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Abstract

Many performance metrics have been introduced in the literature for the evaluation of classification
performance, each of them with different origins and areas of application. These metrics include
accuracy, unweighted accuracy, the area under the ROC curveor the ROC convex hull, the mean
absolute error and the Brier score or mean squared error (with its decomposition into refinement and
calibration). One way of understanding the relations amongthese metrics is by means of variable
operating conditions (in the form of misclassification costs and/or class distributions). Thus, a
metric may correspond to some expected loss over different operating conditions. One dimension
for the analysis has been the distribution for this range of operating conditions, leading to some
important connections in the area of proper scoring rules. We demonstrate in this paper that there
is an equally important dimension which has so far received much less attention in the analysis of
performance metrics. This dimension is given by the decision rule, which is typically implemented
as athreshold choice methodwhen using scoring models. In this paper, we explore many oldand
new threshold choice methods: fixed, score-uniform, score-driven, rate-driven and optimal, among
others. By calculating the expected loss obtained with these threshold choice methods for a uniform
range of operating conditions we give clear interpretations of the 0-1 loss, the absolute error, the
Brier score, theAUC and the refinement loss respectively. Our analysis providesa comprehensive
view of performance metrics as well as a systematic approachto loss minimisation which can be
summarised as follows: given a model, apply the threshold choice methods that correspond with
the available information about the operating condition, and compare their expected losses. In
order to assist in this procedure we also derive several connections between the aforementioned
performance metrics, and we highlight the role of calibration in choosing the threshold choice
method.

Keywords: classification performance metrics, cost-sensitive evaluation, operating condition,
Brier score, area under the ROC curve (AUC), calibration loss, refinement loss
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1. Introduction

The choice of a proper performance metric for evaluating classification (Hand, 1997) is an old
but still lively debate which has incorporated many different performance metrics along the way.
Besides accuracy (Acc, or, equivalently, the error rate or 0-1 loss), many other performancemetrics
have been studied. The most prominent and well-known metrics are the BrierScore (BS, also
known as Mean Squared Error) (Brier, 1950) and its decomposition in terms of refinement and
calibration (Murphy, 1973), the absolute error (MAE), the log(arithmic) loss (or cross-entropy)
(Good, 1952) and the area under the ROC curve (AUC, also known as the Wilcoxon-Mann-Whitney
statistic, linearly related to the Gini coefficient and to the Kendall’s tau distanceto a perfect model)
(Swets et al., 2000; Fawcett, 2006). There are also many graphical representations and tools for
model evaluation, such as ROC curves (Swets et al., 2000; Fawcett, 2006), ROC isometrics (Flach,
2003), cost curves (Drummond and Holte, 2000, 2006), DET curves (Martin et al., 1997), lift charts
(Piatetsky-Shapiro and Masand, 1999), and calibration maps (Cohen and Goldszmidt, 2004). A
survey of graphical methods for classification predictive performanceevaluation can be found in
the work of Prati et al. (2011).

Many classification models can be regarded as functions which output a score for each example
and class. This score represents a probability estimate of each example to bein one of the classes
(or may just represent an unscaled magnitude which is monotonically related with a probability
estimate). A score can then be converted into a class label using a decision rule. One of the reasons
for evaluation being so multi-faceted is that models may be learnt in one context(misclassification
costs, class distribution, etc.) butdeployedin a different context. A context is usually described
by a set of parameters, known asoperating condition. When we have a clear operating condition
at deployment time, there are effective tools such as ROC analysis (Swets et al., 2000; Fawcett,
2006) to establish which model is best and what its expected loss will be. However, the question is
more difficult in the general case when we do not have information about the operating condition
where the model will be applied. In this case, we want our models to performwell in a wide
range of operating conditions. In this context, the notion of ‘proper scoring rule’, see, for example,
the work of Murphy and Winkler (1970), sheds some light on some performance metrics. Some
proper scoring rules, such as the Brier Score (MSE loss), the logloss,boosting loss and error rate
(0-1 loss) have been shown by Buja et al. (2005) to be special cases of an integral over a Beta
density of costs, see, for example, the works of Gneiting and Raftery (2007), Reid and Williamson
(2010, 2011) and Brümmer (2010). Each performance metric is derived as a special case of the Beta
distribution. However, this analysis focusses on scoring rules which are‘proper’, that is, metrics that
are minimised for well-calibrated probability assessments or, in other words, get the best (lowest)
score by forecasting the true beliefs. Much less is known (in terms of expected loss for varying
distributions) about other performance metrics which are non-proper scoring rules, such asAUC.
Moreover, even its role as a classification performance metric has been put into question (Hand,
2009, 2010; Hand and Anagnostopoulos, 2011).

All these approaches make some (generally implicit and poorly understood)assumptions on
how the model will work for each operating condition. In particular, it is generally assumed that the
threshold which is used to discriminate between the classes will be set according to the operating
condition. In addition, it is assumed that the threshold will be set in such a waythat the estimated
probability where the threshold is set is made equal to the operating condition.This is natural if
we focus on proper scoring rules. Once all this is settled and fixed, different performance metrics
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Figure 1: Histograms of the score distribution for modelA (left) and modelB (right).

represent different expected losses by using the distribution over the operating condition as a pa-
rameter. However, thisthreshold choiceis only one of the many possibilities, as some other works
have explored or mentioned in a more or less explicit way (Wieand et al., 1989; Drummond and
Holte, 2006; Hand, 2009, 2010).

In our work we make these assumptions explicit through the concept of athreshold choice
method,which systematically links performance metrics and expected loss. A thresholdchoice
method sets a single threshold on the scores of a model in order to arrive atclassifications, possibly
taking circumstances in the deployment context into account, such as the operating condition (the
class or cost distribution) or the intended proportion of positive predictions (the predicted positive
rate). Building on this notion of threshold choice method, we are able to systematically explore how
known performance metrics are linked to expected loss, resulting in a rangeof results that are not
only theoretically well-founded but also practically relevant.

The basic insight is the realisation that there are many ways of converting a model (understood
throughout this paper as a function assigning scores to instances) into a classifier that maps instances
to classes (we assume binary classification throughout). Put differently,there are many ways of
setting the threshold given a model and an operating condition. We illustrate thiswith an example
concerning a very common scenario in machine learning research. Consider two modelsA andB,
a naive Bayes model and a decision tree respectively (induced from a training data set), which are
evaluated against a test data set, producing a score distribution for the positive and negative classes
as shown in Figure 1. We see that scores are in the[0,1] interval and in this example are interpreted
as probability estimates for the negative class. ROC curves of both models areshown in Figure
2. We will assume that at thisevaluation timewe do not have information about the operating
condition, but we expect that this information will be available atdeployment time.

If we ask the question of which model is best we may rush to calculate itsAUCandBS(and per-
haps other metrics), as given by Table 1. However, we cannot give ananswer because the question is
underspecified. First, we need to know the range of operating conditions the model will workwith.
Second, we need to know how we will make the classifications, or in other words, we need adeci-
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HERNÁNDEZ-ORALLO , FLACH AND FERRI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F1 

F
0 

●●●
●●●
●●●
●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●
●●●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●●
●●●●●
●●●
●●●●
●●●●
●●●●●
●●●
●●●●
●●●●
●●●●●
●●●
●●●●●
●●●
●●●●●
●●●●
●●●
●●●●
●●●
●●●
●●●●
●●●●●●●

●●●
●●●
●●●
●●●●●
●●●●●●●●●

●●●
●●●●
●●●
●●●●
●●●●●●

●●●●●
●●●●●
●●●●
●●●●●●●●

●●●●
●●●●●
●●●●●●●●●●

●●●●●
●●●●●●

●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●●●●●●
●●●●
●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●
●●●●●●●●

●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F1 

F
0 

●

●

●

●

●

●

Figure 2: ROC Curves for modelA (left) and modelB (right).

sion rule, which can be implemented as athreshold choice methodwhen the model outputs scores.
For the first dimension (already considered by the work on proper scoring rules), if we have no pre-
cise knowledge about the operating condition, we can assume any of many distributions, depending
on whether we have some information about how the cost may be distributed orno information at
all. For instance, we can use a symmetric Beta distribution (Hand, 2009), an asymmetric Beta dis-
tribution (Hand and Anagnostopoulos, 2011) or, a partial or truncated distribution only considering
a range of costs, or a simple uniform distribution (Drummond and Holte, 2006), as we also do here,
which considers all operating conditions equally likely. For the second (new) dimension, wealso
have many options.

performance metric modelA modelB
AUC 0.791 0.671

Brier score 0.328 0.231

Table 1: Results from two models on a data set.

For instance, we can just set a fixed threshold at 0.5. This is what naiveBayes and decision
trees do by default. This decision rule works as follows: if the score is greater than 0.5 then predict
negative (1), otherwise predict positive (0). With this precise decision rule, we can now ask the
question about the expected misclassification loss for a range of different misclassification costs
(and/or class distributions), that is, for a distribution of operating conditions. Assuming a uniform
distribution for operating conditions (cost proportions), we can effectively calculate the answer on
the data set: 0.51.

But we can use other decision rules. We can use decision rules which adapt to the operating
condition. One of these decision rules is the score-driven threshold choice method, which sets
the threshold equal to the operating condition or, more precisely, to a cost proportionc. Another
decision rule is the rate-driven threshold choice method, which sets the threshold in such a way that
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the proportion of predicted positives (or predicted positive rate), simply known as ‘rate’ and denoted
by r, equals the operating condition. Using these three different threshold choice methods for the
modelsA andB, and assuming cost proportions are uniformly distributed, we get the expected losses
shown in Table 2.

threshold choice method expected loss modelA expected loss modelB
Fixed (T = 0.5) 0.510 0.375

Score-driven (T = c) 0.328 0.231
Rate-driven (T s.t. r = c) 0.188 0.248

Table 2: Extension of Table 1 where two models are applied with three different threshold choice
methods each, leading to six different classifiers and corresponding expected losses. In all
cases, the expected loss is calculated over a range of cost proportions(operating condi-
tions), which is assumed to be uniformly distributed. We denote the threshold byT, the
cost proportion byc and the predicted positive rate byr).

In other words, only when we specify or assume a threshold choice methodcan we convert
a model into a classifier for which it makes sense to consider its expected loss(for a range or
distribution of costs). In fact, as we can see in Table 2, very different expected losses are obtained
for the same model with different threshold choice methods. And this is the case even assuming the
same uniform cost distribution for all of them.

Once we have made this (new) dimension explicit, we are ready to ask new questions. How
many threshold choice methods are there? Table 3 shows six of the thresholdchoice methods we
will analyse in this work, along with their notation. Only the score-fixed and thescore-driven
methods have been analysed in previous works in the area of proper scoring rules. The use of
rates, instead of scores, is assumed inscreeningapplications where an inspection, pre-diagnosis or
coverage rate is intended (Murphy et al., 1987; Wieand et al., 1989), and the idea which underlies
the distinction between rate-uniform and rate-driven is suggested by Hand (2010). In addition, a
seventh threshold choice method, known as optimal threshold choice method,denoted byTo, has
been (implicitly) used in a few works (Drummond and Holte, 2000, 2006; Hand, 2009).

Threshold choice method Fixed Chosen uniformly Driven by o.c.
Using scores score-fixed (Ts f) score-uniform (Tsu) score-driven (Tsd)
Using rates rate-fixed (Tr f ) rate-uniform (Tru) rate-driven (Trd)

Table 3: Possible threshold choice methods. The first family uses scores (as they were probabilities)
and the second family uses rates (using scores as rank indicators). For both families we
can fix a threshold or assume them ranging uniformly, which makes the threshold choice
method independent from the operating condition. Only the last column takes the oper-
ating condition (o.c.) into account, and hence are the most interesting threshold choice
methods.
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We will see that each threshold choice method is linked to a specific performance metric. This
means that if we decide (or are forced) to use a threshold choice method thenthere is a recom-
mended performance metric for it. The results in this paper show that accuracy is the appropriate
performance metric for the score-fixed method,MAE fits the score-uniform method,BS is the ap-
propriate performance metric for the score-driven method, andAUC fits both the rate-uniform and
the rate-driven methods. The latter two results assume a uniform cost distribution. It is important to
make this explicit since the uniform cost distribution may be unrealistic in many particular situations
and it is only one of many choices for a reference standard in the general case. As we will mention
at the end of the paper, this suggests that new metrics can be derived by changing this distribution,
as Hand (2009) has already done for the optimal threshold choice method with a Beta distribution.

The good news is that inter-comparisons are still possible: given a threshold choice method we
can calculate expected loss from the relevant performance metric. The results in Table 2 allow us to
conclude that modelA achieves the lowest expected loss for uniformly sampled cost proportions, if
we are wise enough to choose the appropriate threshold choice method (in this case the rate-driven
method) to turn modelA into a successful classifier. Notice that this cannot be said by just lookingat
Table 1 because the metrics in this table are not comparable to each other. In fact, there is no single
performance metric that ranks the models in the correct order, because,as already said, expected
loss cannot be calculated for models, only for classifiers.

1.1 Contributions and Structure of the Paper

The contributions of this paper to the subject of model evaluation for classification can be sum-
marised as follows.

1. The expected loss of a model can only be determined if we select a distribution of operating
conditions and a threshold choice method. We need to set a point in this two-dimensional
space. Along the second (usually neglected) dimension, several new threshold choice meth-
ods are introduced in this paper.

2. We answer the question: “if one is choosing thresholds in a particular way, which perfor-
mance metric is appropriate?” by giving an explicit expression for the expected loss for each
threshold choice method. We derive linear relationships between expectedloss and many
common performance metrics.

3. Our results reinvigorate AUC as a well-founded measure of expected classification loss for
both the rate-uniform and rate-driven methods. While Hand (2009, 2010) raised objections
against AUC for the optimal threshold choice method only, noting that AUC canbe consis-
tent with other threshold choice methods, we encountered a widespread misunderstanding
in the machine learning community that the AUC is fundamentally flawed as a performance
metric—a clear misinterpretation of Hand’s papers that we hope that this paper helps to fur-
ther rectify.

4. One fundamental and novel result shows that the refinement loss of the convex hull of a ROC
curve is equal to expectedoptimal loss as measured by the area under the optimal cost curve.
This sets an optimistic (but also unrealistic) bound for the expected loss.

5. Conversely, from the usual calculation of several well-known performance metrics we can
derive expected loss. Thus, classifiers and performance metrics become easily comparable.
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With this we do not choose the best model but rather the best classifier (a model with a
particular threshold choice method).

6. By cleverly manipulating scores we can connect several of these performance metrics, either
by the notion of evenly-spaced scores or perfectly calibrated scores.This provides an addi-
tional way of analysing the relation between performance metrics and, of course, threshold
choice methods.

7. We use all these connections to better understand which threshold choice method should be
used, and in which cases some are better than others. The analysis of calibration plays a
central role in this understanding, and also shows that non-proper scoring rules do have their
role and can lead to lower expected loss than proper scoring rules, whichare, as expected,
more appropriate when the model is well-calibrated.

This set of contributions provides an integrated perspective on performance metrics for classifi-
cation around the systematic exploration of the notion of threshold choice method that we develop
in this paper.

The remainder of the paper is structured as follows. Section 2 introduces some notation, the
basic definitions for operating condition, threshold, expected loss, and particularly the notion of
threshold choice method, which we will use throughout the paper. Section 3 investigates expected
loss for fixed threshold choice methods (score-fixed and rate-fixed),which are the base for the rest.
We show that, not surprisingly, the expected loss for these threshold choice method are the 0-1
loss (weighted or unweighted accuracy depending on whether we use cost proportions or skews).
Section 4 presents the results that the score-uniform threshold choice method hasMAE as associate
performance metric and the score-driven threshold choice method leads tothe Brier score. We also
show that one dominates over the other. Section 5 analyses the non-fixed methods based on rates.
Somewhat surprisingly, both the rate-uniform threshold choice method andthe rate-driven threshold
choice method lead to linear functions ofAUC, with the latter always been better than the former.
All this vindicates the rate-driven threshold choice method but alsoAUC as a performance metric
for classification. Section 6 uses the optimal threshold choice method, connects the expected loss
in this case with the area under the optimal cost curve, and derives its corresponding metric, which
is refinement loss, one of the components of the Brier score decomposition.Section 7 analyses
the connections between the previous threshold choice methods and metrics by considering several
properties of the scores: evenly-spaced scores and perfectly calibrated scores. This also helps to
understand which threshold choice method should be used depending on how good scores are.
Finally, Section 8 closes the paper with a thorough discussion of results, related work, and an overall
conclusion with future work and open questions. Two appendices includea derivation of univariate
operating conditions for costs and skews and some technical results for the optimal threshold choice
method.

2. Background

In this section we introduce some basic notation and definitions we will need throughout the paper.
Further definitions will be introduced when needed. The most important definitions we will need
are introduced below: the notion of threshold choice method and the expression of expected loss.
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2.1 Notation and Basic Definitions

A classifier is a function that maps instancesx from an instance spaceX to classesy from an
output spaceY. For this paper we will assume binary classifiers, that is,Y = {0,1}. A model is a
functionm: X →R that maps examples to real numbers (scores) on an unspecified scale. Weuse the
convention that higher scores express a stronger belief that the instance is of class 1. Aprobabilistic
model is a functionm : X → [0,1] that maps examples to estimates ˆp(1|x) of the probability of
examplex to be of class 1. Throughout the paper we will use the termscore(usually denoted bys)
both for unscaled values (in an unbounded interval) and probability estimates (in the interval [0,1]).
Nonetheless, we will make the interpretation explicit whenever we use them in one way or the other.
We will do similarly for thresholds. In order to make predictions in theY domain, a model can be
converted to a classifier by fixing a decision thresholdt on the scores. Given a predicted score
s= m(x), the instancex is classified in class 1 ifs> t, and in class 0 otherwise.

