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Abstract

A common but informal notion in social network analysis and other fields is the concept of a
corerperiphery structure. The intuitive conception entails a dense, cohesive core and a sparse, unconnected
periphery. This paper seeks to formalize the intuitive notion of a corerperiphery structure and suggests
algorithms for detecting this structure, along with statistical tests for testing a priori hypotheses. Different

Ž .models are presented for different kinds of graphs directed and undirected, valued and nonvalued . In
addition, the close relation of the continuous models developed to certain centrality measures is discussed.
q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

A common image in social network analysis and other fields is that of the corerpe-
riphery structure. The notion is quite prevalent in such diverse fields of inquiry as world

Ž .systems Snyder and Kick, 1979; Nemeth and Smith, 1985; Smith and White, 1992 ,
Ž . Ž .economics Krugman, 1996 and organization studies Faulkner, 1987 . In the context of

Žsocial networks, it occurs in studies of national elites and collective action Laumann
. Žand Pappi, 1976; Alba and Moore, 1978 , interlocking directorates Mintz and Schwartz,

. Ž .1981 , scientific citation networks Mullins et al., 1977; Doreian, 1985 , and proximity
Ž .among Japanese monkeys Corradino, 1990 .

Given its wide currency, it comes as a bit of a surprise that the notion of a
corerperiphery structure has never been formally defined. The lack of definition means
that different authors can use the term in wildly different ways, making it difficult to
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compare otherwise comparable studies. Furthermore, a formal definition provides the
basis for statistical methods of testing whether a given dataset has a hypothesized
corerperiphery structure, and for computational methods of discovering corerperiphery
structures in data. Without such a definition, we cannot proceed with developing these
kinds of tools.
In this paper, we develop two families of corerperiphery models, based on intuitive

conceptions of the structure. Any formalization of an intuitive concept needs to identify,
in a precise way, the essential features of a particular concept. This part of the process

Žinvolves a certain degree of conceptual clarification and interpretation that can and
.many would argue should be challenged by others. In view of this, we see this paper as

a starting point in a methodological debate on what constitutes a corerperiphery
structure.

2. Intuitive conceptions

One intuitive view of the corerperiphery structure is the idea of a group or network
that cannot be subdivided into exclusive cohesive subgroups or factions, although some
actors may be much better connected than others. The network, to put it another way,
consists of just one group to which all actors belong to a greater or lesser extent. This is

Ž .the sense in which Pattison 1993, p. 97 uses the term. This conception is rooted in the
Žcohesive subsets literature for a review, see Scott, 1991, or Wasserman and Faust,

.1994 .
ŽAnother intuitive idea is the notion of a two-class partition of nodes one class is the

.core and the other is the periphery . In the terminology of blockmodeling, the core is
seen as a 1-block, and the periphery is seen as a 0-block. This is the sense in which

Ž .Breiger 1981 uses the terms. The blocks representing ties between the core and
periphery can be either 1-blocks or 0-blocks. In its implications, this conception is quite
similar to the ‘‘one-group’’ idea presented above, with the exception that it specifies the
character of ties within the periphery as well as within the core.
A third intuitive view of the corerperiphery structure is based on the physical center

and periphery of a cloud of points in Euclidean space. Given a map of the space, such as
provided by multidimensional scaling, nodes that occur near the center of the picture are
those that are proximate not only to each other but to all nodes in the network, while
nodes that are on the outskirts are relatively close only to the center. This is the view of

Ž .the corerperiphery structure that is implicit in Laumann and Pappi 1976 . In its
implications, this view is virtually identical to the partition approach described above, as
we will discuss in a later section.

Ž .As we have phrased them, these intuitive views particularly the first one make the
assumption that a network cannot have more than one core. However, other ways of
thinking about corerperiphery structures lead us to think of multiple cores, each with its

Žown periphery. We discuss multiple cores in a companion piece Everett and Borgatti, in
.press . In any case, the restriction of a single core is not as limiting as might at first

appear, since we can always choose to analyze a subgraph of the network that is thought
to contain just one core.
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Fig. 1. A network with a corerperiphery structure.

We use these intuitive conceptions as the basis for two models of the corerperiphery
structure: a discrete model and a continuous model. We describe the discrete model first.

