterpart' role relations directed back to the given
person are simply treated as parts of the sets of role relations of the others. In other

† White (1970) deals extensively with membership renewal in organizations, particularly emphasizing
the duality of individuals and social positions, and showing that objective flows of vacandes through
an organization are the crucial phenomenon, not careers.
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STRUCTURAL EQUIVALENCE OF INDIVIDUALS IN SOCIAL NETWORKS 51

words, total roles are broken down into directed ties of different kinds occuring
within pairs of persons.

An important requirement is that these links correspond to clear expectations
among the population considered. Definition of different types of role relation is a
question of substantive theory related to the particular purposes of a study (for an
example of a systematic analysis see Davis 1969). Deciding which particular ordered
pairs of nodes exhibit a given type of tie is an empirical question, but one based on
abstraction, since ties of several different types may hold at the same time between
a given pair of nodes. The problem of measurement of social relations is a difficult
one; unfortunately most existing sociometric tests seem hardly acceptable as tools
for the measurement of systematic structure.t

The pattern of occurences of a relation of a given type within a network, i.e.
the set of all ordered pairs of nodes exhibiting this type of relation, constitutes a
directed graph. Hereafter the term graph will mean directed graph and will be used
interchangeably with the term binary relation, which simply means a set of ordered
pairs of nodes. Let us assign to each type of role relation a capital letter as a label.
A specific tie in the graph of a relation labelled, say, R will be represented in the
usual way as aRb, where a, b are nodes and the direction of the tie is by convention
from a to b.

Definition of social relations will be tied to the given population by one major
restriction: if the graphs for two types of social relation are identical, i.e. if they consist
of exactly the same ordered pairs of nodes, the two will be treated as a single type.

Of course it is conceivable that two culturally distinct role relations may happen
at some time to have identical graphs in a given population. However it does not
seem very probable that they would remain distinct for a long time, if the coincidence
of their graphs persists. (Compare this with Gause's ecological axiom, Slobodkin
1961, p. 123.) This is a sociological argument. Roles are not isolated abstract entities:
they exist only in so far as they have dynamic reality in a concrete population. A role
involves more than just two persons: the concrete patterning of flows along the graph
of a relation as well as the ways these flows concretely interlock and overlap with
other types of flow are probably more important in shaping the content of a role
relation than even the most articulate cultural specifications. The above restriction
is not a matter of emphasis on extension rather than on intension of role concepts;
the point is rather that, as far as internal flows of a system and aggregates of indi-
viduals are concerned, it is not necessary to distinguish in the abstract what is nowhere
concretely distinguished. However such a point of view requires an important precau-
tion. The domain of people and relationships considered must be relatively bounded
and complete: it makes but little sense, in this perspective, to select an arbitrary
subset of a social system and to submit it to the type of analysis we propose, because
the structure of global flows could thereby be critically distorted. Naturally this in
no way excludes that the given domain be also part of a wider system and interact
or even overlap with other systems.

By definition a role relation must imply reciprocal expectations. (See Nadel 1957,

†As clearly shown by P. W. Holland and S. Leinhardt in an unpublished paper, 'Masking: The
Structural Implications of Measurement Error in Sociometry,' 1969.
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52 F. LORRAIN AND H. WHITE

Chapter 2, for an unusually clear discussion of role as a concept.) Formally, if a role
relation labelled R is recognized then there necessarily exists a converse role relation,
which can be labelled i?"1, such that, for any nodes a, b, aRb if and only if bR~1a.
Of course, by definition, (i?"1)"1 is precisely the relation R. This principle of recip-
rocity is another manifestation of the reality, of the objectivity sui generis of social
phenomena. However this principle may not fully apply to 'relations' corresponding
to relatively imprecise 'sociometric choices'; such a case will be presented and analyzed
in a later section.

The converse relation R'1 must be distinguished from the 'counterpart' roles
mentioned earlier, which are simply role relations of the same generic kind as R.
Several distinct role relations and their respective converses may simultaneously
hold on certain pairs: e.g. aRb, aS~lb, aTb, together with bR~1a, bSa, bT~la.

Symmetry is a particularly important aspect of social relations. Consider a type of
role relation R. Suppose that expectations of one person of a pair in the graph of R
toward the other are the same as the other's toward the first, and let this be true for
every pair of nodes included in the graph of R. Then not only is each tie symmetric,
but the graph as a whole is symmetric, i.e., for any nodes a, b, aRb if and only if bRa.
Thus the graph of the converse R'1 coincides with the graph of R: bR~1a if and only
if bRa. The major restriction just stated then applies: since R and R'1 coincide,
they are treated as a single inclusive role—call it R still. In this sense, a symmetric
role relation has no reciprocal role relation. Receiving and acknowledging the friendly
expectations projected to one by a friend, for example, is treated as an intrinsic part
of one's own projection of the same friendly expectations to him, so long as all pairs
in the population are symmetric in this way.

Merger of R and J?"1 when R is symmetric can be used as a prototype in arguing
again for the one major restriction. The great complexities and subtleties of a role
relation, between two particular persons or as viewed in general in a culture, are
being excluded as far as possible from this analysis. Our approach is orthogonal to
Friedell's (1969), who is concerned with the deep structure of mutual perceptions in
social groups. The whole thrust is toward how patterns of role relations fit together
in a population. From this point of view, it is not important to distinguish passive
from active on one person's side of a role tie unless the two aspects occur separately
somewhere in the population.

This argument suggests an ambiguity which must be resolved when defining a role
relation. Let F be the graph of role ties found in a population using a definition of the
role relation of friend elicited from informants and their culture. In many pairs, no
doubt, there will be a symmetric tie with the role relation holding in both directions.
Let this subset of pairs and their ties be represented by a subgraph of F called S. A
substantive judgment must then be made as to whether the S ties are so different from
the others that there are really two distinct role relation types, even though they
are not recognized explicitly by the population. Davis and Leinhardtf have adopted
this strategy of splitting S from F (see also Davis 1968). A typical example of this type
of situation is the distinction between reciprocal use of the second person singular of

†J. A. Davis and S. Leinhardt, 'The Structure of Positive Interpersonal Relations in Small Groups',
unpubl. paper, 1968.
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STRUCTURAL EQUIVALENCE OF INDIVIDUALS IN SOCIAL NETWORKS 53

verbs in verbal interaction and use of the second person singular reciprocated by use
of the second person plural or third person, a distinction of outstanding importance
in many languages. Once again the point is that the nature and content of ties is
closely related to the pattern of their distribution among individuals, to which close
attention must be given in the course of analysis as well as in field-investigation.

COMPOUND RELATIONS IN SOCIAL NETWORKS

Dynamics and structure in a population cannot be captured from the mere count of
role relations by type—as proposed by Wolfe and Schenk (1970), for example—any
more than from a census of attitudes or attributes of individuals. The problem is how
to get at the interweaving of pair relations into the complex tapestry of social structure
and process. The theory of electric circuits comes to mind as an analogue, particularly
in the elegant formulation of Kron (1939), ably simplified and restated by LeCorbeiller
(1950), or in the formulation of Slepian (1968). There are three crucial defects in the
analogy, exploration of which can guide further treatment of social ties.

1. Ties in social networks often generate other ties or the elimination of other ties,
unlike branches in an electric circuit which are the given skeleton of a network
changed only by an outside agency, the designer.

2. The driving forces in an electric network are external to its logic, scattered
arbitrarily in branches of it, whereas the activation of the population rests on impulses
generated at each of the nodes, whether or not with external stimulation.

3. The nature of a tie, as argued earlier, depends in part on the pattern of all ties
of that type among the population in comparison with the patterns of all ties of
various other types. More generally, the nature of the ties between a given pair of
persons depends on their (and others') perceptions of how these ties fit in with other
role relations among the population. Whereas the nature of a branch in an electric
network is fixed by design, although of course its operation depends on what flows
develop elsewhere (perhaps directly through mutual inductance) and breakdown can
occur because of overload.

Composition of Relations and the Algebraic Notion of Category

Everyone recognizes the reality of indirect ties, ties to one's boss' friend, or one's
roommate's relative, or one's ally's enemy. Indirect ties are even sometimes themselves
institutionalized and part of a role system, as in the case of kinship ties. The relation of
such indirect or secondary ties with one another and with the direct or primary ties is
an obvious way to capture the interweaving of role relations into a structure on the
population.