For a given, unspecified model and population from which data are drawn, we denote the score
density for classk by fk and the cumulative distribution function byFk. Thus,F0(t) =

∫ t
−∞ f0(s)ds=

P(s≤ t|0) is the proportion of class 0 points correctly classified if the decision threshold is t, which is
the sensitivity or true positive rate att. Similarly,F1(t) =

∫ t
−∞ f1(s)ds= P(s≤ t|1) is the proportion

of class 1 points incorrectly classified as 0 or the false positive rate at thresholdt; 1−F1(t) is the
true negative rate or specificity. Note that we use 0 for the positive class and 1 for the negative class,
but scores increase with ˆp(1|x). That is,F0(t) andF1(t) are monotonically non-decreasing with
t. This has some notational advantages and is the same convention as used by, for example, Hand
(2009).

Given a data setD ⊂ 〈X,Y〉 of sizen = |D|, we denote byDk the subset of examples in class
k ∈ {0,1}, and setnk = |Dk| and πk = nk/n. Clearly π0 + π1 = 1. We will use the termclass
proportion for π0 (other terms such as ‘class ratio’ or ‘class prior’ have been used in the literature).
Given a model and a thresholdt, we denote byR(t) the predicted positive rate, that is, the proportion
of examples that will be predicted positive (class 0) if the threshold is set att. This can also be
defined asR(t) = π0F0(t)+π1F1(t). The average score of actual classk is sk =

∫ 1
0 s fk(s)ds. Given

any strict order for a data set ofn examples we will use the indexi on that order to refer to thei-th
example. Thus,si denotes the score of thei-th example andyi its true class.

We define partial class accuracies asAcc0(t) = F0(t) and Acc1(t) = 1− F1(t). From here,
(weighted or micro-average) accuracy is defined asAcc(t) = π0Acc0(t)+π1Acc1(t) and (unweight-
ed or macro-average) accuracy asuAcc(t) = (Acc0(t)+Acc1(t))/2 (also known as ‘average recall’,
Flach, 2012), which computes accuracy while assuming balanced classes.

We denote byUS(x) the continuous uniform distribution of variablex over an intervalS⊂R. If
this intervalS is [0,1] thenScan be omitted. The family of continuous distributions Beta is denoted
by βα,β. The Beta distributions are always defined in the interval[0,1]. Note that the uniform
distribution is a special case of the Beta family, that is,β1,1 =U .

2.2 Operating Conditions and Expected Loss

When a model is deployed for classification, the conditions might be different to those during train-
ing. In fact, a model can be used in several deployment contexts, with different results. A context
can entail different class distributions, different classification-relatedcosts (either for the attributes,
for the class or any other kind of cost), or some other details about the effects that the application
of a model might entail and the severity of its errors. In practice, a deployment context oroperating
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condition is usually defined by a misclassification cost function and a class distribution.Clearly,
there is a difference between operating when the cost of misclassifying 0 into 1 is equal to the cost
of misclassifying 1 into 0 and doing so when the former is ten times the latter. Similarly,operating
when classes are balanced is different from when there is an overwhelming majority of instances of
one class.

One general approach to cost-sensitive learning assumes that the costdoes not depend on the
example but only on its class. In this way, misclassification costs are usually simplified by means of
cost matrices, where we can express that some misclassification costs are higher than others (Elkan,
2001). Typically, the costs of correct classifications are assumed to be 0. This means that for binary
models we can describe the cost matrix by two valuesck ≥ 0 with at least one of both being strictly
greater than 0, representing the misclassification cost of an example of classk. Additionally, we can
normalise the costs by settingb= c0+c1, which will be referred to as thecost magnitude(which is
clearly strictly greater than 0), andc= c0/b; we will refer toc as thecost proportionSince this can
also be expressed asc= (1+c1/c0)

−1, it is often called ‘cost ratio’ even though, technically, it is a
proportion ranging between 0 and 1.

Under these assumptions, an operating condition can be defined as a tupleθ = 〈b,c,π0〉. The
space of operating conditions is denoted byΘ. These three parameters are not necessarily inde-
pendent, as we will discuss in more detail below. The loss for an operating condition is defined as
follows:

Q(t;θ) = Q(t;〈b,c,π0〉), b{cπ0(1−F0(t))+(1−c)π1F1(t)}

= c0π0(1−F0(t))+c1π1F1(t). (1)

It is important to distinguish the information we may have available at each stage of the process. At
evaluation time we may not have access to some information that is available later, at deployment
time. In many real-world problems, when we have to evaluate or compare models, we do not know
the operating condition that will apply during deployment. One general approach is to evaluate
the model on a range of possible operating points. In order to do this, we have to set a weight or
distribution for operating conditions.

A key issue when applying a model under different operating conditions ishow the threshold
is chosen in each of them. If we work with a classifier, this question vanishes, since the threshold
is already settled. However, in the general case when we work with a model,we have to decide
how to establish the threshold. The key idea proposed in this paper is the notion of a threshold
choice method, a function which converts an operating condition into an appropriate threshold for
the classifier.

Definition 1 Threshold choice method. A threshold choice method1 is a (possibly non-determinis-
tic) function T: Θ →R such that given an operating condition it returns a decision threshold.

When we say thatT may be non-deterministic, it means that the result may depend on a random
variable and hence may itself be a random variable according to some distribution. We introduce

1. The notion of threshold choice method could be further generalised to cover situations where we have some informa-
tion about the operating condition which cannot be expressed in terms of aspecific value ofΘ, such a distribution on
Θ or information aboutE{b}, E{bc}, etc. This generalisation could be explored, but it is not necessary forthe cases
discussed in this paper.
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the threshold choice method as an abstract concept since there are several reasonable options for
the functionT, essentially because there may be different degrees of information about the model
and the operating conditions at evaluation time. We can set a fixed threshold ignoring the operating
condition; we can set the threshold by looking at the ROC curve (or its convex hull) and using the
cost proportion to intersect the ROC curve (as ROC analysis does); we can set a threshold looking at
the estimated scores; or we can set a threshold independently from the rank or the scores. The way
in which we set the threshold may dramatically affect performance. But, notless importantly, the
performance metric used for evaluation must be in accordance with the threshold choice method.

Given a threshold choice functionT, the loss for a particular operating conditionθ is given
by Q(T(θ);θ). However, if we do not know the operating condition precisely, we can define a
distribution for operating conditions as a multivariate distribution,w(θ). From here, we can now
calculate expected loss as a weighted average over operating conditions (Adams and Hand, 1999):

L ,

∫
Θ

Q(T(θ);θ)w(θ)dθ. (2)

Calculating this integral for a particular case depends on the threshold choice method and the
kind of model, but particularly on the space of operating conditionsΘ and its associated distribution
w(θ). Typically, the representation of operating conditions is simplified from a three-parameter tuple
〈b,c,π0〉 to a single parameter. This reducesw to a univariate distribution. However, this reduction
must carry some assumptions. For instance, the cost magnitudeb is not always independent ofc and
π0, since costs in very imbalanced cases tend to have higher magnitude. For instance, we may have
two different operating conditions, one withc0 = 10 andc1 = 1 and another withc0 = 5 andc1 = 50.
While the cost ratios are symmetric (10:1 withc= 10/11 for the first case, 1:10 withc= 1/11 for
the second), the second operating condition will clearly have more impact onthe expected loss,
because its magnitude is five times higher. Moreover,c is usually closely linked toπ0, since the
higher the imbalance (class proportion), the higher the cost proportion. For instance, if positives are
rare, we usually want them to be detected (especially in diagnosis and faultdetection applications),
and false negatives (i.e., a positive which has not been detected but misclassified as negative) will
have higher cost.

Despite these dependencies, one common option for this simplified operating condition is to
consider that costs are normalised (the cost matrix always sums up to a constant, that is, the cost
magnitudeb is constant), or less strongly, thatb andc are independent. Another option which does
not require independence ofb andc relies on noticing thatb is a multiplicative factor in Equation (1).
From here, we just need to assume that the threshold choice method is independent ofb. This is not
a strong assumption, since all the threshold choice methods that have been used systematically in the
literature (e.g., the optimal threshold choice method and the score-driven method) are independent
of b and so are the rest of methods we work with in this paper. With this, as deployed in appendix
A, we can incorporateb in a bivariate distributionvH(〈c,π0〉) for cost and class proportions. This
does not mean that we ignore the magnitudeb or assume it constant, but that we can embed its
variability in vH . From here, we just derive two univariate cost functions and the corresponding
expected losses.

The first one assumesπ0 constant, leading to a loss expression which only depends on cost
proportionsc:

Qc(t;c), E{b}{cπ0(1−F0(t))+(1−c)π1F1(t)}. (3)
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Using this expression, expected loss will be derived as an integral usingthe univariate distribution
wc, which incorporates the variability ofb jointly with c (see appendix A for details).

A different approach to reducing the operating condition to a single parameter is the notion of
skew, which is a normalisation of the product between cost proportion and classproportion:

z,
cπ0

cπ0+(1−c)(1−π0)
.

This means thatπ0 is no longer fixed, but neither is it independent ofc. Whatz does is to combine
both parameters. This is a different way of reducing the operating condition to one single parameter.
We thus (re-)define loss as depending solely onz.

Qz(t;z), z(1−F0(t))+(1−z)F1(t).

Similarly, we also define a weightwz(z) which also incorporates the variability ofb andπ0 (see
appendix A for details), which will be used in the integral for calculating the expected loss below.

As a result, in what follows, we will just work with operating conditions which are either defined
by the cost proportionc (assuming a fixed class distributionπ0) or by the skewz (which combines
c andπ0). For convenience, as justified in appendix A, we will assumeE{b}= 2. Interestingly, we
can relate both approaches (using costs and skews) with the following lemma (proven in appendix
A):

Lemma 2 AssumingE{b}= 2, if π0 = π1 then z= c and Qz(t;z) = Qc(t;c).

This will allow us to translate the results for cost proportions to skews.
From now on, since the operating condition can be either a cost proportionc or a skewzwe will

use the subscriptc or z to differentiate them. In fact, threshold choice methods will be represented
by Tc andTz and they will be defined asTc : [0,1]→R andTz : [0,1]→R respectively. Superscripts
will be used to identify particular threshold choice methods. Some threshold choice methods we
consider in this paper take additional information into account, such as a default threshold or a
target predicted positive rate; such information is indicated by square brackets. So, for example, the
score-fixed threshold choice method for cost proportions consideredin the next section is indicated
thus: Ts f

c [t](c). In the rest of this paper, we explore a range of different methods to choose the
threshold (some deterministic and some non-deterministic). We will give properdefinitions of all
these threshold choice methods in its due section.

The expected loss for costs and skews is then adapted from Equation (2)as follows:

Definition 3 Given a threshold choice method for cost proportions Tc and a probability density
function over cost proportions wc, expected lossLc is defined as

Lc ,

∫ 1

0
Qc(Tc(c);c)wc(c)dc. (4)

Incorporating the class distribution into the operating condition as skews anddefining a distribution
over skews wz, we obtain expected loss over a distribution of skews:

Lz ,

∫ 1

0
Qz(Tz(z);z)wz(z)dz. (5)
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It is worth noting that if we plotQc or Qz againstc andz, respectively, we obtaincost curvesas
defined by Drummond and Holte (2000, 2006). Cost curves are also known as risk curves (e.g.,
Reid and Williamson, 2011, where the plot can also be shown in terms ofpriors, that is, class
proportions).

Equations (4) and (5) illustrate the space we explore in this paper. Two parameters determine
the expected loss:wc(c) andTc(c) (respectivelywz(z) andTz(z)). While much work has been done
on a first dimension, by changingwc(c) or wz(z), particularly in the area of proper scoring rules,
no work hassystematicallyanalysed what happens when changing the second dimension,Tc(c) or
Tz(z).

This means that in this paper we focus on this second dimension, and just makesome simple
choices for the first dimension. Except for cases where the threshold choice is independent of the
operating condition, we will assume a uniform distribution forwc(c) andwz(z). This is of course
just one possible choice, but not an arbitrary choice for a number of reasons:

• The uniform distribution is arguably the simplest distribution for a value between 0 and 1 and
requires no parameters.

• This distribution makes the representation of the loss straightforward, sincewe can plotQ on
they-axis versusc (or z) on thex-axis, where thex-axis can be shown linearly from 0 to 1,
without any distribution warping. This makes metrics correspond exactly with the areas under
many cost curves, such as the optimal cost curves (Drummond and Holte, 2006), the Brier
curves (Herńandez-Orallo et al., 2011) or the rate-driven/Kendall curves (Hernández-Orallo
et al., 2012).

• The uniform distribution is a reasonable choice if we want a model to behavewell in a wide
range of situations, from high costs for false positives to the other extreme. In this sense,
it gives more relevance to models which perform well when the cost matricesor the class
proportions are highly imbalanced.

• Most of the connections with the existing metrics are obtained with this distribution and not
with others, which is informative about what the metrics implicitly assume (if understood as
measures of expected loss).

Many expressions in this paper can be fine-tuned with other distributions, such as the Beta distri-
butionβ(2,2), as suggested by Hand (2009), or using imbalance (Hand, 2010). However, it is the
uniform distribution which leads us to many well-known evaluation metrics.

3. Expected Loss for Fixed-Threshold Classifiers

The easiest way to choose the threshold is to set it to a pre-defined valuetfixed, independently from
the model and also from the operating condition. This is, in fact, what many classifiers do (e.g.,
Naive Bayes choosestfixed = 0.5 independently from the model and independently from the operat-
ing condition). We will see the straightforward result that this threshold choice method corresponds
to 0-1 loss. Part of these results will be useful to better understand some other threshold choice
methods.

Definition 4 Thescore-fixed threshold choice methodis defined as follows:

Ts f
c [t](c), Ts f

z [t](z), t. (6)
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This choice has been criticised in two ways, but is still frequently used. Firstly, choosing 0.5
as a threshold is not generally the best choice even for balanced data sets or for applications where
the test distribution is equal to the training distribution (see, for example, the work of Lachiche and
Flach, 2003 on how to get much more from a Bayes classifier by simply changing the threshold).
Secondly, even if we are able to find a better value than 0.5, this does not mean that this value is best
for every skew or cost proportion—this is precisely one of the reasonswhy ROC analysis is used
(Provost and Fawcett, 2001). Only when we know the deployment operating condition at evaluation
time is it reasonable to fix the threshold according to this information. So either bycommon choice
or because we have this latter case, consider then that we are going to usethe same thresholdt
independently of skews or cost proportions. Given this threshold choice method, then the question
is: if we must evaluate a model before application for a wide range of skews and cost proportions,
which performance metric should be used?This is what we answer below.

If we plug Ts f
c (Equation 6) into the general formula of the expected loss for a range of cost

proportions (Equation 4) we have:

Ls f
c (t),

∫ 1

0
Qc(T

s f
c [t](c);c)wc(c)dc.

We obtain the following straightforward result.

Theorem 5 If a classifier sets the decision threshold at a fixed value t irrespective ofthe operating
condition or the model, then expected loss for any cost distribution wc is given by:

Ls f
c (t) = 2Ewc{c}(1−Acc(t))+4π1F1(t)

(

1
2
−Ewc{c}

)

.

Proof

Ls f
c (t) =

∫ 1

0
Qc(T

s f
c [t](c);c)wc(c)dc=

∫ 1

0
Qc(t;c)wc(c)dc

=
∫ 1

0
2{cπ0(1−F0(t))+(1−c)π1F1(t)}wc(c)dc

= 2π0(1−F0(t))
∫ 1

0
cwc(c)dc+2π1F1(t)

∫ 1

0
(1−c)wc(c)dc

= 2π0(1−F0(t))Ewc{c}+2π1F1(t)(1−Ewc{c})

= 2π0(1−F0(t))Ewc{c}+2π1F1(t)

(

Ewc{c}+2

(

1
2
−Ewc{c}

))

= 2Ewc{c}(π0(1−F0(t))+π1F1(t))+4π1F1(t)

(

1
2
−Ewc{c}

)

= 2Ewc{c}(1−Acc(t))+4π1F1(t)

(

1
2
−Ewc{c}

)

.

2825
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This gives an expression of expected loss which depends on error rate and false positive rate at
t and the expected value for the distribution of costs.2 Similarly, if we plugTs f

z (Equation 6) into
the general formula of the expected loss for a range of skews (Equation5) we have:

Ls f
z (t),

∫ 1

0
Qz(T

s f
z [t](z);z)wz(z)dz.

Using Lemma 2 we obtain the equivalent result for skews:

Ls f
z (t) = 2Ewz{z}(1−uAcc(t))+2F1(t)

(

1
2
−Ewz{z}

)

.

Corollary 6 If a classifier sets the decision threshold at a fixed value irrespective of the operating
condition or the model, then expected loss under a distribution of cost proportions wc with expected
valueEwc{c}= 1/2 is equal to the error rate at that decision threshold.

