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Abstract

Many performance metrics have been introduced in the titezdor the evaluation of classification
performance, each of them with different origins and ardagplication. These metrics include
accuracy, unweighted accuracy, the area under the ROC outhe ROC convex hull, the mean
absolute error and the Brier score or mean squared errdr iggitlecomposition into refinement and
calibration). One way of understanding the relations antbege metrics is by means of variable
operating conditions (in the form of misclassification eoahd/or class distributions). Thus, a
metric may correspond to some expected loss over diffeqggtating conditions. One dimension
for the analysis has been the distribution for this rangeparating conditions, leading to some
important connections in the area of proper scoring rules.dédmonstrate in this paper that there
is an equally important dimension which has so far receivadimiess attention in the analysis of
performance metrics. This dimension is given by the decigite, which is typically implemented
as athreshold choice methoghen using scoring models. In this paper, we explore manyaoti
new threshold choice methods: fixed, score-uniform, sdoken, rate-driven and optimal, among
others. By calculating the expected loss obtained withettieeshold choice methods for a uniform
range of operating conditions we give clear interpretatiohthe 0-1 loss, the absolute error, the
Brier score, theAUC and the refinement loss respectively. Our analysis provadesmprehensive
view of performance metrics as well as a systematic apprtabtdss minimisation which can be
summarised as follows: given a model, apply the threshotdcehmethods that correspond with
the available information about the operating conditiomj @ompare their expected losses. In
order to assist in this procedure we also derive severalemiiums between the aforementioned
performance metrics, and we highlight the role of calilmmatin choosing the threshold choice
method.

Keywords: classification performance metrics, cost-sensitive etaln, operating condition,
Brier score, area under the ROC cunJC), calibration loss, refinement loss
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1. Introduction

The choice of a proper performance metric for evaluating classificatiamdH1997) is an old
but still lively debate which has incorporated many different perforraanetrics along the way.
Besides accuracyAcg or, equivalently, the error rate or 0-1 loss), many other performarateacs
have been studied. The most prominent and well-known metrics are the Rriee BS also
known as Mean Squared Error) (Brier, 1950) and its decomposition iinsteff refinement and
calibration (Murphy, 1973), the absolute errddAE), the log(arithmic) loss (or cross-entropy)
(Good, 1952) and the area under the ROC cufkgQ, also known as the Wilcoxon-Mann-Whitney
statistic, linearly related to the Gini coefficient and to the Kendall's tau distemag@erfect model)
(Swets et al., 2000; Fawcett, 2006). There are also many graphicakespations and tools for
model evaluation, such as ROC curves (Swets et al., 2000; Fawcett, FiDG)isometrics (Flach,
2003), cost curves (Drummond and Holte, 2000, 2006), DET cuiMastin et al., 1997), lift charts
(Piatetsky-Shapiro and Masand, 1999), and calibration maps (ColieGa@dszmidt, 2004). A
survey of graphical methods for classification predictive performawveduation can be found in
the work of Prati et al. (2011).

Many classification models can be regarded as functions which outpatefsc each example
and class. This score represents a probability estimate of each examplimtorgeof the classes
(or may just represent an unscaled magnitude which is monotonically related ywrobability
estimate). A score can then be converted into a class label using a deaisio®me of the reasons
for evaluation being so multi-faceted is that models may be learnt in one cgntisdassification
costs, class distribution, etc.) bdéployedin a different context. A context is usually described
by a set of parameters, known agerating condition When we have a clear operating condition
at deployment time, there are effective tools such as ROC analysis (Swadts 2000; Fawcett,
2006) to establish which model is best and what its expected loss will beevéowthe question is
more difficult in the general case when we do not have information abeuighrating condition
where the model will be applied. In this case, we want our models to perfaetnin a wide
range of operating conditions. In this context, the notion of ‘properisgoule’, see, for example,
the work of Murphy and Winkler (1970), sheds some light on some pedoce metrics. Some
proper scoring rules, such as the Brier Score (MSE loss), the lodlossting loss and error rate
(0-1 loss) have been shown by Buja et al. (2005) to be special chsasintegral over a Beta
density of costs, see, for example, the works of Gneiting and RafteB7}2Reid and Williamson
(2010, 2011) and Bmmer (2010). Each performance metric is derived as a special caseRxétid
distribution. However, this analysis focusses on scoring rules whichemger’, that is, metrics that
are minimised for well-calibrated probability assessments or, in other woetlshg best (lowest)
score by forecasting the true beliefs. Much less is known (in terms ofceegbdoss for varying
distributions) about other performance metrics which are non-propeingcrules, such asUC.
Moreover, even its role as a classification performance metric has bé@mtguguestion (Hand,
2009, 2010; Hand and Anagnostopoulos, 2011).

All these approaches make some (generally implicit and poorly underséssdjnptions on
how the model will work for each operating condition. In particular, it iserafly assumed that the
threshold which is used to discriminate between the classes will be set ecctydhe operating
condition. In addition, it is assumed that the threshold will be set in such ghedyhe estimated
probability where the threshold is set is made equal to the operating conditios.is natural if
we focus on proper scoring rules. Once all this is settled and fixedretiffgerformance metrics
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Figure 1: Histograms of the score distribution for mod€left) and modeB (right).

represent different expected losses by using the distribution ovemptrating condition as a pa-
rameter. However, thighreshold choicés only one of the many possibilities, as some other works
have explored or mentioned in a more or less explicit way (Wieand et al.,, T988&mond and
Holte, 2006; Hand, 2009, 2010).

In our work we make these assumptions explicit through the concepttlaeahold choice
method,which systematically links performance metrics and expected loss. A threshoide
method sets a single threshold on the scores of a model in order to arciassifications, possibly
taking circumstances in the deployment context into account, such as ttaiogpeondition (the
class or cost distribution) or the intended proportion of positive predistftive predicted positive
rate). Building on this notion of threshold choice method, we are able to sytstafhyeexplore how
known performance metrics are linked to expected loss, resulting in a cdmgsults that are not
only theoretically well-founded but also practically relevant.

The basic insight is the realisation that there are many ways of convertinglel fomderstood
throughout this paper as a function assigning scores to instances) lass#ier that maps instances
to classes (we assume binary classification throughout). Put differémehe are many ways of
setting the threshold given a model and an operating condition. We illustratgithian example
concerning a very common scenario in machine learning research. €ohsa@modelsA andB,

a naive Bayes model and a decision tree respectively (induced frommanty data set), which are
evaluated against a test data set, producing a score distribution forgtiggoand negative classes
as shown in Figure 1. We see that scores are ifitttié interval and in this example are interpreted
as probability estimates for the negative class. ROC curves of both modedh@xa in Figure
2. We will assume that at thisvaluation timewe do not have information about the operating
condition, but we expect that this information will be availableleployment time

If we ask the question of which model is best we may rush to calculaé¢JiandBS(and per-
haps other metrics), as given by Table 1. However, we cannot giaesamer because the question is
underspecifiedFirst, we need to know the range of operating conditions the model will wirk
Second, we need to know how we will make the classifications, or in othetsyae need deci-
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Figure 2: ROC Curves for moddal (left) and modeB (right).

sion rule which can be implemented aghaeshold choice methaghen the model outputs scores.
For the first dimension (already considered by the work on propeingcarles), if we have no pre-
cise knowledge about the operating condition, we can assume any of isétyutions, depending
on whether we have some information about how the cost may be distributedioformation at
all. For instance, we can use a symmetric Beta distribution (Hand, 20093yameetric Beta dis-
tribution (Hand and Anagnostopoulos, 2011) or, a partial or truncastdbdition only considering
a range of costs, or a simple uniform distribution (Drummond and Holte, 2886ye also do here,
which considers all operating conditions equally likely. For the second)(dgnension, wealso
have many options.

performance metric modé& modelB
AUC 0.791 0.671
Brier score 0.328 0.231

Table 1: Results from two models on a data set.

For instance, we can just set a fixed threshold at 0.5. This is what Baiyes and decision
trees do by default. This decision rule works as follows: if the score stgréhan 0.5 then predict
negative (1), otherwise predict positive (0). With this precise decigsit# e can now ask the
guestion about the expected misclassification loss for a range of diffierisnlassification costs
(and/or class distributions), that is, for a distribution of operating conditi®ssuming a uniform
distribution for operating conditions (cost proportions), we can effelsticalculate the answer on
the data set: 81.

But we can use other decision rules. We can use decision rules whiphtadhe operating
condition. One of these decision rules is the score-driven thresholdechwethod, which sets
the threshold equal to the operating condition or, more precisely, to a gsirgonc. Another
decision rule is the rate-driven threshold choice method, which sets tlshtidan such a way that
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the proportion of predicted positives (or predicted positive rate), simpiyk as ‘rate’ and denoted
by r, equals the operating condition. Using these three different threshoidecmethods for the

modelsA andB, and assuming cost proportions are uniformly distributed, we get theexpesses

shown in Table 2.

threshold choice method  expected loss mddelexpected loss mod@&

Fixed (T = 0.5) 0.510 0.375
Score-drivenT =) 0.328 0.231
Rate-driven [ s.t.r =) 0.188 0.248

Table 2: Extension of Table 1 where two models are applied with three difféteeshold choice
methods each, leading to six different classifiers and corresponduagted losses. In all
cases, the expected loss is calculated over a range of cost propdajarating condi-
tions), which is assumed to be uniformly distributed. We denote the threshadld the
cost proportion by and the predicted positive rate by

In other words, only when we specify or assume a threshold choice metrowe convert
a model into a classifier for which it makes sense to consider its expectefdoss range or
distribution of costs). In fact, as we can see in Table 2, very differgm&ed losses are obtained
for the same model with different threshold choice methods. And this is tleeevas assuming the
same uniform cost distribution for all of them.

Once we have made this (new) dimension explicit, we are ready to ask neticmnse How
many threshold choice methods are there? Table 3 shows six of the threbbad methods we
will analyse in this work, along with their notation. Only the score-fixed andsttere-driven
methods have been analysed in previous works in the area of propargsaades. The use of
rates, instead of scores, is assumesdreeningapplications where an inspection, pre-diagnosis or
coverage rate is intended (Murphy et al., 1987; Wieand et al., 1988)handea which underlies
the distinction between rate-uniform and rate-driven is suggested bg 2410). In addition, a
seventh threshold choice method, known as optimal threshold choice md#haated byT°, has
been (implicitly) used in a few works (Drummond and Holte, 2000, 2006; H20009).

Threshold choice method Fixed Chosen uniformly Driven by o.c.
Using scores score-fixed T5")  score-uniformTSY)  score-drivenT39)
Using rates rate-fixed T'")  rate-uniform ™)  rate-driven T™)

Table 3: Possible threshold choice methods. The first family uses sesrbef were probabilities)
and the second family uses rates (using scores as rank indicators)otRdaimilies we
can fix a threshold or assume them ranging uniformly, which makes the tidedioice
method independent from the operating condition. Only the last column tagesptr-
ating condition (o0.c.) into account, and hence are the most interesting tltre$toice
methods.
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We will see that each threshold choice method is linked to a specific perfoermaetric. This
means that if we decide (or are forced) to use a threshold choice methothdrenis a recom-
mended performance metric for it. The results in this paper show that agdsrthe appropriate
performance metric for the score-fixed methMhE fits the score-uniform metho@Sis the ap-
propriate performance metric for the score-driven method,A@ fits both the rate-uniform and
the rate-driven methods. The latter two results assume a uniform costutistiblt is important to
make this explicit since the uniform cost distribution may be unrealistic in marnigpkar situations
and it is only one of many choices for a reference standard in the deasea As we will mention
at the end of the paper, this suggests that new metrics can be derivadrmyirg this distribution,
as Hand (2009) has already done for the optimal threshold choice mettind Beta distribution.

The good news is that inter-comparisons are still possible: given a thdesioice method we
can calculate expected loss from the relevant performance metric. Jiiesria Table 2 allow us to
conclude that modeh achieves the lowest expected loss for uniformly sampled cost propqtifions
we are wise enough to choose the appropriate threshold choice methoid (iagh the rate-driven
method) to turn modeA into a successful classifier. Notice that this cannot be said by just loaking
Table 1 because the metrics in this table are not comparable to each otlaet, thdre is no single
performance metric that ranks the models in the correct order, be@siateady said, expected
loss cannot be calculated for models, only for classifiers.

1.1 Contributions and Structure of the Paper

The contributions of this paper to the subject of model evaluation for cleat$ifn can be sum-
marised as follows.

1. The expected loss of a model can only be determined if we select a distilbfioperating
conditions and a threshold choice method. We need to set a point in this twosiimain
space. Along the second (usually neglected) dimension, several restdid choice meth-
ods are introduced in this paper.

2. We answer the question: “if one is choosing thresholds in a particulgrwiach perfor-
mance metric is appropriate?” by giving an explicit expression for theategddoss for each
threshold choice method. We derive linear relationships between expgestednd many
common performance metrics.

3. Our results reinvigorate AUC as a well-founded measure of expelassifecation loss for
both the rate-uniform and rate-driven methods. While Hand (2009,)2@i€kd objections
against AUC for the optimal threshold choice method only, noting that AUCbeaconsis-
tent with other threshold choice methods, we encountered a widespreaddsrisianding
in the machine learning community that the AUC is fundamentally flawed as a penfice
metric—a clear misinterpretation of Hand'’s papers that we hope that this palps to fur-
ther rectify.

4. One fundamental and novel result shows that the refinement loss adtivex hull of a ROC
curve is equal to expectaxptimalloss as measured by the area under the optimal cost curve.
This sets an optimistic (but also unrealistic) bound for the expected loss.

5. Conversely, from the usual calculation of several well-knownguardnce metrics we can
derive expected loss. Thus, classifiers and performance metricenbezasily comparable.
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With this we do not choose the best model but rather the best classifierdal mvih a
particular threshold choice method).

6. By cleverly manipulating scores we can connect several of thef&mp@nce metrics, either
by the notion of evenly-spaced scores or perfectly calibrated scoles.provides an addi-
tional way of analysing the relation between performance metrics and uedecthreshold
choice methods.