3. Discrete model

In this section we explore the idea that the core periphery model consists of two
Ž .classes of nodes, namely a cohesive subgraph the core in which actors are connected to

each other in some maximal sense and a class of actors that are more loosely connected
to the cohesive subgraph but lack any maximal cohesion with the core.
Consider the graph in Fig. 1, which intuitively seems to have a corerperiphery

structure. The adjacency matrix for the graph is given in Table 1.
The matrix has been blocked to emphasize the pattern, which is that core nodes are

adjacent to other core nodes, core nodes are adjacent to some periphery nodes, and

Table 1
The adjacency matrix of Fig. 1
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Table 2
Idealized corerperiphery structure

periphery nodes do not connect with other periphery nodes. In blockmodeling terms, the
Ž .corercore region is a 1-block, the corerperiphery regions are imperfect 1-blocks, and

the peripheryrperiphery region is a 0-block. We claim that this pattern is characteristic
of corerperiphery structures and is in fact a defining property. 2
An idealized version that corresponds to a corerperiphery structure of the adjacency

matrix is given in Table 2. That this pattern of blocks suggests a corerperiphery
Žstructure and has been noticed many times Burt, 1976; White, Boorman and Breiger,

.1976; Knoke and Rogers, 1979; Marsden, 1989 . The pattern can be seen as a
Ž .generalization of the maximally centralized graph of Freeman 1979 , the simple star

Ž . Ž .see Fig. 2 . In the star, a single node the center is connected to all other nodes, which
are not connected to each other. To move to the corerperiphery image, we simply add
duplicates of the center to the graph, and connect them to each other and to the

Ž .periphery see Fig. 3 .
The patterns in Table 2 and Figs. 2 and 3 are idealized patterns that are unlikely to be

actually observed in empirical data. We can readily appreciate that real structures will
only approximate this pattern, in that they will have 1-blocks with less than perfect
density, and 0-blocks that contain a few ties. A simple measure of how well the real

Ž . Ž .structure approximates the ideal is given by Eq. 1 together with Eq. 2 .
rs a d 1Ž .Ý i j i j

i , j

1 if c sCORE or c sCOREi jd s 2Ž .i j ½ 50 otherwise
In the equations, a indicates the presence or absence of a tie in the observed data, ci j i

Ž . Žrefers to the class core or periphery that actor i is assigned to, and d subsequentlyi j

2 However, in a later section we introduce variations of this pattern that we shall argue are preferable in
most circumstances.
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Fig. 2. Freeman’s star.

.called the pattern matrix indicates the presence or absence of a tie in the ideal image.
For a fixed distribution of values, the measure achieves its maximum value when and

Ž . Ž .only when A the matrix of a and D the matrix of d are identical, which occursi j i j
when A has a perfect corerperiphery structure. Thus, a structure is a corerperiphery
structure to the extent that r is large.

Ž .Eq. 1 is essentially an unnormalized Pearson correlation coefficient applied to
Ž .matrices rather than vectors Hubert and Schultz, 1976; Panning, 1982 . A more

interpretable and more generally useful measure is the Pearson correlation coefficient
itself. 3 For undirected nonreflexive graphs, we define the association measure r to be
the Pearson correlation coefficient applied to the values found in the upper half of the
matrices, diagonal not included. For directed graphs we include the lower half values as
well, and for reflexive graphs of any kind we include the diagonal values.

ŽAlthough simpler measures of similarity are available e.g., the simple matching
.coefficient , the correlation coefficient has the benefit of generality, as it works equally

well for valued as for nonvalued data, as well as for valued pattern matrices, which we
consider later.
A network exhibits a corerperiphery structure to the extent that the correlation

between the ideal structure and the data is large. However, we need to assume the
existence of a partition that assigns each node to either the core or the periphery. In
Sections 3.1 and 3.2, we consider, respectively, the case where a partition is given a
priori, and the case where we must construct the partition from the data itself.

3.1. Testing a priori partitions

If we obtain a partition of nodes into core and periphery blocks a priori, we can use
Ž .Eq. 1 as the basis for a statistical test for the presence of a corerperiphery structure.

Ž . ŽThis is precisely the QAP test described by Mantel 1967 and Hubert Hubert and
.Schultz, 1976; Hubert and Baker, 1978 . The test is a permutation test for the

independence of two proximity matrices.