Ls f
E{c}=1/2(t) = π0(1−F0(t))+π1F1(t) = 1−Acc(t).

Using Lemma 2 we obtain the equivalent result for skews:

Ls f
E{z}=1/2(t) = (1−F0(t))/2+F1(t)/2= 1−uAcc(t).

So the expected loss under a distribution of cost proportions with mean 1/2 for thescore-fixed
threshold choice methodis the error rate of the classifier at that threshold. Clearly, a uniform
distribution is a special case, but the result also applies to, for instance, asymmetric Beta distribution
centered at 1/2. That means that accuracy can be seen as a measure ofclassification performance
in a range of cost proportions when we choose a fixed threshold. This interpretation is reasonable,
since accuracy is a performance metric which is typically applied to classifiers(where the threshold
is fixed) and not to models outputting scores. This is exactly what we did in Table 2. We calculated
the expected loss for the fixed threshold at 0.5 for a uniform distribution ofcost proportions, and we
obtained 1−Acc= 0.51 and 0.375 for modelsA andB respectively.

The previous results show that 0-1 losses are appropriate to evaluate models in a range of oper-
ating conditions if the threshold is fixed for all of them and we do not have any information about a
possible asymmetry in the cost matrix at deployment time. In other words, accuracy and unweighted
accuracy can be the right performance metrics for classifiers even in a cost-sensitive learning sce-
nario. The situation occurs when one assumes a particular operating condition at evaluation time
while the classifier has to deal with a range of operating conditions in deployment time.

In order to prepare for later results we also define a particular way of setting a fixed classification
threshold, namely to achieve a particular predicted positive rate. One couldsay that such a method
quantifiesthe proportion of positive predictions made by the classifier. For example, we could say
that our threshold is fixed to achieve a rate of 30% positive predictions andthe rest negatives. This

2. As mentioned above, the value oft is usually calculated disregarding the information (if any) about the operating
condition, and frequently set to 0.5. In fact, this threshold choice methodis called ‘fixed’ because of this. However,
we can estimate and fix the value oft by taking the expected value for the operating conditionEwc{c} into account,
if we have some information about thedistribution wc. For instance, we may chooset = Ewc{c} or we may choose
the value oft which minimises the expression of expected loss in Theorem 5.
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of course involves ranking the examples by their scores and setting a cuttingpoint at the appropriate
position, something which is frequent in ‘screening’ applications (Murphyet al., 1987; Wieand
et al., 1989).

Let us denote the predicted positive rate at thresholdt asR(t) = π0F0(t)+π1F1(t). Then,

Definition 7 If R is invertible, then we define therate-fixed threshold choice methodfor rate r as:

Tr f
c [r](c), R−1(r).

Similarly to the cost case, the rate-fixed threshold choice method for skews, assuming R is
invertible, is defined as:

Tr f
z [r](z), R−1

z (r).

where Rz(t) = F0(t)/2+F1(t)/2.

If R is not invertible, it has plateaus and so doesR. This can be handled by derivingt from the
centroid of a plateau. Nonetheless, in what follows, we will explicitly state when the invertibility of
R is necessary. The corresponding expected loss for cost proportions is

Lr f
c ,

∫ 1

0
Qc(T

r f
c [r](c);c)wc(c)dc=

∫ 1

0
Qc(R

−1(r);c)wc(c)dc.

As already mentioned, the notion of setting a threshold based on a rate is typically seen in
screening applications but it also closely related to the task of class prevalence estimation (Neyman,
1938; Tenenbein, 1970; Alonzo et al., 2003), which is also known as quantification in machine
learning and data mining (Forman, 2008; Bella et al., 2010). The goal of thistask is to correctly
estimate the proportion for each of the classes. This threshold choice methodallows the user to set
the quantity of positives, which might be known (from a sample of the test) or can be estimated using
a quantification method. In fact, some quantification methods can be seen as methods to determine
an absolute fixed thresholdt that ensures a correct proportion for the test set. Fortunately, it is
immediate to get the threshold which produces a rate; it can just be derived by sorting the examples
by their scores and placing the cutpoint where the rate equals the rank divided by the number of
examples (e.g., if we haven examples, the cutpointi makesr = i/n).

4. Threshold Choice Methods Using Scores

In the previous section we looked at accuracy and error rate as performance metrics for classifiers
and gave their interpretation as expected losses. In this and the following sections we consider per-
formance metrics for models that do not require fixing a threshold choice method in advance. Such
metrics includeAUC which evaluates ranking performance and the Brier score or mean squared er-
ror which evaluates the quality of probability estimates. We will deal with the latter inthis section.
For the rest of this section, we will therefore assume that scores range between 0 and 1 and represent
posterior probabilities for class 1, unless otherwise stated. This means thatwe can sample thresh-
olds uniformly or derive them from the operating condition. We first introduce two performance
metrics that are applicable to probabilistic scores.

The Brier score is a well-known performance metric for probabilistic models.It is an alternative
name for the Mean Squared Error or MSE loss (Brier, 1950), especiallyfor binary classification.
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HERNÁNDEZ-ORALLO , FLACH AND FERRI

Definition 8 The Brier score, BS, is defined as follows:

BS, π0BS0+π1BS1.

where the partial expressions for the positive and negative class are givenby:

BS0 ,

∫ 1

0
s2 f0(s)ds.

BS1 ,

∫ 1

0
(1−s)2 f1(s)ds.

From here, we can define a prior-independent version of the Brier score (or an unweighted Brier
score) as follows:

uBS,
BS0+BS1

2
.

The Mean Absolute Error (MAE) is another simple performance metric which has been redis-
covered many times under different names.

Definition 9 The Mean Absolute Error, MAE, is defined as follows:

MAE, π0MAE0+π1MAE1.

where the partial expressions for the positive and negative class are givenby:

MAE0 ,

∫ 1

0
s f0(s)ds= s0.

MAE1 ,

∫ 1

0
(1−s) f1(s)ds= 1−s1.

We can define an unweighted MAE as follows:

uMAE,
MAE0+MAE1

2
=

s0+(1−s1)

2
.

It can be shown thatMAE is equivalent to the Mean Probability Rate (MPR) (Lebanon and Lafferty,
2002) for discrete classification (Ferri et al., 2009).

4.1 The Score-Uniform Threshold Choice Method Leads to MAE

We now demonstrate how varying a model’s threshold leads to an expected loss that is different from
accuracy. First, we explore a threshold choice method which considers that we have no information
at all about the operating condition, neither at evaluation time nor at deployment time. We just
employ the interval between the maximum and minimum value of the scores, and we randomly
select the threshold using a uniform distribution over this interval. It can beargued that this threshold
choice method is unrealistic, because we almost always have some informationabout the operating
condition, especially at deployment time. A possible interpretation is that this threshold choice
method is useful to make aworst-caseevaluation. In other words, expected loss using this method
gives a robust assessment for situations where the information about theoperating condition is not
only unavailable, but maybe unrealiable or even malicious. So what we shownext is that there
are evaluation metrics which can be expressed as an expected loss underthese assumptions, adding
support to the idea that the metrics related to this threshold choice method are blind to (or unaware
of) any cost information.
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Definition 10 Assuming a model’s scores are expressed on a bounded scale[l ,u], thescore-uniform
threshold choice methodis defined as follows:

Tsu
c (c), Tsu

z (z), Ts f
c [Ul ,u](c).

Given this threshold choice method, then the question is:if we must evaluate a model before
application for a wide range of skews and cost proportions, which performance metric should be
used?

Theorem 11 Assuming probabilistic scores and the score-uniform threshold choice method, ex-
pected loss under a distribution of cost proportions wc is equal to:

Lsu
c = 2{Ewc{c}π0(s0)+(1−Ewc{c})π1(1−s1)}.

Proof First we deriveQc:

Qc(T
su
c (c);c) = Qc(T

s f
c [Ul ,u](c);c) =

∫ u

l
Qc(T

s f
c [t](c);c)

1
u− l

dt

=
1

u− l

∫ u

l
Qc(t;c)dt =

1
u− l

∫ u

l
2{cπ0(1−F0(t))+(1−c)π1F1(t)}dt

= 2
cπ0(s0− l)+(1−c)π1(u−s1)

(u− l)
.

The last step makes use of the following useful property.∫ u

l
Fk(t)dt = [tFk(t)]

u
l −

∫ u

l
t fk(t)dt = uFk(u)− lFk(l)−sk = u−sk.

Settingl = 0 andu= 1 for probabilistic scores, we obtain the final result:

Qc(T
su
c (c);c) = 2{cπ0(s0)+(1−c)π1(1−s1)}.

And now, we calculate the expected loss for the distributionwc(c).

Lsu
c =

∫ 1

0
Qc(T

su
c (c);c)wc(c)dc

=
∫ 1

0
2{cπ0(s0)+(1−c)π1(1−s1)}wc(c)dc

= 2{Ewc{c}π0(s0)+(1−Ewc{c})π1(1−s1)}.

Corollary 12 Assuming probabilistic scores and the score-uniform threshold choice method, ex-
pected loss under a distribution of cost proportions wc with expected valueEwc{c} = 1/2 is equal
to the model’s mean absolute error.

Lsu
E{c}=1/2 = π0s0+π1(1−s1) = MAE.

This gives a baseline loss if we choose thresholds randomly and independently of the model.
Using Lemma 2 we obtain the equivalent result for skews:

Lsu
E{z}=1/2 =

s0+(1−s1)

2
= uMAE.
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4.2 The Score-Driven Threshold Choice Method Leads to the Brier Score

We will now consider the first threshold choice method to take the operating condition into account.
Since we are dealing with probabilistic scores, this method simply sets the threshold equal to the
operating condition (cost proportion or skew). This is a natural criterionas it has been used espe-
cially when the model is a probability estimator and we expect to have perfect information about the
operating condition at deployment time. In fact, this is a direct choice when working with proper
scoring rules, since when rules are proper, scores are assumed to bea probabilistic assessment. The
use of this threshold choice method can be traced back to Murphy (1966) and, perhaps, implicitly,
much earlier. More recently, and in a different context from proper scoring rules, Drummond and
Holte (2006) say “the performance independent criterion, in this case, isto set the threshold to cor-
respond to the operating conditions. For example, ifPC(+) = 0.2 the Naive Bayes threshold is set
to 0.2”. The termPC(+) is equivalent to our ‘skew’.

Definition 13 Assuming the model’s scores are expressed on a probability scale[0,1], thescore-
driven threshold choice methodis defined for cost proportions as follows:

Tsd
c (c), c (7)

and for skews as
Tsd

z (z), z.

Given this threshold choice method, then the question is:if we must evaluate a model before
application for a wide range of skews and cost proportions, which performance metric should be
used?This is what we answer below.

Theorem 14 (Herńandez-Orallo et al., 2011)Assuming probabilistic scores and the score-driven
threshold choice method, expected loss under a uniform distribution of cost proportions is equal to
the model’s Brier score.

Proof If we plug Tsd
c (Equation 7) into the general formula of the expected loss (Equation 4) we

have the expected score-driven loss:

Lsd
c ,

∫ 1

0
Qc(T

sd
c (c);c)wc(c)dc=

∫ 1

0
Qc(c;c)wc(c)dc. (8)

And if we use the uniform distribution and the definition ofQc (Equation 3):

Lsd
U(c) =

∫ 1

0
Qc(c;c)U(c)dc=

∫ 1

0
2{cπ0(1−F0(c))+(1−c)π1F1(c)}dc. (9)

In order to show this is equal to the Brier score, we expand the definition ofBS0 andBS1 using
integration by parts:

BS0 =
∫ 1

0
s2 f0(s)ds=

[

s2F0(s)
]1

s=0−
∫ 1

0
2sF0(s)ds= 1−

∫ 1

0
2sF0(s)ds

=
∫ 1

0
2sds−

∫ 1

0
2sF0(s)ds=

∫ 1

0
2s(1−F0(s))ds.

BS1 =
∫ 1

0
(1−s)2 f1(s)ds=

[

(1−s)2F1(s)
]1

s=0+
∫ 1

0
2(1−s)F1(s)ds=

∫ 1

0
2(1−s)F1(s)ds.
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Taking their weighted average, we obtain

BS= π0BS0+π1BS1 =
∫ 1

0
{π02s(1−F0(s))+π12(1−s)F1(s)}ds. (10)

which, after reordering of terms and change of variable, is the same expression as Equation (9).

It is now clear why we just put the Brier score from Table 1 as the expected loss in Table 2. We
calculated the expected loss for the score-driven threshold choice method for a uniform distribution
of cost proportions as its Brier score.

Theorem 14 was obtained by Hernández-Orallo et al. (2011) (the threshold choice method there
was called ‘probabilistic’) but it is not completely new in itself. Murphy (1966) found a similar rela-
tion to expected utility (in our notation,−(1/4)PS+(1/2)(1+π0), where the so-called probability
scorePS= 2BS). Apart from the sign (which is explained because Murphy works with utilities
and we work with costs), the difference in the second constant term is explained because Murphy’s
utility (cost) model is based on a cost matrix where we have a cost for one ofthe classes (in meteo-
rology the class ‘protect’) independently of whether we have a right or wrong prediction (‘adverse’
or ‘good’ weather). The only case in the matrix with a 0 cost is when we have‘good’ weather and
‘no protect’. It is interesting to see that the result only differs by a constant term, which supports the
idea that whenever we can express the operating condition with a cost proportion or skew, the results
will be portable to each situation with the inclusion of some constant terms (which are the same for
all classifiers). In addition to this result, it is also worth mentioning another work by Murphy (1969)
where he makes a general derivation for the Beta distribution.

After Murphy, in the last four decades, there has been extensive work on the so-called proper
scoring rules, where several utility (cost) models have been used and several distributions for the cost
have been used. This has led to relating Brier score (square loss), logarithmic loss, 0-1 loss and other
losses which take the scores into account. For instance, Buja et al. (2005) give a comprehensive
account of how all these losses can be obtained as special cases of theBeta distribution. The result
given in Theorem 14 would be a particular case for the uniform distribution(which is a special
case of the Beta distribution) and a variant of Murphy’s results. In fact,theBSdecomposition can
also be connected to more general decompositions of Bregman divergences (Reid and Williamson,
2011). Nonetheless, it is important to remark that the results we have just obtained in Section 4.1
(and those we will get in Section 5) are new because they are not obtainedby changing the cost
distribution but rather by changing the threshold choice method. The threshold choice method used
(the score-driven one) is not put into question in the area of proper scoring rules. But Theorem 14
can now be seen as a result which connects these two different dimensions: cost distribution and
threshold choice method, so placing the Brier score at an even more predominant role.

Herńandez-Orallo et al. (2011) derive an equivalent result using empirical distributions. In that
paper we show how the loss can be plotted in cost space, leading to theBrier curvewhose area
underneath is the Brier score.

Finally, using skews we arrive at the prior-independent version of theBrier score.

Corollary 15 Lsd
U(z) = uBS= (BS0+BS1)/2.

It is interesting to analyse the relation betweenLsu
U(c) andLsd

U(c) (similarly betweenLsu
U(z) and

Lsd
U(z)). Since the former gives theMAE and the second gives the Brier score (which is the MSE),
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HERNÁNDEZ-ORALLO , FLACH AND FERRI

from the definitions ofMAE and Brier score, we get that, assuming scores are between 0 and 1:

MAE= Lsu
U(c) ≥ Lsd

U(c) = BS.

uMAE= Lsu
U(z) ≥ Lsd

U(z) = uBS.

SinceMAE andBShave the same terms but the second squares them, and all the values which are
squared are between 0 and 1, then theBSmust be lower or equal. This is natural, since the expected
loss is lower if we get reliable information about the operating condition at deployment time. So,
the difference between the Brier score andMAE is precisely the gain we can get by having (and
using) the information about the operating condition at deployment time. Notice that all this holds
regardless of the quality of the probability estimates.

Finally, the difference between the results of Section 3 (Corollary 6) and these results fits well
with a phenomenon which is observed when trying to optimise classification models: good proba-
bility estimation does not imply good classification and vice versa (see, for example, the work of
Friedman, 1997). In the context of these results, we can re-interpret this phenomenon from a new
perspective. The Brier score is seen as expected loss for the score-driven threshold choice method,
while accuracy assumes a fixed threshold. The expected losses shown inTable 2 are a clear example
of this.

5. Threshold Choice Methods Using Rates

We show in this section thatAUC can be translated into expected loss for varying operating con-
ditions in more than one way, depending on the threshold choice method used. We consider two
threshold choice methods, where each of them sets the threshold to achievea particular predicted
positive rate: the rate-uniform method, which sets the rate in a uniform way;and the rate-driven
method, which sets the rate equal to the operating condition. Some of these approaches have been
used or mentioned in the literature, but choosing or ranging over sensitivity(or, complementary,
specificity) instead of ranging over therate (which is a weighted sum of sensitivity, that is,F0, and
1− specificity, that is,F1). For instance, Wieand et al. (1989) take a uniform distribution on a re-
stricted range of sensitivities (or, similarly, specificities, Wieand et al., 1989). Also, Hand (2010)
mentions thatAUC can be seen as ‘the mean specificity value, assuming a uniform distribution for
the sensitivity’.

We recall the definition of a ROC curve and its area first.