7. We use all these connections to better understand which threshol@ cheibod should be
used, and in which cases some are better than others. The analysis Hticalilplays a
central role in this understanding, and also shows that non-propéngcales do have their
role and can lead to lower expected loss than proper scoring rules, atdclas expected,
more appropriate when the model is well-calibrated.

This set of contributions provides an integrated perspective on paafare metrics for classifi-
cation around the systematic exploration of the notion of threshold choice dhitthbwe develop
in this paper.

The remainder of the paper is structured as follows. Section 2 introdoces sotation, the
basic definitions for operating condition, threshold, expected loss, anitydarly the notion of
threshold choice method, which we will use throughout the paper. Sectiore&tigates expected
loss for fixed threshold choice methods (score-fixed and rate-findugh are the base for the rest.
We show that, not surprisingly, the expected loss for these thresholdecheethod are the 0-1
loss (weighted or unweighted accuracy depending on whether we gsproportions or skews).
Section 4 presents the results that the score-uniform threshold choicednhe$MAE as associate
performance metric and the score-driven threshold choice method letasBoer score. We also
show that one dominates over the other. Section 5 analyses the non-fikestisbased on rates.
Somewhat surprisingly, both the rate-uniform threshold choice methothamdte-driven threshold
choice method lead to linear functionsAfJC, with the latter always been better than the former.
All this vindicates the rate-driven threshold choice method but Al4€ as a performance metric
for classification. Section 6 uses the optimal threshold choice method, aterthe expected loss
in this case with the area under the optimal cost curve, and derives iesponding metric, which
is refinement loss, one of the components of the Brier score decompos8amtion 7 analyses
the connections between the previous threshold choice methods and metarssitering several
properties of the scores: evenly-spaced scores and perfectlyatatibscores. This also helps to
understand which threshold choice method should be used dependingwogood scores are.
Finally, Section 8 closes the paper with a thorough discussion of resldt®devork, and an overall
conclusion with future work and open questions. Two appendices ineldeeivation of univariate
operating conditions for costs and skews and some technical results faptilnal threshold choice
method.

2. Background

In this section we introduce some basic notation and definitions we will needggihoat the paper.
Further definitions will be introduced when needed. The most importamtitiiefis we will need
are introduced below: the notion of threshold choice method and the sigres expected loss.
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2.1 Notation and Basic Definitions

A classifier is a function that maps instancgsrom an instance space to classesy from an
output spac®’. For this paper we will assume binary classifiers, thaY'is; {0,1}. A model is a
functionm: X — R that maps examples to real numbers (scores) on an unspecified scaise e
convention that higher scores express a stronger belief that the iessaofaclass 1. Aorobabilistic
model is a functionm: X — [0,1] that maps examples to estimated|X) of the probability of
examplex to be of class 1. Throughout the paper we will use the tecore(usually denoted by)
both for unscaled values (in an unbounded interval) and probability estrfiaténe interval [0,1]).
Nonetheless, we will make the interpretation explicit whenever we use theneiway or the other.
We will do similarly for thresholds. In order to make predictions in Yhdomain, a model can be
converted to a classifier by fixing a decision threshotth the scores. Given a predicted score
s=m(x), the instance is classified in class 1 g > t, and in class 0 otherwise.

For a given, unspecified model and population from which data arenjraerdenote the score
density for clas by f, and the cumulative distribution function By. Thus,Fo(t) = [*,, fo(s)ds=
P(s<]|0) is the proportion of class 0 points correctly classified if the decision thié#hto which is
the sensitivity or true positive rate@tSimilarly, F1(t) = /' f1(s)ds= P(s<t|1) is the proportion
of class 1 points incorrectly classified as O or the false positive rate ahibich; 1 — Fy(t) is the
true negative rate or specificity. Note that we use O for the positive alek$ for the negative class,
but scores increase with(1]x). That is,Fy(t) andF;(t) are monotonically non-decreasing with
t. This has some notational advantages and is the same convention as,Useadkgmple, Hand
(2009).

Given a data sdD C (X,Y) of sizen= |D|, we denote byDy the subset of examples in class
k € {0,1}, and setny = |Dy| and 1y = ng/n. Clearly o+ 1™ = 1. We will use the terntlass
proportionfor 1y (other terms such as ‘class ratio’ or ‘class prior’ have been used in thatlite).
Given a model and a threshdldve denote byR(t) the predicted positive rate, that is, the proportion
of examples that will be predicted positive (class 0) if the threshold is det Bhis can also be
defined afR(t) = MoFo(t) + T F1(t). The average score of actual cl&ss 5 = folsfk(s)ds Given
any strict order for a data set nfexamples we will use the indaéon that order to refer to thieth
example. Thuss; denotes the score of theh example ang; its true class.

We define partial class accuracies A (t) = Fp(t) and Acg(t) = 1 — Fy(t). From here,
(weighted or micro-average) accuracy is definedegt) = ThACo(t) + TwAca (t) and (unweight-
ed or macro-average) accuracy#dt) = (Ace(t) + Accy(t))/2 (also known as ‘average recall’,
Flach, 2012), which computes accuracy while assuming balanced classes

We denote bys(x) the continuous uniform distribution of variabteover an intervaBc R. If
this intervalSis [0, 1] thenScan be omitted. The family of continuous distributions Beta is denoted
by B«g- The Beta distributions are always defined in the intef0al]. Note that the uniform
distribution is a special case of the Beta family, thafis, = U.

2.2 Operating Conditions and Expected Loss

When a model is deployed for classification, the conditions might be diffemehose during train-

ing. In fact, a model can be used in several deployment contexts, withratiff results. A context
can entail different class distributions, different classification-relatestis (either for the attributes,
for the class or any other kind of cost), or some other details about thetethat the application
of a model might entail and the severity of its errors. In practice, a deploloomtext oroperating
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conditionis usually defined by a misclassification cost function and a class distribufitwarly,
there is a difference between operating when the cost of misclassifyirig @ ia equal to the cost
of misclassifying 1 into 0 and doing so when the former is ten times the latter. Simdaeyating
when classes are balanced is different from when there is an oVenimigemnajority of instances of
one class.

One general approach to cost-sensitive learning assumes that thaoesstot depend on the
example but only on its class. In this way, misclassification costs are usuallijfsthpy means of
cost matrices, where we can express that some misclassification costgheriman others (Elkan,
2001). Typically, the costs of correct classifications are assumed toTiegDmeans that for binary
models we can describe the cost matrix by two valyes 0 with at least one of both being strictly
greater than 0, representing the misclassification cost of an examples#.chdditionally, we can
normalise the costs by settitig= ¢y + ¢1, which will be referred to as theost magnitud¢which is
clearly strictly greater than 0), ard= cy/b; we will refer toc as thecost proportionSince this can
also be expressed as= (1+c1/cy) L, it is often called ‘cost ratio’ even though, technically, it is a
proportion ranging between 0 and 1.

Under these assumptions, an operating condition can be defined as 8 tugkec, ). The
space of operating conditions is denoted®y These three parameters are not necessarily inde-
pendent, as we will discuss in more detail below. The loss for an operaiimdjtion is defined as
follows:

Q(t;8) = Q(t; (b,c,To)) = b{cTo(1 - Fo(t)) + (1 —c)uFu(t)}
= CoTlo(1—Fo(t)) + crmuFa(t). @

It is important to distinguish the information we may have available at each stége process. At
evaluation time we may not have access to some information that is available iatepl@yment
time. In many real-world problems, when we have to evaluate or compare maead® not know
the operating condition that will apply during deployment. One generaloagpris to evaluate
the model on a range of possible operating points. In order to do this, veetbaet a weight or
distribution for operating conditions.

A key issue when applying a model under different operating conditiohevisthe threshold
is chosen in each of them. If we work with a classifier, this question vanisires the threshold
is already settled. However, in the general case when we work with a meddiave to decide
how to establish the threshold. The key idea proposed in this paper is tha nbtothreshold
choice method, a function which converts an operating condition into amjpipgte threshold for
the classifier.

Definition 1 Threshold choice method A threshold choice methdis a (possibly non-determinis-
tic) function T: © — R such that given an operating condition it returns a decision threshold.

When we say thal may be non-deterministic, it means that the result may depend on a random
variable and hence may itself be a random variable according to some distribWe introduce

1. The notion of threshold choice method could be further generalisexvéo situations where we have some informa-
tion about the operating condition which cannot be expressed in termspeic#fic value ofd, such a distribution on
O or information abouE{b}, E{bc}, etc. This generalisation could be explored, but it is not necessatiydaases
discussed in this paper.
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the threshold choice method as an abstract concept since there awd ssagonable options for
the functionT, essentially because there may be different degrees of information thieomodel
and the operating conditions at evaluation time. We can set a fixed threshotthigjthe operating
condition; we can set the threshold by looking at the ROC curve (or itsexomvll) and using the
cost proportion to intersect the ROC curve (as ROC analysis doesgm&et a threshold looking at
the estimated scores; or we can set a threshold independently from kher tie scores. The way
in which we set the threshold may dramatically affect performance. Buieastimportantly, the
performance metric used for evaluation must be in accordance with thbaldetoice method.
Given a threshold choice functioh, the loss for a particular operating conditiris given
by Q(T(8);8). However, if we do not know the operating condition precisely, we cdimela
distribution for operating conditions as a multivariate distributi(®). From here, we can now
calculate expected loss as a weighted average over operating condititameg and Hand, 1999):

L2 / Q(T (6); 8)w(6)ds. )
©

Calculating this integral for a particular case depends on the threshalkkanethod and the
kind of model, but particularly on the space of operating condit®sd its associated distribution
w(0). Typically, the representation of operating conditions is simplified from @&tpegameter tuple
(b,c, o) to a single parameter. This reduceso a univariate distribution. However, this reduction
must carry some assumptions. For instance, the cost magbhitsaet always independent ofand
Th, Since costs in very imbalanced cases tend to have higher magnitude. teoc@sve may have
two different operating conditions, one with= 10 andc; = 1 and another witlsg = 5 andc; = 50.
While the cost ratios are symmetric (10:1 with- 10/11 for the first case, 1:10 with= 1/11 for
the second), the second operating condition will clearly have more impaitteoexpected loss,
because its magnitude is five times higher. Moreowés, usually closely linked tat, since the
higher the imbalance (class proportion), the higher the cost proportiwringtance, if positives are
rare, we usually want them to be detected (especially in diagnosis andéaedtion applications),
and false negatives (i.e., a positive which has not been detected butgsifiethas negative) will
have higher cost.

Despite these dependencies, one common option for this simplified operatidiji@o is to
consider that costs are normalised (the cost matrix always sums up totardotisat is, the cost
magnitudeb is constant), or less strongly, thatindc are independent. Another option which does
not require independenceloandc relies on noticing thab is a multiplicative factor in Equation (1).
From here, we just need to assume that the threshold choice method isiddepefb. This is not
a strong assumption, since all the threshold choice methods that haveseeesystematically in the
literature (e.qg., the optimal threshold choice method and the score-drivendhette independent
of b and so are the rest of methods we work with in this paper. With this, as depilogppendix
A, we can incorporaté in a bivariate distributiovy ((c, o)) for cost and class proportions. This
does not mean that we ignore the magnitbder assume it constant, but that we can embed its
variability in vy. From here, we just derive two univariate cost functions and theespanding
expected losses.

The first one assumeag constant, leading to a loss expression which only depends on cost
proportionsc:

Qc(t;c) £ E{b}{cmo(1—Fo(t)) + (1—c)ruFu(t)}. ()
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Using this expression, expected loss will be derived as an integral thengnivariate distribution
Wc, Which incorporates the variability dfjointly with ¢ (see appendix A for details).

A different approach to reducing the operating condition to a single paearisethe notion of
skew which is a normalisation of the product between cost proportion and@tapsrtion:

)
ch+(1—c)(1—1p)
This means thaty is no longer fixed, but neither is it independentcofVhatz does is to combine

both parameters. This is a different way of reducing the operating comdiitione single parameter.
We thus (re-)define loss as depending solely.on

(1>

z

Q:(t;2) £ 2(1—Fo(t)) + (1—2)Fy(t).

Similarly, we also define a weight,(z) which also incorporates the variability bfand o (see
appendix A for details), which will be used in the integral for calculating ttpeeted loss below.

As aresult, in what follows, we will just work with operating conditions which either defined
by the cost proportior (assuming a fixed class distributiag) or by the skewz (which combines
c andT1p). For convenience, as justified in appendix A, we will assiiifie} = 2. Interestingly, we
can relate both approaches (using costs and skews) with the following lepnavaii in appendix
A):

Lemma 2 AssumingZ{b} = 2, if mp = Ty then z= c and Q(t; z) = Qc(t;c).

This will allow us to translate the results for cost proportions to skews.

From now on, since the operating condition can be either a cost propoioa skewz we will
use the subscript or z to differentiate them. In fact, threshold choice methods will be represented
by Tc andT; and they will be defined ak : [0,1] — R andT;: [0,1] — R respectively. Superscripts
will be used to identify particular threshold choice methods. Some thresholdechmethods we
consider in this paper take additional information into account, such asaalti&freshold or a
target predicted positive rate; such information is indicated by squackdisa So, for example, the
score-fixed threshold choice method for cost proportions considetbd next section is indicated
thus: Tch[t] (c). In the rest of this paper, we explore a range of different methodsdosehthe
threshold (some deterministic and some non-deterministic). We will give pogdiitions of all
these threshold choice methods in its due section.

The expected loss for costs and skews is then adapted from Equatesf(Rlows:

Definition 3 Given a threshold choice method for cost proportiogsaid a probability density
function over cost proportionsgexpected losk. is defined as

L2 /1QC(TC(C);C)WC(C)dC. (4)
0

Incorporating the class distribution into the operating condition as skewslafiding a distribution
over skews w we obtain expected loss over a distribution of skews:

L2 [ QU@ w(ddz 5)
0
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It is worth noting that if we ploQ. or Q. againstc andz, respectively, we obtainost curvesas
defined by Drummond and Holte (2000, 2006). Cost curves are alserkas risk curves (e.g.,
Reid and Williamson, 2011, where the plot can also be shown in ternpsi@f, that is, class
proportions).