3 At first glance it may seem inappropriate to use the correlation coefficient for dichotomous data since the
classical significance test for correlation coefficients demands that the variables follow a bivariate normal
distribution in the population. However, we are using the correlation coefficient only to measure association,
and will not be using the associated inferential test.
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Fig. 3. Corerperiphery structure.

As an example, consider testing the naive hypothesis that males in a troop of
monkeys — because of their position of physical dominance — would comprise the
core of the interaction network, while females would comprise the periphery. Interaction

Ž .data collected by Linda Wolfe Borgatti et al., 1999 are shown in Table 3, sorted by
sex. The first five monkeys are males, the rest are females. The ideal pattern matrix has
the same structure as the matrix in Table 2 but with different dimensions. Note that since

Table 3
Interactions among a troop of monkeys
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the pattern matrix is dichotomous and the data matrix is not, the correlation between
them amounts to a test that the average value in the 1-blocks is higher than the average
value in the 0-blocks, relative to the variation within blocks. That is, we are implicitly
performing an analysis of variance.
The correlation between these two matrices is 0.206 which according to the QAP

Ž .permutation test is not significant p)0.1 . Thus we conclude that there is no evidence
for believing that in this troop of monkeys, the males form a core while the females
form a periphery.

3.2. Detecting corerperiphery structures in data

We can use the basic approach outlined above as the basis for constructing an
algorithm for detecting a corerperiphery structure without the benefit of an a priori
partition. Using any combinatorial optimization technique such as simulating annealing
Ž . Ž . ŽKirkpatrick et al., 1983 , Tabu search Glover, 1989 , or genetic algorithm Goldberg,

.1989 , we can design a computer program to find a partition such that the correlation
between the data and the pattern matrix induced by the partition is maximized. 4 The
program we have written uses a genetic algorithm, which is a robust and convenient
method, though perhaps not the fastest. For the graph in Fig. 1, the program correctly

Ž .and reliably identifies the intuitive corerperiphery partition see Table 1 , and reports a
correlation of 0.475.

Ž .An empirical example is provided by Baker 1992 , who studied co-citations among
social work journals. His data consisted of the number of citations from one journal to

Ž .another journal during a 1-year period 1985–1986 . For our immediate purposes we
find it convenient to dichotomize the data. The results of analyzing the data with our
genetic algorithm are given in Table 4. The correlation is 0.54, indicating strong but far
from perfect fit with the ideal. 5
It is important to note that the significance tests we presented for testing a priori

hypotheses cannot be used to evaluate the corerperiphery partitions obtained by the
optimization algorithms. This is because the significance tests are based on randomiza-

Ž . Žtion methods Edgington, 1980 that count the number of random permutations or
.equivalently in this case, partitions of the data yielding fit statistics as strong as the one

actually observed. However, by definition, our algorithms are designed to find the
partition that maximizes the fit statistic. Hence, the results would always be significant.

Ž .As Hubert 1983 puts it, the situation is like sorting all the large numbers in a
distribution into one bin and all the small numbers into another, then doing a t-test to
see if there is a difference in means.

4 Programs for fitting both the discrete and continuous corerperiphery models have been incorporated into
Ž .the computer package UCINET 5 For Windows Borgatti et al., 1999 .

5 Reflexive ties were ignored by the algorithm.
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Table 4
Corerperiphery structure in a citation network

3.3. Additional pattern matrices

The ideal pattern of Table 2 is not the only one that is consistent with the intuitive
notion of a corerperiphery structure. A more extreme expression of the corerperiphery

Žconcept is the pattern shown in Table 5 this is image ‘‘C’’ in White, Boorman and
.Breiger, 1976 . Here, the only ties are found among core nodes. All other nodes are

isolates. To measure the extent that a graph approximates this version of the corerpe-
riphery concept, we can again use correlation to measure fit, but modify the definition of

Žthe pattern matrix D as follows note the change of ‘‘or’’ to ‘‘and’’, as compared with
Ž ..Eq. 2 :

1 if c sCORE and c sCOREi jd s 3Ž .i j ½ 50 otherwise

Ž .One problem with Eq. 3 is that part of the intuitive notion of a periphery is that it be
somehow related to a core. Yet here the peripheral nodes are complete isolates so it is
hard to argue that they are related to the core.

