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The Human Disease Network, whose 
nodes are diseases connected if they 
have common genetic origin. Published 
as a supplement of the Proceedings of 
the National Academy of Sciences [1], the 
map was created to illustrate the genetic 
interconnectedness of apparently dis-
tinct diseases. With time it crossed dis-
ciplinary boundaries, taking up a life of 
its own. The New York Times created an 
interactive version of the map and the 
London-based Serpentine Gallery, one 
of the top contemporary art galleries in 
the world, have exhibited it part of their 
focus on networks and maps [2]. It is also 
featured in numerous books on design 
and maps [3, 4, 5].
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(a) A contemporary map of Königsberg (now 
Kaliningrad, Russia) during Euler’s time.

(b) A schematic illustration of Königsberg’s 
four land pieces and the seven bridges 
across them.

 
(c) Euler constructed a graph that has four 

nodes (A, B, C, D), each corresponding to a 
patch of land, and seven links, each corre-
sponding to a bridge. He then showed that 
there is no continuous path that would 
cross the seven bridges while never cross-
ing the same bridge twice. The people of 
Königsberg gave up their fruitless search 
and in 1875 built a new bridge between B 
and C, increasing the number of links of 
these two nodes to four. Now only one node 
was left with an odd number of links. Con-
sequently we should be able to find the de-
sired path. Can you find one yourself?

Figure  2.1
The Bridges of Königsberg

SECTION 2.1

Few research fields can trace their birth to a single moment and place in 
history. Graph theory, the mathematical scaffold behind network science, 
can. Its roots go back to 1735 in Königsberg, the capital of Eastern Prussia, 
a thriving merchant city of its time. The trade supported by its busy fleet 
of ships allowed city officials to build seven bridges across the river Pregel 
that surrounded the town. Five of these connected to the mainland the el-
egant island Kneiphof, caught between the two branches of the Pregel. The 
remaining two crossed the two branches of the river (Figure 2.1). This pecu-
liar arrangement gave birth to a contemporary puzzle: Can one walk across 
all seven bridges and never cross the same one twice? Despite many at-
tempts, no one could find such path. The problem remained unsolved until 
1735, when Leonard Euler, a Swiss born mathematician, offered a rigorous 
mathematical proof that such path does not exist [6, 7].

Euler represented each of the four land areas separated by the river 
with letters A, B, C, and D (Figure 2.1). Next he connected with lines each 
piece of land that had a bridge between them. He thus built a graph, whose 
nodes were pieces of land and links were the bridges. Then Euler made a 
simple observation: if there is a path crossing all bridges, but never the 
same bridge twice, then nodes with odd number of links must be either the 
starting or the end point of this path. Indeed, if you arrive to a node with 
an odd number of links, you may find yourself having no unused link for 
you to leave it. 

A walking path that goes through all bridges can have only one starting 
and one end point. Thus such a path cannot exist on a graph that has more 
than two nodes with an odd number of links. The Königsberg graph had 
four nodes with an odd number of links, A, B, C, and D, so no path could 
satisfy the problem.

Euler’s proof was the first time someone solved a mathematical prob-
lem using a graph. For us the proof has two important messages: The first 
is that some problems become simpler and more tractable if they are rep-
resented as a graph. The second is that the existence of the path does not 
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Online Resource 2.1

Watch a short video introducing the Könis-
berg problem and Euler’s solution.

The Bridges of Königsberg

depend on our ingenuity to find it. Rather, it is a property of the graph. 
Indeed, given the structure of the Königsberg graph, no matter how smart 
we are, we will never find the desired path. In other words, networks have 
properties encoded in their structure that limit or enhance their behavior. 

To understand the many ways networks can affect the properties of a 
system, we need to become familiar with graph theory, a branch of math-
ematics that grew out of Euler’s proof. In this chapter we learn how to rep-
resent a network as a graph and introduce the elementary characteristics 
of networks, from degrees to degree distributions, from paths to distanc-
es and learn to distinguish weighted, directed and bipartite networks. We 
will introduce a graph-theoretic formalism and language that will be used 
throughout this book. 
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The figure shows a small subset of (a) the In-
ternet, where routers (specialized computers) 
are connected to each other; (b) the Hollywood 
actor network, where two actors are con-
nected if they played in the same movie; (c) 
a protein-protein interaction network, where 
two proteins are connected if there is exper-
imental evidence that they can bind to each 
other in the cell. While the nature of the nodes 
and the links differs, these networks have the 
same graph representation, consisting of N = 
4 nodes and L = 4 links, shown in (d).

Figure  2.2
Different Networks, Same Graph

NETWORKS

AND GRAPHS

SECTION 2.2

If we want to understand a complex system, we first need to know how 
its components interact with each other. In other words we need a map of 
its wiring diagram. A network is a catalog of a system’s components often 
called nodes or vertices and the direct interactions between them, called 
links or edges (BOX 2.1). This network representation offers a common lan-
guage to study systems that may differ greatly in nature, appearance, or 
scope. Indeed, as shown in Figure 2.2, three rather different systems have 
exactly the same network representation.

Figure 2.2 introduces two basic network parameters:
 
Number of nodes, or N, represents the number of components in the 
system. We will often call N the size of the network. To distinguish the 
nodes, we label them with i = 1, 2, ..., N. 

Number of links, which we denote with L, represents the total number 
of interactions between the nodes. Links are rarely labeled, as they can 
be identified through the nodes they connect. For example, the (2, 4) 
link connects nodes 2 and 4. 

The networks shown in Figure 2.2 have N = 4 and L = 4. 

The links of a network can be directed or undirected. Some systems have 
directed links, like the WWW, whose uniform resource locators (URL) point 
from one web document to the other, or phone calls, where one person calls 
the other. Other systems have undirected links, like romantic ties: if I date 
Janet, Janet also dates me, or like transmission lines on the power grid, on 
which the electric current can flow in both directions.

A network is called directed (or digraph) if all of its links are directed; it 
is called undirected if all of its links are undirected. Some networks simul-
taneously have directed and undirected links. For example in the metabol-
ic network some reactions are reversible (i.e., bidirectional or undirected) 
and others are irreversible, taking place in only one direction (directed). 
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BOX 2.1
NETWORKS OR GRAPHS?