Equations (4) and (5) illustrate the space we explore in this paper. Tvaongéers determine
the expected lossv;(c) andT¢(c) (respectivelyw,(z) andT,(z)). While much work has been done
on a first dimension, by changing(c) or w,(z), particularly in the area of proper scoring rules,
no work hassystematicallyanalysed what happens when changing the second dimeifgfonor
T2(2).

This means that in this paper we focus on this second dimension, and justsorakesimple
choices for the first dimension. Except for cases where the thresholdecis independent of the
operating condition, we will assume a uniform distribution W@« c) andw,(z). This is of course
just one possible choice, but not an arbitrary choice for a numbernebres:

e The uniform distribution is arguably the simplest distribution for a value bet@eend 1 and
requires no parameters.

e This distribution makes the representation of the loss straightforward,\wmcan plotQ on
the y-axis versug (or ) on thex-axis, where the-axis can be shown linearly from 0 to 1,
without any distribution warping. This makes metrics correspond exactly watardsas under
many cost curves, such as the optimal cost curves (Drummond and Had@), 2he Brier
curves (Herandez-Orallo et al., 2011) or the rate-driven/Kendall curves (dletaz-Orallo
etal., 2012).

e The uniform distribution is a reasonable choice if we want a model to belalléen a wide
range of situations, from high costs for false positives to the other extrémthis sense,
it gives more relevance to models which perform well when the cost maiicds class
proportions are highly imbalanced.

e Most of the connections with the existing metrics are obtained with this distributiomat
with others, which is informative about what the metrics implicitly assume (if wstded as
measures of expected loss).

Many expressions in this paper can be fine-tuned with other distributionb,as the Beta distri-
bution3(2,2), as suggested by Hand (2009), or using imbalance (Hand, 2010)evgowt is the
uniform distribution which leads us to many well-known evaluation metrics.

3. Expected Loss for Fixed-Threshold Classifiers

The easiest way to choose the threshold is to set it to a pre-definediyali@ndependently from

the model and also from the operating condition. This is, in fact, what masgitiexs do (e.g.,
Naive Bayes chooségeqg = 0.5 independently from the model and independently from the operat-
ing condition). We will see the straightforward result that this thresholicelrmethod corresponds

to 0-1 loss. Part of these results will be useful to better understand sitraetbreshold choice
methods.

Definition 4 Thescore-fixed threshold choice methisddefined as follows:
T't)(c) £ TX'[t)(2) 2 t. (6)
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This choice has been criticised in two ways, but is still frequently usedtlyichoosing 0.5
as a threshold is not generally the best choice even for balanced tata & applications where
the test distribution is equal to the training distribution (see, for example, theafdachiche and
Flach, 2003 on how to get much more from a Bayes classifier by simply oigtige threshold).
Secondly, even if we are able to find a better value than 0.5, this does nothat#his value is best
for every skew or cost proportion—this is precisely one of the reasdrysROC analysis is used
(Provost and Fawcett, 2001). Only when we know the deployment tipgi@ondition at evaluation
time is it reasonable to fix the threshold according to this information. So eithesrynon choice
or because we have this latter case, consider then that we are goingtteeussme thresholt
independently of skews or cost proportions. Given this threshold ehoethod, then the question
is: if we must evaluate a model before application for a wide range of skeevs@st proportions,
which performance metric should be us€dfls is what we answer below.

If we plug T (Equation 6) into the general formula of the expected loss for a rangesof ¢
proportions (Equation 4) we have:

1
L0 2 [ Qu(Te e ome(c)de
We obtain the following straightforward result.

Theorem 5 If a classifier sets the decision threshold at a fixed value t irrespectitreeaiperating
condition or the model, then expected loss for any cost distributids given by:

Lgf(t) = 2Ey {c} (1—Acdt)) +4mFy(t) <; —EWC{C}> )
Proof

Le'(t)

1 1
/ Qe(TS'[t](0); )we(c)dc = / Qe(t; )we(c)dc
0 0
1
_ /0 2{cTo(1— Fo(t)) + (1 — c)TaFi(t) hwe(c)dc

— 2m(1—Fo(t)) /0 " one(Q)det 2mFi (1) /0 " (1— gwe(o)de
— 2Mo(1— Fo(t))Fug (€} + 2MF1 (1)(1— Eu,{c})

= 2m(1—Fo(t))Ew.{c}+2mF(t) (Ewc{c} +2 <; —EWC{C}>>
— 2 (e} (ol Rot) + TWF(0) + 4R (5 - B (o)

= 2B {c}(1—Acdt))+4mFy(t) (; —EWC{C}> :
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This gives an expression of expected loss which depends on elearrd false positive rate at
t and the expected value for the distribution of cds8imilarly, if we pIugTzSf (Equation 6) into
the general formula of the expected loss for a range of skews (Equgtive have:

sfriy & ! sf .
L0 2 [ QT @D wl2)dz

Using Lemma 2 we obtain the equivalent result for skews:

L3'(t) = 2w, {Z} (1 - uAcdt)) + 2R (t) (; - sz{z}> :

Corollary 6 If a classifier sets the decision threshold at a fixed value irrespectiveeafghrating
condition or the model, then expected loss under a distribution of cosbgiops w. with expected
valueE,, {c} = 1/2is equal to the error rate at that decision threshold.

f
Liic=1/2(t) = To(1—Fo(t)) +TaFi(t) = 1—Acdt).
Using Lemma 2 we obtain the equivalent result for skews:

L31z_1/2(t) = (1= Fo(t))/2+ Fa(t)/2 = 1 uAcqt).
So the expected loss under a distribution of cost proportions with meanrlit2fecore-fixed
threshold choice methois$ the error rate of the classifier at that threshold. Clearly, a uniform
distribution is a special case, but the result also applies to, for instaggeraetric Beta distribution
centered at 1/2. That means that accuracy can be seen as a meadassifi€ation performance
in a range of cost proportions when we choose a fixed threshold. Tthipiatation is reasonable,
since accuracy is a performance metric which is typically applied to clasgifieese the threshold
is fixed) and not to models outputting scores. This is exactly what we did ile Palwe calculated
the expected loss for the fixed threshold at 0.5 for a uniform distributicostfproportions, and we

obtained - Acc= 0.51 and 0375 for modelsA andB respectively.

The previous results show that 0-1 losses are appropriate to evaluagtsrimod range of oper-
ating conditions if the threshold is fixed for all of them and we do not hayerdarmation about a
possible asymmetry in the cost matrix at deployment time. In other words gagcamd unweighted
accuracy can be the right performance metrics for classifiers evendstaensitive learning sce-
nario. The situation occurs when one assumes a particular operatinigicod evaluation time
while the classifier has to deal with a range of operating conditions in deplaytimes.

In order to prepare for later results we also define a particular waytofgea fixed classification
threshold, namely to achieve a particular predicted positive rate. One saylthat such a method
guantifiesthe proportion of positive predictions made by the classifier. For exampleowld say
that our threshold is fixed to achieve a rate of 30% positive predictionghenest negatives. This

2. As mentioned above, the valuetois usually calculated disregarding the information (if any) about the tipgra
condition, and frequently set to 0.5. In fact, this threshold choice mathcalled ‘fixed’ because of this. However,
we can estimate and fix the valuetdfy taking the expected value for the operating condiligp{c} into account,
if we have some information about théstribution w. For instance, we may choote- Ey {c} or we may choose
the value ot which minimises the expression of expected loss in Theorem 5.
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of course involves ranking the examples by their scores and setting a qudtirtgat the appropriate
position, something which is frequent in ‘screening’ applications (Murehgl., 1987; Wieand
etal., 1989).

Let us denote the predicted positive rate at threshakR(t) = ToFo(t) + TuFi(t). Then,

Definition 7 If R is invertible, then we define thate-fixed threshold choice methéat rate r as:
T [r](0) £ R(r).

Similarly to the cost case, the rate-fixed threshold choice method for skesasming R is
invertible, is defined as:
T[22 RA(r).

where R(t) = Fo(t) /24 Fy(t) /2.

If Ris not invertible, it has plateaus and so déesThis can be handled by derivirigfrom the
centroid of a plateau. Nonetheless, in what follows, we will explicitly statenthe invertibility of
Ris necessary. The corresponding expected loss for cost profigion

1 1
A / Qe(TIF[r](c); c)we(c)de = / Qe(R™H(r); c)we(c)dc.
0 0

As already mentioned, the notion of setting a threshold based on a rate isllyyp&en in
screening applications but it also closely related to the task of class pregadstimation (Neyman,
1938; Tenenbein, 1970; Alonzo et al., 2003), which is also known astdication in machine
learning and data mining (Forman, 2008; Bella et al., 2010). The goal ofasksis to correctly
estimate the proportion for each of the classes. This threshold choice nadiihws the user to set
the quantity of positives, which might be known (from a sample of the tesBrobe estimated using
a guantification method. In fact, some quantification methods can be seen asistetketermine
an absolute fixed threshotdthat ensures a correct proportion for the test set. Fortunately, it is
immediate to get the threshold which produces a rate; it can just be deyisaiting the examples
by their scores and placing the cutpoint where the rate equals the rddkdlivy the number of
examples (e.g., if we haveexamples, the cutpointmakes =i/n).

4. Threshold Choice Methods Using Scores

In the previous section we looked at accuracy and error rate agiparice metrics for classifiers
and gave their interpretation as expected losses. In this and the follovatignsawe consider per-
formance metrics for models that do not require fixing a threshold choiceoh@tradvance. Such
metrics includeAUC which evaluates ranking performance and the Brier score or mearesogiar
ror which evaluates the quality of probability estimates. We will deal with the lattérsrsection.
For the rest of this section, we will therefore assume that scores rangedn 0 and 1 and represent
posterior probabilities for class 1, unless otherwise stated. This meanseltan sample thresh-
olds uniformly or derive them from the operating condition. We first intaedtwo performance
metrics that are applicable to probabilistic scores.

The Brier score is a well-known performance metric for probabilistic modigisan alternative
name for the Mean Squared Error or MSE loss (Brier, 1950), espetialbinary classification.
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Definition 8 The Brier score, BS, is defined as follows:
BS£ myBS + mBS.

where the partial expressions for the positive and negative class are lgjven
1
B £ / s fo(s)ds
0

BS, 2 /01(1_ 9)2f.(s)ds

From here, we can define a prior-independent version of the Brigres@r an unweighted Brier
score) as follows:
BS+BS
—

The Mean Absolute ErroMMAE) is another simple performance metric which has been redis-
covered many times under different names.

uBsS2

Definition 9 The Mean Absolute Error, MAE, is defined as follows:
MAE £ TyMAE, + Ty MAE;.

where the partial expressions for the positive and negative class are lgjven
1
MAEoé/ sfo(s)ds=%.
0
1
MAE; £ / (1—s)f1(s)ds= 1—31.
0

We can define an unweighted MAE as follows:

UMAE 2 MAEo+ MAE, _ S+ (1-51)
- 2 - 2 '

It can be shown thaWlAE is equivalent to the Mean Probability Rate (MPR) (Lebanon and Lafferty,
2002) for discrete classification (Ferri et al., 2009).

4.1 The Score-Uniform Threshold Choice Method Leads to MAE

We now demonstrate how varying a model’s threshold leads to an expededdos different from
accuracy. First, we explore a threshold choice method which considénsérhave no information
at all about the operating condition, neither at evaluation time nor at depiaytinge. We just
employ the interval between the maximum and minimum value of the scores, anahdenmly
select the threshold using a uniform distribution over this interval. It cardpeed that this threshold
choice method is unrealistic, because we almost always have some inforaiatioithe operating
condition, especially at deployment time. A possible interpretation is that thishiblak choice
method is useful to makeworst-caseevaluation. In other words, expected loss using this method
gives a robust assessment for situations where the information abaeheting condition is not
only unavailable, but maybe unrealiable or even malicious. So what we sBriis that there
are evaluation metrics which can be expressed as an expected losshasgesissumptions, adding
support to the idea that the metrics related to this threshold choice method aréolar unaware
of) any cost information.
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Definition 10 Assuming a model’s scores are expressed on a boundedscé|¢hescore-uniform
threshold choice methad defined as follows:

Tcsu(c) £ Tzsu(z) £ Tch[Ul,U] (C)

Given this threshold choice method, then the questioiif is'e must evaluate a model before
application for a wide range of skews and cost proportions, which perdmice metric should be
used?

Theorem 11 Assuming probabilistic scores and the score-uniform threshold choitieodheex-
pected loss under a distribution of cost proportionsisvequal to:

Le" = 2{Ew.{c}T0(S0) + (1 — Ewc{cHmu(1-51)}.

Proof First we deriveQ.:

Qu(T¥(c);c) = Qu(TE" U1l (c / Qe(T5"t)(c)ic) 1|dt

= ﬁfl Qc(t;c)dt = ﬁ/l 2{cTp(1— Fy(t)) + (1—c)TyFy(t) }dt

B Zcrro(éo—I)Jr(l—c)nl(u—él)
B (u=1) '

The last step makes use of the following useful property.

/Iqu( )t = [tR(t)] —/ thi()dt = UR(U) — IF(l) — & = U— S
Settingl = 0 andu = 1 for probabilistic scores, we obtain the final result:
Qe(Ts"(c);0) = 2{cTh(S0) + (1 —-Cc)ru(1—31)}.
And now, we calculate the expected loss for the distributg(t).

1
LS“:/ Qc(TSY(c); c)we(c)dc

_ / 2{cT(%0) + (1— )T (1 — 1) hwe(c)dc
—Z{EWC{C}TTO( )+ (1—Ew{cH)m(l-51)}.

Corollary 12 Assuming probabilistic scores and the score-uniform threshold choitieocheex-
pected loss under a distribution of cost proportionswith expected valug&,, {c} = 1/2 is equal
to the model's mean absolute error.

L3 ey—1/2 = ToSo+ T(1—51) = MAE.