Denote RS the secondary relation Unking a to b, implied by the existence of a node
x such that aRx and xSb. RS will be referred to as the compound of R and S, and
this operation of compounding will be called composition. Whenever aRx and xSb
then necessarily a{RS)b', however the converse of this will often not be true: in
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54 F. LORRAIN AND H. WHITE

general, if a(RS)b then there does not necessarily exist an x such that aRx and xSb:
for example, the compound relation RS might happen to be quite strongly institu-
tionalized in its own right, so that if x left the system in one way or another a would
keep his RS tie to b. This is important and relates to our argument that a relation
involves more than just two persons (or three, for that matter). We shall later encounter
a number of examples of compounds of relations having this property.

Let us then extend our conception of composition of ties so that there may be
compounds of any order, such as RSS, RRR~1S, etc.; refer to this extended operation
simply as the composition operation of the network considered. By the major restriction
stated previously, there can be only a finite number of such compound types of
relation—because there is only a finite number of possible binary relations on a finite
population. Certain equations then must hold among strings of relation symbols:
otherwise there would be as many relation types as there are such strings, that is an
infinite number. For example, if the graph of R coincides exactly with the graph of
RR then by our major restriction R and RR will be treated as a single type of relation
and the following equation will hold: R = RR. This particular equation implies
that R is transitive: whenever aRb and bRc then always aRc. In addition the social
nature of converse relations is such that all equations of the type (RS)'1 = S~1R~1

must hold in any network.
We shall deal later with the problem of defining a composition operation when

initially only primary, generator ties are explicitly given. For the moment, let us
suppose that we have a full composition operation for a given network.

This operation represents the-basic logic of concatenation, the basic logic of interlock
among the relations constituting the network. Of course this operation is meaningful
only in so far as the generator relations are clearly defined; otherwise it would make
no sense to distinguish, say, RS from RR, or from SRS'1, etc. The composition
operation constitutes one of the main differences between our approach and the more
usual 'sociometric' treatments of social networks; it stands for quite a different level
of structure.

Note that compound relations, as here defined, are independent of the particular
intermediary people involved: the nature of such compound relations depends only
on the types of tie that are concatenated to form the compound relation in question.
This is because all nodes can be active sources of information and motivation (see
point 2 above).

Note also that the compound of two relations, say, X and Y is not necessarily
defined: if it is never the case that three nodes a, b, c of the given network are such
that aXb and bYc, then the relation XYsimply does not occur in the network, there
is no point in even speaking of it, in so far as this particular network is concerned.
Again, even if the compound XY would happen to make sense culturally, if for some
length of time 2" and r persisted in concatenating nowhere in the network, it is doubt-
ful that the compound XY would retain any effective social reality.

Let us refer to either generator or compound types of relation as morphisms. Some
compound morphisms will be explicitly recognized, others will not—which in no way
implies that they have less real an effect. These morphisms, together with their com-
position operation and their graphs on the set of nodes constitute a category. More
precisely:
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STRUCTURAL EQUIVALENCE OF INDIVIDUALS IN SOCIAL NETWORKS 55

Definition. A category C is constituted by a class CObj—the elements of which
may be called nodes but are usually called objects—, together with a class CMor—the
elements of which are called morphisms—, and provided with a structure of the
following type.

1. To each ordered pair (a, b) of objects is assigned a subset (a, b)Mor of CMor.
The elements of {a, b)Mor are referred to as the morphisms Unking a to b. If M is a
morphism linking a to b, this may be indicated by writing aMb. It is understood that
every morphism appears as a link for at least one pair of objects.

2. If objects a, b, c and morphisms M, N are such that aMb and bNc then there is
amorphism MN linking a to c, called the compound of M and N. The compound MN
depends only on M and N: it is independent of any particular objects a, b, c that
might be involved in their concatenation. If on the other hand there are no objects
a, b, c through which M and N concatenate as above, then the compound of the two
morphisms is undefined, the expression 'MN' has no meaning. This operation of
compounding of morphisms is called the composition operation of C.

3. If objects a, b, c, d and morpbisms M, N, P are such that aMb, bNc, and cPd,
then {MN)P = M{NP), so that there is no ambiguity in speaking of the compound
of M, N, and P through a, b, c, d: it is a unique morphism—which may as well be
denoted simply by MNP, deleting the parentheses—, linking a to d: a{MNP)d. This
is the property of associativity of the composition operation. Of course, by 2, MNP
is independent of the particular a, b, c, d involved in the concatenation of the three
morphisms.

The concept of category is an important one because it takes a network as a network,
combining together in a unit the three levels of objects, of morphisms, and of con-
catenation of morphisms. In a category all objects are considered simultaneously,
while graph theory considers only particular cycles and paths linking definite nodes;
neither does graph theory consider any classification of paths into types according
to the types of the links concatenated-!

A final remark. There is no objection to seeing composition of morphisms as
developing in time (see point 1 above on electric networks). Generation of a full
pattern of indirect effects—even if none of them would be of a conscious nature—
can conceivably take some time; in such a case compound morphisms would become
meaningful only relative to a long enough period.

†This definition of a category differs in some respects from the usual definition of a category in
mathematics: according to the present definition a category does not necessarily have identity
morphisms and a morphism can apply to more than one ordered pair of objects. (A standard reference
on categories is Mitchell 1965). This definition renders possible a richer dialectic between objects
and morphisms and is better adapted to psychological and sociological applications. Thus, at the
immediate level of a social network represented as a category in the sense just defined, the mathematical
theory of categories in its present form has but little relevance, although the spirit is the same.
However in the study of whole classes of such categorical networks category theory becomes directly
relevant and proves to be quite useful in establishing certain results (see Lorrain 1970). Hereafter
the term category will refer exclusively to the notion as defined here. Although the major restriction
stated in the section 'Relations and Graphs' in general does no t apply to a category, it will be understood
to apply to all categories hereafter considered.D
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56 F. LORRAIN AND H. WHITE

Composition When No Explicit Composition Operation Is Given
Frequently, in mathematics, structures consisting of certain elements are considered,
where a certain type of combination of these elements would be useful for structural
analysis but no explicit rule for such combination is given. Often in such cases rules
of combination are defined in a purely abstract, formal manner and are used as a
basis for further treatment. We shall follow a similar course for social networks.

Let a social network be given, containing various types of role relations, but where
there seems to be no natural composition operation available. First consider as
many compound relations as there are 'words' that can be formed by using as letters
the labels of the role relations given at the start—call these generators—, without any
limitation to the length of words or to the order of letters within them. Consider
two generators R, S. There is no alternative, in this case where only primary relations
are given at the start, but to define the graph of the compound relation RS to be the
unique graph such that: for all nodes a, b, a(RS)b if and only if there exists a node x
such that aRx and xSb. In other words the graph of i?5here is exactly the composition
of the graph of R and the graph of S. Similarly, define the graph of a tertiary relation
RSS to be the composition of the graph of RS and the graph of S, or equivalently as
the composition of the graph of R and the graph of SS, composition of graphs
being associative. And so on.

Denote by G our (non-empty) set of generator relations. Once again, although an
infinite number of words can be formed with elements of G as letters, only a finite
number of graphs will be generated by composition of generators, since there is only
a finite number of possible binary relations on a finite population. This set of graphs
—denote it by SG—, considered together with the operation of composition of these
graphs, constitutes a semigroup: the composition of any two elements of SG is again
an element of SG and composition is furthermore associative. The infinite set of words
can be partitioned into a finite number of classes such that any two words in the same
class have exactly the same graph. By the major restriction stated above, all the words
within a class will be considered to represent a single type of relation, to which will
correspond a unique element of SG. This means that in general the same type of
relation can be denoted by more than one word. Such partitions of sets of words are
dealt with in the theory of free semigroups and their homomorphic reductions (see
for example Clifford and Preston, pp. 40 if.) and in extensions of this theory to the
more general case of categories.