In the scientific literature the 
terms network and graph are 
used interchangeably:

 Network Science       Graph Theory

  Network                  Graph

  Node                  Vertex

  Link                  Edge

Yet, there is a subtle distinction 
between the two terminologies: 
the {network, node, link} combi-
nation often refers to real sys-
tems: The WWW is a network of 
web documents linked by URLs; 
society is a network of individ-
uals linked by family, friend-
ship or professional ties; the 
metabolic network is the sum 
of all chemical reactions that 
take place in a cell. In contrast, 
we use the terms {graph, ver-
tex, edge} when we discuss the 
mathematical representation of 
these networks: We talk about 
the web graph, the social graph 
(a term made popular by Face-
book), or the metabolic graph. 
Yet, this distinction is rarely 
made, so these two terminolo-
gies are often synonyms of each 
other.

The choices we make when we represent a system as a network will 
determine our ability to use network science successfully to solve a 
particular problem. For example, the way we define the links between 
two individuals dictates the nature of the questions we can explore:

(a) By  connecting individuals that regularly interact with each 
other in the context of their work, we obtain the organizational 
or professional network, that plays a key role in the success of 
a company or an institution, and is of major interest to organi-
zational research (Figure 1.7).

(b) By linking friends to each other, we obtain the friendship net-
work, that plays an important role in the spread of ideas, prod-
ucts and habits and is of major interest to sociology, marketing 
and health sciences.

(c) By  connecting individuals that have an intimate relationship, 
we obtain the sexual network, of key importance for the spread 
of sexually transmitted diseases, like AIDS, and of major inter-
est for epidemiology.

(d) By  using phone and email records to connect individuals that 
call or email each other, we obtain the acquaintance network, 
capturing a mixture of professional, friendship or intimate 
links, of importance to communications and marketing.

While   many links in these four networks overlap (some coworkers may 
be friends or may have an intimate relationship), these networks have dif-
ferent uses and purposes. 

We can also build networks that may be valid from a graph theoretic 
perspective, but may have little practical utility. For example, if we link 
all individuals with the same first name, Johns with Johns and Marys with 
Marys, we do obtain a well-defined graph, whose properties can be ana-
lyzed with the tools of network science. Its utility is questionable, however. 
Hence in order to apply network theory to a system, careful considerations 
must precede our choice of nodes and links, ensuring their significance to 
the problem we wish to explore.

Throughout this book we will use ten networks to illustrate the tools of 
network science. These reference networks, listed in Table 2.1, span social 
systems (mobile call graph or email network), collaboration and affiliation 
networks (science collaboration network, Hollywood actor network), infor-
mation systems (WWW), technological and infrastructural systems (Inter-
net and power grid), biological systems (protein interaction and metabolic 
network), and reference networks (citations). They differ widely in their 
sizes, from as few as N =1,039 nodes in the E. coli metabolism, to almost 
half million nodes in the citation network. They cover several areas where 
networks are actively applied, representing ‘canonical’ datasets frequently 
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The basic characteristics of ten networks used 
throughout this book to illustrate the tools of 
network science. The table lists the nature of 
their nodes and links, indicating if links are 
directed or undirected, the number of nodes 
(N) and links (L), and the average degree for 
each network. For directed networks the aver-
age degree shown is the average in- or out-de-
grees <k> = <kin>=<kout> (see Equation (2.5)).

Table 2.1
Canonical Network Maps

used by researchers to illustrate key network properties. As we indicate in 
Table 2.1, some of them are directed, others are undirected. In the coming 
chapters we will discuss in detail the nature and the characteristics of each 
of these datasets, turning them into the guinea pigs of our journey to un-
derstand complex networks.
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NETWORK NODES LINKS N L kDIRECTED
UNDIRECTED

WWW

Power Grid

Mobile Phone Calls

Email

Science Collaboration

Actor Network

Citation Network

E. Coli Metabolism

Protein Interactions

Webpages

Power plants, transformers

Subscribers

Email addresses

Scientists

Actors

Paper

Metabolites

Proteins

Links

Cables

Calls

Emails

Co-authorship

Co-acting

Citations

Chemical reactions

Binding interactions

Directed

Undirected

Directed

Directed

Undirected

Undirected

Directed

Directed

Undirected

325,729

4,941

36,595

57,194

23,133

702,388

449,673

1,039

2,018

1,497,134

6,594

91,826

103,731

93,439

29,397,908

4,689,479

5,802

2,930

Internet Routers Internet connections Undirected 192,244 609,066 6.34

4.60 

2.67

2.51

1.81

8.08

83.71

10.43

5.58

2.90



BOX 2.2
BRIEF STATISTICS REVIEW

Four key quantities characterize 
a sample of N values x1, ... , xN : 

Average (mean):

The nth moment:

   
 

Standard deviation:

Distribution of x:
     

where px follows 

A key property of each node is its degree, representing the number of 
links it has to other nodes. The degree can represent the number of mobile 
phone contacts an individual has in the call graph (i.e. the number of dif-
ferent individuals the person has talked to), or the number of citations a 
research paper gets in the citation network. 

DEGREE
We denote with ki the degree of the ith node in the network. For exam-

ple, for the undirected networks shown in Figure 2.2 we have k1=2, k2=3, 
k3=2, k4=1. In an undirected network the total number of links, L, can be 
expressed as the sum of the node degrees: 

         
      .

Here the 1/2 factor corrects for the fact that in the sum (2.1) each link is 
counted twice. For example, the link connecting the nodes 2 and 4 in Figure 
2.2 will be counted once in the degree of node 1 and once in the degree of 
node 4. 

AVERAGE DEGREE
An important property of a network is its average degree (BOX 2.2), which 

for an undirected network is
         

    

In directed networks we distinguish between incoming degree, ki
in, rep-

resenting the number of links that point to node i, and outgoing degree,        
ki

out, representing the number of links that point from node i to other 
nodes. Finally, a node’s total degree, ki, is given by

         
    

For example, on the WWW the number of pages a given document 
points to represents its outgoing degree, kout, and the number of docu-
ments that point to it represents its incoming degree, kin. The total number 

(2.1)

(2.2)

(2.3)

DEGREE, AVERAGE DEGREE,

AND DEGREE DISTRIBUTION

SECTION 2.3
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of links in a directed network is

The 1/2 factor seen in (2.1) is now absent, as for directed networks the 
two sums in (2.4) separately count the outgoing and the incoming degrees.  
The average degree of a directed network is    

          

DEGREE DISTRIBUTION
The degree distribution, pk, provides the probability that a randomly se-

lected node in the network has degree k. Since pk is a probability, it must be 
normalized, i.e.           