Ž . Ž .Still another ideal pattern, midway between the patterns given by Eqs. 2 and 3 , is
the one in which the density of core-to-periphery and periphery-to-core ties is a

Ž .specified intermediate value between 0 the density of periphery-to-periphery ties and 1
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Table 5
Alternative ideal corerperiphery pattern

Ž .the density of corercore ties . For example, we could decide that the density of
core-to-periphery ties should be 0.5.
However, while the density of the core-to-periphery and periphery-to-core ties could

be treated as fixed parameters that a corerperiphery detecting algorithm would be
required to match, it is unlikely that in practice we will have a good reason for choosing
one density value over another. A better approach is to treat those off-diagonal regions
of the matrix as missing data, so that the algorithm seeks only to maximize density in
the core and minimize density in the periphery, without regard for the density of ties
between these regions. This is the model we recommend. We formalize the idea as

Ž Ž ..follows Eq. 4 , where ‘‘.’’ indicates a missing value:

1 if c sCORE and c sCORE° ¶i j~ •d s 4Ž .0 if c sPERIPHERY and c sPERIPHERYi j i j¢ ß
. otherwise

Applying this model to the journal co-citation data, we obtain the partition shown in
Table 6, which has a correlation of 0.860.
Since in this model no restraints are placed on the density of the core-to-periphery

and periphery-to-core blocks, there is no reason why the model cannot handle asymmet-
ric data. The journal co-citation data used above were artificially symmetrized. If we do
not symmetrize, the results are as follows Table 7.
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Table 6
Alternative corerperiphery model

The composition of the core is quite similar to what we found when we had
symmetrized the data. However, there are certain notable exceptions. For example, the
journal ‘‘CYSR’’ moves out of the core. This makes sense because although CYSR has
outgoing ties with most of the core, it has only one incoming tie from anywhere. Thus,
its relational style is more like a periphery member than a core member; it is in fact a

Ž .particular type of peripheral member that Burt 1976 has referred to as a ‘‘sycophant’’.
Ž .It is also worth noting that the density of the bottom left block periphery to core is

Ž .much higher than the density of the top right block core to periphery . This is consistent
with an intuitive notion of coreness associated with directed data. Essentially, we have a
prestigious group, the core, that ‘‘nominates’’ only other prestigious actors. Then we
have a nonprestigious group, the periphery, which also nominates only the prestigious
actors. No one nominates nonprestigious actors, including themselves.
The discrete model can also handle valued data, in which case maximizing the

correlation between the binary ideal matrix and the valued observed data is equivalent to
running a t-test for the difference in means between the core-to-core ties and the
periphery-to-periphery ties. A valued network has a corerperiphery structure to the
extent that the difference in means across blocks is large relative to the variation within
blocks.
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Table 7
Asymmetric corerperiphery model
Correlation: 0.826

Ž .An empirical example is provided by the raw citation data see Table 8 . The
partition found by the genetic algorithm puts three journals, SSR, SW and SCW, in the
core, and all others in the periphery. Ignoring the diagonal, the correlation with the ideal
matrix is 0.81.

4. Continuous model

One limitation of the partition-based approach presented above is the excessive
simplicity of defining just two classes of nodes: core and periphery. To remedy this, we
could introduce a three-class partition consisting of core, semiperiphery, and periphery,
as world system theorists have done, or try partitions with even more classes. This
approach is feasible, but specifying the ideal blockmodel that best captures the notion of
a corerperiphery structure is relatively difficult, as there are many reasonable structures
to choose from. The problem becomes exponentially more difficult as the number of
classes is increased. 6

6 However, in cases where theoretical considerations clearly point to one structure over another, this would
be a fruitful avenue to explore.
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An alternative approach is to abandon the discrete model altogether in favor of a
continuous model in which each node is assigned a measure of ‘‘coreness’’. In a
Euclidean representation, this would correspond to distance from the centroid of a single
point cloud. If we assume that the network data consist of continuous values represent-
ing strengths or capacities of relationships, an obvious approach is to continue using
correlation to evaluate fit, but define the structure matrix as follows:

d sc c 5Ž .i j i j

where C is a vector of nonnegative values indicating the degree of coreness of each
Ž .node. Thus, the pattern matrix has a large values for pairs of nodes that are both high

Ž .in coreness, b middling values for pairs of nodes in which one is high in coreness and
Ž .the other is not, and c low values for pairs of nodes that are both peripheral. Thus, the

model is consistent with the interpretation that the strength of tie between two actors is a
function of the closeness of each to the center, or perhaps the gregariousness of each
actor. This is the same situation found in factor analysis, where the correlations among a
set of variables are postulated to be a function of the correlation of each to the latent

Ž . Ž .factor Nunnally, 1978 , and in consensus analysis Romney et al., 1986 , where
agreements among pairs of takers of a knowledge test is seen as a function of the
knowledge possessed by each one. Thus, when the continuous model fits a given dataset,
it provides an extremely parsimonious model of all pairwise interactions.