Now define a category CG as follows. The objects of CG will be the nodes of our
network. With only one possible exception to be discussed below, the morphisms of
CG will be all the types of relation generated from G, which are of course in one-to-one
correspondence with their graphs, the elements of SG. A morphism M will link an
object a to an object b if and only if a is tied to b in the graph of M. The composition
operation of morphisms will follow exactly the composition operation of the semi-
group of graphs SG. If we add only the slight modification just mentioned and to be
presently described, this structure is seen to satisfy all requirements of our definition
of a category. Such a category structure captures adequately the network properties
in which we are interested here and can form a useful basis for further analysis. A
concrete example will be described in detail in a moment and will be analyzed further
n this paper.
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STRUCTURAL EQUIVALENCE OF INDIVIDUALS IN SOCIAL NETWORKS 57

One particular binary relation is important here: the empty or zero relation, i.e.
the relation consisting of the empty subset of the set of all ordered pairs of nodes. This
relation—denote it O—has the property that, for any binary relation R, RO = OR
= O. Now it may happen that O is one of the elements of iSG, i.e. that there exist
certain types of compound relation not exhibited by any pair of nodes in the given
network. In such a case O must be excluded from the morphisms of CG, if CG is fully
to satisfy point 1 of the definition of a category. This is the modification that was
just announced. Hence the compound of two morphisms is zero in the unmodified
CG if and only if in the modified CG this compound is undefined (see point 2 of the
definition of a category). Hereafter CG will denote only the modified CG. It may seem
artificial to exclude O from CG, but we shall see later that such an exclusion is import-
ant; the fact that two types of relation never concatenate in the network is of crucial
sociological significance, because it indicates a form of disjunction, break, or decoup-
ling within the structure. Moreover, contrary to the CG and SG case, in general it is
not sufficient to add a zero to the morphisms of a category to obtain a semigroup;
we shall encounter examples of such categories below, pp. 66 and 69.

Another graph is of special importance: the identity relation /. This is the apparently
trivial graph linking every node to itself: it consists exclusively of 'self-loops'. / has
the property that for any binary relation R on the given set of nodes RI = IR = R;
i.e. / acts as an identity element in semigroups of binary relations. Usually / will not
be an element of SG, however; whether or not to add I to SG—and add it also, as a
new identity morphism, to CG—depends on the interpretation of the model to be
constructed. Identity morphisms will play a central role in our treatment of social
networks as categories.

Note, finally, that, although in CG composition of morphisms coincides by definition
with composition of their graphs, this is not in general true of all categories. This
remark was already made at the beginning of the previous subsection and must once
again be emphasized. Concrete examples of such categories will be considered later.

An Example
Let us compute the category CG for a population of five persons and the set of two
generators P and P" 1 illustrated in Figure 1. Exactly twenty-one distinct types of
relation are generated from P and P" 1 : the shortest words representing them are
listed in Table 1 and the graphs of a few of them are given in Figure 2. In Table 1

1 1

5 2

4 3

p p-1

FIGURE 1 A hierarchical tree.
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58 F. LORRAIN AND H. WHITE

i i

G 5^O S^~ 2

C 4-«-»"3 ,J 3 4

p-lp p-ip2

5 2 G 5 ^ 2 O

3 4 3 4

p - lp2 p-2 p - l p 2 p - 2 p

FIGURE 2 Graphs of four of the types of relation in Table 1

and Figure 2, P2 stands of course for PP, P~2 for P~lp-\ etc. It is not hard to show
that any other 'word' has the same graph as one of these twenty-one words and hence,
by our major restriction, is considered to represent the same type of relation. Six
equations are sufficient to equate any word to one of the twenty-one types: PP~XP
= P, P2P~2P2 = P2, P 3 = O = OP = PO, and the ones equating the converses of
these: P ^ P P - 1 = P " S P - 2 P 2 P - 2 = P-2, P - 3 = 0 = P^O = OP"1. An example

TABLE 1
list of the twenty-one distinct types of relation generated by

P and P"1 of Figure 1.

p»-xP, P~2P2; I (the identity, adjoined to Co, not generated)
\PP~X, PP~2P, P-lP2P-\ P-iptp-tp, pp-2p2p-l

IP, P-ip*. PP-2P2

1P2P-1, P2P~2P
,p-lf p-2pt p-2plp-l
PP-2, p-W-2

P2

p-2
O (generated for example as P3)

Note.—The assignment to separate lines and the further grouping
by brackets are used in a later section, together with the adjoined
identity /.
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STRUCTURAL EQUIVALENCE OF INDIVIDUALS IN SOCIAL NETWORKS 59

of a deduction from these equations is: PP
_ p2p-2p j n gypjj ¿eductions, there is complete freedom in the use of parentheses
since composition in SG—which here is isomorphic to composition of types of relation
—is associative. The empty relation O will be excluded from the set of morphisms
of CG and the identity morphism I (Unking each object to itself) will be added, so that
CG will have twenty-one morphisms. Table 2 gives the distribution of morphisms
among pairs of objects in CG. In Table 3 is shown a part of the composition table of

TABLE 2
Distribution of morphisms among ordered pairs of objects in the

category Co generated from P and P " 1 of Figure 1.

(l.l)Mbr = {/, PP-\ P2P'2}
(2,2)Mbr = {/, P~lP, PP-1, PP~2P, p-
(5,5)Mor = {/, P~lP, P-lP2P-2P)
(3,3)Mv = (4,4)M>r = {/, P-*P, P~2P2}
(l,2)Mv = {P, Pip-1, P2P-2P)
(l,5)Afor = {P, P2P-2P)
(2,3)Mor = (2,4)Aibr = {P, P^P2, PP-2P2}
(5,3)Mor = (SAWor = {P-lP2}
(l,3)Afor = (l,4)Aior = {P2}
(2,5)Mor = {P-ip, PP~2P, P-
Q,4)Mor = {P-1/», P~2P2}

-tp, PP-2P2P'1}

Note.—The morphisms associated to an ordered pair such as
(2,1) are the converses of the morphisms of the pair (1,2):
(2,l)Mor = {P-1, PP-2, P

TABLE 3
Part of the composition table of the

category Co generated from P and P " 1 of Figure 1.

p-l

P-2P

P 2

p

p-lp

p-2p2

X

p-lp2

p-2p2

p-2p2

X

pp-2p2

p-2p2

p-2p2

X

p-lp

p-2p

P~2P

P2

p-2p1

X
X

P 2

the morphisms of CG: this table is the same as the composition table of SG, except
that where a cross occupies a cell in the former—meaning that composition of the
two particular morphisms involved is undefined in CG—a zero would occur in the
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60 F. LORRAIN AND H. WHITE

table of SG. More than 43 % of the cells in the composition table of CG are undefined:
there is a large amount of decoupling among morphisms in CG (compared to 0%
decoupling in a semigroup).

Twenty-one types of relation among five people may seem an unreasonably high
number. However this is still orders of magnitude smaller than the total number of
possible binary relations on a set of five elements, namely 2 5 x 5 , i.e. more than 33
millions! Moreover, we shall use CG only as a base from which to extract the simpler
global patterns we are looking for. The advantage of using a base such as CG is
that it takes systematic account—albeit in an apparently too refined manner—of the
way the generator relations concatenate in the original network. The possibility must
be left open that the many compound types of relation generated—more than one
of which may occur at the same time within a single pair of nodes—correspond to
substantially distinct types of relation, flow, or effect. This relational multiplicity
within a single pair might be consciously manipulated, or it might correspond to an
objective ambiguity involving conflicts of relation quite independent of the will of
individuals, etc.

The number of morphisms of CG depends critically on the structure of the graphs
of the generator relations. If in the previous example the ties of P were not oriented
ties but symmetric ties, then only three distinct relation types would be generated, SG
being then the cyclic semigroup of order three and period two (Clifford and Preston,
p. 19). The size and structure of CG can also vary immensely if even only one node is
deleted or added: if node 2 was deleted from the previous example, CG would have
only five morphisms: /, P, P~l, PP~X, P~LP. This serves as a caution applying to the
delimitation of the network to be studied; this is an important caveat, already
expressed above.

Endomorphisms
At first sight, self-loops in the graph of a type of relation, such as the loop 1(P2P~2)1
in the hierarchy example, might not seem relevant. However these loops—or endo-
morphisms—^certainly represent real feedback effects (whether individuals be aware
of them or not) which form an integral part of the structure and can be of crucial
importance in its dynamics. Furthermore, certain endomorphisms are in a sense part
of an individual's consciousness of his position in the structure, they are part of his
identity; endomorphisms thus acquire a great significance when searching for possible
persons in the network with which a given person is most likely to identify or ally.
Endomorphisms will be of considerable moment in the following.