   

For a network with N nodes the degree distribution is the normalized 
histogram (Figure 2.3) is given by

where Nk is the number of degree-k nodes. Hence the number of degree-k 
nodes can be obtained from the degree distribution as Nk = Npk. 

The degree distribution has assumed a central role in network theory 
following the discovery of scale-free networks [8]. One reason is that the 
calculation of most network properties requires us to know pk. For exam-
ple, the average degree of a network can be written as

The other reason is that the precise functional form of pk determines 
many network phenomena, from network robustness to the spread of vi-
ruses.

(2.5)

(2.6)

(2.7)

(2.8)

(2.4)

The  degree distribution of a network is pro-
vided by the ratio (2.7). 

(a) For the network in (a) with N = 4 the degree 
distribution is shown in (b).

 (b) We have p1 = 1/4 (one of the four nodes has 
degree k1 = 1), p2 = 1/2 (two nodes have k3 
= k4 = 2), and p3 = 1/4 (as k2 = 3). As we lack 
nodes with degree k > 3, pk = 0 for any k > 3. 

(c) A one dimensional lattice for which each 
node has the same degree k = 2.

(d) The degree distribution of (c) is a Kroneck-
er’s delta function, pk = δ(k - 2).

Figure 2.3

Degree Distribution
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Figure 2.4
Degree Distribution of a Real Network

In real networks the node degrees can vary-
widely. 

(a) A layout of the protein interaction network 
of yeast (Table 2.1). Each node corresponds 
to a yeast protein and links correspond to 
experimentally detected binding interac-
tions. Note that the proteins shown on the 
bottom have self-loops, hence for them  
k=2.

(b) The degree distribution of the protein inter-
action network shown in (a). The observed 
degrees vary between k=0 (isolated nodes) 
and k=92, which is the degree of the most 
connected node, called a hub. There are 
also wide differences in the number of 
nodes with different degrees: Almost half 
of the nodes have degree one (i.e. p1=0.48), 
while we have only one copy of the biggest 
node (i.e. p92 = 1/N=0.0005).  

(c) The degree distribution is often shown on 
a log-log plot, in which we either plot log 
pk in function of ln k, or, as we do in (c), or 
we use logarithmic axes. The advantages of 
this representation are discussed in Chap-
ter 4. 
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ADJACENCY MATRIX

SECTION 2.4

A complete description of a network requires us to keep track of its 
links. The simplest way to achieve this is to provide a complete list of the 
links. For example, the network of Figure 2.2 is uniquely described by listing 
its four links: {(1, 2), (1, 3), (2, 3), (2, 4)}. For mathematical purposes we often 
represent a network through its adjacency matrix. The adjacency matrix 
of a directed network of N nodes has N rows and N columns, its elements 
being:

Aij = 1 if there is a link pointing from node j to node i
Aij = 0 if nodes i and j are not connected to each other

The adjacency matrix of an undirected  network has two entries for 
each link, e.g. link (1, 2) is represented as A12 = 1 and A21 = 1. Hence, the ad-
jacency matrix of an undirected network is symmetric, Aij = Aji (Figure 2.5b). 

The degree ki of node i can be directly obtained from the elements of the 
adjacency matrix. For undirected networks a node’s degree is a sum over 
either the rows or the columns of the matrix, i.e.

For directed networks the sums over the adjacency matrix’ rows and 
columns provide the incoming and outgoing degrees, respectively

Given that in an undirected network the number of outgoing links 
equals the number of incoming links, we have

 

The number of nonzero elements of the adjacency matrix is 2L, or twice 
the number of links. Indeed, an undirected link connecting nodes i and j 
appears in two entries: Aij = 1, a link pointing from node j to node i, and Aji 

= 1, a link pointing from i to j (Figure 2.5b).

(2.9)

(2.10)

(2.11)
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(a) The labeling of the elements of the adjacen-
cy matrix. 

(b) The adjacency matrix of an undirected net-
work. The figure shows that the degree of a 
node (in this case node 2) can be expressed 
as the sum over the appropriate column 
or the row of the adjacency matrix. It also 
shows a few basic network characteristics, 
like the total number of links, L, and aver-
age degree, <k>, expressed in terms of the 
elements of the adjacency matrix.

(c) The same as in (b) but for a directed network.

Figure 2.5

The Adjacency Matrix
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A complete graph with N = 16 nodes and Lmax = 
120 links, as predicted by (2.12). The adjacency 
matrix of a complete graph is Aij = 1 for all i, j = 
1, .... N and Aii = 0. The average degree of a com-
plete graph is <k> = N - 1. A complete graph 
is often called a clique, a term frequently used 
in community identification, a problem dis-
cussed in CHAPTER 9.

Figure 2.6
Complete Graph

REAL NETWORKS

ARE SPARSE

SECTION 2.5

In real networks the number of nodes (N) and links (L) can vary wide-
ly. For example, the neural network of the worm C. elegans, the only fully 
mapped nervous system of a living organism, has N = 302 neurons (nodes). 
In contrast the human brain is estimated to have about a hundred billion 
(N ≈ 1011) neurons. The genetic network of a human cell has about 20,000 
genes as nodes; the social network consists of seven billion individuals (N 
≈ 7×109) and the WWW is estimated to have over a trillion web documents 
(N > 1012). 

These wide differences in size are noticeable in Table 2.1, which lists N 
and L for several network maps. Some of these maps offer a complete wir-
ing diagram of the system they describe (like the actor network or the E. 
coli metabolism), while others are only samples, representing a subset of 
the full network (like the WWW or the mobile call graph).

Table 2.1 indicates that the number of links also varies widely. In a net-
work of N nodes the number of links can change between L = 0 and Lmax, 
where  

is the total number of links present in a complete graph of size N (Figure 2.6). 
In a complete graph each node is connected to every other node.

In real networks L is much smaller than Lmax, reflecting the fact that 
most real networks are sparse. We call a network sparse if L<< Lmax.   For 
example, the WWW graph in Table 2.1 has about 1.5 million links. Yet, if the 
WWW were to be a complete graph, it should have Lmax ≈ 5x1010 links ac-
cording to (2.12). Consequently the web graph has only a 3x10-5 fraction of 
the links it could have. This is true for all of the networks in Table 2.1: One 
can check that their number of links is only a tiny fraction of the expected 
number of links for a complete graph of the same number of nodes. 