Ž .It should be noted that if the values of C are constrained to 1’s and 0’s, Eq. 5
reproduces one of the discrete models presented earlier — the one in which there are no
ties between the core and the periphery.
As with the partition approach, we can use the basic formulation of the corerperiph-

ery model to either estimate coreness empirically, or test a priori hypotheses about
corerperiphery structures. Sections 4.1 and 4.2 consider each of these in turn.

4.1. Estimating coreness empirically

The objective is to obtain values of C so as to maximize the correlation between the
Ž .data matrix and the pattern matrix associated with Eq. 5 . To accomplish this, we have

Ž .written a simple computer program using a standard Fletcher–Powell Press et al., 1989
function maximization procedure. The program simply finds a set of values c such thati
the matrix correlation between c c and the data matrix is maximized.i j
As an empirical example, we return to the journal co-citation data provided by Baker

Ž .1992 , using the data in valued, nondichotomized form, and symmetrized by choosing
the larger of a and a . After calculating coreness for each journal, the correlationi j ji
between the data and the pattern matrix was 0.917, indicating a good fit of the
corerperiphery model. We then sorted the rows and columns of the data matrix

Ž .according to descending values of coreness. The result Table 9 provides visual
confirmation of a basic corerperiphery structure, together with a few ties that do not fit

Žthe pattern e.g., journals CAN and CCQ have ‘‘unusually close’’ relationships with
.journals CW and CYSR . It can be seen that the three journals with the highest coreness

values, SW, SCW and SSR, are the same journals identified by the discrete model as
comprising the core.



( )S.P. Borgatti, M.G. EÕerettrSocial Networks 21 1999 375–395388

Ta
bl
e
9

Ci
ta
tio
n
da
ta
so
rte
d
by
co
re
ne
ss



( )S.P. Borgatti, M.G. EÕerettrSocial Networks 21 1999 375–395 389

The matrix of expected values, D , is given as Table 10. Note that because the fit
criterion is a correlation coefficient, the absolute values need not resemble the input data
in scale: it is only the pattern that matters.
Since D is constructed as a cross-products matrix, it can be embedded without

distortion in a Euclidean space of no more than Ny1 dimensions. Hence, we can use
Ž .metric multidimensional scaling procedures Gower, 1967 to visualize the structure of

the matrix. A scaling of the matrix in Table 10 is shown in Fig. 4. It can be seen in the
figure that as we consider successively wider concentric circles, centered at the centroid,
the average distance among points within the circles increases monotonically with the
distance from the center. This is a defining characteristic of a corerperiphery structure.
It means that in a corerperiphery structure, the strength of relationship between any two
actors is entirely a function of the extent to which each is associated with the core. 7
This multiplicative characterization of the corerperiphery concept is particularly

attractive because it has close links with other mathematical models. Consider, for
example, the algorithm we have described for computing C and measuring the fit of the
corerperiphery model. Let us assume that the data matrix is symmetric, and the values
along the diagonal are meaningful. Furthermore, let us allow that instead of maximizing
the correlation between the data matrix A and the pattern matrix D , we are willing to
minimize the sum of squared differences between the two matrices. Then the vector C
we are looking for is the principal eigenvector of A. Besides the theoretical benefits of
linking coreness to a well-known mathematical property of matrices, this linkage also
means that we can make use of well-known and enormously efficient analytical
procedures for finding eigenvectors instead of using optimization algorithms. The use of
eigenvectors also suggests an additional measure of fit: the relative size of the principal
eigenvalue. 8
It should also be noted that if the diagonals of the data matrix are not meaningful, the

task becomes isomorphic with some forms of common factor analysis, and we can use
Ž .standard factor analytic procedures such as the MINRES algorithm of Comrey 1962 to
Ž .estimate the values of C. Like the cultural consensus model of Romney et al. 1986 ,

our application of factor analysis is to actors rather than variables, and the coreness
scores may be seen as a latent relational profile that all actors resemble to some degree.
This factor may be seen as the prime ordering agent in the network so that, aside from
the relationship to the core, all associations occur at random. In the language of chaos
theory, the coreness vector can be seen as an attractor for each of the actors.
The continuous model also resembles the loglinear model of independence. When

independence fits, we have a corerperiphery structure, although the converse is not
necessarily true. From the point of view of trying to maximize r, the difference between
the two models is that in the independence model the values for C are constrained to be