AGGREGATION OF RELATIONS AND
STRUCTURAL EQUIVALENCE AMONG INDIVIDUALS: FUNCTORS

Reductions
Our purpose will now be to derive models of aggregation of relations and of indi-
viduals, by mapping CG—or any representation of a social network as a category—
onto a smaller, simpler, reduced category. This will involve two simultaneous map-
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STRUCTURAL EQUIVALENCE OF INDIVIDUALS IN SOCIAL NETWORKS 61

pings: one of objects and the other of morphisms.t Naturally, if the composition
operations of the original and the reduced categories are to mean anything, these
mappings should also be compatible with these two operations. Such a mapping
of a category onto another is a. funcional reduction, hereafter simply called reduction.
Reductions are examples oí functors, a more general kind of mapping between two
categories. Reductions and functors will be defined more precisely below.

A reduction of a category constitutes a 'point of view', a 'cross-section', a 'pro-
jection' of this category, leaving out certain aspects of its structure and retaining
others. Many such reductions, such points of view on a category are possible, more
or less refined and overlapping to varying degrees. Virtually nothing can be done with
a category such as CG outside of the context of its reductions and their interrelations;
only in this context can its sociological fruitfulness be assessed.

One might expect the social process to operate in such a way that the enormous
cognitive and emotional complexities involved in multiple compound relations in a
social network C inevitably become structured into the simpler pattern of some
reduction of C, where possibly whole classes of nodes become structurally equivalent
and hence may be considered as units. Certain reductions of C might perhaps delineate
latent macrostructures within C, which could become realized socially under certain
circumstances (examples of this will be described later). Some reductions might even
happen to be invariant in time, while C could be in a state of incessant change; this
would express in a rigorous way the idea of social continuity. An example of such a
time-invariant reduction, to which we shall return later, is the structure of clans
and clan relationships in societies with certain types of kinship system. More than
one time-invariant reduction of C could exist, some of which individuals in C might
be quite unaware of, or might be strongly reluctant to acknowledge.

Reduction of Morphisms
Let a category C be given, representing a social network. We shall now examine
in more detail what should be meant by a reduction of the morphisms of C, leaving
aside reduction of objects until the next section. Interdependence of reduction of
objects and reduction of morphisms will appear fully only when sociological criteria
for reduction will be discussed in the last part of this paper, where examples of
reduction will be considered.

Let D be another category, with the same objects as C but with perhaps different
morphisms, i.e. CObj = DObj but possibly CMor ?£ DMor. Suppose/is a mapping
of CMor onto DMor (see Footnote). If / is to represent a meaningful reduction
of C to D then at least the following three conditions should be satisfied.

1. Whenever aMb in C then a(Mf)b in D: every link between two objects in C
becomes a link in D.

Thus a reduction of C to D maps every occurrence of a morphism (type of relation)
M in C to a unique type of relation Mf in D.

† A mapping m of a set A into a set B is any rule assigning to every element x of A a unique element
of B, denoted xm and called the image of x. m maps A onto B if every element of B is the image of
an element of A; in this case B obviously cannot have more elements than A has, so that in general if
m is onto it can be viewed as a reduction of A to B.
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62 F. LORRAIN AND H. WHITE

2. Whenever aQb in D then there exists a morphism N of C such that Q = iV/and
aNb: every link between two objects in D is the image of a link between these two
objects in C.

Conditions 1 and 2 can also be expressed as follows: the graph of a morphism Q
of D is exactly the union of the graphs of all the morphisms of C of which Q is the
image.

Condition 1 implies that whenever the compound of two morphisms M, N of C
is defined in C, then the compound of Mf&ná Nf is necessarily defined in D (see
point 2 of the definition of a category). We shall also require a third condition of/:

3. If the compound MN of morphisms M, N of C is defined in C then the com-
position operations are such that {MN)f = (Mf)(Nf).

This necessitates an important remark. In a semigroup, composition of any two
elements is defined. A homomorphism of a semigroup S into a semigroup T is a
mapping g of S into T such that, for all elements X, Y of S, (XY)g = (Xg)(Yg).
However, condition 3 does not imply that a reduction of the category CG defines at
the same time a homomorphism of SG onto a reduced semigroup; this can be seen
as follows. In condition 3 the equation {MN)f— (Mf)(Nf) has no meaning if MN
is undefined; now MN is undefined in CG if and only if MN = O in SG; thus the
equation {XY)f = {Xf)(Yf)can be required of elements X, YoiSG only in the case
where XY 5¿ O. Such a relaxation of the homomorphism requirement for semigroups
was made by Boyd (1969), who did not use categories. However this extension of the
notion of semigroup homomorphism is still insufficient to cover all cases of reduction
of categories: as already remarked, the set of morphisms of a category does not
necessarily constitute a semigroup, even if a zero is added, and even if this category
is a reduction of CG: this will be made clear in an example, p. 69. A homomorphism
of a semigroup onto another is only a particular case of reduction of morphisms in a
category.

Let C be again any category, and suppose that there is a morphism E of C such
that, for every morphism M of C, both EM and ME are defined and EM = ME = M.
In other words, E acts as an identity morphism in C (although its graph can be
different from that of the identity relation / and the latter is not necessarily a mor-
phism of C). Then Efhas exactly the same properties in D: this is due to condition 3
together with the fact that / maps CMor onto DMor. Thus the image, through a
reduction, of an identity morphism is again an identity morphism.

We shall say that two morphisms M, N in CMor having the same image in DMor
—i.e. such that Mf= Nf—aie identified. This will also be denoted by the equation
M = N. To identify two morphisms means to lump them together, widening their
definition so that both become the same morphism in the image. When dealing with
social networks, all such identifications of morphisms should occur in dual pairs:
i.e. M s N if and only if Af"1 s JV"1. Obviously the relation m among the mor-
phisms of C is an equivalence relation; the image morphisms are in one-to-one
correspondence with the equivalence classes of =. In general every such identification
entails other identifications if condition 3 above is to be satisfied; in particular, if the
compounds MN and M'N' are defined in C and if M s M' and N = N' then by
condition 3 we must also have MN = M'N'. Conversely, it is easy to show that any
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STRUCTURAL EQUIVALENCE OF INDIVIDUALS IN SOCIAL NETWORKS 63

equivalence relation on CMor having the latter property defines a possible reduction
ofC.

It is not always necessary or convenient to compute a reduction in detail. Often a
few basic identifications are sufficient, from which all other identifications and hence
all the properties of the reduction can be deduced; the basic identifications then
constitute the axioms of the reduced structure. It is often not easy or even impossible
to compute the reduction implied by a set of identifications; an example is the theory
of free groups and their reductions (Coxeter and Moser 1965), which is applied in
the theory of a type of classificatory kinship system (White 1963). However, when C
is finite and given in detail, it is easy to compute the reduction entailed by any set of
identifications; computations too long to do by hand are done on a computer (Heil
1970). The exact procedure of such a computation will be made clear when dealing
with examples later on.

Structural Equivalence of Objects
Objects a, b of a category C are structurally equivalent if, for any morphism M and

any object x of C, aMx if and only if bMx, and xMa if and only if xMb. In other
words, a is structurally equivalent to b if a relates to every object x of C in exactly
the same ways as b does. From the point of view of the logic of the structure, then, a
and b are absolutely equivalent, they are substitutable.

Indeed in such a case there is no reason not to identify a and b. Clearly, the relation
of structural equivalence among objects of C is an equivalence relation, so that CObj
can be partitioned into classes of structurally equivalent objects. We can then define
in an obvious way a reduced category Csk, the skeleton of C, whose objects are those
equivalence classes and whose morphisms and their composition operation are
exactly the same as in C. Here the reduction mapping of morphisms is the trivial
identity mapping and the reduction mapping of objects maps an object of C to its
equivalence class which is an object of Csk. If the nodes of C are individuals, then the
nodes of Csk are groups of structurally equivalent individuals, i.e. maximal relation-
ally homogeneous groups. Concrete examples of such reductions will be described later.

In most social networks represented by a category of the type of CG no two distinct
objects are structurally equivalent. Structural equivalence of nodes usually appears
only once a reduction of the morphisms of CG has been accomplished. Here then two
mappings, one of morphisms and one of objects, will be combined into a single
reduction operation. Such double mappings exemplify the full notion of functorial
reduction. The formal conditions which such a double mapping must satisfy are the
same as conditions 1 to 3 above, except that the mapping of objects must be applied
in addition to the mapping of morphisms when passing from C to D. Condition 2
must here be interpreted in the context of Nadel's argument that relations between
groups of individuals in social systems are based on invariant aspects of, ultimately,
relations between individuals (Nadel 1957, pp. 13 f.)