Definition 16 The ROC curve (Swets et al., 2000; Fawcett, 2006) is defined as a plot ofF1(t) (i.e.,
false positive rate at decision threshold t) on the x-axis against F0(t) (true positive rate at t) on the
y-axis, with both quantities monotonically non-decreasing with increasing t (remember that scores
increase withp̂(1|x) and 1 stands for the negative class). The Area Under the ROC curve (AUC) is
defined as:

AUC ,

∫ 1

0
F0(s)dF1(s) =

∫ +∞

−∞
F0(s) f1(s)ds=

∫ +∞

−∞

∫ s

−∞
f0(t) f1(s)dtds

=
∫ 1

0
(1−F1(s))dF0(s) =

∫ +∞

−∞
(1−F1(s)) f0(s)ds=

∫ +∞

−∞

∫ +∞

s
f1(t) f0(s)dtds.

Note that in this section scores are not necessarily assumed to be probabilityestimates and sos
ranges from−∞ to ∞.
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5.1 The Rate Uniform Threshold Choice Method Leads to AUC

The rate-fixed threshold choice method places the threshold in such a way that a given predictive
positive rate is achieved. However, this proportion may change, or we might not have reliable
information about the operating conditionat deployment time. An option in this case is to fix a
predictive positive rate equal to 0.5 (predict exactly half of the examples as positive), which boils
down to a special case of Theorem 5, but another option is to consider a non-deterministic choice
or a distribution for this quantity. One natural choice can be a uniform distribution. This complete
absence of information will hardly ever be the case, as we discussed forthe score-uniform threshold
choice method, but it is still instructive to explore what the outcome would be withthis choice.

Definition 17 The rate-uniform threshold choice method non-deterministically sets the threshold to
achieve a uniformly randomly selected rate:

Tru
c (c), Tr f

c [U0,1](c).

Tru
z (z), Tr f

z [U0,1](z).

In other words, it sets a relative quantity (from 0% positives to 100% positives) in a uniform way,
and obtains the threshold from this uniform distribution over rates. Note thatfor a large number of
examples, this is the same as defining a uniform distribution over examples or, alternatively, over
cutpoints (between examples), as explored by Flach et al. (2011).

This threshold choice method is a generalisation of the rate-fixed threshold choice method which
considers all the imbalances (class proportions) equally likely whenever we make a classification.
It is important to clearly state that this makes the strong assumption that we will nothave any
information about the operating condition at deployment time.

As done before for other threshold choice methods, we analyse the question: given this threshold
choice method,if we must evaluate a model before application for a wide range of skews and cost
proportions, which performance metric should be used?

The corresponding expected loss for cost proportions is (assumingR is invertible)

Lru
c ,

∫ 1

0
Qc(T

ru
c (c);c)wc(c)dc=

∫ 1

0

∫ 1

0
Qc(R

−1(r);c)U(r)wc(c)dr dc.

We then have the following result.

Theorem 18 Assuming the rate-uniform threshold choice method and invertible R, expected loss
under a distribution of cost proportions wc decreases linearly with AUC as follows:

Lru
c = π0π1(1−2AUC)+π0Ewc{c}+π1(1−Ewc{c}).
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Proof First of all we note thatr =R(t) and henceU(r)dr =R′(t)dt = {π0 f0(t)+π1 f1(t)}dt. Under
the same change of variable,Qc(R−1(r);c) =Qc(t;c) = 2{cπ0(1−F0(t))+(1−c)π1F1(t)}. Hence:

Lru
c =

∫ 1

0

∫ ∞

−∞
{cπ0(1−F0(t))+(1−c)π1F1(t)}wc(c){π0 f0(t)+π1 f1(t)}dt dc

=
∫ ∞

−∞

∫ 1

0
2{cπ0(1−F0(t))+(1−c)π1F1(t)}{π0 f0(t)+π1 f1(t)}wc(c)dc dt

=
∫ ∞

−∞
2{Ewc{c}π0(1−F0(t))+(1−Ewc{c})π1F1(t)}{π0 f0(t)+π1 f1(t)}dt

= 2π0π1Ewc{c}
∫ ∞

−∞
(1−F0(t)) f1(t)dt+2π0π1(1−Ewc{c})

∫ ∞

−∞
F1(t) f0(t)dt

+2π2
0Ewc{c}

∫ ∞

−∞
(1−F0(t)) f0(t) dt+2π2

1(1−Ewc{c})
∫ ∞

−∞
F1(t) f1(t) dt.

The first two integrals in this last expression are both equal to 1−AUC. The remaining two integrals
reduce to a constant:

∫ ∞

−∞
(1−F0(t)) f0(t) dt =−

∫ 0

1
(1−F0(t)) d(1−F0(t)) = 1/2.

∫ ∞

−∞
F1(t) f1(t) dt =

∫ 1

0
F1(t) dF1(t) = 1/2.

Putting everything together we obtain

Lru
c = 2π0π1Ewc{c}(1−AUC)+2π0π1(1−Ewc{c})(1−AUC)+π2

0Ewc{c}+π2
1(1−Ewc{c})

= 2π0π1(1−AUC)+π2
0Ewc{c}+π2

1(1−Ewc{c})

= π0π1(1−2AUC)+π0π1+π2
0Ewc{c}+π2

1(1−Ewc{c})

= π0π1(1−2AUC)+π0π1Ewc{c}+π2
0Ewc{c}+π0π1(1−Ewc{c})+π2

1(1−Ewc{c})

and the result follows.

The following two results were originally obtained by Flach, Hernández-Orallo, and Ferri
(2011) for the special case of uniform cost and skew distributions. Weare grateful to David Hand
for suggesting that the earlier results might be generalised.

Corollary 19 Assuming the rate-uniform threshold choice method, invertible R, and a distribution
of cost proportions wc with expected valueEwc{c} = 1/2, expected loss decreases linearly with
AUC as follows:

Lru
E{c}=1/2 = π0π1(1−2AUC)+1/2.

Corollary 20 For any distribution of skews wz, assuming the rate-uniform threshold choice method
and invertible R, expected loss decreases linearly with AUC as follows:

Lru
z = (1−2AUC)/4+1/2.
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Proof By assuming a uniform class distribution in Theorem 18 we obtain:

Lru
c =

1
2

1
2
(1−2AUC)+

1
2
Ewc{c}+

1
2
(1−Ewc{c}) = (1−2AUC)/4+1/2.

By Lemma 2 this is equal toLru
z .

Notice that Corollary 20 does not make any assumption about the expected value ofwz, and in that
sense is more general than Corollary 19 for cost proportions. We see that expected loss for uniform
skew ranges from 1/4 for a perfect ranker that is harmed by sub-optimal threshold choices, to 3/4
for the worst possible ranker that puts positives and negatives the wrong way round, yet gains some
performance by putting the threshold at or close to one of the extremes.

Intuitively, a result like Corollary 20 can be understood as follows. Settinga randomly sampled
rate is equivalent to setting the decision threshold to the score of a randomly sampled example.
With probabilityπ0 we select a positive and with probabilityπ1 we select a negative. If we select
a positive, then the expected true positive rate is 1/2 (as on average we select the middle one); and
the expected false positive rate is 1−AUC (as one interpretation ofAUC is the expected proportion
of negatives ranked correctly wrt. a random positive). Similarly, if we select a negative then the
expected true positive rate isAUC and the expected false positive rate is 1/2. Put together, the
expected true positive rate isπ0/2+π1AUC and the expected false positive rate isπ1/2+π0(1−
AUC). The proportion of true positives among all examples is thus

π0(π0/2+π1AUC) =
π2

0

2
+π0π1AUC

and the proportion of false positives is

π1(π1/2+π0(1−AUC)) =
π2

1

2
+π0π1(1−AUC).

We can summarise these expectations in the following contingency table (all numbers are propor-
tions relative to the total number of examples):

Predicted+ Predicted−
Actual+ π2

0/2+π0π1AUC π2
0/2+π0π1(1−AUC) π0

Actual− π2
1/2+π0π1(1−AUC) π2

1/2+π0π1AUC π1

1/2 1/2 1

The column totals are, of course, as expected: if we randomly select an example to split on, then the
expected split is in the middle.

While in this paper we concentrate on the case where we have access to population densities
fk(s) and distribution functionsFk(t), in practice we have to work with empirical estimates. Flach
et al. (2011) provides an alternative formulation of the main results in this section, relating empirical
loss to theAUC of the empirical ROC curve. For instance, the expected loss for uniform skew and
uniform instance selection is calculated by Flach et al. (2011) to be

(

n
n+1

)

1−2AUC
4 + 1

2, showing that
for smaller samples the reduction in loss due toAUC is somewhat smaller.
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5.2 The Rate-Driven Threshold Choice Method Leads to AUC

Naturally, if we can have precise information of the operating condition at deployment time, we
can use the information about the skew or cost to adjust the rate of positives and negatives to that
proportion. This leads to a new threshold selection method: if we are given skew (or cost proportion)
z (or c), we choose the thresholdt in such a way that we get a proportion ofz (or c) positives. This
is an elaboration of the rate-fixed threshold choice method whichdoestake the operating condition
into account.

Definition 21 Therate-driven threshold choice methodfor cost proportions is defined as

Trd
c (c), Tr f

c [c](c) = R−1(c). (11)

The rate-driven threshold choice method for skews is defined as

Trd
z (z), Tr f

z [z](z) = R−1
z (z).

Given this threshold choice method, the question is again:if we must evaluate a model before
application for a wide range of skews and cost proportions, which performance metric should be
used?This is what we answer below.

If we plug Trd
c (Equation 11) into the general formula of the expected loss for a range ofcost

proportions (Equation 4) we have:

Lrd
c ,

∫ 1

0
Qc(T

rd
c (c);c)wc(c)dc.

And now, from this definition, if we use the uniform distribution forwc(c), we obtain this new
result.

Theorem 22 Expected loss for uniform cost proportions using the rate-driven threshold choice
method is linearly related to AUC as follows:

Lrd
U(c) = π1π0(1−2AUC)+1/3.

Proof

Lrd
U(c) =

∫ 1

0
Qc(T

rd
c (c);c)U(c)dc=

∫ 1

0
Qc(R

−1(c);c)dc

= 2
∫ 1

0
{cπ0(1−F0(R

−1(c)))+(1−c)π1F1(R
−1(c))}dc

= 2
∫ 1

0
{cπ0−cπ0F0(R

−1(c)))+π1F1(R
−1(c))−cπ1F1(R

−1(c))}dc.

Sinceπ0F0(R−1(c)))+π1F1(R−1(c)) = R(R−1(c)) = c,

Lrd
U(c) = 2

∫ 1

0
{cπ0−c2+π1F1(R

−1(c))}dc

= π0−
2
3
+2π1

∫ 1

0
F1(R

−1(c))dc.
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Taking the rightmost term and using the change of variableR−1(c) = t we havec= R(t) and hence
dc= R′(t)dt = {π0 f0(t)+π1 f1(t)}dt = R′(t)dt, and thus this term is rewritten as

2π1

∫ 1

0
F1(R

−1(c))dc = 2π1

∫ ∞

∞
F1(t){π0 f0(t)+π1 f1(t)}dt

= 2π1π0

∫ 1

0
F1(t)dF0(t)+2π2

1

∫ 1

0
F1(t)dF1(t)

= 2π1π0(1−AUC)+2π2
1
1
2
= 2π1π0(1−AUC)+π1(1−π0).

Putting everything together we have:

Lrd
U(c) = π0−

2
3
+2π1π0(1−AUC)+π1(1−π0)

=
1
3
+π1π0(1−2AUC).

Now we can unveil and understand how we obtained the results for the expected loss in Table 2
for the rate-driven method. We just took theAUC of the models and applied the previous formula:
π1π0(1−2AUC)+ 1

3.

Corollary 23 Expected loss for uniform skews using the rate-driven threshold choice method is
linearly related to AUC as follows:

Lrd
U(z) = (1−2AUC)/4+1/3.

If we compare Corollary 20 with Corollary 23, we see thatLru
U(z) > Lrd

U(z), more precisely:

Lru
U(z) = (1−2AUC)/4+1/2= Lrd

U(z)+1/6.

So we see that taking the operating condition into account when choosing thresholds based on
rates reduces the expected loss with 1/6, regardless of the quality of the modelas measured byAUC.
This term is clearly not negligible and demonstrates that the rate-driven threshold choice method is
superior to the rate-uniform method. Figure 3 illustrates this. Logically,Lrd

U(c) andLrd
U(z) work upon

information about the operating condition at deployment time, whileLru
U(c) andLru

U(z) may be suited
when this information is unavailable or unreliable.

6. The Optimal Threshold Choice Method

The last threshold choice method we investigate is based on the optimistic assumption that (1)
we are having complete information about the operating condition (class proportions and costs) at
deployment time and (2) we are able to use that information (also at deploymenttime) to choose
the threshold that will minimise the loss using the current model. ROC analysis is precisely based
on these two points since we can calculate the threshold which gives the smallest loss by using the
skew and the convex hull.

This threshold choice method, denoted byTo
c , is defined as follows:
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HERNÁNDEZ-ORALLO , FLACH AND FERRI

Figure 3: Illustration of the rate-driven threshold choice method. We assume uniform misclassifi-
cation costs (c0 = c1 = 1), and hence skew is equal to the proportion of positives (z= π0).
The majority class is class 1 on the left and class 0 on the right. Unlike the rate-uniform
method, the rate-driven method is able to take advantage of knowing the majorityclass,
leading to a lower expected loss.

Definition 24 The optimal threshold choice method is defined as:

To
c (c) , argmin

t
{Qc(t;c)}= argmin

t
2{cπ0(1−F0(t))+(1−c)π1F1(t)} (12)

and similarly for skews:

To
z (z), argmin

t
{Qz(t;z)}.

Note that in both cases, the argmin will typically give a range (interval) of values which give the
same optimal value. So these methods can be considered non-deterministic. This threshold choice
method is analysed by Fawcett and Provost (1997), and used by Drummond and Holte (2000, 2006)
for defining their cost curves and by Hand (2009) to define a new performance metric.

If we plug Equations (12) and (3) into Equation (4) using a uniform distribution for cost propor-
tions, we get:

Lo
U(c) =

∫ 1

0
Qc(argmin

t
{Qc(t,c)};c)dc=

∫ 1

0
min

t
{Qc(t;c)}dc

=
∫ 1

0
min

t
{2cπ0(1−F0(t))+2(1−c)π1F1(t)}dc. (13)

The connection with the convex hull of a ROC curve (ROCCH) is straightforward. The convex
hull is a construction over the ROC curve in such a way that all the points on the convex hull
have minimum loss for some choice ofc or z. This means that we restrict attention to theoptimal
threshold for a given cost proportionc, as derived from Equation (12).
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6.1 Convexification

We can give a corresponding, and more formal, definition of the convex hull as derived from the
score distributions. First, we need a more precise definition of a convex model. For that, we rely on
the ROC curve, and we use the slope of the curve, defined as usual:

slope(T) =
f0(T)
f1(T)

.

A related expression we will also use is:

c(T) =
π1 f1(T)

π0 f0(T)+π1 f1(T)
.

Sometimes we will use subindices forc(T) depending on the model we are using. In this way, we
have,π0

π1
slope(T) = π0 f0(T)

π1 f1(T)
= 1

c(T) −1.

Definition 25 (Convex model) A model m is convex, if for every threshold T , we have that c(T) is
non-decreasing (or, equivalently, slope(T) is non-increasing).

In order to make any model convex, it is not sufficient to repair local concavities, we need to
calculate the convex hull. This is clear if we categorise the types of segments.Some threshold
valuest will never minimiseQc(t;c) = 2cπ0(1−F0(t))+2(1−c)π1F1(t)} for any value ofc. These
values will be in one or more intervals of which only the end points will minimiseQc(t;c) for some
value ofc. We will call these intervalsnon-hull intervals, and all the rest will be referred to ashull
intervals. It clearly holds that hull intervals are convex. Non-hull intervals may contain convex and
concave subintervals.

From here, a definition of convex hull for continuous distributions is given as follows:

Definition 26 (Convexification) Let m be any model with score distributions f0(T) and f1(T).
Define convexified score distributions e0(T) and e1(T) as follows.

1. For every hull interval ti−1 ≤ s≤ ti : e0(T) = f0(T) and e1(T) = f1(T).

2. For every non-hull interval tj−1 ≤ s≤ t j :

e0(T) = e0, j =
1

t j − t j−1

∫ t j

t j−1

f0(T)dT.

e1(T) = e1, j =
1

t j − t j−1

∫ t j

t j−1

f1(T)dT.

The functionConvreturns the modelConv(m) defined by the score distributions e0(T) and e1(T).

We can also define the cumulative distributionsEx(t) =
∫ t

0 ex(T)dT, wherex represents either 0
or 1. By construction we have that for every interval[t j−1, t j ] identified above:

[Ex(t)]
t j
t j−1

=
∫ t j

t j−1

ex(T)dT = (t j − t j−1)ex, j =
∫ t j

t j−1

fx(T)dT = [Fx(t)]
t j
t j−1

(14)
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and so the convexified score distributions are proper distributions. Furthermore, since the new score
distributions are constant in the convexified intervals—and hence monotonically non-decreasing for
the newc(T), denoted bycConv(m)(T)—so is

cConv(m)(T) = c j =
π1e1, j

π0e0, j +π1e1, j
.