This gives a baseline loss if we choose thresholds randomly and indaggndf the model.
Using Lemma 2 we obtain the equivalent result for skews:
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4.2 The Score-Driven Threshold Choice Method Leads to the Brier &re

We will now consider the first threshold choice method to take the operatimdjt@m into account.
Since we are dealing with probabilistic scores, this method simply sets the tlireshual to the
operating condition (cost proportion or skew). This is a natural critea®it has been used espe-
cially when the model is a probability estimator and we expect to have perfeanation about the
operating condition at deployment time. In fact, this is a direct choice whekimgowith proper
scoring rules, since when rules are proper, scores are assumed podimbilistic assessment. The
use of this threshold choice method can be traced back to Murphy (1886parhaps, implicitly,
much earlier. More recently, and in a different context from properisg rules, Drummond and
Holte (2006) say “the performance independent criterion, in this cageset the threshold to cor-
respond to the operating conditions. For examplJf+) = 0.2 the Naive Bayes threshold is set
to 0.2”. The termPC(+) is equivalent to our ‘skew’.

Definition 13 Assuming the model’'s scores are expressed on a probability Ktdle the score-
driven threshold choice methdsldefined for cost proportions as follows:

o) =c W

and for skews as
Tz 22

Given this threshold choice method, then the questioiif ise must evaluate a model before
application for a wide range of skews and cost proportions, which perdoice metric should be
used?This is what we answer below.

Theorem 14 (Hernandez-Orallo et al., 2011)Assuming probabilistic scores and the score-driven
threshold choice method, expected loss under a uniform distribution bpagsortions is equal to
the model’s Brier score.

Proof If we plug T3 (Equation 7) into the general formula of the expected loss (Equation 4) we
have the expected score-driven loss:

Lee | QT () de— | QGOme(e)de ®

And if we use the uniform distribution and the definition@f (Equation 3):

1 1
Ll = /OQc(C:C)U(C)dc: /0 2{crp(1—Fo(c)) + (1 —c)mmFi(c) }dc. (9)

In order to show this is equal to the Brier score, we expand the definiti@gphndBS using
integration by parts:

1 1 1
BSO:/O s fo(s)ds= [sto(s)}Lo—/O Zsl-'o(s)ds:l—/o 2sky(s)ds
1 1 1
:/0 25ds—/0 ZSFo(s)ds:/O 25(1—Fy(s))ds

BS_L:/Ol(l—S)zf1<S)dS: [(1—S)ZFl(S)]i_O—F/OlZ(l—S)Fl(S)dS: /012(1—3)F1(s)ds
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Taking their weighted average, we obtain

BS— moBS) + TuBS — /0 CT025(1— Fo(9)) + Ta2(1— 9)Fs(9)}ds (10)

which, after reordering of terms and change of variable, is the samessipn as Equation (9).
[ |

It is now clear why we just put the Brier score from Table 1 as the exgdoss in Table 2. We
calculated the expected loss for the score-driven threshold choice arfetteuniform distribution
of cost proportions as its Brier score.

Theorem 14 was obtained by Hamdez-Orallo et al. (2011) (the threshold choice method there
was called ‘probabilistic’) but it is not completely new in itself. Murphy (19&8ind a similar rela-
tion to expected utility (in our notation; (1/4)PS+ (1/2)(1+ 1o), where the so-called probability
scorePS= 2BS. Apart from the sign (which is explained because Murphy works with uslitie
and we work with costs), the difference in the second constant term laieeg because Murphy'’s
utility (cost) model is based on a cost matrix where we have a cost for dhe ofasses (in meteo-
rology the class ‘protect’) independently of whether we have a rightronw prediction (‘adverse’
or ‘good’ weather). The only case in the matrix with a 0 cost is when we tgmad’ weather and
‘no protect’. It is interesting to see that the result only differs by a canigtam, which supports the
idea that whenever we can express the operating condition with a cpsirpom or skew, the results
will be portable to each situation with the inclusion of some constant terms (whedh@same for
all classifiers). In addition to this result, it is also worth mentioning anothek WwpMurphy (1969)
where he makes a general derivation for the Beta distribution.

After Murphy, in the last four decades, there has been extensivie evothe so-called proper
scoring rules, where several utility (cost) models have been usedwrdigistributions for the cost
have been used. This has led to relating Brier score (square lossjtHage loss, 0-1 loss and other
losses which take the scores into account. For instance, Buja et al.) (@965 comprehensive
account of how all these losses can be obtained as special case8efdhdistribution. The result
given in Theorem 14 would be a particular case for the uniform distributidrich is a special
case of the Beta distribution) and a variant of Murphy’s results. In faet3Sdecomposition can
also be connected to more general decompaositions of Bregman divesg@teid and Williamson,
2011). Nonetheless, it is important to remark that the results we have jsheth in Section 4.1
(and those we will get in Section 5) are new because they are not obtayngtanging the cost
distribution but rather by changing the threshold choice method. The tidesioice method used
(the score-driven one) is not put into question in the area of propeingcrules. But Theorem 14
can now be seen as a result which connects these two different dim&nsist distribution and
threshold choice method, so placing the Brier score at an even morengreat role.

Hermandez-Orallo et al. (2011) derive an equivalent result using embdtistibutions. In that
paper we show how the loss can be plotted in cost space, leading Britecurvewhose area
underneath is the Brier score.

Finally, using skews we arrive at the prior-independent version oBtlex score.

Corollary 15 L, = uBS= (BS+BS)/2.

It is interesting to analyse the relation betwd@jc) and Lad(c) (similarly betweeri_lSJ“(z) and
LLSJ“(Z)). Since the former gives thdAE and the second gives the Brier score (which is the MSE),
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from the definitions oMAE and Brier score, we get that, assuming scores are between 0 and 1:

MAE =L}, > L{( =BS

UMAE =LY, > L}, = uBS
SinceMAE andBShave the same terms but the second squares them, and all the values which ar
squared are between 0 and 1, thenBlsanust be lower or equal. This is natural, since the expected
loss is lower if we get reliable information about the operating condition dbgegent time. So,
the difference between the Brier score aMAE is precisely the gain we can get by having (and
using) the information about the operating condition at deployment time. Notataliithis holds
regardless of the quality of the probability estimates.

Finally, the difference between the results of Section 3 (Corollary 6) aeskthesults fits well
with a phenomenon which is observed when trying to optimise classification maubeld proba-
bility estimation does not imply good classification and vice versa (see, fon@rathe work of
Friedman, 1997). In the context of these results, we can re-interfgggitltbnomenon from a new
perspective. The Brier score is seen as expected loss for thedrdwar-threshold choice method,
while accuracy assumes a fixed threshold. The expected losses shimimdr? are a clear example
of this.

5. Threshold Choice Methods Using Rates

We show in this section tha8UC can be translated into expected loss for varying operating con-
ditions in more than one way, depending on the threshold choice method usedonsider two
threshold choice methods, where each of them sets the threshold to amipiadécular predicted
positive rate: the rate-uniform method, which sets the rate in a uniform am@ythe rate-driven
method, which sets the rate equal to the operating condition. Some of thesaams have been
used or mentioned in the literature, but choosing or ranging over sens{ivitgomplementary,
specificity) instead of ranging over thate (which is a weighted sum of sensitivity, that i, and
1— specificity, that isF). For instance, Wieand et al. (1989) take a uniform distribution on a re-
stricted range of sensitivities (or, similarly, specificities, Wieand et al., 1988%0, Hand (2010)
mentions thaAUC can be seen as ‘the mean specificity value, assuming a uniform distribution fo
the sensitivity'.

We recall the definition of a ROC curve and its area first.

Definition 16 The ROC curve (Swets et al., 2000; Fawcett, 2006) is defined as a gt pfi.e.,
false positive rate at decision threshold t) on the x-axis agaigd) Ftrue positive rate at t) on the
y-axis, with both quantities monotonically non-decreasing with increasirgmdémber that scores
increase withp(1|x) and 1 stands for the negative class). The Area Under the ROC curve)({auC
defined as:

+00 +00 S

Fo(s) fo(s)ds= / / fo(t) f1(s)dtds
1 +o0 Hoo oo

_ /0 (1—Fa(s))dRo(s) = / (1—Fa(s)) fo(s)ds= / / f1(t) fo(s)dtds
0 —00 S

e 2 | "R(9dR(s) =

Note that in this section scores are not necessarily assumed to be protediilinates and sg
ranges from-oo to co.
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5.1 The Rate Uniform Threshold Choice Method Leads to AUC

The rate-fixed threshold choice method places the threshold in such a atay given predictive
positive rate is achieved. However, this proportion may change, or wetmahhave reliable
information about the operating conditi@at deployment time An option in this case is to fix a
predictive positive rate equal to 0.5 (predict exactly half of the examplgmsitive), which boils
down to a special case of Theorem 5, but another option is to consider-daterministic choice
or a distribution for this quantity. One natural choice can be a uniform disioitr. This complete
absence of information will hardly ever be the case, as we discussttfecore-uniform threshold
choice method, but it is still instructive to explore what the outcome would bethiglchoice.

Definition 17 The rate-uniform threshold choice method non-deterministically sets thehtbickto
achieve a uniformly randomly selected rate:

TM(c) £ T [Uoa)(c).
T,"(2) 2 T, [Uo4] (2).

In other words, it sets a relative quantity (from 0% positives to 100% pesitiin a uniform way,
and obtains the threshold from this uniform distribution over rates. Notddhatlarge number of
examples, this is the same as defining a uniform distribution over exampldteanatively, over
cutpoints (between examples), as explored by Flach et al. (2011).

This threshold choice method is a generalisation of the rate-fixed thrediwtstanethod which
considers all the imbalances (class proportions) equally likely whenexenake a classification.
It is important to clearly state that this makes the strong assumption that we witlawet any
information about the operating condition at deployment time.

As done before for other threshold choice methods, we analyse thgoguegven this threshold
choice methodif we must evaluate a model before application for a wide range of skeavsa@st
proportions, which performance metric should be used?

The corresponding expected loss for cost proportions is (assuRigmvertible)

e [Careeromede= [ [ QR Hriounwcr de

We then have the following result.

Theorem 18 Assuming the rate-uniform threshold choice method and invertible R, texpless
under a distribution of cost proportions;wecreases linearly with AUC as follows:

Ly = oty (1— 2AUC) + ToEy, {c} + T (1 — Ey {C}).
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Proof First of all we note that = R(t) and henc® (r)dr = R (t)dt = {Tp fo(t) + 1 f1(t) }dt. Under
the same change of variabl@;(R2(r); c) = Q(t; ¢) = 2{crip(1— Fo(t)) + (1 —c)TyFy(t)}. Hence:

Lo /Ol/i{c,-b(l_Fo(t))+(1—c)anl(t)}wc(c){Trofo(t)+Tr1f1(t)}dt dc
= [ [ 2emo(1 - Fot) + (1- SRt} rofo(t)+ s fu(t) (o)
-/ 2B {o}To(1~ Folt)) + (1~ Bu {e) MR (0} {Tofo(t) + (1) bt
— 2rpTaEy, {C} /_ 0;(1—Fo(t))fl(t)dtJr2Tron1(1—EWC{c}) /_ i Fa(t) fo(t)dlt
1 218Ew, {c} /_0;(1— Fo(t)) fo(t) dt+2n§(1—1awc{c})/_°; Fa(t) fa(t) dt.

The first two integrals in this last expression are both equaHt@&WUC. The remaining two integrals
reduce to a constant:

/ARt dt=— ["1-Fo) d1-Fo) =1/2
/w Fa(t) fa(t) dt = /01 Fa(t) dRi(t) = 1/2

Putting everything together we obtain

Ly = 21 Ew, {c}(1— AUC) + 2momy (1 — Ew {c}) (1 — AUC) + TGEw, {C} + T§(1— Ew{C})
= 21Ty (1 — AUC) + TBEy, {c} 4+ T8 (1 — Ey {c})
= o7 (1— 2AUC) + ToTy + TRy {c} + T4(1— By {c})
=TTy (1— 2AUC) + ToTy By {C} + ToEw {C} + Tom (1 — Ey {C}) + TB(1 — Ey {C})

and the result follows. [ |

The following two results were originally obtained by Flach, Herdez-Orallo, and Ferri
(2011) for the special case of uniform cost and skew distributionsaM/grateful to David Hand
for suggesting that the earlier results might be generalised.

Corollary 19 Assuming the rate-uniform threshold choice method, invertible R, and gbdisbn

of cost proportions wwith expected valu&,, {c} = 1/2, expected loss decreases linearly with
AUC as follows:

Li{cj—1/2 = Toru(1—2AUC) +1/2.

Corollary 20 For any distribution of skews avassuming the rate-uniform threshold choice method
and invertible R, expected loss decreases linearly with AUC as follows:

LIV = (1—2AUC)/4+1/2.
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Proof By assuming a uniform class distribution in Theorem 18 we obtain:

11 1 1
Le' = 55(1-2AUC) + SEw{¢} + 5 (1 Ew,{c}) = (1-2AUC) /4+1/2.
By Lemma 2 this is equal tbY". [ |

Notice that Corollary 20 does not make any assumption about the expadtedofw,, and in that
sense is more general than Corollary 19 for cost proportions. We aeexghected loss for uniform
skew ranges from 1/4 for a perfect ranker that is harmed by sub-dptineshold choices, to 3/4
for the worst possible ranker that puts positives and negatives thegwray round, yet gains some
performance by putting the threshold at or close to one of the extremes.

Intuitively, a result like Corollary 20 can be understood as follows. Se#irapndomly sampled
rate is equivalent to setting the decision threshold to the score of a randamplesl example.
With probability Ty we select a positive and with probability we select a negative. If we select
a positive, then the expected true positive rate/@ (as on average we select the middle one); and
the expected false positive rate iss AUC (as one interpretation &UC is the expected proportion
of negatives ranked correctly wrt. a random positive). Similarly, if wedea negative then the
expected true positive rate AUC and the expected false positive rate j21 Put together, the
expected true positive rate 1§/2 + Ty AUC and the expected false positive rataig2 + (1 —
AUC). The proportion of true positives among all examples is thus

o (Th/2+ AUC) = TE’ + T AUC
and the proportion of false positives is
U
™ (1'[1/2+ Tro(l — AUC)) = > + Tl'oT[l(l — AUC).

We can summarise these expectations in the following contingency table (alensiauie propor-
tions relative to the total number of examples):

Predicted+ Predicted-
Actual + | /24 mrmuAUC 3/2+ 1o (1-AUC) | TH
Actual — | §/2+ 1o (1 AUC) | T8/2+ Moy AUC ™
1/2 1/2 1

The column totals are, of course, as expected: if we randomly selecaarpéxto split on, then the
expected splitis in the middle.