A functorial reduction is a particular kind oí functor, the only difference being that
in a functor neither the mapping of objects nor that of morphisms is required to be
onto. Thus a functor is any double mapping of objects and morphisms leaving invariant
both the distribution of morphisms among objects and the composition operation.
(On functors see Mitchell 1965.) Functors furnish the only rational basis for a meaning-
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64 F. LORRAIN AND H. WHITE

ful classification of category-like networks. Higher-order categories, where objects
are themselves categories and morphisms are functors, and functors between such
higher-order categories play an important role in the theory of the lower-order
categories.

As a consequence of such double reductions, structural equivalence of objects
will vary according to which particular reduction of morphisms is applied. A wider
notion of homothety is involved here, that is a notion of similarity of position of
individuals in a social network, this similarity being relative to particular abstract
•points of view' (reductions) taken on the structure. For example, homothety could
correspond to clustering of individuals into disjunct interest groups, common interest
being denned by similarity of position relative to some abstract, analytic perspective
on the structure. Many such clusterings into interest groups can cross-cut at the same
time. Unanticipated equivalences or solidarities in the overall structure between
apparently very remote individuals might become visible as a consequence of a reduc-
tion. But of course, in general, structural equivalence does not imply actual or con-
scious solidarity. Concepts of structural equivalence have been used more or less
implicitly in the literature; an instructive case is provided by Rosenthal (1968, p. 258)
on the subject of coalitions between political parties.

Care must be taken to distinguish being in the same position in a structure and
being in isomorphic positions. For example, in a structure consisting of a simple
exchange cycle between social groups, no two groups are in the same position (i.e.
are structurally equivalent), but on the other hand any two groups are in isomorphic
positions. This could be described as a distinction between local and global homo-
geneity.

One can show that if a category C possesses an identity morphism E, whose graph
contains the identity relation /, then two objects a, b of C are structurally equivalent
if and only if aEb and bEa. In the case of social networks where each type of relation
has a unique converse, all identifications among morphisms occur in dual pairs (e.g.
M s Nand M'1 s N~x); thus, if is is an image of/(as it will usually be), we must
have E = E'1, because I = I"1: i.e. here the graph of E is more than just reflexive
(it includes I) and transitive (EE — E), but it is also symmetric, so that it coincides
exactly with the graph of structural equivalence among nodes. We now see the
importance of identity morphisms in the computation of reductions. In the language
of abstract networks of social positions (Lorrain, in press), an identity morphism
corresponds to the theoretical possibility of considering the structure from the point
of view of a generic ego, either an individual ego or, if structural equivalence is
involved, a collective subgroup ego.

The number of possible reductions of a given Cc can be enormous. Thus far we
have merely developed a framework for models of structural equivalence. In the
choice of reductions lie the main substantive issues.

APPLICATIONS
Criteria for Reduction
A mixture of two strategies may be used in trying to determine meaningful reductions.
They will be described in this section and apph'ed immediately in the following sec-
tions.
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STRUCTURAL EQUIVALENCE OF INDIVIDUALS IN SOCIAL NETWORKS 65

One strategy we call cultural, which looks for possible identifications of morphisms
solely on the basis of the cultural content of the morphisms, without regard to their
actual graphs. If, in a network of friendship relations, the content of the generic
friendship tie Fis such that friends of friends are most probably also friends, then the
identification FF = F could be made so that in the reduction the F relation would
become fully transitive. Or if the generic friendship tie is such that it is symmetric
and relatively strong, then the identification F s I = F~l (which also implies FF = F
since / / = I) would be reasonable and in the reduction the classes of structurally
equivalent individuals would be cliques of mutual friends. If an 'enemy' relationship
N is also given and it is felt that enemies of friends are just as fully enemies as are
friends of enemies then the following equations should be imposed: FN s NF = N;
thus, in particular, composition of F and N would become commutative. It is precisely
such a cultural strategy that is used by Lounsbury (1964 a, b) in his analysis of kinship
nomenclatures by reduction rules—although there we do not necessarily have a
functorial reduction in the strict sense, because the rules are usually ordered according
to precedence. One possible starting point for the cultural strategy can be to consider
the equations that reduce the infinite set of 'words' to the finite SGi as done above in
deriving SG for the generators of Figure 1.

The other strategy we call sociometric, which considers the actual graphs of the
morphisms, identifying those that have many ordered pairs in common, or identifying
to / some morphisms that have many self-loops and many symmetric ties in their
graph: then in the reduction the nodes linked by these morphisms will become
structurally equivalent and hence will be identified. Two morphisms whose graphs
have a majority of ordered pairs in common are in similar positions within the
composition operation and it is reasonable to identify them in a reduction—the more
so as we have already argued that two types of relation with the same graph should
be considered a single type.

Note that in a social network represented as a category the graph of a morphism
RET1 necessarily consists only of loops and symmetric ties, because (JLR"1)"1

= (i?"1)"1^"1 = KR~l. Often such morphisms will be identified to the identity
morphism J; we shall do so in an example about to be described. As made clear by
Figure 3, RR-1 s /implies that any two nodes each related by R to a third node will
be structurally equivalent in the reduction and hence identified.

FIGURE 3.

There may be other, better strategies for reduction. Although the two ones just
described considerably restrict the number of possible reductions of a network,
much remains to be done to relate them more effectively to the actual dynamics of
social systems. But, whatever results of this, one thing should by now be obvious:
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66 F. LORRAIN AND H. WHITE

identification of morphisms and homothety of individuals are necessarily closely
interdependent.

Exploration of possible reductions of a given network is feasible only on a com-
puter. We are currently using programs developed by Heil (1970), which compute
reductions of morphisms, structural equivalence, and accomplish various other tasks
useful for such an exploration.

Reduction of a Hierarchical Tree
Consider the tree of Figure 1. Let us start from the category CG generated by P and
its converse P"1 , computed previously. P~1P is the morphism whose graph (see
Figure 2) contains the greatest number of loops and of symmetric ties. Applying the
sociometric strategy, let us then pose P~*P = /. This single identification reduces
the number of morphisms of CG by more than half; more precisely, all the morphisms
in a line of Table 1 become identified. Take, for example, line 4: P~XP = I implies
that P - ' Í 2 = ( P - 1 Í ) P S Í P = P and PP~2P2 = PP-^p-^P = PP^IP
_ pp-ip _ pw xhe composition operation of the reduced morphisms is given in
Table 4; their graphs are given in Figure 4, where structurally equivalent nodes have
been lumped together. Individuals at the same level in the hierarchy become identified.

Note that the composition of the graphs of two morphisms M, N of this reduction
is in general not equal to the graph of the compound morphism MN. No more is
required than that the former be a subgraph of the latter. For example the composition
of the graph of P"*1 and the graph of P (see Figure 4) consists of two loops (a, a) and
(b, b); however the graph of P~XP = I contains in addition the (1,1) loop.

1Q 1Q 1O

I aO PFl a O p2p:2 a

bQ b b

1 1 1
a P2p-i a P L a

b b b

1
PF2 a

FIGURE 4 Graphs of morphisms in the reduction of the network of Figure 1, implied by the
identification P'tpssl.a represents the set of nodes 2 and 5, b the set of nodes 3 and 4.
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STRUCTURAL EQUIVALENCE OF INDIVIDUALS IN SOCIAL NETWORKS 67

TABLE 4
Composition table of the functional reduction of the network of

Figure I, implied by the identification P - ' P s / .

I

pp-l

plp-2

P

pip-l

p - l

pp-2

P 2

p - 2

/

I

pp-l

p2p-2

P

p2p-l

p - l

pp-2

P2

p-2

pp-t

pp-l

pp-t

plp-2

pip-i

pip-t

p-l

pp-2

X
p - 2

pip-2

p2p-2

p2p-2

p2p-2

X
X
pp-2

pp-2

X
p - 2

P

P

P

p2p-l

P2

P2

I

pp-l

X
p-l

P2p-1

pip-l

pip-l

pjp-l

X
X
pp-l

pp-l

X
p - l

p - !

p-l

pp-2

X
pp-l

p2p-2

p - 2

X
p2p-l

X

pp-2

pp-2

pp-2

X
p2p-2

p2p-2

p - 2

X
X
X

P2

P2

P2

P2

X
X

p

p

X
I

p-2

p-2

X
X
pp-2

X
X
X
p2p-2

X
Note.—The meaning of the double lines is explained further in the text.