It follows that Conv(m) is everywhere convex. In addition,

Theorem 27 Optimal loss is invariant underConv, that is: Lo
U(c)(Conv(m)) = Lo

U(c)(m) for every
m.

Proof By Equation (13) we have that optimal loss is:

Lo
U(c)(m) =

∫ 1

0
min

t
{2cπ0(1−F0(t))+2(1−c)π1F1(t)}dc.

By definition, the hull intervals have not been modified by Conv(m). Only the non-hull intervals
have been modified. A non-hull interval was defined as those where there is not which minimises
Qc(t;c) = 2cπ0(1−F0(t))+2(1−c)π1F1(t)} for any value ofc, and only the endpoints attained the
minimum. Consequently, we only need to show that the newe0(T) ande1(T) do not introduce any
new minima.

We now focus on each non-hull segment(t j−1, t j) using the definition of Conv. We only need to
check the expression for the minimum:

min
t j≤t≤t j−1

{2cπ0(1−E0(t))+2(1−c)π1E1(t)}.

From Equation (14) we derive thatEx(t) = Ex(t j−1)+ (t j − t j−1)ex, j inside the interval (they are
straight lines in the ROC curve), and we can see that the expression to be minimised is constant (it
does not depend ont). Since the end points were the old minima and were equal, we see that this
expression cannot find new minima.

It is not difficult to see that if we plot Conv(m) in the cost space defined by Drummond and Holte
(2006) withQz(t;z) on they-axis against skewzon thex-axis, we have a cost curve. Its area is then
the expected loss for the optimal threshold choice method. In other words, this is the area under the
(optimal) cost curve. Similarly, the new performance metricH introduced by Hand (2009) is simply
a rescaled version of the area under the optimal cost curve using theβ2,2 distribution instead of the
β1,1 (i.e., uniform) distribution, and using cost proportions instead of skews (so being dependent to
class priors). This is further discussed by Flach et al. (2011). While allof these distributions are
symmetric, the Beta distribution can be non-symmetric if required by a specific application. In fact,
Hand and Anagnostopoulos (2012) suggest that the parameters of the distribution should be linked
to class proportionπ0.

6.2 The Optimal Threshold Choice Method Leads to Refinement Loss

Once again, the question now must be stated clearly. Assume that the optimal threshold choice
method is set as the method we will use for every application of our model. Furthermore, assume
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that each and every application of the model is going to find the perfect threshold. Then,if we
must evaluate a model before application for a wide range of skews and cost proportions, which
performance metric should be used?In what follows, we will find the answer by relating this
expected loss with a genuine performance metric: refinement loss. We will now introduce this
performance metric.

The Brier score, being a sum of squared probabilistic residuals, can bedecomposed in various
ways. The most common decomposition of the Brier score is due to Murphy (1973) and decomposes
the Brier score into Reliability, Resolution and Uncertainty. Frequently, the twolatter components
are joined together and the decomposition gives two terms: calibration loss andrefinement loss.

This decomposition is usually applied to empirical distributions, requiring a binning of the
scores. Scores are assumed to be probability estimates in the interval[0,1]. The decomposition
is based on a partitionPD = {b j} j=1..B whereD is the data set,B the number of bins, and each bin
is denoted byb j ⊂ D. Since it is a partition

⋃B
j=1b j = D. With this partition the decompoistion is:

BS≈ CLPD +RLPD =
1
n

B

∑
j=1

|b j |
(

sb j −yb j

)2
+

1
n

B

∑
j=1

|b j |yb j

(

1−yb j

)

.

Here we use the notationsb j =
1
|b j |

∑i∈b j
si andyb j =

1
|b j |

∑i∈b j
yi for the average predicted scores and

the average actual classes respectively for binb j .
For many partitions the empirical decomposition is not exact. It is only exact for partitions

which are coarser than the partition induced by the ROC curve (i.e., ties cannot be spread over
different partitions), as shown by Flach and Matsubara (2007). We denote byCLROC andRLROC

the calibration loss and the refinement loss, respectively, using the segments of the empirical ROC
curve as bins. In this case,BS= CLROC+RLROC.

In this paper we will use a variant of the above decomposition based on the ROC convex hull
of a model. In this decomposition, we take each bin as each segment in the convex hull. Naturally,
the number of bins in this decomposition is lower or equal than the number of binsin the ROC
decomposition. In fact, we may find different values ofsi in the same bin. In some way, we can
think about this decomposition as an optimistic/optimal version of the ROC decomposition, as Flach
and Matsubara (2007, Th. 3) show. We denote byCLROCCH andRLROCCH the calibration loss and
the refinement loss, respectively, using the segments of the convex hull of the empirical ROC curve
as bins (Flach et al., 2011).

We can define the same decomposition in continuous terms considering Definition8. We can
see that in the continuous case, the partition is irrelevant. Any partition will give the same result,
since the composition of consecutive integrals is the same as the whole integral.

Theorem 28 The continuous decomposition of the Brier Score, BS= CL+RL, is exact and gives
CL and RL as follows.

CL=
∫ 1

0

(s(π0 f0(s)+π1 f1(s))−π1 f1(s))
2

π0 f0(s)+π1 f1(s)
ds.

RL=
∫ 1

0

π1 f1(s)π0 f0(s)
π0 f0(s)+π1 f1(s)

ds.
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HERNÁNDEZ-ORALLO , FLACH AND FERRI

Proof

BS=
∫ 1

0

[

s2π0 f0(s)+(1−s)2π1 f1(s)
]

ds

=
∫ 1

0

[

s2(π0 f0(s)+π1 f1(s))−2sπ1 f1(s)+π1 f1(s)
]

ds

=
∫ 1

0

s2(π0 f0(s)+π1 f1(s))2−2s(π0 f0(s)+π1 f1(s))π1 f1(s)+π1 f1(s)(π1 f1(s)+π0 f0(s))
(π0 f0(s)+π1 f1(s))

ds

=
∫ 1

0

(s(π0 f0(s)+π1 f1(s))−π1 f1(s))
2+π1 f1(s)π0 f0(s)

π0 f0(s)+π1 f1(s)
ds

=
∫ 1

0

(s(π0 f0(s)+π1 f1(s))−π1 f1(s))
2

π0 f0(s)+π1 f1(s)
ds+

∫ 1

0

π1 f1(s)π0 f0(s)
π0 f0(s)+π1 f1(s)

ds.

This proof keeps the integral from start to end. That means that the decomposition is not only
true for the integral as a whole, but also pointwise for every single scores. Note thatyb j in the

empirical case (see Definition 15) corresponds toc(s) = π1 f1(s)
π0 f0(s)+π1 f1(s)

(as given by Equation 14) in
the continuous case above, and also note thatsb j corresponds to the cardinalityπ0 f0(s)+π1 f1(s).
The decomposition for empirical distributions as introduced by Murphy (1973) is still predominant
for any reference to the decomposition. To our knowledge this is the first explicit derivation of a
continuous version of the decomposition.

And now we are ready for relating the optimal threshold choice method with a performance
metric as follows:

Theorem 29 For every convex model m, we have that:

Lo
U(c)(m) = RL(m).

The proof of this theorem is found in the appendix as Theorem 48.

Corollary 30 For every model m the expected loss for the optimal threshold choice method Lo
U(c) is

equal to the refinement loss using the convex hull.

Lo
U(c)(m) = RL(Conv(m)), RLConv(m).

Proof We haveLo
U(c)(m) = Lo

U(c)(Conv(m)) by Theorem 27, andLo
U(c)(Conv(m)) = RL(Conv(m))

by Theorem 29 and the convexity of Conv(m).

It is possible to obtain a version of this theorem for empirical distributions which states thatLo
U(c) =

RLROCCH whereRLROCCH is the refinement loss of the empirical distribution using the segments of
the convex hull for the decomposition.

Before analysing what the meaning of this threshold choice method is and howit relates to the
rest, we have to consider whether this threshold choice method is realistic or not. In the beginning of
this section we said that the optimal method assumes that (1) we are having complete information
about the operating condition at deployment time and (2) we are able to use that information to
choose the threshold that will minimise the loss at deployment time.
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While (1) is not always true, there are many occasions where we know thecosts and distribu-
tions at application time. This is the base of the score-driven and rate-driven methods. However,
having this information does not mean that the optimal threshold for a data set (e.g., the training or
validation data set) ensures an optimal choice for a test set (2). Drummond and Holte (2006) are
conscious of this problem and they reluctantly rely on a threshold choice method which is based
on “the ROC convex hull [...] only if this selection criterion happens to make cost-minimizing se-
lections, which in general it will not do”. But even if these cost-minimising selections are done, as
mentioned above, it is not clear how reliable they are for a test data set. As Drummond and Holte
(2006, p. 122) recognise: “there are few examples of the practical application of this technique.
One example is given by Fawcett and Provost (1997), in which the decision threshold parameter
was tuned to be optimal, empirically, for the test distribution”.

In the example shown in Table 2 in Section 1, the evaluation technique was training and test.
However, with cross-validation, the convex hull cannot be estimated reliably in general, and the
thresholds derived from each fold might be inconsistent. Even with a largevalidation data set, the
decision threshold may be suboptimal. This is one of the reasons why the areaunder the convex hull
has not been used as a performance metric. In any case, we can calculate the values as an optimistic
limit, leading toLo

U(c) = RLROCCH= 0.0953 for modelA and 0.2094 for modelB.

7. Relating Performance Metrics

So far, we have repeatedly answered the following question: “If threshold choice methodX is used,
which is the corresponding performance metric?” The answers are summarised in Table 4. The
seven threshold choice methods are shown in the first column (the two fixed methods are grouped
in the same row). The integrated view of performance metrics for classification is given by the
next two columns. The expected loss of a model for a uniform distribution ofcost proportions or
skews for each of these seven threshold choice methods produces mostof the common performance
metrics in classification: 0-1 loss (either weighted or unweighted accuracy), the Mean Absolute
Error (equivalent to Mean Probability Rate), the Brier score,AUC (which equals the Wilcoxon-
Mann-Whitney statistic and the Kendall tau distance of the model to the perfectmodel, and is
linearly related to the Gini coefficient) and, finally, the refinement loss usingthe bins given by the
convex hull.

All the threshold choice methods seen in this paper consider model scores indifferent ways.
Some of them disregard the score, since the threshold is fixed, some othersconsider the ‘magnitude’
of the score as an (accurate) estimated probability, leading to the score-based methods, and others
consider the ‘rank’, ‘rate’ or ‘proportion’ given by the scores, leading to the rate-based methods.
Since the optimal threshold choice is also based on the convex hull, it is apparently more related to
the rate-based methods. This is consistent with the taxonomy proposed by Ferri et al. (2009) based
on correlations over more than a dozen performance metrics, where threefamilies of metrics were
recognised: performance metrics which account for the quality of classification (such as accuracy),
performance metrics which account for a ranking quality (such asAUC), and performance metrics
which evaluate the quality of scores or how well the model does in terms of probability estimation
(such as the Brier score or logloss).

This suggests that the way scores are distributed is crucial in understanding the differences and
connections between these metrics. In addition, this may shed light on which threshold choice
method is best. We have already seen some relations, such asLsu

U(c) ≥ Lsd
U(c), andLru

U(c) > Lrd
U(c), but
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Threshold
choice
method

Cost proportions Skews Equivalent (or related) performancemetrics

fixed Ls f
U(c) = 1−Acc Ls f

U(z) = 1−uAcc 0-1 loss: Weighted and unweighted accuracy.

score-
uniform

Lsu
U(c) = MAE Lsu

U(z) = uMAE Absolute error, Average score,pAUC(Ferri et al., 2005)
, Probability Rate (Ferri et al., 2009).

score-driven Lsd
U(c) = BS Lsd

U(z) = uBS Brier score (Brier, 1950), Mean Squared Error (MSE).

rate-uniform Lru
U(c) = π0π1(1−2AUC)+ 1

2 Lru
U(z) =

1−2AUC
4 + 1

2 AUC (Swets et al., 2000) and variants (wAUC) (Fawcett,
2001; Ferri et al., 2009), Kendall tau, WMW statistic,
Gini coefficient.

rate-driven Lrd
U(c) = π0π1(1−2AUC)+ 1

3 Lrd
U(z) =

1−2AUC
4 + 1

3 AUC (Swets et al., 2000) and variants (wAUC) (Fawcett,
2001; Ferri et al., 2009), Kendall tau, WMW statistic,
Gini coefficient.

optimal Lo
U(c) = RLConv Lo

U(z) = uRLConv ROCCH Refinement loss (Flach and Matsubara, 2007),
Refinement Loss (Murphy, 1973), Area under the Cost
Curve (‘Total Expected Cost’) (Drummond and Holte,
2006), Hand’s H (Hand, 2009).

Table 4: Threshold choice methods and their expected loss for cost proportions and skews. Theu
in uAcc, uMAE, uBSanduRLmean that these metrics are unweighted, that is, calculated
as ifπ0 = π1, while thew in wAUCrefers to a weighted version of the AUC, and thex-axis
andy-axis are proportional toπ0 andπ1.

what aboutLsd
U(c) andLrd

U(c)? Are they comparable? And what aboutLo
U(c)? It gives the minimum

expected loss by definition over the training (or validation) data set, but when does it become a good
estimation of the expected loss for the test data set?

In order to answer these questions we need to analyse transformations onthe scores and see how
these affect the expected loss given by each threshold choice method. For the rest of the section we
assume that scores are in the interval[0,1]. Given a model, its scores establish a total order over
the examples:σ = (s1,s2, ...,sn) wheresi ≤ si+1. Since there might be ties in the scores, this total
order is not necessarily strict. A monotonic transformation is any alteration ofthe scores, such that
the order is kept. We will consider two transformations: the evenly-spacedtransformation and PAV
calibration.

7.1 Evenly-Spaced Scores. Relating Brier Score, MAE and AUC

If we are given a ranking or order, or we are given a set of scoresbut its reliability is low, a quite
simple way to assign (or re-assign) the scores is to set them evenly-spaced (in the[0,1] interval).

Definition 31 A discrete evenly-spaced transformation is a procedureEST(σ)→ σ′ which converts
any sequence of scoresσ = (s1,s2, ...,sn) where si < si+1 into scoresσ′ = (s′1,s

′
2, ...,s

′
n) where s′i =

i−1
n−1.

Notice that such a transformation does not affect the ranking and hencedoes not alter theAUC.
The previous definition can be applied to continuous score distribution as follows:

Definition 32 A continuous evenly-spaced transformation is a any strictly monotonic transforma-
tion function on the score distribution, denoted byEven, such that for the new scores s′ it holds that
P(s′ ≤ t) = t.
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It is easy to see that EST is idempotent, that is, EST(EST(σ)) = EST(σ). So we say a set of
scoresσ is evenly-spaced if EST(σ) = σ.

Lemma 33 Given a model and data set with set of scoresσ, such that they evenly-spaced, when
n→ ∞ then we have R(t) = t.

Proof Remember that by definition the true positive rateF0(t) = P(s≤ t|0) and the false positive
rateF1(t)=P(s≤ t|1). Consequently, from the definition of rate we haveR(t)= π0F0(t)+π1F1(t)=
π0P(s≤ t|0)+ π1P(s≤ t|1) = P(s≤ t). But, since the scores are evenly-spaced, the number of
scores such thats≤ t is ∑n

i=1 I(si ≤ t) = ∑n
i=1 I( i−1

n−1 ≤ t) with I being the indicator function (1 when
true, 0 otherwise). This number of scores is∑tn

i=11 whenn → ∞, which clearly givestn. So the
probabilityP(s≤ t) is tn/n= t. ConsequentlyR(t) = t.

The following results connect the score-driven threshold choice methodwith the rate-driven
threshold choice method:

Theorem 34 Given a model and data set with set of scoresσ, such that they are evenly-spaced,
when n→ ∞:

BS= Lsd
U(c) = Lrd

U(c) = π0π1(1−2AUC)+
1
3
.

Proof By Lemma 33 we haveR(t) = t, and so the rate-driven and score-driven threshold choice
methods select the same thresholds.

Corollary 35 Given a model and data set with set of scoresσ such that they are evenly-spaced,
when n→ ∞:

uBS= Lsd
U(z) = Lrd

U(z) =
1−2AUC

4
+

1
3
.

These straightforward results connectAUC and Brier score for evenly-spaced scores. This connec-
tion is enlightening because it says thatAUC andBSare equivalent performance metrics (linearly
related) when we set the scores in an evenly-spaced way. In other words, it says thatAUC is like a
Brier score which considers all the scores evenly-spaced. Although the condition is strong, this is
the first linear connection which, to our knowledge, has been establishedso far betweenAUC and
the Brier score.

Similarly, we get the same results for the score-uniform threshold choice method and the rate-
uniform threshold choice method.

Theorem 36 Given a model and data set with set of scoresσ such that they are evenly-spaced,
when n→ ∞:

MAE= Lsu
U(c) = Lru

U(c) = π0π1(1−2AUC)+
1
2

with similar results for skews. This also connectsMAE with AUC and clarifies when they are
linearly related.
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7.2 Perfectly-Calibrated Scores. Relating BS, CL and RL

In this section we will work with a different condition on the scores. We will study what interesting
connections can be established if we assume the scores to be perfectly calibrated.