While in this paper we concentrate on the case where we have accesatatjpopdensities
fk(s) and distribution functiongy(t), in practice we have to work with empirical estimates. Flach
etal. (2011) provides an alternative formulation of the main results in thiaecelating empirical
loss to theAUC of the empirical ROC curve. For instance, the expected loss for unifkes and
uniform instance selection is calculated by Flach et al. (2011) {g;Bg) 22 + 1, showing that
for smaller samples the reduction in loss du&tC is somewhat smaller.
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5.2 The Rate-Driven Threshold Choice Method Leads to AUC

Naturally, if we can have precise information of the operating condition plogiment time, we
can use the information about the skew or cost to adjust the rate of pesitiebnegatives to that
proportion. This leads to a new threshold selection method: if we are diean(sr cost proportion)
z (or c), we choose the threshaldn such a way that we get a proportionzofor c) positives. This
is an elaboration of the rate-fixed threshold choice method winestake the operating condition
into account.

Definition 21 Therate-driven threshold choice methfuit cost proportions is defined as
() £ T [c](¢) = R *(c). (11)
The rate-driven threshold choice method for skews is defined as
22740 =R
Given this threshold choice method, the question is aghime must evaluate a model before
application for a wide range of skews and cost proportions, which perdoice metric should be
used?This is what we answer below.

If we plug T/ (Equation 11) into the general formula of the expected loss for a rangesof
proportions (Equation 4) we have:

1
L2 2 [ Qu(T (e ome(c)de

And now, from this definition, if we use the uniform distribution feg(c), we obtain this new
result.

Theorem 22 Expected loss for uniform cost proportions using the rate-driven thidstiwice
method is linearly related to AUC as follows:

Lij(c) = TaTo(1— 2AUC) 4 1/3.
Proof
W = [ eeiou@de= [ R erode
= 2 [ o1~ R(R0))) + (1 OmR(R 1(e))de
= 2 [ {oro - croRa(R 1(0)) + TR (R 1(0) — oriFu(R X(0) Jde
SincempFo(R™1(c))) + mF1(RY(c)) = R(R™1(c)) =,
Ly = 2 /0 "o — &+ TR (R-1(0)) Hdc

1
— rr0_§+2n1/ F1(R(c))dc.
0
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Taking the rightmost term and using the change of varigbfec) =t we havec = R(t) and hence
dc=R(t)dt = {mpfo(t) + Ty f1(t) }dt = R(t)dt, and thus this term is rewritten as

2n1/1F1(R‘1(c))dc _ 2n1/°° Fa(t){To fo(t) + T fa(t) bt
0 0
1 1
= 2mm [ R©dR() +21E [ RbdRY
= 2mmp(1—AUC) +2T[§% =2mTH(1—AUC) + m(1—ThH).

Putting everything together we have:

2
LS = To—3+2mmo(1-AUC) +m(1-To)
1
— §+nlno(l—2AUC).

Now we can unveil and understand how we obtained the results for tleetexploss in Table 2
for the rate-driven method. We just took tA&JC of the models and applied the previous formula:
TyTo(1— 2AUC) + 1.

Corollary 23 Expected loss for uniform skews using the rate-driven threshold choitedes
linearly related to AUC as follows:

L, = (1—2AUC) /4+1/3.
If we compare Corollary 20 with Corollary 23, we see tha‘EZ) > L{j‘(z), more precisely:

Ly = (1—2AUC) /4+1/2 = L{j|, +1/6.

So we see that taking the operating condition into account when chooseghtis based on
rates reduces the expected loss with,Yegardless of the quality of the moded measured b&UC.
This term is clearly not negligible and demonstrates that the rate-driveshtiidechoice method is
superior to the rate-uniform method. Figure 3 illustrates this. Logicqﬂ’%) andL{j‘(Z work upon
information about the operating condition at deployment time, V\Ltﬂi@) and L{J“(Z) may be suited
when this information is unavailable or unreliable.

6. The Optimal Threshold Choice Method

The last threshold choice method we investigate is based on the optimistic assuthptiql)
we are having complete information about the operating condition (classmimys and costs) at
deployment time and (2) we are able to use that information (also at deployime)tto choose
the threshold that will minimise the loss using the current model. ROC analysisdsely based
on these two points since we can calculate the threshold which gives the $iaakdsy using the
skew and the convex hull.

This threshold choice method, denotedTy is defined as follows:
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Acc=a isometric ,-*

with slope mi/mo .~
Fo

Fo [rrerereeees

" R=mo isometric
with slope -T14/mo

R=mo \éé'net'rwc AN
with slope *m/mo -
‘Acc=a isfometrlc,//

with slope mi/ms’

Fi Fi

Figure 3: lllustration of the rate-driven threshold choice method. Wenassuniform misclassifi-
cation costsdy = ¢; = 1), and hence skew is equal to the proportion of positizesip).
The majority class is class 1 on the left and class 0 on the right. Unlike the mditera
method, the rate-driven method is able to take advantage of knowing the majadsy
leading to a lower expected loss.

Definition 24 The optimal threshold choice method is defined as:
T(c) = argtmin{Qc(t; c)}= argtmin 2{cmp(1—Fo(t)) + (1 —c)mFy(t)} (12)
and similarly for skews:
T2(2) = argtmin{Qz(t; 2)}.

Note that in both cases, the arg min will typically give a range (interval) ofeglvhich give the
same optimal value. So these methods can be considered non-deterministithrd$hold choice
method is analysed by Fawcett and Provost (1997), and used by DrutrandrHolte (2000, 2006)
for defining their cost curves and by Hand (2009) to define a nevape&nce metric.

If we plug Equations (12) and (3) into Equation (4) using a uniform distigioufor cost propor-
tions, we get:

1 1
Lo /0Qc(argtmin{Qc(t,c)};c)dc:/O min{Qc(t;c)}dc

= /Olmtin{ZCTro(lFo(t))+2(lc)n1F1(t)}dc. (13)

The connection with the convex hull of a ROC curve (ROCCH) is straightiod. The convex
hull is a construction over the ROC curve in such a way that all the points ercdhvex hull
have minimum loss for some choice ©br z. This means that we restrict attention to thygimal
threshold for a given cost proportianas derived from Equation (12).
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6.1 Convexification

We can give a corresponding, and more formal, definition of the conui»ab derived from the
score distributions. First, we need a more precise definition of a conveslnteat that, we rely on
the ROC curve, and we use the slope of the curve, defined as usual:

fo(T)
f1(T)

—

slopdT) =
A related expression we will also use is:

. T[lfl(T)
M) = B - mh)

Sometimes we will use subindices fo(T ) depending on the model we are using. In this way, we

— Tofo(T) _ 1
have,slopeT) = Dy = 3 — 1.

Definition 25 (Convex model) A model m is convex, if for every threshold T, we have tfiRj s
non-decreasing (or, equivalently, slgfe is non-increasing).

In order to make any model convex, it is not sufficient to repair locatawvities, we need to
calculate the convex hull. This is clear if we categorise the types of segm8otae threshold
valuest will never minimiseQc(t; ¢) = 2cmy(1—Fo(t)) +2(1—c)mFy(t)} for any value ot. These
values will be in one or more intervals of which only the end points will minin@dsé; c) for some
value ofc. We will call these intervalson-hull intervals and all the rest will be referred to asill
intervals It clearly holds that hull intervals are convex. Non-hull intervals maytaim convex and
concave subintervals.

From here, a definition of convex hull for continuous distributions ismyiae follows:

Definition 26 (Convexification) Let m be any model with score distributiongT) and f(T).
Define convexified score distributiong€) and (T) as follows.

1. Forevery hullintervalit 1 <s<t;: eo(T) = fo(T) and a(T) = f1(T).

2. For every non-hullintervalit; <s<t;:

1 t]
@T) == —— [ fo(T)aT
tj—tj—l tj—1
1 {]
eT)=eyj=—— / f1(T)dT.
G =11 /4

The functiorConvreturns the modeConvm) defined by the score distributiong(&) and (T).

We can also define the cumulative distributidit) = fct, ex(T)dT, wherex represents either 0
or 1. By construction we have that for every interital 1 ,t;] identified above:

B, = |

j-1

tj tj

eT)AT = (G —tj e = [ KMAT=[ROL, (14

tj—1
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and so the convexified score distributions are proper distributions.d¥uartire, since the new score
distributions are constant in the convexified intervals—and hence monaligmon-decreasing for
the newc(T ), denoted bycconym) (T)—Ss0 is

They j

T =CcCi=—m—"7-—"7—.
CCon\,(m)( ) j T | + Th €y |

It follows that Conym) is everywhere convex. In addition,

Theorem 27 Optimal loss is invariant unde€ony, that is: LB(C)(Conv(m)) = LS(C)(m) for every
m.

Proof By Equation (13) we have that optimal loss is:

Lf_j(c)(m) = /Olmtin{ZCTro(l—Fo(t))+2(l—c)n1F1(t)}dc.

By definition, the hull intervals have not been modified by Gamv Only the non-hull intervals
have been modified. A non-hull interval was defined as those whereithaot which minimises
Qc(t;c) = 2cmp(1— Fo(t)) +2(1— c)muF4(t) } for any value oft, and only the endpoints attained the
minimum. Consequently, we only need to show that the egWw) ande; (T ) do not introduce any
new minima.

We now focus on each non-hull segméint 1,t;) using the definition of Conv. We only need to
check the expression for the minimum:

min {2ctp(1—Ep(t)) +2(1—c)mmEs(t)}.
tj<t<tj_;

From Equation (14) we derive th&,(t) = Ex(tj—1) + (t; —tj—1)&c; inside the interval (they are
straight lines in the ROC curve), and we can see that the expression to ingisethis constant (it
does not depend di. Since the end points were the old minima and were equal, we see that this
expression cannot find new minima. |

It is not difficult to see that if we plot Corfm) in the cost space defined by Drummond and Holte
(2006) withQ,(t;z) on they-axis against skewon thex-axis, we have a cost curve. Its area is then
the expected loss for the optimal threshold choice method. In other woisls the area under the
(optimal) cost curve. Similarly, the new performance mdirimtroduced by Hand (2009) is simply
arescaled version of the area under the optimal cost curve usiifig traistribution instead of the
B11 (i.e., uniform) distribution, and using cost proportions instead of skeabgs1g dependent to
class priors). This is further discussed by Flach et al. (2011). Whilefalese distributions are
symmetric, the Beta distribution can be non-symmetric if required by a spedffiication. In fact,
Hand and Anagnostopoulos (2012) suggest that the parameters détititeution should be linked
to class proportiom.

6.2 The Optimal Threshold Choice Method Leads to Refinement Loss

Once again, the question now must be stated clearly. Assume that the optieshiotldr choice
method is set as the method we will use for every application of our model. Fudhe assume
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that each and every application of the model is going to find the perfecthtbice Then,f we
must evaluate a model before application for a wide range of skews atgmmportions, which
performance metric should be usedf what follows, we will find the answer by relating this
expected loss with a genuine performance metric: refinement loss. We wilimiooduce this
performance metric.

The Brier score, being a sum of squared probabilistic residuals, cdadmnposed in various
ways. The most common decomposition of the Brier score is due to Murpig)a8d decomposes
the Brier score into Reliability, Resolution and Uncertainty. Frequently, thdatter components
are joined together and the decomposition gives two terms: calibration losefarement loss.

This decomposition is usually applied to empirical distributions, requiring a kinafrthe
scores. Scores are assumed to be probability estimates in the irjeedjal The decomposition
is based on a partitioffy = {bj};—1 s whereD is the data seB the number of bins, and each bin
is denoted by; C D. Since itis a partitiorUJB:1 bj = D. With this partition the decompoistion is:

1B > 18
BS%CLTD—FRL?D:ﬁ;]bﬂ(soj—ym) +ﬁ;|bj\yb,- (1—yo,)-

Here we use the notatiap, = ‘b Yieb; S andyp, = ‘b  Yieb; Yi for the average predicted scores and
the average actual classes respectlvely fordbin

For many partitions the empirical decomposition is not exact. It is only exaghdditions
which are coarser than the partition induced by the ROC curve (i.e., tie®tcharspread over
different partitions), as shown by Flach and Matsubara (2007). \WetdeyCLR® and RLRC
the calibration loss and the refinement loss, respectively, using the sesgofi¢gime empirical ROC
curve as bins. In this casBS= CLR°¢+ RLROC,

In this paper we will use a variant of the above decomposition based onQed@nvex hull
of a model. In this decomposition, we take each bin as each segment in thex ¢l Naturally,
the number of bins in this decomposition is lower or equal than the number ofrbthe ROC
decomposition. In fact, we may find different valuesspin the same bin. In some way, we can
think about this decomposition as an optimistic/optimal version of the ROC decdioppas Flach
and Matsubara (2007, Th. 3) show. We denotelhff°cCH and RLRO“CH the calibration loss and
the refinement loss, respectively, using the segments of the convex thél @mpirical ROC curve
as bins (Flach et al., 2011).

We can define the same decomposition in continuous terms considering Def@hitila can
see that in the continuous case, the partition is irrelevant. Any partition wél thig same result,
since the composition of consecutive integrals is the same as the whole integral.

Theorem 28 The continuous decomposition of the Brier Score=BSL + RL, is exact and gives
CL and RL as follows.

[ (s(Tofo(s) + T fu(s)) — T fa(9))?
CL_/ o fo(s) + 1 f1(9) ds

RL— / T f1(S)Tofo(s)
o fo(S) + 4 f1(S)
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Proof
1
BS:/ [STofo(s) + (1— )% f1(s)] ds

_/ (Tofo(s) +Ta f1(S)) — 257 f1(S) + T f1(5)] ds

/152 Tl'ofo( )+1T1f1( )) —ZS(Tl'ofo(S)—{-Hlfl(S))'lTlfl(S)—|—'l'[1f1(S)(T[1f1(S)—|—Tl'0f0(S))dS
B (Tofo(s) + 1 fa(s))
_/ (s(Tofo(s) + 1w fa( ))—ﬂlfl(S))2+”1f1(S)beo(S)ds
T fo(S) + T f1(S)
(s(To fo(S) + T f1(S)) — T f1(S))? L mfi(s)mofo(s)
_/ To fo(s) + 10 fa(s) ds+/o Trofo(S)JrTllfl(S)dS

This proof keeps the integral from start to end. That means that thempesition is not only
true for the integral as a whole, but also pointwise for every single scolote thatyy, in the

empirical case (see Definition 15) corresponds(&) = ﬁ (as given by Equation 14) in
the continuous case above, and also notegjatorresponds to the cardinality fo(s) + 1 fi(s).
The decomposition for empirical distributions as introduced by Murphy3L&rstill predominant
for any reference to the decomposition. To our knowledge this is the fipdic# derivation of a
continuous version of the decomposition.