This first reduction of CG is still somewhat complex for a population of five persons:
either they or observers might find the structure difficult to grasp. Now, by definition
of a hierarchical tree.f where each person (except the topmost one) has a unique
immediate superior, the morphism PP~l occurs exclusively as an endomorphism;
from a cultural standpoint, it is then reasonable to pose a further identification:
PP~1 = / . This second reduction, where PP'1 = P~*P s / , may be considered
either as a direct reduction of CG or as a reduction .of the previous reduction where
only P~lP s I. This is more conveniently accomplished by working with Table 4.
In such a table one can verify in the following way if a given partition of the set of
morphisms represents a possible reduction.

Consider one such partition, indicated by double lines in Table 4. By extending
the double lines of the partition throughout the table supercells are determined. The

†By this we do not mean a transitive relation; in the language of partial orders the tree here is the
Hasse diagram of the general authority relation. See Szász 1963, pp. 17 f.
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68 F. LORRAIN AND H. WHITE

partition will represent a possible reduction—i.e. one satisfying condition 3 above—
if and only if, given any supercell, the morphisms appearing in it are all in the same
class of the given partition. Such is the case of the partition of Table 4. But if it had
not been the case, for example if our partition had involved only the identification
PP'1 = I, then we should have arrived exactly to the partition of Table 4 simply
by grouping certain lines together (and also the corresponding columns together) so
that the supercells would satisfy the required property; of course only the groupings
necessitated by the original identification must be effected and no others. Thus the
double lines in Table 4 give exactly the reduction of CG implied by the equation
PP~l =P~*P = I; this is the reduction indicated by brackets in Table 1. This
reduction could also have been computed by algebraic manipulation of equations,
as in the case of the previous reduction.

Table 5 gives the composition operation of this reduction of Table 4. The graphs
of morphisms in this further reduction of CG are given in Figure 5. These are exactly

TABLE 5
Composition table of the funcional reduction of the
network of Figure 1, implied by the identifications

p

p - 1

P2

p-2

I

I

P

p - 1

P2

p - 2

P

P

P1

I

X
p - 1

p - 1

p - 1

I

p-2

P

X

P2

P1

X
p

X

p - 2

p - 2

p-y

X
I

X
the global roles which one would expect, in this case. Later on we shall effect even
further reductions of this reduced category.

Similar results are obtained whenever the identifications PP"1 s= P~*P == /are made
in a tree (see Footnote p. 67). All individuals at the same level in the tree (counting
levels from the top) become structurally equivalent and are identified: this is because
P~*P s= I implies that, for all positive integers k, p~kpk = /. If there are n+1 levels,
then there are exactly 2n+l morphisms: /, P, P2, ..., P", P ~ \ P"2 , ..., P~". The
composition operation is simply the following: given integers i,j (positive or negative),
PlP], if defined, is equal to Pl+J (here we pose P° = I). Composition thus is commu-
tative.

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f F

lo
rid

a]
 a

t 0
9:

06
 2

2 
N

ov
em

be
r 2

01
3 



STRUCTURAL EQUIVALENCE OF INDIVIDUALS IN SOCIAL NETWORKS 69

Pa P"1 o
Y T
b b

FIGURE 5 Graphs of morphisms in the reduction of the network of Figure 1,
implied by the identifications PP~ * s P~ *P = /. a and b as in Figure 4.

Note that if we added to these morphisms a zero and defined MN — O whenever
the compound MN is undefined, then the result would not be a semigroup, if n > 0,
because then composition would not be associative: e.g. Pn(PnP~") = P"I = P" but
(P"?")?"" = OP~" = 0. Note also that this does not contradict point 3 of the
definition of a category.

Such a reduction of a tree is very meaningful in organizations such as armed forces,
where every person at a given level is expected to obey the orders of any person at a
higher level. Moreover, in such a case, the reduction constitutes a time-invariant
picture of the hierarchy, which remains the same whatever be the changes in number
of branches, span of control, etc., so long as the number of levels is not changed.

Kinship, Role Trees
Certain kinship systems are based on identifications of the type RR'1 s /. Denote

by C the father-child relationship and by W the husband-wife relationship. Applying
a cultural argument, we can impose CC~X = /. Classificatory kinship systems are
those where in additionC~1C = /is required, so that siblings are structurally equival-
ent and groups of siblings are considered as units in the system; this is RadclifFe-
Brown's principle of the unity of the sibling group (Radcliffe-Brown 1950, pp. 23 ff.).
A refinement of this framework is possible where siblings are distinguished by sex.
If in addition WW~X = W~x W = I is required, then the society is partitioned into
'marriage classes': there is a unique predetermined class from which a woman of a
given class must take her husband, and conversely. This would be a society with strict
prescribed marriage. Such structures—call them elementary kinship systems—have
been extensively studied by Lévi-Strauss (1949) and by White (1963); Lévi-Strauss'
definition of an elementary kinship structure is less restrictive, however.

Other identifications occur frequently in elementary kinship systems. One example
is WC s CW, corresponding to a rule of matrilateral cross-cousin marriage. Another
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70 F. LORRAIN AND H. WHITE

example is C = I, for some positive integer n; this means that successive generations
in a given patrilineage will be arranged along a cycle of length n, the («+l)-th genera-
tion being in the same kinship class as the first, etc. The case n = 2 is particularly
frequent and is referred to in the literature as a system with 'alternating generations'.

When such 'cultural' identifications are applied to an infinite abstract role tree
containing all possible kinship roles relative to a generic ego, they amount to folding
in and rolling up the tree in a systematic way such that in the end a finite structure is
obtained. The intuitive verbal analysis of White (1963, Chapter 1) amounts precisely
to this and such an operation can be described as a functorial reduction (see Lorrain
1970).

Such a finite elementary kinship structure can also be obtained 'sociometrically'
as a functorial reduction of the network of kinship relations in the concrete popula-
tion, as shown by Boyd (1969) in the language of semigroups and homomorphisms.t
The elementary kinship structure is then seen to represent a time-invariant reduction
of the detailed kinship network in the population.

Classificatory Reduction
Reduction of a tree to a linear ordering of levels, considered previously, is a prototype
of a more general kind of reduction, classificatory reduction, the result of which is a
type of category called a quasi-homogeneous space, of which elementary kinship
structures, componential analyses, and classical affine space are examples. The
classificatory reduction of a category that satisfies the 'principle of reciprocity' results
from identifying all endomorphisms to the identity; this represents an extreme form
of the sociometric strategy. It is possible (see Lorrain, in press) to construct, using
this notion of classificatory reduction, a theory embracing the core of classificatory
kinship nomenclatures, elementary kinship structures, systems of binary oppositions,
componential analysis, hierarchies with levels, and balance theory. Such a theory
offers multiple points of view on the same structures and can be expressed in dual ways,
emphasizing either relations distributed among pairs of individuals or individuals
allocated to social positions.

Restrictions on the Composition Operation
Only in kinship networks or in formal hierarchies are very long 'words' known to
represent a meaningful type of relation. This suggests limiting the length of words,
by considering a long word to be 'undefined' whenever its graph is distinct from the
graph of any shorter word. This would give rise to a truncated composition table, in
which reduction of morphisms could proceed as usual. A word is perhaps not very
significant if it has more letters than there are nodes in a given network; word length
should be limited still more drastically if attenuation of indirect structural effects with
length of path is considered severe. The model then would focus more on local
structure, overlap between successive neighborhoods being the basis of any long range
order; in extreme form the model collapses back to a more conventional sociometric

†There is however an error in Boyd's theorem (1969, p. 145), which was not in a previous
mimeographed version of that paper: a condition must be added, so that the operators considered
in the theorem are everywhere defined.
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STRUCTURAL EQUIVALENCE OF INDIVIDUALS IN SOCIAL NETWORKS 71

analysis of graphs. For example, step by step transmission of social influences—say
diffusion or gossip—is probably adequately captured by looking at generator ties
alone, so long as there are no regular patterns of alliance and compartmentalization.
But it is exactly such patterns which can be found by the search for models of struc-
tural equivalence from the category CG.

In some situations it might prove necessary to define a new type of binary relation
reporting whether an individual knows another well quite aside from the feelings
and expectations they have for one another. Then only those generator ties that
coincide with knowledge ties would be permitted as first steps in compound ties.
Such a principle has been applied in a sociometric study by White (1961). It might even
prove necessary, in some cases, to include data on perceptions of ties by third parties
to obtain more realistic accounts of which secondary ties exist and are effective.