The informal definition of perfect calibration usually says that a model is calibrated when the
estimated probabilities are close to the true probabilities. From this informal definition, we would
derive that a model is perfectly calibrated if the estimated probability given bythe scores (i.e.,
p̂(1|x)) equals the true probability. However, if this definition is applied to single instances, it im-
plies not only perfect calibration but a perfect model. In order to give amore meaningful definition,
the notion of calibration is then usually defined in terms of groups or bins of examples, as we did,
for instance, with the Brier score decomposition. So, we need to apply this correspondence between
estimated and true (actual) probabilities over bins. We say a bin partition is invariant on the scores
if for any two examples with the same score they are in the same bin. In other words, two equal
scores cannot be in different bins (equivalence classes cannot bebroken). From here, we can give a
definition of perfect calibration:

Definition 37 (Perfectly-calibrated for empirical distribution models) A model isperfectly cal-
ibratedif for any invariant bin partitionP we have that yb j = sb j for all its bins: that is, the average
actual probability equals the average estimated probability, thus making CLP = 0.

Note that it is not sufficient to haveCL= 0 for one partition, but for all the invariant partitions. Also
notice that the bins which are generated by a ROC curve are the minimal invariant partition on the
scores (i.e., the quotient set). So, we can give an alternative definition ofperfectly calibrated model:
a model is perfectly calibrated if and only ifCLROC= 0. For the continuous case, the partition is
irrelevant and the definition is as follows:

Definition 38 (Perfectly-calibrated for continuous distribution models) A continuous model is
perfectly calibratedif and only if s= π1 f1(s)

π0 f0(s)+π1 f1(s)
which is exactly c(s) given by Equation (14).

Note that the previous definition is equivalent to saying thatCL= 0, as in the empirical case, since
CL can be rewritten as follows, following the decomposition of Theorem 28:

CL =
∫ 1

0

(s(π0 f0(s)+π1 f1(s))−π1 f1(s))
2

π0 f0(s)+π1 f1(s)
ds

=
∫ 1

0
(π0 f0(s)+π1 f1(s))

(

s−
π1 f1(s)

π0 f0(s)+π1 f1(s)

)2

ds.

Lemma 39 For a perfectly calibrated classifier m:

1−s
s

=
f0(s)
f1(s)

π0

π1

and m is convex.

Proof The expression is a direct transformation of Definition 38 and convexity just follows from
Definition 25.
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Now that we have two proper and operational definitions of perfect calibration, we define a
calibration transformation as follows.

Definition 40 Cal is a monotonic function over the scores which converts any model m into another
calibrated model m∗ such that CL= 0 and RL is not modified.

Cal always produces a convex model, so Conv(Cal(m)) = Cal(m), but a convex model is not always
perfectly calibrated (e.g., a binormal model with same variances is always convex but it can be
uncalibrated), so Cal(Conv(m) 6= Conv(m). This is summarised in Table 5. If the model is strictly
convex, then Cal is strictly monotonic. An instance of the function Cal is the transformationT 7→

s= c(T) wherec(T) = π1 f1(T)
π0 f0(T)+π1 f1(T)

as given by Equation (14). This transformation is shown to
keepRL unchanged in the appendix and makesCL= 0.

The previous function is defined for continuous score distributions. Thecorresponding function
for empirical distributions is known as the Pool Adjacent Algorithm (PAV) (Ayer et al., 1955).
Following Fawcett and Niculescu-Mizil (2007), thePAV function converts any modelm into another
calibrated modelm∗ such that the following propertysb j = yb j holds for every segment in its convex
hull.

Evenly-spaced Convexification Perfect Calibration

Continuous distributions Even Conv Cal
Empirical distributions EST ROCCH PAV

Table 5: Transformations on scores. Perfect calibration implies a convexmodel but not vice versa.

Fawcett and Niculescu-Mizil (2007) have shown that isotonic-based calibration (Robertson
et al., 1988) is equivalent to the PAV algorithm, and closely related to ROCCH,since, for every
mand data set, we have:

BS(PAV(m)) = CLROC(PAV(m))+RLROC(PAV(m)) = CLROCCH(PAV(m))+RLROCCH(PAV(m))

= RLROC(PAV(m)) = RLROCCH(PAV(m)).

It is also insightful to see that isotonic regression (calibration) is the monotonic function defined as
argminf ∑(yi − f (si))

2, that is, the monotonic function over the scores which minimises the Brier
score. This leads to the same function if we use any other proper scoring function (such as logloss).

The similar expression for the continuous case is

BS(Cal(m)) = CL(Cal(m))+RL(Cal(m)) = RL(Cal(m)).

Now we analyse what happens with perfectly calibrated models for the score-driven threshold
choice and the score-uniform threshold choice methods. This will help us understand the similarities
and differences between the threshold choices and their relation with the optimal method. Along
the way, we will obtain some straightforward, but interesting, results.

Theorem 41 If a model is perfectly calibrated then we have:

π0s̄0 = π1(1− s̄1) (15)

or equivalently,

π0MAE0 = π1MAE1.
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Proof For perfectly calibrated models, we have that for every bin in an invariantpartition on the
scores we have thatyb j = sb j . Just taking a partition consisting of one single bin (which is an
invariant partition), we have that this is the same as saying thatπ1 = π1s̄1 + π0s̄0. This leads to
π1(1− s̄1) = π0s̄0.

Equation (15) is an interesting formula in its own right. It gives a necessarycondition for
calibration: the extent to which the average score over all examples (whichis the weighted mean of
per-class averagesπ0s0+π1s1) deviates fromπ1.

We now give a first result which connects two performance metrics:

Theorem 42 If a model is perfectly calibrated then we have:

BS= π0s̄0 = π1(1− s̄1) = MAE/2.

Proof We use the continuous decomposition (Theorem 28):

BS= CL+RL.

Since it is perfectly calibrated,CL= 0. Then we have:

BS = RL=
∫ 1

0

π1 f1(s)π0 f0(s)
π0 f0(s)+π1 f1(s)

ds=
∫ 1

0
(π1 f1(s))

(

1−
π1 f1(s)

π0 f0(s)+π1 f1(s)

)

ds

=
∫ 1

0

(

π1 f1(s)−
[π1 f1(s)]2

π0 f0(s)+π1 f1(s)

)

ds=
∫ 1

0
π1 f1(s)ds−

∫ 1

0

[π1 f1(s)]2

π0 f0(s)+π1 f1(s)
ds

= π1−
∫ 1

0

π1 f1(s)
π0 f0(s)
π1 f1(s)

+1
ds.

Since it is perfectly calibrated, we have, by Lemma 39:

f0(s)
f1(s)

=
1−s

s
π1

π0
.

So:

BS = π1−
∫ 1

0

π1 f1(s)
π0
π1

1−s
s

π1
π0
+1

ds= π1−
∫ 1

0

sπ1 f1(s)
(1−s)+s

ds

= π1−π1

∫ 1

0
s f1(s)ds= π1(1−

∫ 1

0
s f1(s))ds= π1(1− s̄1).

We will now use the expressions for expected loss to analyse where this result comes from
exactly. In the following result, we see that for a calibrated model the optimal thresholdT for a
given cost proportionc is T = c, which is exactly the score-driven threshold choice method. In
other words:
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Theorem 43 For a perfectly calibrated model:
To

c (c) = Tsd
c (c) = c.

Proof We first take Equation (12):

To
c (c) = argmin

t
2{cπ0(1−F0(t))+(1−c)π1F1(t)}.

We calculate the derivative and equal it to 0 to gett, but we isolatec:

2{cπ0(1− f0(t))+(1−c)π1 f1(t)}= 0

c=
π1 f1(t)

π0 f0(t)+π1 f1(t)
.

From Definition 38 (perfect calibration) we have that the right expression above equalst, so we
havet = c. The proof is identical forTsd

c .

And now we can express and relate many of the expressions for the expected loss seen so far.
Starting with the expected loss for the optimal threshold choice method, that is,Lo

c (which uses
To

c ), we have, from Theorem 43, thatTo
c (c) = Tsd

c (c) = c when the model is perfectly calibrated.
Consequently, we have the same as Equation (8), and since we know thatBS= π0s̄0 for perfectly
calibrated models, we have:

Lo
U(c) = BS= π0s̄0 = MAE/2.

The following theorem summarises all the previous results.

Theorem 44 For perfectly calibrated models:

Lsd
U(c) = Lo

U(c) = RL=
Lsu

U(c)

2
=

MAE
2

= BS= π0s̄0 = π1(1−s1).

Proof SinceLsd
U(c) = BSit is clear thatLsd

U(c) = π0s̄0, as seen above forLo
U(c) as well. Additionally,

from Theorem 12, we have thatLsu
U(c) = π0s0+π1(1−s1), which reduces to 2Lsu

U(c) = 2BS= 2π0s0.
We also use the result of Theorem 29 which states that, in general (not just for perfectly calibrated
models),Lo

U(c)(m) = RL(Conv(m)).

All this gives an interpretation of the optimal threshold choice method as a method which cal-
culates expected loss by assuming perfect calibration. Note that this is clearly seen by the relation

Lsd
U(c) = Lo

U(c) =
Lsu

U(c)

2 , since the loss drops to the half if we use scores to adjust to the operating
condition. In this situation, we get the best possible result.

7.3 Choosing a Threshold Choice Method

It is enlightening to see that many of the most popular classification performance metrics are just
expected losses by changing the threshold choice method and the use of cost proportions or skews.
However, it is even more revealing to see how (and under which conditions) these performance
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General relations:

Lru
U(c) = π0π1(1−2AUC)+

1
2
> Lrd

U(c) = π0π1(1−2AUC)+
1
3
≥ Lo

U(c) = RLConv

Lsu
U(c) = MAE≥ Lsd

U(c) = BS≥ Lo
U(c) = RLConv

If scores are evenly-spaced:

Lru
U(c) = π0π1(1−2AUC)+

1
2
= Lsu

U(c) = MAE= π0s̄0+π1(1−s1)

Lrd
U(c) = π0π1(1−2AUC)+

1
3
= Lsd

U(c) = BS

If scores are perfectly calibrated:

Lsd
U(c) = Lo

U(c) = RL=
Lsu

U(c)

2
=

MAE
2

= BS= π0s̄0 = π1(1−s1)

If the model has perfect ranking:

Lru
U(c) =

1
4
> Lrd

U(c) =
1
12

> Lo
U(c) = 0

If the model is random (andπ0 = π1):

Lsu
U(c) = Lsd

U(c) = Lru
U(c) =

1
2
> Lrd

U(c) =
1
3
> Lo

U(c) =
1
4

Figure 4: Comparison of losses and performance metrics, in general andunder several score con-
ditions.

metrics can be related (in some cases with inequalities and in some other cases withequalities).
The notion of score transformation is the key idea for these connections, and is more important that
it might seem at first sight. Some threshold choice methods can be seen as a score transformation
followed by the score-driven threshold choice method. Even the fixed threshold choice method
can be seen as a crisp transformation where scores are set to 1 ifsi > t and 0 otherwise. Another
interesting point of view is to see the values of extreme models, such as a modelwith perfect ranking
(AUC= 1,RLROCCH= 0) and a random model (AUC= 0.5,RLROCCH= 0.25 whenπ0 = π1). Figure
4 summarises all the relations found so far and these extreme cases.

The first apparent observation is thatLo
U(c) seems the best loss, since it derives from the optimal

threshold choice method. We already argued in Section 6 that this is unrealistic. The result given
by Theorem 29 is a clear indication of this, since this makes expected loss equal to RLConv. Hence,
this threshold choice method assumes that the calibration which is performed withthe convex hull
over the training (or a validation data set) is going to be perfect and hold forthe test set. Figure 4
also gives the impression thatLsu

U(c) andLru
U(c) are so bad that their corresponding threshold choice

methods and metrics are useless. In order to refute this simplistic view, we must realise (again) that
not every threshold choice method can be applied in every situation. Some require more information
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or more assumptions than others. Table 6 completes Table 3 to illustrate the point. If we know
the deployment operating condition at evaluation time, then we can fix the threshold and get the
expected loss. If we do not know this information at evaluation time, but we expect to be able
to have it and use it at deployment time, then the score-driven, rate-driven and optimal threshold
choice methods seem the appropriate ones. Finally, if no information about the operating condition
is going to be available at any time then the score-uniform and the rate-uniformmay be alternative
options, which could account for a worst-case estimation.

Threshold choice method Fixed Driven by o.c. Chosen uniformly
Using scores score-fixed (Ts f) score-driven (Tsd) score-uniform (Tsu)
Using rates rate-fixed (Tr f ) rate-driven (Trd) rate-uniform (Tru)
Using optimal thresholds optimal (To)
Required information o.c. at evaluation time o.c. at deployment time no information

Table 6: Information which is required (and when) for the seven threshold choice methods so that
they become reasonable (or just not totally unreasonable). Operating condition is denoted
by o.c.

From the cases shown in Table 6, the methods driven by the operating condition require further
discussion. The relations shown in Figure 4 illustrate that, in addition to the optimalthreshold
choice method, the other two methods that seem more competitive are the score-driven and the rate-
driven. One can argue that the rate-driven threshold choice has an expected loss which is always
greater than 1/12 (if AUC= 1, we get−1/4+1/3), while the others can be 0. But things are not
so clear-cut.

• The score-driven threshold choice method considers that the scores are estimated probabili-
ties and that they are reliable, in the tradition of proper scoring rules. So it just uses these
probabilities to set the thresholds.

• The rate-driven threshold choice method completely ignores the scores and only considers
their order. It assumes that the ranking is reliable while the scores are notaccurate prob-
abilities. It derives the thresholds using the predictive positive rate. It can be seen as the
score-driven threshold choice method where the scores have been set evenly-spaced by a
transformation.

• The optimal threshold choice method also ignores the scores completely and only considers
their order. It assumes that the ranking is reliable while the scores are notaccurate probabili-
ties. However, this method derives the thresholds by keeping the order and using the slopes of
the segments of the convex hull (typically constructed over the training data set or a validation
data set). It can be seen as the score-driven threshold choice method where the scores have
been calibrated by the PAV method.

Now that we better understand the meaning of the threshold choice methods we may state the diffi-
cult question more clearly: given a model, which threshold choice method should we use to make
classifications? The answer is closely related to the calibration problem. Some theoretical and ex-
perimental results (Robertson et al., 1988; Ayer et al., 1955; Platt, 1999;Zadrozny and Elkan, 2001,

2851



HERNÁNDEZ-ORALLO , FLACH AND FERRI

2002; Niculescu-Mizil and Caruana, 2005; Niculescu-Mizil and Caruana, 2005; Bella et al., 2009;
Gebel, 2009) have shown that the PAV method (also known as isotonic regression) is not frequently
the best calibration method. Some other calibration methods could do better, such as Platt’s calibra-
tion or binning averaging. In particular, it has been shown that “isotonic regression is more prone to
overfitting, and thus performs worse than Platt scaling, when data is scarce” (Niculescu-Mizil and
Caruana, 2005). Even with a large validation data set which allows the construction of an accurate
ROC curve and an accurate convex hull, the resulting choices are not necessarily optimal for the test
set, since there might be problems with outliers (Rüping, 2006). In fact, if the validation data set is
much smaller (or biased) than the training set, the resulting probabilities can be even worse than the
original probabilities, as it may happen with cross-validation. So, we have tofeel free to use other
(possibly better) calibration methods instead and do not stick to the PAV method just because it is
linked to the optimal threshold choice method.

So the question of whether we keep the scores or not (and how we replace them in case) depends
on our expectations on how well-calibrated the model is, and whether we have tools (calibration
methods and validation data sets) to calibrate the scores.

But we can turn the previous question into a much more intelligent procedure.Calculating the
three expected losses discussed above (and perhaps the other threshold choice methods as well) pro-
vides a rich source of information about how our models behave. This is what performance metrics
are all about. It is only after the comparison of all the results and the availability of (validation) data
sets when we can make a decision about which threshold choice method to use.

This is what we did with the example shown in Table 2 in Section 1. We evaluated themodel for
several threshold choice methods and from there we clearly saw which models were better calibrated
and we finally made a decision about which model to use and with which threshold choice methods.

In any case, note that the results and comparisons shown in Figure 4 are for expected loss; the
actual loss does not necessarily follow these inequalities. In fact, the expected loss calculated over a
validation data set may not hold over the test data set, and even some threshold choice methods we
have discarded from the discussion above (the fixed ones or the score-uniform and rate-uniform, if
probabilities or rankings are very bad respectively) could be better in some particular situations.

8. Discussion

This paper builds upon the notion of threshold choice method and the expected loss we can obtain
for a range of cost proportions (or skews) for each of the thresholdchoice methods we have inves-
tigated. The links between threshold choice methods, between performance metrics, in general and
for specific score arrangements, have provided us with a much broader(and more elaborate) view of
classification performance metrics and the way thresholds can be chosen.In this last section we link
our results to the extensive bulk of work on classification evaluation and analyse the most important
contributions and open questions which are derived from this paper.

8.1 Related Work

One decade ago there was a scattered view of classification evaluation. Many performance metrics
existed and it was not clear what their relationships were. One first step inunderstanding some of
these performance metrics in terms of costs was the notion of cost isometrics (Flach, 2003). With
cost isometrics, many classification metrics (and decision tree splitting criteria) are characterised by
its skew landscape, that is, the slope of its isometric at any point in the ROC space. Another com-
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prehensive view was the empirical evaluation made by Ferri et al. (2009). The analysis of Pearson
and Spearman correlations between 18 different performance metrics shows the pairs of metrics for
which the differences are significant. However, this work does not elaborate, at least theoretically,
on what exactly each metric measures, but rather on whether they give different choices in general.