7 However, we will not ordinarily observe this principle to hold perfectly in two-dimensional MDS
representations because of high stress: exact representations of corerperiphery structures require almost as
many dimensions as points. Hence in Fig. 4 there are some pairs of points on the periphery that are too close
together given their distance from the core.

8 It also suggests the possibility of using multiple eigenvectors to analyze networks with multiple cores
Ž .Breiger, personal communication ; however, this is beyond the scope of this paper.
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Fig. 4. MDS of corerperiphery expected values for co-citation data. Points are labeled by their coreness
scores.

row and column marginals, while in the corerperiphery model we may use any values
Ž .that maximize the correlation not the chi-square nor likelihood ratio statistic between

the expected values and the observed.
The similarity with the model of independence brings up a potentially counterintu-

itive property of the multiplicative corerperiphery model, which is that the conditions of
the model are satisfied by networks in which all actors are in the core, as well as
networks in which all actors are in the periphery. Hence an adjacency matrix of all 1’s is
consistent with the corerperiphery model, even though no core may appear to exist. 9
The only data that really violate the model are networks that contain distinct, largely
exclusive, subgroups. In such networks, actors with high degree need not be connected
to each other, as required in a core periphery structure.

9 Actually, it is the periphery that does not exist — all nodes are in the core.
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The multiplicative coreness model clearly applies to valued network data. It is not
quite as clear whether it should apply to dichotomous data; the expected values are
normally continuous and the data are dichotomous, so the correlation coefficient that
measures the fit of the model cannot achieve its maximum value of unity. This does not
cause the coreness algorithm any problems, but makes it difficult to evaluate the fit of
the model: a correlation of 0.4 may be small under normal circumstances, but not when
the maximum possible is 0.5. Unfortunately, without a theory of how ties are generated
in the kind of network being studied, it will not usually be possible to calculate the
maximum.
An alternative way to formulate the model is to define a threshold value to

dichotomize the pattern matrix. For example:
d s f c cŽ .i j i j

1 if c c ) ti jf c c s 6Ž . Ž .i j ½ 50 otherwise
Thus, the pattern matrix has 1’s for pairs of nodes that are both high in coreness and

has 0’s for pairs of nodes that are both peripheral. Depending on the value of the
threshold parameter t, the corerperiphery and peripheryrcore regions contain either all

Žones, all zeros, or a combination of both reproducing the models represented by Eqs.
Ž . Ž ..3 and 4 . Note that if the vector C is dichotomous rather than truly continuous, we
reproduce the partition models of the previous section. In practice, we can specify t in
advance, or estimate it from the data — along with the values of C — so as to
maximize the correlation coefficient.
Another approach would be to conceive of the ties as the result of a probabilistic

Ž .process dependent on c c . The function f c c might be specified as a logistic of thei j i j
general form

eaqb ci c j

Pr a s1 s 7Ž .Ž .i j aqb c ci j1qe
Ž .where a and b are parameters to be estimated. Many variations on Eq. 7 are possible.

In general, this approach is aesthetically pleasing, but it is important to remember that
without a theory of how ties are formed, there is no reason to choose this particular
response function. Again, in a given application it may be possible to choose a particular
function with some confidence, but it is doubtful that we can do this in the general case
where the nature of dependencies among ties is unknown.

4.2. Coreness and centrality

It could hardly escape notice that the multiplicative corerperiphery model, when
Ž .phrased as an eigenvector, is precisely the measure of centrality of Bonacich 1987 .