Reduction of an Actual Social Network
The network considered here is abstracted from data collected by Sampson (in
press).t The population consists of the members of a monastery. This group was a
residual of a long period of turmoil and conflict between a more progressive tendency
—the 'young turks'—and a more conservative one—the 'loyal opposition'. It con-
tinued as a group for a relatively short time (approximately two weeks), during which
it remained isolated from previous members and after which is disintegrated. However,
although there was not time enough for social integration to come to conclusion, the
relations measured were considered clear enough to warrant an analysis by categorical-
functorial methods. Two generator relations are considered, P and JV, whose graphs
are given in Figure 6. aPb means that a likes b most, is influenced by him most, or
sanctions him positively most frequently; P is thus a general positively oriented
relationship. aNb means that a likes b least, esteems him least, or sanctions him
negatively most frequently; N is thus a general negatively oriented relationship.

PETER«-«-=»-\BONAVENTURE PETER»

BERTHOLD*

ROMUALD»,

AMBROSE UOUISAMBROSE

P N
FIGURE 6 Positive and negative relations in a monastery.

†Interpretation of the results was greatly facilitated by the kind help of Dr. Sampson.
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72 F. LORRAIN AND H. WHITE

Other degrees of the relationships were in the data, but they were excluded for the
purpose of the present analysis. Moreover, because these two relations do not corres-
pond to a well enough delineated set of social expectations, their converses were not
included as generators.

In spite of there being only two generators, the number of morphisms in CG is
enormous, probably at least several hundred. Accordingly, the length of 'words' was
limited to between five and six letters, keeping only seventy morphisms. But the
reductions that were then operated were so drastic that this limitation did not change
the final result to the slightest extent.

Reductions of CG to categories with four or five morphisms only were first effected,
by applying the sociometric strategy. For example, since P and P3 have eight ties in
common as compared to twelve ties in one or the other, P was identified to P3. This
implies P 2 s P4, but these two morphisms have exactly the same graph, so that they
are already considered equal in Cc. N2, N3, N\ and Ns have between 60 and 97 % of
their ties in common, so that the identification N2 = N3, which implies
N3 s N* = Ns, was imposed. And so on. However these reductions with four or
five morphisms were still difficult to interpret and further reductions were operated.
Only four non-trivial ones were possible, two with three morphisms and two with
two morphisms. The latter two are given in Figures 7 and 8, where the same labels
P and JV are retained for their images. In those reductions structural equivalence does
not depend on an identity morphism, none having been included in CG.

In the reduction of Figure 7, N has become a universal neutral relation linking
every node to every other node. This neutrality is obvious in the composition operation

/ PETER \ X
IBONAVENTURE) J

BERTHOLD <

p
N

P
P
N

N
N
N

FIGURE 7 A first example of reduction of the network of Figure 6. Only the graph of P is shown;
the graph of N is a trivial one linking every node to every other node.
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p

N

P

P

P

N

N

N

BERTHOID •

BONAVENTURE
AMBROSE

PETER
ROMUALD

LOUIS
WINFRID

FIGURE 8. A second example of reduction of the network of Figure 6.

of this reduction, where N acts as a zero morphism. Pis transitive, so that the structure
takes the form of a partial order. It is significant that Peter and Bonaventure become
identified: they were clearly the leading, most influential elements of the group at
that time, although for very different reasons, Bonaventure being rather above the
battle and Peter leading the 'loyal opposition'; note that Peter and Bonaventure
are not equivalent in the reduction of Figure 8.

In relation to Figure 7, it is remarkable that Romuald and Winfrid were the first
to leave the group. Romuald had come late and was caught between the two ten-
dencies and Winfrid had been very much associated with the 'young turks'. On the
other hand Berthold, a member of the 'loyal opposition', was really a special case,
close to Peter, but very isolated from the others; Ambrose, although linked positively
to one of the 'young turks', was a member of the 'loyal opposition', closely tied
(symmetrically) to Louis, who was closest to Bonaventure. As we shall see in the
next section, the intermediary nodes in an ordering (such as in Figure 7) are really in
quite a particular position: structurally speaking, and however paradoxical this may
seem, the two extremes are in fact closer to each other than to the intermediaries
and, in so far as the structure is correctly represented, they are more likely to ally,
leaving the intermediaries to themselves. Such a situation was certainly the case in the
group considered and seems tobe reflected in the structure of the reduction of Figure 7.
As a matter of information, Peter was the third person to leave, having obviously
lost his function as leader of the opposition as soon as Romuald and Winfrid were
gone.
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74 F. LORRAIN AND H. WHITE

The reduction of Figure 8 is quite interesting; in particular the clusters of nodes
are totally different from those in the reduction of Figure 7. Unfortunately our lack
of familiarity with the concrete social situation of which these networks are abstrac-
tions prevents us from a full interpretation. Nevertheless, it is remarkable that Berthold
once again appears as an isolate and that Romuald and Winfrid, those closest to the
'young turk' tendency and who were the first to leave and also Peter, whose departure
followed immediately, are grouped together. The case of Louis being also lumped
with these three is rather puzzling, however. Note also the 'ambiguous' (P and N)
relations Unking both the two-men node and the one-man node to the four-men node
and also linking the latter to itself. Of course P and iVmust be understood as 'positive'
and 'negative' only in a very generalized sense; their reality could hardly be assessed
by the more impressionistic methods of observation. Note also that the graphs of P
and N in this reduction are isomorphic although one appears rotated relative to
the other.

The composition operation in Figure 8 is also interesting, especially if we consider
its representation as a graph in Figure 9. This graph represents the 'role' system
involved in the social network of Figure 8; roles are themselves related by role rela-
tions, because of the interlocks represented by composition: e.g. N links P to N, in
Figure 9, because PN = N (see Figure 10 for a more inspiring visual representation
of a role relation linking two roles). Figure 9 shows a 'positive' and a 'negative' role:
the positive one relates positively to itself and negatively to the negative one, the
negative role relates positively to the positive one and negatively to itself. This is a
rather familiar type of social situation.

FIGURE 9 Graphic representation of the composition operation in Figure 8.

N
N-PN

FIGURE 10 Roles related by a role relation.

On the Solidarity and Alliance of Extremes
Consider the linear hierarchy category of Figure 5 and Table 5; denote it by HQ. The
sole identification P2 = P~2, without any other identifications, defines a possible
reduction of Ho, as is easily verified by glancing at Table 5. One can also see from
Table 5 that this reduction—denote it Hx—is the one nearest to Ho, in the sense that
any other reduction of Ho involves more than one identification.
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STRUCTURAL EQUIVALENCE OF INDIVIDUALS IN SOCIAL NETWORKS 75

The composition operation of Hi is given in Table 6. Note that in Hl the compound
of any two morphisms is defined, i.e. any 'role' can interlock with any other 'role'.
Moreover, as in Ho, composition in Ht is commutative. P" 1 can now also be written
as P3. This composition operation is isomorphic to that of the cyclic group of order
four, i.e. to the table of addition of integers modulo four: simply write 0 instead of/,
1 or - 3 instead of P, 2 or - 2 instead of Q, 3 or — 1 instead of P"1. No further
structural equivalence of objects appears when passing from Ho to H^

TABLE 6
Composition table resulting from

identification of P2 to P~2 in Table 5.

p

Q

p - i

/

I

p

Q

p - i

P

P

Q

P - i

/

Q

Q

P - i

/

P

p - i

p - i

/

P

Q

Note.—Q is the common image of P1 and P~2.

A symmetric relation such as Q between the two extremes of a hierarchy is not a
rare occurrence inclassificatory kinship systems and is referred toas'intergenerational
solidarity'. There is an obvious analogy to the ideology according to which citizens
can be called the masters of their top executives, the servant of the people.

Now only one non-trivial reduction of fTj, is possible: it is the one where I = Q
andP s f " 1 , Call it H2. H2 has two morphisms, IaadR, with/and Q of Ht mapping
to / of H2, P and P" 1 of H^ mapping to R of H2. The composition operation is
/ / = RR = I, IR = RI = R. This is isomorphic to the composition operation of
the cyclic group of order two, i.e. to the addition operation of integers modulo two.
In H2 nodes 1 and b are structurally equivalent so that H2 takes the form of two
symmetrically related moieties (see Figure 11). If R were a 'negative' relation and /
a 'positive' one, then this would be a classical situation of 'structural balance', a
notion examined in the next section. If Ho represented a segment of a kinship lineage,.
H2 would correspond to a case of 'alternating generations', mentioned earlier.