In addition to these, there have been three lines of research in this area which provide further
pieces to understand the whole picture.

• First, the notion of ‘proper scoring rules’ (which was introduced in the sixties, see for exam-
ple, the work by Murphy and Winkler, 1970), has been developed to a degree (Buja et al.,
2005) in which it has been shown that the Brier score (MSE loss), logloss, boosting loss
and error rate (0-1 loss) are all special cases of an integral over a Beta density, and that
all these performance metrics can be understood as averages (or integrals), at least theoret-
ically, over a range of cost proportions (see, e.g., the works of Gneitingand Raftery, 2007;
Reid and Williamson, 2010 and Brümmer, 2010), so generalising the early works by Murphy
on probabilistic predictions when cost-loss ratio is unknown (Murphy, 1966, 1969). Addi-
tionally, further connections have been found between proper scoringrules and distribution
divergences (f -divergences and Bregman divergences) (Reid and Williamson, 2011).

• Second, the translation of the Brier decomposition using ROC curves (Flachand Matsubara,
2007) suggests a connection between the Brier score and ROC curves,and particularly be-
tween refinement loss andAUC, since both are performance metrics which do not require the
magnitude of the scores of the model.

• Third, an important coup d’effet has been given by Hand (2009), stating that theAUC can-
not be used as a performance metric for evaluating models (for a range ofcost proportions),
assuming the optimal threshold choice method, because the distribution for these cost pro-
portions depends on the model. This seemed to suggest a definitive rupturebetween ranking
quality and classification performance over a range of cost proportions.

Each of the three lines mentioned above provides a partial view of the problem of classifier evalua-
tion, and suggests that some important connections between performance metrics were waiting to be
unveiled. The starting point of this unifying view is that all the previous works above worked with
only two threshold choice methods, which we have called the score-driventhreshold choice method
and the optimal threshold choice method. Only a few works mention these two threshold choice
methods together. For instance, Drummond and Holte (2006) talk about ‘selection criteria’ (instead
of ‘threshold choice methods’) and they distinguish between ‘performance-independent’ selection
criteria and ‘cost-minimizing’ selection criteria. Hand (personal communication) says that ‘Hand
(2009) (top of page 122) points out that there are situations where one might choose thresholds
independently of cost, and go into more detail in Hand (2010)’. This is related to the fixed threshold
choice method, or the rate-uniform and score-uniform threshold choicemethods used here. Finally,
Flach et al. (2011) explore the rate-uniform threshold choice method whileHerńandez-Orallo et al.
(2011) explore the score-driven threshold choice method.

The notion of proper scoring rule works with the score-driven threshold choice method. This
implies that this notion cannot be applied toAUC—Reid and Williamson (2011) connects the area
under the convex hull (AUCH) with other proper scoring rules but notAUC—and to RL. As a
consequence, the Brier score, log-loss, boosting loss and error ratewould only be minor choices
depending on the information about the distribution of costs.
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Hand (2009) takes a similar view of the cost distribution, as a choice that depends on the infor-
mation we may have about the problem, but makes an important change over thetradition in proper
scoring rules tradition. He considers ‘optimal thresholds’ (see Equation 12) instead of the score-
driven choice. With this threshold choice method, Hand is able to deriveAUC (or yet againAUCH)
as a measure of aggregated classification performance, but the distributionhe uses (and criticises)
depends on the model itself. Then he defines a new performance metric which is proportional to the
area under the optimal cost curve. Hand (2010) and Hand and Anagnostopoulos (2011) elaborate
on this by the consideration of asymmetries in the cost distribution.

8.2 A Plethora of Evaluation Metrics

The unifying view under the systematic exploration of threshold choice methods in this paper has
established a set of connections which portray a much more comprehensive view of the landscape
of evaluation metrics for classification. However, it has to be emphasised that each connection be-
tween a metric and a kind of expected loss is associated to a particular set of assumptions. The most
important assumption is the cost model. For the whole paper, we have assumedthat the operating
conditionθ is simplified to a single parameter,c or z, from a three-dimensional vectorθ = 〈b,c,π0〉.
In order to make this reduction, we have assumed that the threshold choice method ignores the
magnitudeb. In addition, we have either assumedπ0 fixed or have linked it toc through the notion
of skew (see appendix A). However, in general, we could consider trivariate distributions for the
parameters inθ. We could also consider threshold choice methods which are sensitive to themag-
nitudeb or other combinations of the three parameters. For instance, we could consider a threshold
choice method which is more ‘conservative’ whenb is high and more ‘risky’ whenb is low. More-
over, in some applications, the operating condition can have even more parameters, since it may
be instance-dependent (Turney, 2000) or can change depending on previous errors. Certainly, for
a specific application one must consider the distribution which better fits the expectation or knowl-
edge about the possible operating conditions. This firstdimension, the distribution of operating
conditions, has been varied in many different ways by Wieand et al. (1989), Gneiting and Raftery
(2007), Reid and Williamson (2010), Reid and Williamson (2011), Brümmer (2010), Hand (2009),
Hand (2010) and Hand and Anagnostopoulos (2011), as mentioned above. Here we have considered
the simplest option, a uniform distribution (except for the fixed threshold choice methods where the
results are more general), but many other options can be explored, including partial, asymmetric or
multimodal distributions.

As said in the introduction, this paper works and varies on a different dimension, by changing
the threshold choice method systematically. The choice of a particular threshold choice method
reflects many things: the information one may have at evaluation time or deployment time, the
reliability or calibration degree one expect from a model or the very character of the model, which
may be a crisp classifier, a ranker or a probability estimator. Also, the choicecan also be just a matter
of practice, since some threshold choice methods are simpler than others anddevelop into simpler
decision rules. In fact, we have explored seven possibilities here. Some of them may look more
reasonable than others, and some may correspond to frequent practical situations, while others have
just been set in order to derive the relation between expected loss and a relevant evaluation metric.
And there might be other possibilites. For instance, a particular case of the fixed threshold choice
method can be defined by choosing the threshold atE{c}, which can be generalised, for example,
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in an online setting, if this expected value evolves (or is refined) after the information we get from
the actual costs example after example.

All this suggests that many other combinations could be explored by using different options
for the two dimensions, and possibly relaxing some other assumptions, such as Hand did with his
measureH (Hand, 2009), when using theβ2,2 distribution for the optimal threshold choice method
instead of the uniform (β1,1) distribution. We think that the same thing could be done with the rate-
driven threshold choice method, possibly leading to new variants of theAUC. This is related to the
extensive work where several distributions are presented for calculating an average of sensitivities
over a restricted range of specificities (Wieand et al., 1989), leading to other variants ofAUC (such
as partialAUC). And, of course, this has also been done with proper scoring rules for the score-
driven threshold choice method with many loss functions.

It is, however, also worthwhile to underline the limitations of aggregated metricsfor comparing
classification models. Graphical plots, where performance is shown in a range of operating con-
ditions, are more powerful than aggregated metrics, since we can keep several methods provided
they are not completely dominated by others. Many threshold choice methods give rise to particular
kinds of curves that provide at each operating point, rather than just anaggregate.

8.3 Conclusions and Future Work

As a conclusion, if we want to evaluate a model for a wide range of operating conditions (i.e., cost
proportion or skews), we have to determine first which threshold choice method is to be used. If it
is fixed because we have a non-probabilistic classifier or we are given the actual operating condition
at evaluation time, then we get accuracy (and unweighted accuracy) as agood performance metric.
If we have no access to the operating condition at evaluation time but neither do we at deploy-
ment time, then the score-uniform and the rate-uniform may be considered,with MAE andAUC
as corresponding performance metrics. Finally, in the common situation when we do not know the
operating condition at evaluation time but we expect that it will be known and used at deployment
time, then we have more options. If a model has no reliable scores or probability estimations, we
recommend the refinement loss (RLConv, which is equivalent to area under the optimal cost curve)
if thresholds are being chosen using the convex hull of a reliable ROC curve, or, alternatively, we
recommend the area under the ROC curve (AUC) if the estimation of this convex hull is not reliable
enough to choose thresholds confidently. More readily, if a model has reliable scores because it is
a good probability estimator or it has been processed by a calibration method,then we recommend
to choose the thresholds according to scores. In this case, the corresponding performance metric is
the Brier score.

From this paper, now we have a much better understanding on the relation between the Brier
score, theAUC and refinement loss. We also know much better what is happening when models
are not convex and/or not calibrated. In addition, we find that using evenly-spaced scores, we get
that the Brier score and theAUC are linearly related. Furthermore, we see that if the model is
perfectly calibrated, the expected loss using the score-driven threshold choice method equals the
optimal threshold choice method.

The collection of new findings introduced in this paper leads to many other avenues to follow
and some questions ahead. For instance, the duality between cost proportions and skews suggests
that we could work with loglikelihood ratios as well. Also, there is always the problem of multi-
class evaluation. This is as challenging as interesting, since there are many more threshold choice

2855
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methods in the multiclass case and the corresponding expected losses could be connected to some
multiclass extensions of the binary performance metrics. Finally, more work is needed on the rela-
tion between the ROC space and the cost space, and the representation ofall these expected losses
in the latter space. The notion of Brier curve (Hernández-Orallo et al., 2011) is a first step in this
direction, but all the other threshold choice methods also lead to other curves.
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Appendix A. Univariate Operating Conditions Using Cost Proportions and Skews

This appendix develops the expressions for univariate operating conditions from the general notion
of operating condition introduced in Section 2.2. One possibility of reducing an operating condition
with three parametersθ = 〈b,c,π0〉 into one single parameter, without assuming independence ofb
andc, relies on noticing thatb is a multiplicative factor in Equation (1). So, we can express loss as
follows:

Q(t;θ) = b{cπ0(1−F0(t))+(1−c)π1F1(t)}= bQη(t;η). (16)

whereη= 〈c,π0〉. The set of these normalised operating conditions is denoted byH. In other words,
loss is just a product of the cost magnitudeb and normalised loss. When calculating expected loss
for a particular threshold choice method, we can write

Q(T(θ);θ) = bQη(Tη(η),η). (17)

Note that thisassumes that the threshold choice method is defined in terms ofη, and hence it is
independent of b.

From here, we can just work with Equation (17) and derive expected loss from Equation (2) as
follows:

L =
∫

Θ
Q(T(θ);θ)w(θ)dθ =

∫
Θ

bQη(Tη(η),η)w(θ)dθ

=
∫

H

{∫ ∞

0
bQη(Tη(η),η)wB|H(b|η)db

}

wH(η)dη

=
∫

H
Qη(Tη(η),η)

{∫ ∞

0
bwB|H(b|η)db

}

wH(η)dη

=
∫

H
Qη(Tη(η),η)E{b|η}wH(η)dη.

with wH(η) being the marginal distribution density forη, that is,wH(η)=
∫ ∞

0 w(θ)db, andwB|H(b|η)
the conditional density forb given η, that is,wB|H(b|η) = w(θ)/wH(η). And now, let us define
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vH(η) = wH(η)E{b|η}/E{b} with E{b} =
∫

H E{b|η}wH(η)dη, leading to the following expres-
sion:

L = E{b}
∫

H
Qη(Tη(η),η)vH(η)dη. (18)

So now we have an expression which seems to isolateb (more precisely,E{b}) as a constant factor.
Obviously, this is possible since we have constructedvH(η) in terms of the conditional expected
valueb, incorporating the variability ofb, while isolating its average magnitude. This is interesting
and very useful, because if we have knowledge about the dependency betweenb andη, we can
incorporate that information intov, without affectingQη at all. For instance, ifπ0 is fixed and
we assume (or know)wH(η) to be a Beta distributionβ2,2 and we also assume (or know) that the
values forb are higher for extreme values ofc (closer to 1 or 0), then the resulting distributionv
could be assumed to account for these two things. This would make increasethe probability for
extreme values ofc, making the resulting distribution flatter and closer, for example, to a uniform
distribution. Consequently, in this paper we will frequently assumevH(η) to be uniform (either
fixing π0 or combiningπ0 andc into a single parameterz). This really makes it explicit that it is
wH(η)E{b|η}

E{b} what we are assuming to be uniform.
Now, we will derive the two approaches for univariate operating conditions (costs and skews)

that we use in this paper. In one of them, we assume that the class proportion(i.e., π0) is fixed,
leading to the marginal distributionwc(c) = vH(〈c,π0〉).

Since we now only have a relevant free parameterc in Qη, we can now express the normalised
loss as a function ofc. However, for a mere convenience that will become clear below, we include
the factorE{b} in the loss produced at a decision thresholdt and a cost proportionc, adapting
Equation (16):

Qc(t;c), E{b}Qη(t;〈c,π0〉) = E{b}{cπ0(1−F0(t))+(1−c)π1F1(t)}. (19)

With this inclusion ofE{b} we just have the following simple expression for the calculation of
expected loss, derived from Equation (18):

Lc =
∫ 1

0
Qc(T(c);c)wc(c)dc. (20)

Recall thatwc incorporates the variability ofb jointly with c.
A different approach to reducing the operating condition to a single parameter is the notion of

skew, which is a normalisation of the product between cost proportion and classproportion:

z,
c0π0

c0π0+c1π1
=

cπ0

cπ0+(1−c)(1−π0)
.

This means thatπ0 is no longer fixed, but neither is it independent ofc. Whatz does is to combine
both parameters. This is a different way of reducing the operating condition to one single parameter.
We thus define loss as depending solely onz. From Equation (19) we obtain

Qc(t;c)
E{b}[cπ0+(1−c)(1−π0)]

= z(1−F0(t))+(1−z)F1(t), Qz(t;z). (21)

This gives an expression forstandardised] loss at a thresholdt and a skewz.
We then have the following simple but useful result.
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Lemma 45 If π0 = π1 then z= c and Qz(t;z) = 2
E{b}Qc(t;c).

Proof If classes are balanced we havecπ0 +(1− c)(1− π0) = 1/2, and the result follows from
Equation (21).

This justifies taking the expected value of the cost magnitudeE{b} = 2, which means thatQz and
Qc are expressed on the same 0-1 scale, and are also commensurate with error rate which assumes
c= 1/2. The upshot of Lemma 45 is that we can transfer any expression for loss in terms of cost
proportion to an equivalent expression in terms of skew by just settingπ0 = π1 = 1/2 andz= c.
Notice that ifc= 1/2 thenz= π0, so in that case skew denotes the class distribution as operating
condition.

In fact, we can also definewz(z) by incorporating the variability ofb (and alsoπ0 andc). We
could choosewz(z)dz= 1

E{b}[cπ0+(1−c)(1−π0)]
wc(c)dc, but we can use any other distribution. In the

paper we will use the uniform distribution forwz(z). In any case, this leads to the corresponding
expression of standardised expected loss (as Equation 20):

Lz =
∫ 1

0
Qz(T(z);z)wz(z)dz.

So, with this isolation of the average magnitude ofb, and the incorporation of its variability into
the univariate distribution, in the paper we will just work with operating conditions which are either
defined by the cost proportionc (assuming a fixed class distributionπ0) or by the skewz (which
combinesc andπ0).

Appendix B. Proof of Theorem 29

In this appendix, we give the proof for Theorem 29 in the paper. The theorem works with convex
models as given by Definition 25.

In this appendix, we will use:

c(T) =
π1 f1(T)

π0 f0(T)+π1 f1(T)
.

throughout, as introduced by Equation (14). Sometimes we will use subindicesfor c(T) depending

on the model we are using. We will also useslope(T) = π1 f1(T) =
π1
π0

(

1
c(T) −1

)

. A convex model

is the same as saying thatc(T) is non-decreasing or thatslope(T) is non-increasing.
We usec−1(s) for the inverse ofc(T) (wherever it is well defined). We will use the following

transformationT 7→ s= c(T) and the resulting model will be denoted bym(c). We will uses, c or
σ for elements in the codomain of this transformation (cost proportions or scores between 0 and 1)
and we will useT or τ for elements in the domain.

For continuous and strictly convex models for whichc(0) = 0 andc(1) = 1, the proof is signif-
icantly simpler. In general, for any convex model, including discontinuities and straight segments,
things become a little bit more elaborate, as we see below.

B.1 Intervals

Since the model is convex, we know thatc(T) is monotone, more precisely, non-decreasing. We
can split the codomain and domain of this function into intervals. Intervals in the codomain of
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thresholds will be represented with the letterτ and intervals in the domain of cost proportions or
scores between 0 and 1 will be denoted by letterσ. The series of intervals are denoted as follows:

Iσ = (σ0,σ1),(σ1,σ2) . . .(σi ,σi+1) . . .(σn−1,σn)

⇑ c(τ) ⇓ c−1(σ)
Iτ = (τ0,τ1),(τ1,τ2) . . .(τi ,τi+1) . . .(τn−1,τn)

whereσ0 = 0, σn = 1, τ0 =−∞ andτn = ∞. Even though we cannot make a bijective mapping for
every point, we can construct a bijective mapping betweenIσ andIτ. Because of this bijection, we
may occasionally drop the subindex forIσ andIτ.