And now we are ready for relating the optimal threshold choice method withfarpence

metric as follows:

Theorem 29 For every convex model m, we have that:

LS e (M) = RL(M).
The proof of this theorem is found in the appendix as Theorem 48.

Corollary 30 For every model m the expected loss for the optimal threshold choice «m{%) is
equal to the refinement loss using the convex hull.

LY () (M) = RL(Convm)) £ RLcon(M).

Proof We havel_ﬁ(c>(m) = LB(C>(Con\/(m)) by Theorem 27, antil‘j(c)(Conv(m)) = RL(Convym))
by Theorem 29 and the convexity of Cqmy). [

Itis possible to obtain a version of this theorem for empirical distributions hwtiates thalt)) © =

RLROCCH whereRLROCCH s the refinement loss of the empirical distribution using the segments of
the convex hull for the decomposition.

Before analysing what the meaning of this threshold choice method is and redates to the
rest, we have to consider whether this threshold choice method is realistit ém the beginning of
this section we said that the optimal method assumes that (1) we are having teoimfglenation
about the operating condition at deployment time and (2) we are able to useftranation to
choose the threshold that will minimise the loss at deployment time.
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While (1) is not always true, there are many occasions where we knowotis and distribu-
tions at application time. This is the base of the score-driven and raterdrie¢hods. However,
having this information does not mean that the optimal threshold for a data.gettbe training or
validation data set) ensures an optimal choice for a test set (2). Drummdndadie (2006) are
conscious of this problem and they reluctantly rely on a threshold choiceodhethich is based
on “the ROC convex hull [...] only if this selection criterion happens to makémasimizing se-
lections, which in general it will not do”. But even if these cost-minimising a@as are done, as
mentioned above, it is not clear how reliable they are for a test data setruksriond and Holte
(2006, p. 122) recognise: “there are few examples of the practigdication of this technique.
One example is given by Fawcett and Provost (1997), in which the dedisieshold parameter
was tuned to be optimal, empirically, for the test distribution”.

In the example shown in Table 2 in Section 1, the evaluation technique was graimihtest.
However, with cross-validation, the convex hull cannot be estimated keliatgeneral, and the
thresholds derived from each fold might be inconsistent. Even with a \aiggation data set, the
decision threshold may be suboptimal. This is one of the reasons why thenalersthe convex hull
has not been used as a performance metric. In any case, we cantedlveilzalues as an optimistic

limit, leading toL{, , = RLR°°CH—0.0953 for modelA and 02094 for modeB.

7. Relating Performance Metrics

So far, we have repeatedly answered the following question: “If tiotdsthoice metho& is used,
which is the corresponding performance metric?” The answers are sisethar Table 4. The
seven threshold choice methods are shown in the first column (the two fixbdadseare grouped
in the same row). The integrated view of performance metrics for classificetigiven by the
next two columns. The expected loss of a model for a uniform distributicoosif proportions or
skews for each of these seven threshold choice methods producesfith@stommon performance
metrics in classification: 0-1 loss (either weighted or unweighted accyrdeyMean Absolute
Error (equivalent to Mean Probability Rate), the Brier scéx&C (which equals the Wilcoxon-
Mann-Whitney statistic and the Kendall tau distance of the model to the perfedel, and is
linearly related to the Gini coefficient) and, finally, the refinement loss usiadyins given by the
convex hull.

All the threshold choice methods seen in this paper consider model scaddfemant ways.
Some of them disregard the score, since the threshold is fixed, someathsider the ‘magnitude’
of the score as an (accurate) estimated probability, leading to the sswd-tmethods, and others
consider the ‘rank’, ‘rate’ or ‘proportion’ given by the scores,degy to the rate-based methods.
Since the optimal threshold choice is also based on the convex hull, it iseaylyanore related to
the rate-based methods. This is consistent with the taxonomy proposedrbgtiad (2009) based
on correlations over more than a dozen performance metrics, wherdahriies of metrics were
recognised: performance metrics which account for the quality of cleestsifin (such as accuracy),
performance metrics which account for a ranking quality (suchAWsS), and performance metrics
which evaluate the quality of scores or how well the model does in terms bapiidy estimation
(such as the Brier score or logloss).

This suggests that the way scores are distributed is crucial in undergjdhd differences and
connections between these metrics. In addition, this may shed light on wheshthd choice
method is best. We have already seen some relations, sl¢f as Lff}c), andL{j > L{jj(c), but
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Threshold Cost proportions Skews Equivalent (or related) performanegics

choice

method

fixed Lff@ =1-Acc sz(z) =1-uAcc  0-1loss: Weighted and unweighted accuracy.
score- Lau(c) =MAE Lf};z) = uMAE Absolute error, Average scorpAUC (Ferri et al., 2005)
uniform , Probability Rate (Ferri et al., 2009).

score-driven L'ff’(c) =BS lgd(z) =uBS Brier score (Brier, 1950), Mean Squared ErtSE).
rate-uniform  L{j{ = Ty (1 - 2AUC) + 1 LWy = 12T L 1+ AUC (Swets et al., 2000) and variants4UC) (Fawcett,

2001; Ferri et al.,

2009), Kendall tau, WMW statistic,

Gini coefficient.

rate-driven L[j’@ =Tomy (1— 2AUC) + 3 L{j’(z) =12ZC L T AUC(Swets et al., 2000) and variants4UC) (Fawcett,
2001; Ferri et al., 2009), Kendall tau, WMW statistic,
Gini coefficient.

optimal Lﬁ(c) = RLcony '—S<z) = URLcony ROCCH Refinement loss (Flach and Matsubara, 2007),

Refinement Loss (Murphy, 1973), Area under the Cost
Curve (‘Total Expected Cost’) (Drummond and Holte,
2006), Hand’s H (Hand, 2009).

Table 4: Threshold choice methods and their expected loss for cosirpons and skews. The
in uAcg UMAE, uBSanduRL mean that these metrics are unweighted, that is, calculated
as ifp = 1y, while thew in wAUC refers to a weighted version of the AUC, and ¥haxis
andy-axis are proportional top andTy.

what abouﬂ.f,d(c) and L[j’ C)’? Are they comparable? And what abdu| C)? It gives the minimum
expected loss by definition over the training (or validation) data set, but vbes it become a good
estimation of the expected loss for the test data set?

In order to answer these questions we need to analyse transformatithressmores and see how
these affect the expected loss given by each threshold choice metivatieest of the section we
assume that scores are in the interi@all]. Given a model, its scores establish a total order over
the exampleso = (s1,%,...,S) Wheres < ;1. Since there might be ties in the scores, this total
order is not necessarily strict. A monotonic transformation is any alteratititecfcores, such that
the order is kept. We will consider two transformations: the evenly-sp@asadformation and PAV
calibration.

7.1 Evenly-Spaced Scores. Relating Brier Score, MAE and AUC

If we are given a ranking or order, or we are given a set of sdauegs reliability is low, a quite
simple way to assign (or re-assign) the scores is to set them evenlydgpatee [0, 1] interval).

Definition 31 A discrete evenly-spaced transformation is a proce@8& o) — o’ which converts

any sequence of scores= (s1,%, ..., S,) where $ < 51 into scorexv’ = (8,5, ...,s,) Where $§=
i—1

n-1-
Notice that such a transformation does not affect the ranking and llelesenot alter th&UC.
The previous definition can be applied to continuous score distributiorlaw$o

Definition 32 A continuous evenly-spaced transformation is a any strictly monotonicftnana-
tion function on the score distribution, denotedibyen such that for the new scoresisholds that
P(s <t)=t.
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It is easy to see that EST is idempotent, that is, BEST(0)) = EST(0). So we say a set of
scoreg is evenly-spaced if ES6) = 0.

Lemma 33 Given a model and data set with set of scosesuch that they evenly-spaced, when
n — o then we have R) =t.

Proof Remember that by definition the true positive regé¢t) = P(s < t|0) and the false positive
rateF;(t) = P(s<t|1). Consequently, from the definition of rate we h&(€) = ToFo(t) + TuF4(t) =
P(s < t|0) + mP(s < t|1) = P(s<t). But, since the scores are evenly-spaced, the number of
scores such that<tis 3" ,1(s <t) =3y ,1(:=% <t) with | being the indicator function (1 when
true, 0 otherwise). This number of scoresyig; 1 whenn — o, which clearly givedn. So the
probabilityP(s<t) istn/n=t. Consequentlyr(t) =t. [ |

The following results connect the score-driven threshold choice meilithdthe rate-driven
threshold choice method:

Theorem 34 Given a model and data set with set of scamesuch that they are evenly-spaced,
when n— oo:

1
BS=LY{¢ = Lij(¢) = Tomu(1— 2AUC) + 3

Proof By Lemma 33 we hav&(t) =t, and so the rate-driven and score-driven threshold choice
methods select the same thresholds. [ |

Corollary 35 Given a model and data set with set of scosesuch that they are evenly-spaced,
when n— oo:
UBS= L3, =i, = Eaas 24AUC + %

These straightforward results conné&tiC and Brier score for evenly-spaced scores. This connec-
tion is enlightening because it says t#iC andBSare equivalent performance metrics (linearly
related) when we set the scores in an evenly-spaced way. In othds vitosays thafUC is like a
Brier score which considers all the scores evenly-spaced. Althowgbatdition is strong, this is
the first linear connection which, to our knowledge, has been estabkshtzat betweeUC and
the Brier score.

Similarly, we get the same results for the score-uniform threshold choiceothatid the rate-
uniform threshold choice method.

Theorem 36 Given a model and data set with set of scosesuch that they are evenly-spaced,
when n— oo:

1
MAE = Lij(¢) = Lijg) = Tom (1 - 2AUC) + 5

with similar results for skews. This also conneM#&E with AUC and clarifies when they are
linearly related.
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7.2 Perfectly-Calibrated Scores. Relating BS, CL and RL

In this section we will work with a different condition on the scores. We wiltlgtwhat interesting
connections can be established if we assume the scores to be perfectiytedlib

The informal definition of perfect calibration usually says that a model is redéd when the
estimated probabilities are close to the true probabilities. From this informalitiefirwe would
derive that a model is perfectly calibrated if the estimated probability givethéyscores (i.e.,
p(1/x)) equals the true probability. However, if this definition is applied to single imstsnit im-
plies not only perfect calibration but a perfect model. In order to gi@ee meaningful definition,
the notion of calibration is then usually defined in terms of groups or binsarhples, as we did,
for instance, with the Brier score decomposition. So, we need to apply thespondence between
estimated and true (actual) probabilities over bins. We say a bin partition isantan the scores
if for any two examples with the same score they are in the same bin. In othdswuao equal
scores cannot be in different bins (equivalence classes canbobken). From here, we can give a
definition of perfect calibration:

Definition 37 (Perfectly-calibrated for empirical distribution models) A model isperfectly cal-
ibratedif for any invariant bin partition? we have thaty = s, for all its bins: that is, the average
actual probability equals the average estimated probability, thus makirfg=€0.

Note that it is not sufficient to haveL = 0 for one partition, but for all the invariant partitions. Also
notice that the bins which are generated by a ROC curve are the minimal imvaaidition on the
scores (i.e., the quotient set). So, we can give an alternative definiterfeictly calibrated model:
a model is perfectly calibrated if and only@LR°C = 0. For the continuous case, the partition is
irrelevant and the definition is as follows:

Definition 38 (Perfectly-calibrated for continuous distribution models) A continuous model is

perfectly calibratedf and only if s= ﬁ% which is exactly s) given by Equation (14).

Note that the previous definition is equivalent to saying @lat= 0, as in the empirical case, since
CL can be rewritten as follows, following the decomposition of Theorem 28:

(Y (S(mofo(s) + Tufi(s) — T fa(S))?
cL = /o T fo(S) + T4 f1(S) ds

B 1 T[lfl(s) ’
= /O(Trofo(S)JF"lfl(S)) (S_nofo(s)+ﬂ1f1(3)> @

Lemma 39 For a perfectly calibrated classifier m:

1-s _ fo(s) To

S fi(s) m
and m is convex.

Proof The expression is a direct transformation of Definition 38 and convexityfgllews from
Definition 25. |
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Now that we have two proper and operational definitions of perfectredidn, we define a
calibration transformation as follows.

Definition 40 Calis a monotonic function over the scores which converts any model m intbeano
calibrated model rhsuch that CL= 0 and RL is not modified.

Cal always produces a convex model, so G@al(m)) = Cal(m), but a convex model is not always
perfectly calibrated (e.g., a binormal model with same variances is alwaygxdut it can be
uncalibrated), so C&Conv(m) # Conv(m). This is summarised in Table 5. If the model is strictly
convex, then Cal is strictly monotonic. An instance of the function Cal is tmsfioramationT —
s=c(T) wherec(T) = % as given by Equation (14). This transformation is shown to
keepRL unchanged in the appendix and malks= 0.

The previous function is defined for continuous score distributions.cohesponding function
for empirical distributions is known as the Pool Adjacent Algorithm (PAVydAet al., 1955).
Following Fawcett and Niculescu-Mizil (2007), tR&V function converts any modetinto another
calibrated modein* such that the following properts, = yp; holds for every segment in its convex
hull.

Evenly-spaced Convexification Perfect Calibration

Continuous distributions Even Conv Cal
Empirical distributions EST ROCCH PAV

Table 5: Transformations on scores. Perfect calibration implies a congdrl but not vice versa.