We now clearly see in what sense we could say, in the last section, that the extreme
positions in an ordering are structurally closer and the intermediary ones less 'stable',
perhaps more likely to become opposed to both extremes in the case of conflict. Of
course this makes sense only in so far as the given structure is correctly described by
such a hierarchical arrangement.
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76 F. LORRAIN AND H. WHITE

I
R

I
I
B

R
R
I

FIGURE 11 A reduction of the category of Figure 5 and Table 5.

Balance Theory as a Special Case of Functorial Reduction
At first sight balance theory is a simple variation of graph theory and thus has little
connection with the elaborate algebraic structures derived from role graphs. Further
inspection shows that balance theory, in the formulation of Abelson and Rosenberg
(1958), can be expressed as a special kind of functorial mapping of a category. The
image category is required to be just the graph of the cyclic group of order two (see
Figure 12)—call it the two-category. Only two generator roles are allowed, both
symmetric so that each is its own converse. Further, one particular generator role,
that thought to represent positive feeling, is mapped to the image identity. The other
generator is mapped to the other morphism in the two-category. Compound roles
are not defined explicitly, but all ties corresponding to paths with the same structure
are mapped to the same image element. The 'addition' of different ties between a
given pair corresponds to seeing if they all map to the same image element. The
requirement that all closed cycles be 'positive', in Cartwright and Harary's (1956)
graph-theoretic formulation, corresponds to an extreme form of the 'sociometric'
criterion for a reduction used earlier: this requirement means that all endomorphisms

I
R

I
I
R

R
R
I

FIGURE 12 The two-category: the graph of the cyclic group of order two. This category is
isomorphic to the one in Figure 11.
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STRUCTURAL EQUIVALENCE OF INDIVIDUALS IN SOCIAL NETWORKS 77

are mapped to the identity; this is a case of 'classificatory reduction'. Thus we see
how such a functor partitions the set of nodes into two classes, positive relations
holding only within the same class and negative relations Unking only individuals in
distinct classes.

Balance theory shares the weaknesses of the categorical-functorial approach (see
discussion in conclusion) but has a number of further weaknesses. If a structure is not
'balanced' resort must be had to measures of the 'amount' of imbalance, and adequate
measures of this type remain to be devised (see Boorman 1970). Whereas in the
categorical approach one can look for the coarsest possible non-trivial functorial
reduction and the resulting model of structural equivalence can just as reasonably
be called 'balanced', whatever the number of equivalence sets and image relations.!
In the categorical approach there is no need to require any of the generator roles to
map to the image identity. For many theoretical purposes it is more fruitful to require
not a direct tie but having direct ties to the same person as the criterion for being
together in a clique. Little systematic work on extending balance theory to non-
symmetric roles has been published, and never more than two generator roles are used.

Nothing is lost by using the categorical approach. Search for a reduction to the
two-category will show whether the structure is in fact 'balanced' and, if so, produce
the required two cliques. The reduction of Figure 11 is an example; the cliques here
are 1, 3, and 4 versus 2 and 5 (see Figure 1). Even in this simple example something
is gained by the categorical approach. The cliques and the two image roles are derived
from data on role ties that need not be symmetric nor have any positive or negative
affective qualities. Instead one can discern on structural grounds a likely line of
cleavage which may become realized in explicit social relation only later.

The generalization of balance theory proposed by Davis (1967), which includes
the possibility of there being more than two cliques, can also be represented by
functors. However, here not all endomorphisms will be mapped to the identity.

CONCLUSION

Networks will probably become as important to sociology as Euclidian space and its
generalizations are to physics. Unfortunately the mathematical theory of networks is
far from having attained a degree of development even remotely comparable to that
of modern topology and analysis. Graph theory (Berge 1967, Ore 1962) has little
unity and has little to say on interrelations between relations, dealing essentially with
isolated graphs; moreover it does not offer any criteria for reduction and comparison
of graphs. Little motivation seems to have developed within the sociometric tradition
to study interrelations among relations. However, papers by Davis and Leinhardt
(see Footnote p. 52), Holland and Leinhardt (see Footnote p. 51), and Boyle (1969)
are stimulating exceptions to this.

The categorical-functorial framework, at least as applied here, has several weak-
nesses. One is that it seems insensible to distance between nodes in the network of

†A manuscript by J. A. Davis entitled 'Boundary Relationships' (1965) develops similar ideas in
terms of multiple graphs.
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78 F. LORRAIN AND H. WHITE

generator ties, although of course the unreduced Ca gives full account of such distance.
Certain network properties seem not to be characterizable by the composition opera-
tion of morphisms. Friedell (1967) has suggested that semilattices, a type of partial
order less restrictive than a tree, may be a plausible representation of the reality of
authority structures when individuals have more than one immediate supervisor;
however, it is impossible to characterize a semilattice only be the composition opera-
tion of its representation as a category (Lorrain 1970).

Strength of ties and intensity of flows should really be handled quantitatively. It
should be feasible to treat in a systematic and global manner networks where numbers
are associated to ties. Representation of these networks as tensors and the use of
tensor fields is one possible formalization.

Although individual attributes such as sex can easily be represented by differen-
tiating ties according to the sex of their endpoints, this makes less sense for more
continuous attributes such as age. However around visible attributes such as age,
race, or sex there often cristallize crucial ideologies of role differentiation, of inferiori-
zation, or of exploitation. There seems to be no obvious general way to integrate
attributes to a network representation. This is a real and difficult problem, even
though we have argued that social differentiation is essentially a function of the
interweaving of social relationships.

Another important direction for development of functorial reduction ideas would
lie in formalization of numerical reduction criteria, e.g. of the idea of the 'simplest'
reduction within a certain structural 'distance' of an initial category. A collection of
models of structural distance is analyzed in an integrated fashion by Boorman (1970),
who shows how simple metrics on sets and partitions naturally generalize to highly
interpretable and computable metrics on semigroups and related algebraic objects.
At the same time, developments of this approach could provide much needed stability
for categorical network theory. Even a single exception to a rule generally valid in a
social system represented as a category can totally disrupt its reduction, even making
it trivial: it should be possible to approach the problem of 'exceptions', as well as the
problem of measurement error, with the help of appropriate measures of structural
approximation. These metric concepts could also be used to evaluate relative degrees
of structural equivalence among the elements of a structure.

In a sense, our approach requires homogeneity of point of view among the members
of a social network. However this really applies only to generators and, even if all-
individuals agree in their perception of generator ties, competing ideologies differing
in their global interpretation of the system are still conceivable. A social network
does not form a unitary block. A network in fact consists of holes, decouplings,
dissociations; ties can reflect conflict as well as solidarity, they reflect interdependence,
not necessarily integration. Numerous points of view on a network are possible, latent
lines of scission can be drawn. In short, our notion of network is closest tó a dialectical
notion of totality (see Lefebvre 1955), and as such could provide the foundation for
a treatment of social dynamics. As has been shown in the case of language (see
Jakobson 1957, p. 10), synchrony does not coincide at all with statics, in systems
where there is relative decoupling or autonomy of parts: conceptions of synchronic
structure are of crucial importance in the question of dynamics, and conversely.

Nevertheless, in this paper we have not really faced the question of diachrony. To
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STRUCTURAL EQUIVALENCE OF INDIVIDUALS IN SOCIAL NETWORKS 79

do so it would be particularly important to consider the responses of structures to—
and their shaping by—such driving forces as the demographic factors of birth and
death, the inputs from concrete everyday social practice, and the absolutely crucial
factor of material resources. The dual processes of allocation of individuals to social
positions and of social positions to individuals would be a central concern here,
special attention being paid to actual numbers—such is the subject, for example, of
White's Chains of Opportunity (1970). Links should be made explicit between these
considerations and mathematical theories of morphogenesis in dynamical systems
(Thorn 1968, 1969).

The main strength of the categorical-functorial approach is in locating sets of
individuals, however large or small be the direct distance between any two in a set,
who are placed similarly with respect to all other sets of individuals, to the extent
that total relations and flows are captured by the aggregation of detailed relations
consonant with those equivalence sets of individuals. The notions of class society
and of imperialism are prototypical examples of such global structural representations.
Structurally coherent solutions encompassing all individuals at once, rather than
successive calculations of connections between more and more remote individuals,
are the goal of the analysis.
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