We need to distinguish three kinds of intervals:

• Intervals wherec(T) is strictly increasing, denoted býI . We call these intervalsbijective,
sincec(T) is invertible. These correspond to non-straight parts of the ROC curve.Each point
inside these segments is optimal for one specific cost proportion.

• Intervals wherec(T) is constant, denoted bȳI . We call these non-injective intervalsconstant.
These correspond to straight parts of the ROC curve. All the points inside these segments
are optimal for just one cost proportion, and we only need to consider any of them (e.g., the
extremes).

• Intervals in the codomain where no valueT for c(T) has an image, denoted byİ . We call
these ‘intervals’singular, and address non-surjectiveness. In the codomain they may usually
correspond to one single point, but also can correspond to an actual interval when the density
functions are 0 for some intervals in the codomain. In the end, these correspond to discontin-
uous points of the ROC curve. The points at(0,0) and(1,1) are generally (but not always)
discontinuous. These points are optimal for many cost proportions.

Table 7 shows how these three kinds of intervals work.

bijective constant singular
Í Ī İ

]σi ,σi+1[ [σi ,σi+1] ]σi ,σi+1[
↑↑↑↑↑ րտ տր
]τi ,τi+1[ ]τi ,τi+1[ [τi ,τi+1]

Table 7: Illustration for the three types of intervals.

Now we are ready to get some results:

Lemma 46 If the model m is convex, we have that minimal expected loss can be expressed as:

Lo
U(c)(m) = Λ́(m)+ Λ̇(m)

where:

Λ́(m) = ∑
]τi ,τi+1[∈Íτ

∫ τi+1

τi

2c(T)π0(1−F0(T))+2(1−c(T))π1F1(T)}c′(T)dT (22)
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where c′(T) is the derivative of c(T) and:

Λ̇(m) = ∑
]σi ,σi+1[∈İσ

∫ σi+1

σi

2cπ0(1−F0(τi))+2(1−c)π1F1(τi)}dc (23)

= ∑
]σi ,σi+1[∈İσ

{

π0(1−F0(τi))(σi+1
2−σi

2)+π1F1(τi)(2σi+1−σi+1
2−2σi +σi

2)
}

. (24)

Note that the constant intervals in̄Iσ are not considered (their loss is 0).

Proof We take the expression for optimal loss from Equation (13):

Lo
U(c) =

∫ 1

0
min

t
{2cπ0(1−F0(t))+2(1−c)π1F1(t)}dc. (25)

In order to calculate the minimum, we make the derivative of the min expression equal to 0:

2cπ0(0− f0(t))+2(1−c)π1 f1(t) = 0

−2c·
π0

π1
slope(T)+2(1−c) = 0

π0

π1
slope(T) =

1−c
c

1
c(T)

−1=
1−c

c
c(T) = c.

We now check the sign of the second derivative, which is:

−2c·
π0

π1
slope′(t) =−2c× (

1
c(T)

−1)′ =−2c
−c′(T)

c(T)2 = 2c
c′(T)

c(T)2 .

For the bijective intervalśIσ, where the model is strictly convex andc(T) is strictly decreasing,
its derivative is> 0. Also,c is always between 0 and 1, so the above expression is positive, and it is
a minimum. And this cannot be a ‘local’ minimum, since the model is convex.

For the constant intervals̄Iσ where the model is convex (but not strictly), this means thatc(T) is
constant, and its derivative is 0. That means that the minimum can be found atany pointT in these
intervals]τi ,τi+1[ for the same[σi = σi+1]. But their contribution to the loss will be 0, as can be
seen sincec′(T) equals 0.

For the singular intervalṡIσ, on the contrary, all the values in each interval]σi ,σi+1[ will give a
minimum for the same[τi = τi+1].

So we decompose the loss with the bijective and singular intervals only:

Lo
U(c)(m) = Λ́(m)+ Λ̇(m).

For the strictly convex (bijective) intervals, we now know that the minimum is atc(T) = c, and
c(T) is invertible. We can use exactly this change of variable over Equation (25)and express this
for the series of intervals]τi ,τi+1[.
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Λ́(m) = ∑
]τi ,τi+1[∈Íσ

∫ τi+1

τi

2c(T)π0(1−F0(T))+2(1−c(T))π1F1(T)}c′(T)dT.

which corresponds to Equation (22). Note that when there is only one bijective interval (the model
is continuous and strictly convex), we have that there is only one integral inthe sum and its limits go
from c−1(0) to c−1(1), which in some cases can go from−∞ to ∞, if the scores are not understood
as probabilities.

For the singular intervals, we can work from Equation (25):

Λ̇(m) = ∑
]σi ,σi+1[∈İσ

∫ σi+1

σi

min{2cπ0(1−F0(t))+2(1−c)π1F1(t)}dc.

As said, all the values in each interval]σi ,σi+1[ will give a minimum for the same[τi = τi+1],
so this reduces to:

Λ̇(m) = ∑
]σi ,σi+1[∈İσ

∫ σi+1

σi

{2cπ0(1−F0(τi))+2(1−c)π1F1(τi)}dc

= 2 ∑
]σi ,σi+1[∈İσ

{

π0(1−F0(τi))
∫ σi+1

σi

cdc+π1F1(τi)
∫ σi+1

σi

(1−c)dc

}

= 2 ∑
]σi ,σi+1[∈İσ

{

π0(1−F0(τi))

[

c2

2

]σi+1

σi

+π1F1(τi)

[

c−
c2

2

]σi+1

σi

}

= ∑
]σi ,σi+1[∈İσ

{

π0(1−F0(τi))(σi+1
2−σi

2)+π1F1(τi)(2σi+1−σi+1
2−2σi +σi

2)
}

.

which corresponds to Equation (24).

B.2 c(T) is Idempotent

Now we work with the transformationT 7→ s= c(T). The resulting model using this transformation
will be denoted bym(c). We will useH0(s) andH1(s) for the cumulative distributions, which are
defined as follows. Sinces= c(T) by definition we have thatF0(T) = H0(c(T)) = H0(s) and
similarly F1(T) = H1(c(T)) = H1(s).

For the intervals]τi ,τi+1[ in Íτ, we havec(T) is strictly convex we just usec−1(s) to deriveH0

andH1. This may imply discontinuities atτi or τi+1 for those values ofs for which constant intervals
have been mapped, namelyσi andσi+1. So, we need to define the density functions as follows. For
the bijective intervals we just useh0(s)ds= f0(T)dT andh1(s)ds= f1(T)dT as a shorthand for
a change of variable, and we can clearh0 andh1 usingc−1(s). We do that using open intervals
]τi ,τi+1[ in T. These correspond to]c(τi),c(τi+1)[ = ]σi ,σi+1[.
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The constant intervals are[τi ,τi+1] in Īτ. There is probability mass for every constant interval
[τi ,τi+1] mapping to a pointsi = c(τi) = c(τi+1) = σi = σi+1, as follows:

[H0(T)]
σi+1
σi

=
∫ τi+1

τi

f0(T)dt = [F0(T)]
τi+1
τi = F0(τi+1)−F0(τi). (26)

[H1(T)]
σi+1
σi

=
∫ τi+1

τi

f1(T)dt = [F1(T)]
τi+1
τi = F1(τi+1)−F1(τi). (27)

Finally, we just defineh0(s) = h1(s) = 0 for thoses∈ [σi ,σi+1] ∈ İσ, since for the singular
intervals there is only one pointτi and the mass to share is 0.

This makesm(c) well-defined for convex models (not necessarily continuous and strictly con-
vex).

Lemma 47 For model m(c) we have that, for the non-singular intervals, cm(c)(s) =
π1h1(s)

π0h0(s)+π1h1(s)
is

idempotent, that is:
cm(c)(s) = s.

Proof For the bijective (strictly convex) intervals]τi ,τi+1[ mapped into]c(τi),c(τi+1)[, that is,
]σi ,σi+1[:

cm(c)(s) =
π1h1(s)

π0h0(s)+π1h1(s)
=

π1h1(s)ds
π0h0(s)ds+π1h1(s)ds

=
π1 f1(T)dT

π0 f0(T)dT+π1 f1(T)dT
=

π1 f1(T)
π0 f0(T)+π1 f1(T)

= c(T) = s.

For the pointssi = c(τi) = c(τi+1) corresponding to constant intervals, we have that using Equation
(26) and (27):

cm(c)(si) =
π1h1(si)

π0h0(si)+π1h1(si)
=

π1[F1(T)]
τi+1
τi

π0[F0(T)]
ai+1
τi+1 +π1[F1(T)]

τi+1
τi

.

Sincec(T) is constant in the interval]τi ,τi+1[, we have:

cm(c)(si) =
π1 f1(T)

π0 f0(T)+π1 f1(T)
= c(T) = si .

B.3 Main Result

Finally, we are ready to prove the theorem treating the three kinds of intervals.

Theorem 48 (Theorem 29 in the paper) For every convex model m, we have that:

Lo
U(c)(m) = RL(m).
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Proof
Let us start from Lemma 46:

Lo
U(c)(m) = Λ́(m)+ Λ̇(m).

working with Equation (22) first for the bijective intervals:

Λ́(m) = ∑
]τi ,τi+1[∈Íτ

∫ τi+1

τi

2c(T)π0(1−F0(T))+2(1−c(T))π1F1(T)}c′(T)dT.

Since this only includes the bijective intervals, we can use the correspondence between theH
and theF , and making the changes= c(T).

Λ́(m) = ∑
]τi ,τi+1[∈Íτ

∫ τi+1

τi

2c(T)π0(1−H0(c(T)))+2(1−c(T))π1H1(c(T))}c′(T)dT

= ∑
]c(τi),c(τi+1)[∈Íσ

∫ c(τi+1)

c(τi)
2sπ0(1−H0(s))+2(1−s)π1H1(s)}ds

= ∑
]σi ,σi+1[∈Íσ

∫ σi+1

σi

2sπ0(1−H0(s))+2(1−s)π1H1(s)}ds.

and now working with Equation (23) for the singular intervals and also usingthe correspondence
between theH and theF :

Λ̇(m) = ∑
]σi ,σi+1[∈İσ

∫ σi+1

σi

2cπ0(1−F0(τi))+2(1−c)π1F1(τi)}dc

= ∑
]σi ,σi+1[∈İσ

∫ σi+1

σi

2cπ0(1−H0(c(τi)))+2(1−c)π1H1(c(τi))}dc

= ∑
]σi ,σi+1[∈İσ

∫ σi+1

σi

2sπ0(1−H0(σi))+2(1−s)π1H1(σi)}ds.

The last step also uses the renaming of the variable. But sinceh0(s) = h1(s) = 0 for the singular
intervals, we have thatH0(s) andH1(s) are constant in these intervals, so this can be rewritten as:

Λ̇(m) = ∑
]σi ,σi+1[∈İσ

∫ σi+1

σi

2sπ0(1−H0(s))+2(1−s)π1H1(s)}ds.

PuttingΛ́(m) andΛ̇(m) together, because the constant intervals (Īσ) have length 0 (and loss 0), we
have:

Lo
U(c)(m) = ∑

]σi ,σi+1[∈Iσ

∫ σi+1

σi

2sπ0(1−H0(s))+2(1−s)π1H1(s)}ds.

We can join the integrals into a single one, even though the whole integral has tobe calculated by
intervals if it is discontinuous:

Lo
U(c)(m) =

∫ σn

σ0

{2sπ0(1−H0(s))+2(1−s)π1H1(s)}ds

=
∫ 1

0
{2sπ0(1−H0(s))+2(1−s)π1H1(s)}ds.
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By Theorem 14 (Equation 10) in the paper (and also because this theoremholds pointwise) we
have that the last expression equals the Brier score, so this leads to:

Lo
U(c)(m) = BS(m(c)).

And now we have that using Definition 8 for theBS:

BS(m(c)) =
∫ 1

0
{π0s2h0(s)+π1(1−s)2h1(s)}ds.

This is 0 whenh0(s) = h1(s) = 0, so we can ignore the singular intervals for the rest of the proof.
The calibration loss for modelm(c) can be expanded as follows, and using Lemma 47 (which is
applicable except for non-singular intervals) we have:

CL(m(c)) =
∫ 1

0

(

s−
π1h1(s)

π0h0(s)+π1h1(s)

)2

(π0h0(s)+π1h1(s))ds

=
∫ 1

0
(s−s)2(π0h0(s)+π1h1(s))ds= 0.

So, we have that:
Lo

U(c)(m) = RL(m(c)). (28)

And now we need to work withRL:

RL(m(c)) =
∫ 1

0

π1h1(s)π0h0(s)
π0h0(s)+π1h1(s)

ds=
∫ 1

0
π0h0(s)

π1h1(s)
π0h0(s)+π1h1(s)

ds

=
∫ 1

0
π0h0(s)cm(c)(s)ds=

∫ 1

0
π0h0(s)sds.

The last step applies Lemma 47 again.
We now need to treat the bijective and the constant intervals separately, otherwise the integral

cannot be calculated whenh0 andh1 are discontinuous.

RL(m(c)) = ∑
]σi ,σi+1[∈Íσ

∫ σi+1

σi

π0h0(s)sds+ ∑
]σi ,σi+1[∈Īσ

π0h0(σi)σi .

We apply the variable changes= c(T) for the expression on the left:

∑
]c(τi),c(τi+1)[∈Íσ

∫ c(τi+1)

c(τi)
π0h0(s)sds = ∑

]τi ,τi+1[∈Íτ

∫ τi+1

τi

π0h0(c(T))c(T)
dc(T)

dT
dT

= ∑
]τi ,τi+1[∈Íτ

∫ τi+1

τi

π0h0(c(T))
π1 f1(T)

π1 f1(T)+π0 f0(T)
dc(T)

dT
dT

= ∑
]τi ,τi+1[∈Íτ

∫ τi+1

τi

π0h0(c(T))
dc(T)

dT
π1 f1(T)

π1 f1(T)+π0 f0(T)
dT

= ∑
]τi ,τi+1[∈Íτ

∫ τi+1

τi

π0 f0(T)
π1 f1(T)

π1 f1(T)+π0 f0(T)
dT.
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We now work with the expression on the right using Equation (26):

∑
]c(τi),c(τi+1)[∈Īσ

π0h0(c(τi))c(τi) = ∑
]τi ,τi+1[∈Īτ

π0[F0(T)]
τi+1
τi c(τi) = ∑

]τi ,τi+1[∈Īτ

π0

∫ τi+1

τi

f0(T)dTc(τi)

= ∑
]τi ,τi+1[∈Īτ

∫ τi+1

τi

π0 f0(T)c(T)dT

= ∑
]τi ,τi+1[∈Īτ

∫ τi+1

τi

π0 f0(T)
π1 f1(T)

π1 f1(T)+π0 f0(T)
dT.

The change fromc(τi) to c(T) inside the integral can be performed sincec(T) is constant, because
here we are working with the constant intervals.

Putting everything together again:

RL(m(c)) = ∑
]τi ,τi+1[∈Íτ

∫ τi+1

τi

π0 f0(T)
π1 f1(T)

π1 f1(T)+π0 f0(T)
dT+ ∑

]τi ,τi+1[∈Īτ

∫ τi+1

τi

π0 f0(T)
π1 f1(T)

π1 f1(T)+π0 f0(T)
dT

=
∫ τn

τ0

π0 f0(T)π1 f1(T)
π1 f1(T)+π0 f0(T)

dT =
∫ ∞

−∞

π0 f0(T)π1 f1(T)
π1 f1(T)+π0 f0(T)

dT = RL(m).

This and Equation (28) complete the proof.
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P. A. Flach, J. Herńandez-Orallo, and C. Ferri. A coherent interpretation of AUC as a measure of
aggregated classification performance. InProceedings of the 28th International Conference on
Machine Learning, ICML2011, 2011.

G. Forman. Quantifying counts and costs via classification.Data Mining and Knowledge Discovery,
17(2):164–206, 2008.

J. H. Friedman. On bias, variance, 0/1loss, and the curse-of-dimensionality. Data Mining and
Knowledge Discovery, 1(1):55–77, 1997.

2866



A UNIFIED V IEW OF PERFORMANCEMETRICS

M. Gebel. Multivariate Calibration of Classifier Scores into the Probability Space. PhD thesis,
University of Dortmund, 2009.

T. Gneiting and A.E. Raftery. Strictly proper scoring rules, prediction, and estimation.Journal of
the American Statistical Association, 102(477):359–378, 2007. ISSN 0162-1459.

I. J. Good. Rational decisions.Journal of the Royal Statistical Society, Series B, 14:107–114, 1952.

D. J. Hand.Construction and Assessment of Classification Rules. John Wiley & Sons Inc, 1997.

D. J. Hand. Measuring classifier performance: a coherent alternative to the area under the ROC
curve.Machine Learning, 77(1):103–123, 2009.

D. J. Hand. Evaluating diagnostic tests: the area under the ROC curve andthe balance of errors.
Statistics in Medicine, 29(14):1502–1510, 2010.

D. J. Hand and C. Anagnostopoulos. When is the area under the ROC curve an appropriate measure
of classifier performance? Technical report, Department of Mathematics, Imperial College,
London, 2011.

D. J. Hand and C. Anagnostopoulos. A better Beta for the H measure of classification performance.
arXiv:1202.2564v1 [stat] 12 Feb 2012, page 9, 2012.
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