Fawcett and Niculescu-Mizil (2007) have shown that isotonic-basédration (Robertson
et al., 1988) is equivalent to the PAV algorithm, and closely related to ROGQIde, for every
mand data set, we have:

BSPAV(m)) = CLRO(PAV(m)) + RLROC(PAV(m)) = CLROCCHPAV(m)) + RLROCCH PAV(m))
RLROC(PAV(m)) = RLROSCHPAV(m)).

It is also insightful to see that isotonic regression (calibration) is the moiediamction defined as
argmin 5 (yi — f(s))?, that is, the monotonic function over the scores which minimises the Brier
score. This leads to the same function if we use any other proper scanatjdn (such as logloss).

The similar expression for the continuous case is

BSCallm)) = CL(Cal(m))+ RL(Callm))=RL(Calim)).

Now we analyse what happens with perfectly calibrated models for the-sciwen threshold
choice and the score-uniform threshold choice methods. This will helpderstand the similarities
and differences between the threshold choices and their relation with tineabmethod. Along
the way, we will obtain some straightforward, but interesting, results.

Theorem 41 If a model is perfectly calibrated then we have:
TS = m(l-s) (15)
or equivalently,

™mMMAE, = mMAE;.
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Proof For perfectly calibrated models, we have that for every bin in an invapartition on the

scores we have thag, = ;. Just taking a partition consisting of one single bin (which is an

invariant partition), we have that this is the same as sayingrthat ;s + mS. This leads to
m(l—9) = Th%. |

Equation (15) is an interesting formula in its own right. It gives a necessamgition for
calibration: the extent to which the average score over all examples (igitioh weighted mean of
per-class averagess, + 1451) deviates fronTy.

We now give a first result which connects two performance metrics:

Theorem 42 If a model is perfectly calibrated then we have:
BS= 1S = T (1—§) = MAE/2.
Proof We use the continuous decomposition (Theorem 28):
BS=CL+RL
Since it is perfectly calibrated;L = 0. Then we have:

_ mfi(s)mofo(s) , 1 Ty f1(9)
BS = RL= /Tl'ofo +T[1f1()ds_/o (nlfl(s))(1_Trofo(s)+n1fl(s)>ds

_ [ fu(s)]? _ 1 [mfi(9)?
- /0 <nlf S~ ot s)+mufi(s )) ds_/o nlfl(s)ds_/o Tofo(S) + (s

1 T[1f1(S)
0 TI'ofo(S)+1

N f]_ (S)

Since it is perfectly calibrated, we have, by Lemma 39:

fo(s)  1-sm
fis) s T

So:

BS

1 1
T[l_/ T[lfl(s) ds= T[l_/ ST[lf]_(S) ds
0 +1 0

Tol-sm (1-s)+s

™ S To

= T[l—rtl/olsfl(s)ds: T[l(l—/olsfl(s))ds: m(l—9).

We will now use the expressions for expected loss to analyse where ¢hik cemes from
exactly. In the following result, we see that for a calibrated model the optimeshioldT for a
given cost proportiort is T = ¢, which is exactly the score-driven threshold choice method.
other words:
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Theorem 43 For a perfectly calibrated model:
TCO(C) = Tch(C) =C.

Proof We first take Equation (12):
T2(c) = argmin2{cm(1l—F(t))+(1-c)mFi(t)}.
t
We calculate the derivative and equal it to O to gdiut we isolate:

2{cmo(1— fo(t)) + (1 —c)mufi(t)} =0
c— T[]_f]_(t)
Tl'ofo(t) +T[1f1(t)'

From Definition 38 (perfect calibration) we have that the right expresalmve equals, so we
havet = c. The proof is identical fos¢. [

And now we can express and relate many of the expressions for thetegpess seen so far.
Starting with the expected loss for the optimal threshold choice method, tHzt (@hich uses
T?), we have, from Theorem 43, thgf(c) = T9(c) = ¢ when the model is perfectly calibrated.
Consequently, we have the same as Equation (8), and since we kndBSkatyps, for perfectly
calibrated models, we have:

The following theorem summarises all the previous results.
Theorem 44 For perfectly calibrated models:

Lol MAE
U — —
L3l = L5 =RL= 2@ =~ =BS=ToR="y(1-%).

Proof SinceLlSJd(c) = BSitis clear thaﬂ_ad(c) = TS, as seen above fdy) (c) @S well. Additionally,
from Theorem 12, we have thh@“(c) =TS + T4 (1—351), which reduces tol%u(c) = 2BS=2mp%.
We also use the result of Theorem 29 which states that, in general (hétijgerfectly calibrated
models),La(c)(m) = RL(Conv(m)). [ |

All this gives an interpretation of the optimal threshold choice method as a methict val-
culates expected loss by assuming perfect calibration. Note that this iy dean by the relation

L . : : .
Lad(c) = Lg(c) = U2<°>, since the loss drops to the half if we use scores to adjust to the operating
condition. In this situation, we get the best possible result.

7.3 Choosing a Threshold Choice Method

It is enlightening to see that many of the most popular classification perfeemaetrics are just
expected losses by changing the threshold choice method and the useé fogmrtions or skews.
However, it is even more revealing to see how (and under which conditibase performance
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General relations:
1
Ljc) = Toma(1—2AUC) + 5 > L) = Tom (1 2AUC) +

L3{e) = MAE > Ll = BS> LY ) = Rlcony

If scores are evenly-spaced:

1 _
L) = Toma (1 - 2AUC) + 5 = L) = MAE = To% + T (1 - 51)

1
L) = Tom (1 — 2AUC) + 3= L3le =BS

If scores are perfectly calibrated:

Ly MAE _
L3y =L =RL= UZ(C) = =5 =BS=R=m(1-%)
If the model has perfect ranking:
1 1
ru rd o] _
If the model is random (anth = T4):
1 1
su _ysd _jru _ — d _ = o _ -
Lot =L =g =35>l =3>w =3

Figure 4: Comparison of losses and performance metrics, in generainaled several score con-
ditions.

metrics can be related (in some cases with inequalities and in some other casequaiities).
The notion of score transformation is the key idea for these connectiothés anore important that
it might seem at first sight. Some threshold choice methods can be seenas #ransformation
followed by the score-driven threshold choice method. Even the fixes$hbid choice method
can be seen as a crisp transformation where scores are set$o>ltifand O otherwise. Another
interesting point of view is to see the values of extreme models, such as awithdeérfect ranking
(AUC = 1, RLROCCH_ 0) and a random modeAUC = 0.5, RLROCCH = 0.25 whenrm = ). Figure
4 summarises all the relations found so far and these extreme cases.

The first apparent observation is th@t(c) seems the best loss, since it derives from the optimal
threshold choice method. We already argued in Section 6 that this is unrealisdaesult given
by Theorem 29 is a clear indication of this, since this makes expected loakte®lcon. Hence,
this threshold choice method assumes that the calibration which is performethavitbnvex hull
over the training (or a validation data set) is going to be perfect and holtiéatiest set. Figure 4
also gives the impression thq“g“(c) and L{J“(C) are so bad that their corresponding threshold choice
methods and metrics are useless. In order to refute this simplistic view, weenaliser(again) that
not every threshold choice method can be applied in every situation. Sgoigereore information
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or more assumptions than others. Table 6 completes Table 3 to illustrate the fairg.khow
the deployment operating condition at evaluation time, then we can fix the tideshd get the
expected loss. If we do not know this information at evaluation time, but weaxo be able
to have it and use it at deployment time, then the score-driven, raterdaind optimal threshold
choice methods seem the appropriate ones. Finally, if no information atoop#rating condition
is going to be available at any time then the score-uniform and the rate-umnifagnbe alternative
options, which could account for a worst-case estimation.

Threshold choice method Fixed Driven by o.c. Chosen unifprm
Using scores score-fixed{') score-driven T39) score-uniform Y
Using rates rate-fixedr(") rate-driven T') rate-uniform T')
Using optimal thresholds optimarf)

Required information o.c. at evaluation time o.c. at deplegt time no information

Table 6: Information which is required (and when) for the seven thidstimice methods so that
they become reasonable (or just not totally unreasonable). Operatidgion is denoted
by o.c.

From the cases shown in Table 6, the methods driven by the operatingiaomequire further
discussion. The relations shown in Figure 4 illustrate that, in addition to the optimedhold
choice method, the other two methods that seem more competitive are thelggereand the rate-
driven. One can argue that the rate-driven threshold choice haspacted loss which is always
greater than A12 (if AUC = 1, we get—1/4+ 1/3), while the others can be 0. But things are not
so clear-cut.

e The score-driven threshold choice method considers that the sgerestamated probabili-
ties and that they are reliable, in the tradition of proper scoring rules. Setitiges these
probabilities to set the thresholds.

e The rate-driven threshold choice method completely ignores the scadesndnconsiders
their order. It assumes that the ranking is reliable while the scores ar@cootate prob-
abilities. It derives the thresholds using the predictive positive ratearltbe seen as the
score-driven threshold choice method where the scores have beevesd/-spaced by a
transformation.

e The optimal threshold choice method also ignores the scores completely lgrmbosiders
their order. It assumes that the ranking is reliable while the scores aseautate probabili-
ties. However, this method derives the thresholds by keeping the ordesary the slopes of
the segments of the convex hull (typically constructed over the training efada a validation
data set). It can be seen as the score-driven threshold choice metkosl tivb scores have
been calibrated by the PAV method.

Now that we better understand the meaning of the threshold choice methodsygtatesthe diffi-

cult question more clearly: given a model, which threshold choice methoddsheuwise to make
classifications? The answer is closely related to the calibration problem. Seoretibal and ex-
perimental results (Robertson et al., 1988; Ayer et al., 1955; Platt, Z2@Pozny and Elkan, 2001,
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2002; Niculescu-Mizil and Caruana, 2005; Niculescu-Mizil and Caa2005; Bella et al., 2009;
Gebel, 2009) have shown that the PAV method (also known as isotonéssegn) is not frequently
the best calibration method. Some other calibration methods could do bettegssBéatt’s calibra-
tion or binning averaging. In particular, it has been shown that “isot@grassion is more prone to
overfitting, and thus performs worse than Platt scaling, when data iseSdaliculescu-Mizil and
Caruana, 2005). Even with a large validation data set which allows thérgotisn of an accurate
ROC curve and an accurate convex hull, the resulting choices arecestsagily optimal for the test
set, since there might be problems with outlierigihg, 2006). In fact, if the validation data set is
much smaller (or biased) than the training set, the resulting probabilities caemaverse than the
original probabilities, as it may happen with cross-validation. So, we hafeetdree to use other
(possibly better) calibration methods instead and do not stick to the PAV metsiddcause it is
linked to the optimal threshold choice method.

So the question of whether we keep the scores or not (and how weeaédpéan in case) depends
on our expectations on how well-calibrated the model is, and whether weetbals (calibration
methods and validation data sets) to calibrate the scores.

But we can turn the previous question into a much more intelligent proce@ateulating the
three expected losses discussed above (and perhaps the otheslithchsite methods as well) pro-
vides a rich source of information about how our models behave. Thisaspénrformance metrics
are all about. Itis only after the comparison of all the results and the ailylaif (validation) data
sets when we can make a decision about which threshold choice method to use

This is what we did with the example shown in Table 2 in Section 1. We evaluateabitiel for
several threshold choice methods and from there we clearly saw whichHsweete better calibrated
and we finally made a decision about which model to use and with which thdesthmice methods.

In any case, note that the results and comparisons shown in Figure @r agécted loss; the
actual loss does not necessarily follow these inequalities. In fact, tleetploss calculated over a
validation data set may not hold over the test data set, and even some lithrsdioe methods we
have discarded from the discussion above (the fixed ones or thelgtiéwem and rate-uniform, if
probabilities or rankings are very bad respectively) could be bettemire garticular situations.

8. Discussion

This paper builds upon the notion of threshold choice method and the espessewe can obtain
for a range of cost proportions (or skews) for each of the threstiawdite methods we have inves-
tigated. The links between threshold choice methods, between performatnis nire general and
for specific score arrangements, have provided us with a much br@ademore elaborate) view of
classification performance metrics and the way thresholds can be chogeais.last section we link
our results to the extensive bulk of work on classification evaluation aalgsmthe most important
contributions and open questions which are derived from this paper.

8.1 Related Work

One decade ago there was a scattered view of classification evaluatiog.pildormance metrics
existed and it was not clear what their relationships were. One first stapderstanding some of
these performance metrics in terms of costs was the notion of cost isometachk, (F003). With
cost isometrics, many classification metrics (and decision tree splitting criteziaharacterised by
its skew landscape, that is, the slope of its isometric at any point in the R@€.sfiaother com-
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prehensive view was the empirical evaluation made by Ferri et al. (200@) analysis of Pearson
and Spearman correlations between 18 different performance meties #ie pairs of metrics for
which the differences are significant. However, this work does nobeddd, at least theoretically,
on what exactly each metric measures, but rather on whether they dgeeedtfchoices in general.

In addition to these, there have been three lines of research in this aigapubvide further
pieces to understand the whole picture.

e First, the notion of ‘proper scoring rules’ (which was introduced in th&éesx see for exam-
ple, the work by Murphy and Winkler, 1970), has been developed tgeeddBuja et al.,
2005) in which it has been shown that the Brier score (MSE loss), loghusssting loss
and error rate (0-1 loss) are all special cases of an integral ovata d&nsity, and that
all these performance metrics can be understood as averages (oals)tegt least theoret-
ically, over a range of cost proportions (see, e.g., the works of GneitidgRaftery, 2007;
Reid and Williamson, 2010 and 8mmer, 2010), so generalising the early works by Murphy
on probabilistic predictions when cost-loss ratio is unknown (Murphy619669). Addi-
tionally, further connections have been found between proper scarieg and distribution
divergencesf{-divergences and Bregman divergences) (Reid and Williamson, 2011)

e Second, the translation of the Brier decomposition using ROC curves (&tatMatsubara,
2007) suggests a connection between the Brier score and ROC camgeparticularly be-
tween refinement loss akdJC, since both are performance metrics which do not require the
magnitude of the scores of the model.

e Third, an important coup d’effet has been given by Hand (2009)ingtéhat theAUC can-
not be used as a performance metric for evaluating models (for a ramgstgfroportions),
assuming the optimal threshold choice methibelcause the distribution for these cost pro-
portions depends on the model. This seemed to suggest a definitive raptween ranking
guality and classification performance over a range of cost proportions

Each of the three lines mentioned above provides a partial view of the praiflelassifier evalua-
tion, and suggests that some important connections between performarice mere waiting to be
unveiled. The starting point of this unifying view is that all the previous wa@kove worked with
only two threshold choice methods, which we have called the score-dhweshold choice method
and the optimal threshold choice method. Only a few works mention these twahdidechoice
methods together. For instance, Drummond and Holte (2006) talk aboudtiealeriteria’ (instead
of ‘threshold choice methods’) and they distinguish between ‘perforeramtependent’ selection
criteria and ‘cost-minimizing’ selection criteria. Hand (personal communicptiays that ‘Hand
(2009) (top of page 122) points out that there are situations where orig ofigose thresholds
independently of cost, and go into more detail in Hand (2010)’. This is ktatthe fixed threshold
choice method, or the rate-uniform and score-uniform threshold chuétleods used here. Finally,
Flach et al. (2011) explore the rate-uniform threshold choice method Whiltandez-Orallo et al.
(2011) explore the score-driven threshold choice method.