(2.12)
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The adjacency matrix of the yeast protein-pro-
tein interaction network, consisting of 2,018 
nodes, each representing a yeast protein (Table 
2.1). A dot is placed on each position of the ad-
jacent matrix for which Aij = 1, indicating the 
presence of an interaction. There are no dots 
for Aij = 0. The small fraction of dots illustrates 
the sparse nature of the protein-protein inter-
action network.

Figure 2.7
The Adjacency Matrix is Sparse

The sparsity of real networks implies that the adjacency matrices are 
also sparse. Indeed, a complete network has Aij = 1, for all (i, j), i.e. each of its 
matrix elements are equal to one. In contrast in real networks only a tiny 
fraction of the matrix elements are nonzero. This is illustrated in Figure 2.7, 
which shows the adjacency matrix of the protein-protein interaction net-
work listed in Table 2.1 and shown in Figure 2.4a. One can see that the matrix 
is nearly empty. 

Sparseness has important consequences on the way we explore and 
store real networks. For example, when we store a large network in our 
computer, it is better to store only the list of links (i.e. elements for which 
Aij ≠ 0), rather than the full adjacency matrix, as an overwhelming fraction 
of the Aij elements are zero. Hence the matrix representation will block a 
huge chunk of memory, filled mainly with zeros (Figure 2.7).



WEIGHTED NETWORKS

So far we discussed only networks for which all links have the same 
weight, i.e. Aij = 1. In many applications we need to study weighted net-
works, where each link (i, j) has a unique weight wij.  In mobile call networks 
the weight can represent the total number of minutes two individuals talk 
with each other on the phone; on the power grid the weight is the amount 
of current flowing through a transmission line. 

For weighted networks the elements of the adjacency matrix carry the 
weight of the link as

          
 

Most  networks of scientific interest are weighted, but we can not always 
measure the appropriate weights. Consequently we often approximate 
these networks with an unweighted graph. In this book we predominantly 
focus on unweighted networks, but whenever appropriate, we discuss how 
the weights alter the corresponding network property (BOX 2.3).

(2.13)

SECTION 2.6
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BOX 2.3
METCALFE’S LAW: THE VALUE OF A NETWORK

Metcalfe’s law states that the value of a network is proportional to the 
square of the number of its nodes, i.e. N2. Formulated around 1980 in 
the context of communication devices by Robert M. Metcalfe [9], the 
idea behind Metcalfe’s law is that the more individuals use a network, 
the more valuable it becomes. Indeed, the more of your friends use 
email, the more valuable the service is to you.

During the Internet boom of the late 1990s Metcalfe’s law was fre-
quently used to offer a quantitative valuation for Internet companies. 
It suggested that the value of a service is proportional to the number 
of connections it can create, which is the square of the number of its 
users. In contrast the cost grows only linearly with N. Hence if the 
service attracts sufficient number of users, it will inevitably become 
profitable, as N2 will surpass N at some large N (Figure 2.8). Metcalfe’s 
Law therefore supported a “build it and they will come” mentality [10], 
offering credibility to growth over profits.

Metcalfe’s law is based on (2.12), telling us that if all links of a commu-
nication network with N users are equally valuable, the total value of 
the network is proportional to N(N - 1)/2, that is, roughly, N2. If a net-
work has N = 10 consumers, there are Lmax = 45 different possible con-
nections between them. If the network doubles in size to N = 20, the 
number of connections doesn’t merely double but roughly quadruples 
to 190, a phenomenon called network externality in economics.

Two issues limit the validity of Metcalfe’s law: 

(a) Most real networks are sparse, which means that only a very small 
fraction of the links are present. Hence the value of the network 
does not grow like N2, but increases only linearly with N. 

(b) As the links have weights, not all links are of equal value. Some links 
are used heavily while the vast majority of links are rarely utilized.

According to Metcalfe’s law the cost of 
network based services increases linearly 
with the number of nodes (users or de-
vices). In contrast the benefits or income 
are driven by the number of links Lmax the 
technology makes possible, which grows 
like N2 according to (2.12). Hence once the 
number of users or devices exceeds some 
critical mass, the technology becomes 
profitable.

Figure 2.8

Metcalfe’s Law
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A bipartite network has two sets of nodes, U 
and V. Nodes in the U-set connect directly only 
to nodes in the V-set. Hence there are no di-
rect U-U or V-V links. The figure shows the two 
projections we can generate from any bipar-
tite network. Projection U is obtained by con-
necting two U-nodes to each other if they link 
to the same V-node in the bipartite represen-
tation. Projection V is obtained by connecting 
two V-nodes to each other if they link to the 
same U-node in the bipartite network.

Figure 2.9
Bipartite Network

Online Resource 2.2
Human Disease Network

Download the high resolution version of the 
Human Disease Network [1], or explore it us-
ing the online interface built by the New York 
Times.

A bipartite graph (or bigraph) is a network whose nodes can be divided 
into two disjoint sets U and V such that each link connects a U-node to a 
V-node. In other words, if we color the U-nodes green and the V-nodes pur-
ple, then each link must connect nodes of different colors (Figure 2.9).

We can generate two projections for each bipartite network. The first 
projection connects two U-nodes by a link if they are linked to the same 
V-node in the bipartite representation. The second projection connects the 
V-nodes by a link if they connect to the same U-node (Figure 2.9).

In network theory we encounter numerous bipartite networks. A well-
known example is the Hollywood actor network, in which one set of nodes 
corresponds to movies (U), and the other to actors (V). A movie is connected 
to an actor if the actor plays in that movie. One projection of this bipartite 
network is the actor network, in which two nodes are connected to each 
other if they played in the same movie. This is the network listed in Table 
2.1. The other projection is the movie network, in which two movies are con-
nected if they share at least one actor in their cast. 

Medicine offers another prominent example of a bipartite network: The 
Human Disease Network connects diseases to the genes whose mutations 
are known to cause or effect the corresponding disease (Figure 2.10). 

Finally, one can also define  multipartite networks, like the tripartite 
recipe-ingredient-compound network shown in Figure 2.11.

BIPARTITE NETWORKS

SECTION 2.7
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(a) The construction of the tripartite recipe-in-
gredient-compound network, in which one 
set of nodes are recipes, like Chicken Mar-
sala; the second set corresponds to the in-
gredients each recipe has (like flour, sage, 
chicken, wine, and butter for Chicken Mar-
sala); the third set captures the flavor com-
pounds, or chemicals that contribute to the 
taste of each ingredient. 