Furthermore, it is closely related to degree — another measure of centrality. The
question then arises, is coreness different from centrality or are we simply introducing a
new approach to centrality? It is interesting to note in this regard that in the sociological
literature, empirical studies of corerperiphery structures almost never make use of
network centrality measures. For example, in the world systemsrdependency literature,
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Žseveral researchers have used blockmodeling Snyder and Kick, 1979; Nemeth and
.Smith, 1985; Smith and White, 1992 to classify countries as core, periphery and

semiperiphery, but none have used centrality measures.
It is true that all actors in a core are necessarily highly central as measured by

Ž .virtually any measure except when the model fits vacuously . However, the converse is
not true, as not every set of central actors forms a core. For example, it is possible to
collect a set of the n most central actors in a network, according to some measure of

Ž .centrality say, closeness or degree , and yet find that the subgraph induced by the set
contains no ties whatsoever — an empty core. This is because each actor may have high
centrality by being strongly connected to different cohesive regions of the graph and
need not have any ties to each other.
Our view, then, is that all coreness measures are centrality measures, but the converse

is not necessarily true. For example, the betweenness-based measures of centrality
Ž .Anthonisse, 1971; Freeman, 1979; Freeman et al., 1991; Friedkin, 1991 will assign
high values to actors who are not strongly connected to a core group of people, but who
link two otherwise unconnected regions of a network. Coreness measures do not do this.
From a theoretical point of view, the key difference between a centrality measure and

a coreness measure is that coreness carries with it a model of the pattern of ties in the
network as a whole. The coreness measure is only interpretable to the extent that the
model fits. In contrast, a centrality measure is interpretable no matter what the structure
of the network. For example, closeness centrality measures the total graph theoretic
distance of a node to all others. A node’s closeness centrality can be used to predict the
time that messages originating at random nodes throughout the network will take to
reach that node. The measure holds this interpretation no matter what the structure of the
network.

5. Conclusion

This paper sets forth a set of ideal images of corerperiphery structures, then develops
measures of the extent to which real networks approximate these images. These
measures are used as the basis for tests of a priori hypotheses and for optimization
algorithms to detect corerperiphery structures.
What is missing in this paper is a statistical test for the significance of the

corerperiphery structures found by the algorithms. We know how well the models fit,
but we do not know how easy it is to obtain a fit as good as actually observed by chance
alone. To develop such a test, of course, we need additional theory about how network
ties are formed — otherwise, we cannot construct a sensible baseline model to compare
against. For example, we could assume that ties occur randomly with constant probabil-
ity equal to the density of the observed network. We could then calculate the chance of
obtaining fits as large as actually observed. But that would mean that our data would
implicitly be compared with networks that have very different characteristics than our

Žobserved network. For instance, our network may show strong reciprocity biases if i
.chooses j, then j chooses i because of the nature of the relation being studied. But the

random networks do not have this constraint unless we deliberately impose it. Unfortu-
nately, we do not know in general which constraints should be imposed — row and
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column marginals? Degree of transitivity? Network analysts do not study a homoge-
neous set of structures. Some researchers study friendship ties among children, others
agonistic behavior among primates, still others joint ventures and personnel flows

Žamong corporations. Some network data are valued representing anything like capaci-
.ties, flows, strengths, costs, probabilities, frequencies, etc , others directed, some have

meaningful reflexive ties — in short, network data arise from a variety of social and
sampling processes. It seems unlikely that the same baseline models would be appropri-
ate in all these cases. It seems wiser to develop different chance models for every dataset

Ž . Ž .as the need arises. A similar point is made by Friedkin 1991 and Skvoretz 1991 .
As a final point for reflection, it is interesting to consider that to fit a corerperiphery

model is to reduce a complex dyadic variable — a network — to a single attribute of
Ž .actors. Network researchers tend to disdain ‘‘attribute data’’ Wellman, 1988, p. 31 .

The complaint is not that we compute from the pattern of network relations a single
summary value that describes each actor’s position. This is what any centrality measure
does and is completely unremarkable. Rather, the corerperiphery model says that all ties

Ž .in the network error aside are the result of a single attribute. In effect, this denies the
Ž .necessity for having collected complex relational data a matrix , since much simpler

Ž .data a vector contains the same information content. This goes against the grain for
network analysts, who like to think that relational data are richer and reveal emergent

Ž .properties that mere attributes of actors simply cannot capture e.g., see Wellman, 1988 .
When the corerperiphery model fits, it means that to a certain extent, we do not need to
know who is connected to whom. All we need is a single actor attribute. It is the same
thing as when we fit the model of independence on a contingency table and find that it
fits. As good scientists and structuralists we should be happy to find such a parsimo-
nious description of our data. But, more likely, we are disappointed that nothing more
‘‘interesting’’ is going on.
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