(b)  The ingredient or the flavor network rep-
resents a projection of the tripartite net-
work. Each node denotes an ingredient; the 
node color indicating the food category and 
node size indicates the ingredient’s preva-
lence in recipes. Two ingredients are con-
nected if they share a significant number 
of flavor compounds. Link thickness rep-
resents the number of shared compounds. 

After [11].

Figure 2.11
Tripartite Network
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(a) A path between nodes i0 and in is an ordered 
list of n links P = {(i0, i1), (i1, i2), (i2, i3), ... ,(in-
1, in)}. The length of this path is n. The path 
shown in orange in (a) follows the route 
1→2→5→7→4→6, hence its length is n = 5.

(b) The shortest paths between nodes 1 and 7, 
or the distance d17, correspond to the path 
with the fewest number of links that con-
nect nodes 1 to 7. There can be multiple 
paths of the same length, as illustrated by 
the two paths shown in orange and grey. 
The network diameter is the largest dis-
tance in the network, being dmax = 3 here. 

Figure 2.12
Paths

PATHS AND DISTANCES

SECTION 2.8

Physical distance plays a key role in determining the interactions be-
tween the components of physical systems. For example the distance be-
tween two atoms in a crystal or between two galaxies in the universe deter-
mine the forces that act between them. 

In networks distance is a challenging concept. Indeed, what is the dis-
tance between two webpages, or between two individuals who do not know 
each other? The physical distance is not relevant here: Two webpages could 
be sitting on computers on the opposite sides of the globe, yet, have a link 
to each other. At the same time two individuals that live in the same build-
ing may not know each other. 

In networks physical distance is replaced by path length. A path is a 
route that runs along the links of the network. A path’s length represents 
the number of links the path contains (Figure 2.12a). Note that some texts 
require that each node a path visits is distinct. 

In network science paths play a central role. Next we discuss some of 
their most important properties, many more being summarized in Figure 
2.13.

SHORTEST PATH
The shortest path between nodes i and j is the path with the fewest 

number of links (Figure 2.12b). The shortest path is often called the distance 
between nodes i and j, and is denoted by dij, or simply d. We can have mul-
tiple shortest paths of the same length d between a pair of nodes (Figure 
2.12b). The shortest path never contains loops or intersects itself. 

In an undirected network dij = dji, i.e. the distance between node i and j is 
the same as the distance between node j and i. In a directed network often 
dij ≠ dji. Furthermore, in a directed network the existence of a path from 
node i to node j does not guarantee the existence of a path from j to i. 

In real networks we often need to determine the distance between two 
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Path
A sequence of nodes such that each node is connect-
ed to the next node along the path by a link. Each 
path consists of n+1 nodes and n links. The length of 
a path is the number of its links, counting multiple 
links multiple times. For example, the orange line 1 
→ 2 → 5 → 4 → 3 covers a path of length four.

Shortest Path (Geodesic Path, d)
The path with the shortest distance d between two 
nodes. We also call d the distance between two 
nodes. Note that the shortest path does not need 
to be unique: between nodes 1 and 4 we have two 
shortest paths, 1→ 2→ 3→ 4 (blue) and 1→ 2→ 5→ 4 
(orange), having the same length d1,4 =3.

Diameter (dmax)
The longest shortest path in a graph, or the dis-
tance between the two furthest nodes. In the graph 
shown here the diameter is between nodes 1 and 4, 
hence dmax=3.

Average Path Length (〈d〉)
The average of the shortest paths between all pairs 
of nodes. For the graph shown on the left we have 
〈d〉=1.6, whose calculation is shown next to the fig-
ure. 

Cycle
A path with the same start and end node. In the 
graph shown on the left we have only one cycle, as 
shown by the orange line.

Eulerian Path
A path that traverses each link exactly once. The 
image shows two such Eulerian paths, one in or-
ange and the other in blue.

Hamiltonian Path
A path that visits each node exactly once. We show 
two Hamiltonian paths in orange and in blue.

FIG. 2.13
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BOX 2.4
NUMBER OF SHORTEST PATHS BETWEEN TWO NODES

The number of shortest paths, Nij, and the distance dij  between 
nodes i and j can be calculated directly from the adjacency matrix 
Aij .

dij = 1:  If there is a direct link between i and j, then Aij = 1 (Aij = 0 
otherwise).

dij = 2: If there is a path of length two between i and j, then Aik Akj =1 
(Aik Akj = 0 otherwise). The number of dij = 2 paths between 
i and j is

    

where [...]ij denotes the (ij)th element of a matrix.

dij = d:  If there is a path of length d between i and j, then Aik ... Alj = 
1 (Aik ... Alj = 0 otherwise). The number of paths of length d 
between i and j is

These equations hold for directed and undirected networks. The 
distance between nodes i and j is the path with the smallest d for 
which Nij

(d) > 0. Despite the elegancy of this approach, faced with a 
large network, it is more efficient to use the breadth-first-search 
algorithm described in BOX 2.5.

nodes. For a small network, like the one shown in Figure 2.12, this is an easy 
task. For a network with millions of nodes finding the shortest path be-
tween two nodes can be rather time consuming. The length of the shortest 
path and the number of such paths can be formally obtained from the ad-
jacency matrix (BOX 2.4). In practice we use the breadth first search (BFS) 
algorithm discussed in BOX 2.5 for this purpose.

NETWORK DIAMETER
The diameter of a network, denoted by dmax, is the maximum shortest 

path in the network. In other words, it is the largest distance recorded be-
tween any pair of nodes. One can verify that the diameter of the network 
shown in Figure 2.13 is dmax = 3. For larger networks the diameter can be de-
termined using the BFS algorithm described in BOX 2.5.
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BOX 2.5
BREADTH-FIRST SEARCH (BFS) ALGORITHM

BFS is a frequently used algorithms in network science. Similar to 
throwing a pebble in a pond and watching the ripples spread from it, 
BFS starts from a node and labels its neighbors, then the neighbors’ 
neighbors, until it reaches the target node. The number of “ripples” 
needed to reach the target provides the distance. 

The identification of the shortest path between node i and j follows the 
following steps (Figure 2.14):

1. Start at node i, that we label with “0”.

2. Find the nodes directly linked to i. Label them distance “1” and 
put them in a queue.

3. Take the first node, labeled n, out of the queue (n = 1 in the first 
step). Find the unlabeled nodes adjacent to it in the graph. Label 
them with n + 1 and put them in the queue.

4. Repeat step 3 until you find the target node j or there are no more 
nodes in the queue.

5. The distance between i and j is the label of j. If j does not have a 
label, then dij = ∞.

The computational complexity of the BFS algorithm, representing the 
approximate number of steps the computer needs to find dij  on a net-
work of N nodes and L links, is O(N + L). It is linear in N and L as each 
node needs to be entered and removed from the queue at most once, 
and each link has to be tested only once.

(a) Starting from the orange node, labeled 
”0”, we identify all its neighbors, label-
ing them ”1”. 

(b)-(d) Next we label ”2” the unlabeled 
neighbors of all nodes labeled ”1”, and 
so on, in each iteration increasing the 
label number, until no node is left unla-
beled. The length of the shortest path or 
the distance d0i between node 0 and any 
other node i in the network is given by 
the label of node i. For example, the dis-
tance between node 0 and the leftmost 
node is d = 3.

Figure 2.14
Applying the BFS Algorithm

AVERAGE PATH LENGTH
The average path length, denoted by 〈d〉, is the average distance between 

all pairs of nodes in the network. For a directed network of N nodes, 〈d〉 is 

Note that (2.14) is measured only for node pairs that are in the same 
component (SECTION 2.9). We can use the BFS algorithm to determine the 
average path length for a large network. For this we first determine the 
distances between the first node and all other nodes in the network us-
ing the algorithm described in BOX 2.5. We then determine the distances 
between the second node and all other nodes but the first one (if the net-
work is undirected). We then repeat this procedure for all nodes. The sum 

(2.14)
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CONNECTEDNESS

SECTION 2.9

A phone would be of limited use as a communication device if we could 
not call any valid phone number; email would be rather useless if we could 
send emails to only certain email addresses, and not to others. From a net-
work perspective this means that the network behind the phone or the In-
ternet must be capable of establishing a path between any two nodes. This 
is in fact the key utility of most networks: they ensure connectedness. In 
this section we discuss the graph-theoretic formulation of connectedness. 

In an undirected network nodes i and j are connected if there is a path 
between them. They are disconnected if such a path does not exist, in which 
case we have dij = ∞. This is illustrated in Figure 2.15a, which shows a network 
consisting of two disconnected clusters. While there are paths between any 
two nodes on the same cluster (for example nodes 4 and 6), there are no 
paths between nodes that belong to different clusters (nodes 1 and 6).

A network is connected if all pairs of nodes in the network are connect-
ed. A network is disconnected if there is at least one pair with dij = ∞. Clear-
ly the network shown in Figure 2.15a is disconnected, and we call its two 
subnetworks components or clusters. A component is a subset of nodes in a 
network, so that there is a path between any two nodes that belong to the 
component, but one cannot add any more nodes to it that would have the 
same property. 

If a network consists of two components, a properly placed single link 
can connect them, making the network connected (Figure 2.15b). Such a link 
is called a bridge. In general a bridge is any link that, if cut, disconnects the 
network. 

While for a small network visual inspection can help us decide if it is 
connected or disconnected, for a network consisting of millions of nodes 
connectedness is a challenging question. Mathematical and algorithmic 
tools can help us identify the connected components of a graph. For  exam-
ple, for a disconnected network the adjacency matrix can be rearranged 
into a block diagonal form, such that all nonzero elements in the matrix 
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BOX 2.6
FINDING THE CONNECTED COMPONENTS OF A NETWORK

1. Start from a randomly chosen node i and perform a BFS (BOX 
2.5). Label all nodes reached this way with n = 1. 

2. If the total number of labeled nodes equals N, then the network 
is connected. If the number of labeled nodes is smaller than N, the 
network consists of several components. To identify them, pro-
ceed to step 3.

3. Increase the label n → n + 1. Choose an unmarked node j, label 
it with n. Use BFS to find all nodes reachable from j, label them all 
with n. Return to step 2.

(a) A small network consisting of two discon-
nected components. Indeed, there is a path 
between any pair of nodes in the (1,2,3) 
component, as well in the (4,5,6,7) compo-
nent. However, there are no paths between 
nodes that belong to the different compo-
nents. 

The right panel shows the adjacently ma-
trix of the network. If the network has 
disconnected components, the adjacen-
cy matrix can be rearranged into a block 
diagonal form, such that all nonzero el-
ements of the matrix are contained in 
square blocks along the diagonal of the 
matrix and all other elements are zero. 

(b) The addition of a single link, called a bridge, 
shown in grey, turns a disconnected net-
work into a single connected component. 
Now there is a path between every pair of 
nodes in the network. Consequently the 
adjacency matrix cannot be written in a 
block diagonal form.

Figure 2.15

Connected and Disconnected Networks

are contained in square blocks along the matrix’ diagonal and all other 
elements are zero (Figure 2.15a). Each square block corresponds to a com-
ponent. We can use the tools of linear algebra to decide if the adjacency 
matrix is block diagonal, helping us to identify the connected components.

In  practice, for large networks the components are more efficiently 
identified using the BFS algorithm (BOX 2.6).
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(a) The local clustering coefficient, Ci , of the cen-
tral node with degree ki = 4 for three different 
configurations of its neighborhood. The local 
clustering coefficient measures the local den-
sity of links in a node’s vicinity. 

(b) A small network, with the local clustering co-
efficient of each nodes shown next to it. We 
also list the network’s average clustering co-
efficient 〈C〉, according to (2.16), and its global 
clustering coefficient C∆, defined in SECTION 
2.12, Eq. (2.17). Note that for nodes with degrees 
ki = 0,1, the clustering coefficient is zero. 

Figure 2.16
Clustering Coefficient

CLUSTERING COEFFICIENT

The clustering coefficient captures the degree to which the neighbors 
of a given node link to each other.  For a node i with degree ki the local clus-
tering coefficient is defined as [12]

where Li represents the number of links between the ki neighbors of node i. 
Note that Ci is between 0 and 1 (Figure 2.16a):

• Ci = 0 if none of the neighbors of node i link to each other. 

• Ci = 1 if the neighbors of node i form a complete graph, i.e. they all 
link to each other. 

• Ci is the probability that two neighbors of a node link to each other. 
Consequently C = 0.5 implies that there is a 50% chance that two neigh-
bors of a node are linked. 

In summary Ci measures the network’s local link density: The more 
densely interconnected the neighborhood of node i, the higher is its local 
clustering coefficient.

The degree of clustering of a whole network is captured by the average 
clustering coefficient, 〈C〉, representing the average of Ci over all nodes i = 
1, ..., N [12],

         
       

In line with the probabilistic interpretation 〈C〉 is the probability that 
two neighbors of a randomly selected node link to each other.  

While (2.16) is defined for undirected networks, the clustering coeffi-
cient can be generalized to directed and weighted [13, 14, 15, 16] networks 
as well. In the network literature we may encounter the global clustering 
coefficient as well, discussed in ADVANCED TOPICS 2.A.

(2.15)

(2.16)

SECTION 2.10
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SUMMARY

SECTION 2.11

The crash course offered in this chapter introduced some of the basic 
graph theoretical concepts and tools used in network science. The set of 
elementary network characteristics, summarized in Figure 2.17, offer a for-
mal language through which we can explore networks. 

Many of the networks we study in network science consist of thousands 
or even millions of nodes and links (Table 2.1). To explore them, we need to 
go beyond the small graphs shown in Figure 2.17. A glimpse of what we are 
about to encounter is offered by the protein-protein interaction network of 
yeast (Figure 2.4a). The network is too complex to understand its properties 
through a visual inspection of its wiring diagram. We therefore need to 
turn to the tools of network science to characterize its topology. 

Let us use the measures we introduced so far to explore some basic char-
acteristics of this network. The undirected network, shown in Figure 2.4a, 
has N = 2,018 proteins as nodes and L=2,930 binding interactions as links. 
Hence its average degree, according to (2.2), is 〈k〉 = 2.90, suggesting that a 
typical protein interacts with approximately two to three other proteins. 
Yet, this number is somewhat misleading. Indeed, the degree distribution 
pk shown in Figure 2.4b,c, indicates that the vast majority of nodes have only 
a few links. To be precise, in this network 69% of nodes have fewer than 
three links, i.e. for these k < 〈k〉 . These numerous nodes with few links coex-
ist with a few highly connected nodes, or hubs, the largest having as many 
as 92 links. Such wide differences in node degrees is a consequence of the 
network’s scale-free property, discussed in CHAPTER 4. We will see that the 
shape of the degree distribution determines a wide range of network prop-
erties, from the network’s robustness to the spread of viruses. 

The breadth-first-search algorithm (BOX 2.5) helps us determine the net-
work’s diameter, finding dmax = 14. We might be tempted to expect wide 
variations in d, as some nodes are close to each other, others, however, may 
be quite far. The distance distribution (Figure 2.18a) indicates otherwise: 
pd has a prominent peak between 5 and 6, telling us that most distances 
are rather short, being in the vicinity of 〈d〉 =5.61. Also, pd decays fast for 
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The protein-protein interaction (PPI) network 
of yeast is frequently studied by biologists 
and network scientists. The detailed wiring 
diagram of the network is shown in Figure 2.4a. 
The figure indicates that the network, consist-
ing of N=2,018 nodes and L=2,930 links, has 
a large component that connects 81% of the 
proteins. We also have several smaller compo-
nents and numerous isolated proteins that do 
not interact with any other node.

(a)  The distance distribution, pd, for the PPI 
network, providing the probability that 
two randomly chosen nodes have a dis-
tance d between them (shortest path). The 
grey vertical line shows the average path 
length, which is 〈d〉 =5.61.

(b)  The  dependence of the average local clus-
tering coefficient on the node’s degree, k. 
The C(k) function is obtained by averaging 
over the local clustering coefficient of all 
nodes with the same degree k.

Figure 2.18
Characterizing a Real Network

large d, suggesting that large distances are absent. Indeed, the variance of 
the distances is σd = 1.64, indicating that most path lengths are in the close 
vicinity of 〈d〉 . These are manifestations of the small world property dis-
cussed in CHAPTER 3. 

The breadth first search algorithm also tells us that the protein inter-
action network is not connected, but consists of 185 components, shown 
as isolated clusters and nodes in Figure 2.4a. The largest, called the giant 
component, contains 1,647 of the 2,018 nodes; all other components are 
tiny. As we will see in the coming chapters, such fragmentation is common 
in real networks. 

The average clustering coefficient of the protein interaction network is 
〈C〉 =0.12, which, as we will come to appreciate in the coming chapters, in-
dicates a significant degree of local clustering. A further caveat is provided 
by the dependence of the clustering coefficient on the node’s degree, or 
the C(k) function (Figure 2.18b). The fact that C(k) decreases for large k indi-
cates that the local clustering coefficient of the small nodes is significantly 
higher than the local clustering coefficient of the hubs. Hence the small 
degree nodes are located in dense local network neighborhoods, while the 
neighborhood of the hubs is much sparser. This is a consequence of hierar-
chy, a network property discussed in CHAPTER 9. 

Finally, a visual inspection reveals an interesting pattern: hubs have a 
tendency to connect to small nodes, giving the network a hub and spoke 
character (Figure 2.4a). This is a consequence of degree correlations, dis-
cussed in CHAPTER 7. Such correlations influence a number of network 
based processes, from spreading phenomena to the number of driver 
nodes needed to control a network. 

Taken together, Figures 2.4 and 2.18 illustrate that the quantities we in-
troduced in this chapter can help us diagnose several key properties of real 
networks. The purpose of the coming chapters is to study systematically 
these network characteristics and understand what they tell us about a 
particular complex system.
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In network science we often distinguish networks by some elementary property of 
the underlying graph. Here we summarize the most commonly encountered net-
work types. We also list real systems that share the particular property. Note that 
many real networks combine several of these elementary network characteristics. 
For example the WWW is a directed multi-graph with self-interactions; the mobile 
call network is directed and weighted, without self-loops. 

Undirected Network
A network whose links do not have a defined direc-
tion. 
Examples: Internet, power grid, science collabora-
tion networks.

Self-loops
In many networks nodes do not interact with them-
selves, so the diagonal elements of the adjacency 
matrix are zero, Aii = 0, i = 1,..., N. In some systems 
self-interactions are allowed; in such networks, 
self-loops represent the fact that node i interacts 
with itself. 
Examples: WWW, protein interactions.

Multigraph/Simple Graphs
In a multigraph nodes are permitted to have multi-
ple links (or parallel links) between them. Hence Aii  
can be any positive integer. Networks that do not 
allow multiple links are called simple. 
Multigraph Examples: Social networks, where we 
distinguish friendship, family and professional 
ties.

Directed Network
A network whose links have selected directions. 
Examples: WWW, mobile phone calls, citation net-
work.

Weighted Network
A network whose links have a defined weight, 
strength or flow parameter. The elements of the 
adjacency matrix are Aij = wij if there is a link with 
weight wij between them. For unweighted (binary) 
networks, the adjacency matrix only indicates the 
presence (Aij = 1) or the absence (Aij = 0) of a link. 
Examples: Mobile phone calls, email network.

Complete Graph (Clique)
In a complete graph, or a clique, all nodes are con-
nected to each other. 
Examples: Actors in the cast of the same movie, as 
they are all linked to each other in the actor net-
work.

FIG. 2.17  GRAPHOLOGY
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Figure 2.19
Königsberg Problem

SECTION 2.12

HOMEWORK

2.1. Königsberg Problem

Which of the icons in Figure 2.19 can be drawn without raising your 
pencil from the paper, and without drawing any line more than once? 
Why?

2.2. Matrix Formalism

Let A be the N x N adjacency matrix of an undirected unweighted net-
work, without self-loops. Let 1 be a column vector of N elements, all equal 
to 1. In other words 1 = (1, 1, ..., 1)T , where the superscript T indicates the 
transpose operation. Use the matrix formalism (multiplicative constants, 
multiplication row by column, matrix operations like transpose and trace, 
etc, but avoid the sum symbol ∑) to write expressions for:

(a) The vector k whose elements are the degrees ki of all nodes  
i = 1, 2,..., N.

(b) The total number of links, L, in the network.

(c) The number of triangles T present in the network, where a trian-
gle means three nodes, each connected by links to the other two 
(Hint: you can use the trace of a matrix).

(d) The vector knn whose element i is the sum of the degrees of node 
i's neighbors. 

(e) The vector knnn whose element i is the sum of the degrees of node 
i's second neighbors. 

2.3. Graph Representation

The adjacency matrix is a useful graph representation for many analyt-
ical calculations. However, when we need to store a network in a computer, 
we can save computer memory by offering the list of links in a Lx2 matrix, 
whose rows contain the starting and end point i and j of each link.

Construct for the networks (a) and (b) in Figure 2.20:
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Figure 2.20
Graph Representation

      (a) Undirected graph of 6 nodes and 7 links. 
(b) Directed graph of 6 nodes and 8 directed  

links.

Figure 2.21
Bipartite network

Bipartite network with 6 nodes in one set and 
5 nodes in the other, connected by 10 links.

(a) The corresponding adjacency matrices.

(b) The corresponding link lists.

(c) Determine the average clustering coefficient of the network 
shown in Figure 2.20a.

(d) If you switch the labels of nodes 5 and 6 in Figure 2.20a, how does 
that move change the adjacency matrix? And the link list?

(e) What kind of information can you not infer from the link list 
representation of the network that you can infer from the adja-
cency matrix?

(f) In the (a) network, how many paths (with possible repetition of 
nodes and links) of length 3 exist starting from node 1 and end-
ing at node 3? And in (b)?

(g) With the help of a computer, count the number of cycles of 
length 4 in both networks.

2.4. Degree, Clustering Coefficient and Components

(a) Consider an undirected network of size N in which each node 
has degree k = 1. Which condition does N have to satisfy? What is 
the degree distribution of this network? How many components 
does the network have?

(b) Consider now a network in which each node has degree k = 2 
and clustering coefficient C = 1. How does the network look like? 
What condition does N satisfy in this case?

2.5. Bipartite Networks

Consider the bipartite network of Figure 2.21

(a) Construct its adjacency matrix. Why is it a block-diagonal matrix?

(b) Construct  the adjacency matrix of its two projections, on the pur-
ple and on the green nodes, respectively.

(c) Calculate the average degree of the purple nodes and the average 
degree of the green nodes in the bipartite network.

(d) Calculate the average degree in each of the two network projec-
tions. Is it surprising that the values are different from those ob-
tained in point (c)?

(a) (b)
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2.6. Bipartite Networks - General Considerations

Consider a bipartite network with N1 and N2 nodes in the two sets.

(a) What is the maximum number of links Lmax the network can 
have?

(b) How many links cannot occur compared to a non-bipartite net-
work of size N = N1 + N2 ?

(c) If N1≪N2 , what can you say about the network density, that is the 
total number of links over the maximum number of links, Lmax?

(d) Find an expression connecting N1, N2 and the average degree for 
the two sets in the bipartite network, 〈k1〉 and 〈k2〉.
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In the network literature we ocassionally encounter the global cluster-
ing coefficient, which measures the total number of closed triangles in a 
network. Indeed, Li in (2.15) is the number of triangles that node i partic-
ipates in, as each link between two neighbors of node i closes a triangle  
(Figure 2.17). Hence the degree of a network’s global clustering can be also 
captured by the global clustering coefficient, defined as 

 

where a connected triplet is an ordered set of three nodes ABC such that A 
connects to B and B connects to C. For example, an A, B, C triangle is made 
of three triplets, ABC, BCA and CAB. In contrast a chain of connected nodes 
A, B, C, in which B connects to A and C, but A does not link to C, forms a sin-
gle open triplet ABC. The factor three in the numerator of (2.17) is due to the 
fact that each triangle is counted three times in the triplet count. The roots 
of the global clustering coefficient go back to the social network literature 
of the 1940s [17, 18], where C∆ is often called the ratio of transitive triplets.

Note that the average clustering coefficient <C> defined in (2.16) and 
the global clustering coefficient (2.17) are not equivalent. Indeed, take a 
network that is a double star, consisting of N nodes, where nodes 1 and 2 
are joined to each other and to all other nodes, and there are no other links. 
Then the local clustering coefficient Ci is 1 for i ≥ 3 and 2/(N − 1) for i = 1, 
2. It follows that the average clustering coefficient of the network is <C> = 
1−O(1), while the global clustering coefficient is C∆ ~ 2/N. In less extreme 
networks the two definitions will give more comparable values, but they 
still differ from each other [19]. For example, for the network of in Figure 
2.16b we have <C> = 0.31 and C∆ = 0.375.

SECTION 2.13

ADVANCED TOPICS 2.A

GLOBAL CLUSTERING COEFFICIENT

(2.17)
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