The notion of proper scoring rule works with the score-driven thrigsblooice method. This
implies that this notion cannot be appliedAdC—Reid and Williamson (2011) connects the area
under the convex hullXUCH) with other proper scoring rules but nétJC—and to RL. As a
consequence, the Brier score, log-loss, boosting loss and errovoatd only be minor choices
depending on the information about the distribution of costs.
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Hand (2009) takes a similar view of the cost distribution, as a choice thahdspn the infor-
mation we may have about the problem, but makes an important change otraditien in proper
scoring rules tradition. He considers ‘optimal thresholds’ (see Equagdintead of the score-
driven choice. With this threshold choice method, Hand is able to dakiM@ (or yet againrAUCH)
as a measure of aggregated classification performance, but the distribetigses (and criticises)
depends on the model itself. Then he defines a new performance metritigpioportional to the
area under the optimal cost curve. Hand (2010) and Hand and As@agoalos (2011) elaborate
on this by the consideration of asymmetries in the cost distribution.

8.2 A Plethora of Evaluation Metrics

The unifying view under the systematic exploration of threshold choice metinathis paper has
established a set of connections which portray a much more compreherieivof the landscape
of evaluation metrics for classification. However, it has to be emphasisedabl connection be-
tween a metric and a kind of expected loss is associated to a particular setinff@ions. The most
important assumption is the cost model. For the whole paper, we have asthan#dte operating
condition® is simplified to a single parameteror z, from a three-dimensional vectér= (b, c, o).

In order to make this reduction, we have assumed that the threshold chdicednignores the
magnitudeb. In addition, we have either assummglfixed or have linked it ta through the notion
of skew (see appendix A). However, in general, we could considariate distributions for the
parameters i®. We could also consider threshold choice methods which are sensitive rtathie
nitudeb or other combinations of the three parameters. For instance, we couideoashreshold
choice method which is more ‘conservative’ wheis high and more ‘risky’ whei is low. More-
over, in some applications, the operating condition can have even momgiara, since it may
be instance-dependent (Turney, 2000) or can change dependimg\wous errors. Certainly, for
a specific application one must consider the distribution which better fits tlee&jpn or knowl-
edge about the possible operating conditions. This dirsiension the distribution of operating
conditions, has been varied in many different ways by Wieand et al9j1@heiting and Raftery
(2007), Reid and Williamson (2010), Reid and Williamson (2011yBmer (2010), Hand (2009),
Hand (2010) and Hand and Anagnostopoulos (2011), as mentionee. dtbere we have considered
the simplest option, a uniform distribution (except for the fixed threshadicehmethods where the
results are more general), but many other options can be explored,iimchattial, asymmetric or
multimodal distributions.

As said in the introduction, this paper works and varies on a different dilmenby changing
the threshold choice method systematically. The choice of a particular thtedimice method
reflects many things: the information one may have at evaluation time or deployimen the
reliability or calibration degree one expect from a model or the very ckerraf the model, which
may be a crisp classifier, a ranker or a probability estimator. Also, the cbaicalso be just a matter
of practice, since some threshold choice methods are simpler than othets\ahalp into simpler
decision rules. In fact, we have explored seven possibilities here. Sbtherm may look more
reasonable than others, and some may correspond to frequent pisttiatzons, while others have
just been set in order to derive the relation between expected loss atevant evaluation metric.
And there might be other possibilites. For instance, a particular case okéuktfireshold choice
method can be defined by choosing the thresholé{at, which can be generalised, for example,
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in an online setting, if this expected value evolves (or is refined) after toeniation we get from
the actual costs example after example.

All this suggests that many other combinations could be explored by usiregediff options
for the two dimensions, and possibly relaxing some other assumptions, stitdamd did with his
measured (Hand, 2009), when using tt® » distribution for the optimal threshold choice method
instead of the uniformf{y 1) distribution. We think that the same thing could be done with the rate-
driven threshold choice method, possibly leading to new variants @it This is related to the
extensive work where several distributions are presented for cafgukn average of sensitivities
over a restricted range of specificities (Wieand et al., 1989), leading ¢ @hiants oAUC (such
as partialAUC). And, of course, this has also been done with proper scoring rutedbdascore-
driven threshold choice method with many loss functions.

Itis, however, also worthwhile to underline the limitations of aggregated métricomparing
classification models. Graphical plots, where performance is shown inge r@f operating con-
ditions, are more powerful than aggregated metrics, since we can kesalsmethods provided
they are not completely dominated by others. Many threshold choice metivedssgi to particular
kinds of curves that provide at each operating point, rather than jusjgregate.

8.3 Conclusions and Future Work

As a conclusion, if we want to evaluate a model for a wide range of opgratinditions (i.e., cost
proportion or skews), we have to determine first which threshold choitieaniés to be used. If it
is fixed because we have a non-probabilistic classifier or we are gigeatthal operating condition
at evaluation time, then we get accuracy (and unweighted accuracygoasigerformance metric.
If we have no access to the operating condition at evaluation time but netthee dit deploy-
ment time, then the score-uniform and the rate-uniform may be consideitbdVIAE and AUC
as corresponding performance metrics. Finally, in the common situation wielo wot know the
operating condition at evaluation time but we expect that it will be known @ed at deployment
time, then we have more options. If a model has no reliable scores or fliybestimations, we
recommend the refinement lo$RL&qny, Which is equivalent to area under the optimal cost curve)
if thresholds are being chosen using the convex hull of a reliable RO car, alternatively, we
recommend the area under the ROC cuAdQ) if the estimation of this convex hull is not reliable
enough to choose thresholds confidently. More readily, if a model liableescores because it is
a good probability estimator or it has been processed by a calibration méteadye recommend
to choose the thresholds according to scores. In this case, the cori@sp performance metric is
the Brier score.

From this paper, now we have a much better understanding on the relatweebethe Brier
score, theAUC and refinement loss. We also know much better what is happening whersmode
are not convex and/or not calibrated. In addition, we find that usinglgapaced scores, we get
that the Brier score and th&UC are linearly related. Furthermore, we see that if the model is
perfectly calibrated, the expected loss using the score-driven thdeshoice method equals the
optimal threshold choice method.

The collection of new findings introduced in this paper leads to many otheuasgeo follow
and some questions ahead. For instance, the duality between costiprigoand skews suggests
that we could work with loglikelihood ratios as well. Also, there is always tlablem of multi-
class evaluation. This is as challenging as interesting, since there are menyhneshold choice
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methods in the multiclass case and the corresponding expected losseseoatthbcted to some
multiclass extensions of the binary performance metrics. Finally, more wodedad on the rela-
tion between the ROC space and the cost space, and the representatidhasfe expected losses
in the latter space. The notion of Brier curve (Handez-Orallo et al., 2011) is a first step in this
direction, but all the other threshold choice methods also lead to otherscurve
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Appendix A. Univariate Operating Conditions Using Cost Prgortions and Skews

This appendix develops the expressions for univariate operatingticorsdrom the general notion

of operating condition introduced in Section 2.2. One possibility of reduairaparating condition
with three parametei®= (b, ¢, o) into one single parameter, without assuming independenise of
andc, relies on noticing thab is a multiplicative factor in Equation (1). So, we can express loss as
follows:

Q(t;6) = b{cTo(1— Fo(t)) + (1 - C)muFy(t)} = bQy (t; ). (16)
wheren = (¢, Tp). The set of these normalised operating conditions is denotet bryother words,
loss is just a product of the cost magnitudland normalised loss. When calculating expected loss
for a particular threshold choice method, we can write

Q(T(8);6) =bQy(Ty(n),n)- (7)

Note that thisassumes that the threshold choice method is defined in termsasfd hence it is
independent of b

From here, we can just work with Equation (17) and derive expectadios Equation (2) as
follows:

L = [ Qmeepm@de = | bQy(Ty(m).nw(e)de
= /{/ bQy (T (M), M)Wyt (b)) db}WH
_ /Qn T (n {/ by (bln) db}WH

= /Qn Tq(n),N)E{b|n }wi (n)dn.

with wy (n) being the marginal distribution density figr that is,wi (n) = [5” w(8)db, andwg (bjn)
the conditional density fob givenn, that is,wg (b|n) = w(6)/wy(n). And now, let us define
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v (n) = wy (N)E{bn}/E{b} with E{b} = [, E{b|n}wu(n)dn, leading to the following expres-
sion:

L = E{b} [ Qy(Ta(n).n)vu(mcin. (18)

So now we have an expression which seems to isbléteore preciselyE{b}) as a constant factor.
Obviously, this is possible since we have construcigh)) in terms of the conditional expected
valueb, incorporating the variability ab, while isolating its average magnitude. This is interesting
and very useful, because if we have knowledge about the depgnlletweenb andn, we can
incorporate that information inte, without affectingQ, at all. For instance, iff is fixed and
we assume (or knowd (n) to be a Beta distributiof; > and we also assume (or know) that the
values forb are higher for extreme values of(closer to 1 or 0), then the resulting distribution
could be assumed to account for these two things. This would make in¢resapeobability for
extreme values af, making the resulting distribution flatter and closer, for example, to a uniform
distribution. Consequently, in this paper we will frequently asswmpi@)) to be uniform (either
fixing T or combiningTy andc into a single parametes). This really makes it explicit that it is
% what we are assuming to be uniform.

Now, we will derive the two approaches for univariate operating conditigosts and skews)
that we use in this paper. In one of them, we assume that the class progogiprg) is fixed,
leading to the marginal distributiom(c) = vy ((c, To)).

Since we now only have a relevant free parameterQ,, we can now express the normalised
loss as a function af. However, for a mere convenience that will become clear below, we iaclud
the factorE{b} in the loss produced at a decision threshiolhd a cost proportios, adapting
Equation (16):

Qult;0) 2 E{b}Qn t; (¢, o)) = E{b} {cmo(1 - Fo(t)) + (1— R (1)} (29)

With this inclusion ofE{b} we just have the following simple expression for the calculation of
expected loss, derived from Equation (18):

1
Lo = [ QuT(©:ome(c)de (20)
0

Recall thatw; incorporates the variability dj jointly with c.
A different approach to reducing the operating condition to a single paearisethe notion of
skew which is a normalisation of the product between cost proportion and@tapsrtion:

a_ CGlo CTo
CoTo+C1My  CTo+(1—¢)(1—To)’
This means thatg is no longer fixed, but neither is it independentcofVhatz does is to combine

both parameters. This is a different way of reducing the operating comdiitione single parameter.
We thus define loss as depending solelyzoRrom Equation (19) we obtain

Qc(t;c)
E{b}[cro+ (1—c)(1-T10)]

This gives an expression fetandardiseflloss at a thresholtland a skewe.
We then have the following simple but useful result.

z

— 21— FRy(t)) + (1—2Fe(t) £ Qu(t;2). (21)
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Lemma 45 If o = 1y then z= c and Q(t;2) = Wzb}Qc(t; c).

Proof If classes are balanced we haw® + (1—c)(1— 1) = 1/2, and the result follows from
Equation (21). |

This justifies taking the expected value of the cost magnitifd® = 2, which means thap, and

Q. are expressed on the same 0-1 scale, and are also commensurate withtemdich assumes
c=1/2. The upshot of Lemma 45 is that we can transfer any expression foimderms of cost
proportion to an equivalent expression in terms of skew by just setjrg ™ = 1/2 andz=c.
Notice that ifc = 1/2 thenz = 11, S0 in that case skew denotes the class distribution as operating
condition.

In fact, we can also define,(z) by incorporating the variability ob (and alsorp andc). We
could choosev,(z)dz= E{b}[cmﬂi_c)(l_m)]Wc(c)dc, but we can use any other distribution. In the
paper we will use the uniform distribution fov,(z). In any case, this leads to the corresponding
expression of standardised expected loss (as Equation 20):

L, = /OlQZ(T(z);z)WZ(z)dz

So, with this isolation of the average magnitudebpfind the incorporation of its variability into
the univariate distribution, in the paper we will just work with operating cond#ihich are either
defined by the cost proportian(assuming a fixed class distributiag) or by the skewz (which
combinesc andTyy).

Appendix B. Proof of Theorem 29

In this appendix, we give the proof for Theorem 29 in the paper. Theréme works with convex
models as given by Definition 25.
In this appendix, we will use:

™ fl(T)
c(T) = .
( ) Tl'ofo(T)—l—T[lfl(T)
throughout, as introduced by Equation (14). Sometimes we will use subirfdiogd ) depending
on the model we are using. We will also uiBepeT) = f1(T) = % (TlT) — 1>. A convex model

is the same as saying th&(fT) is non-decreasing or thatopgT) is non-increasing.

We usec™!(s) for the inverse of(T) (wherever it is well defined). We will use the following
transformatiorT — s= ¢(T) and the resulting model will be denoted ). We will uses, ¢ or
o for elements in the codomain of this transformation (cost proportions oest@mtween 0 and 1)
and we will useT or 1 for elements in the domain.

For continuous and strictly convex models for whgB) = 0 andc(1) = 1, the proof is signif-
icantly simpler. In general, for any convex model, including discontinuitiessairmight segments,
things become a little bit more elaborate, as we see below.

B.1 Intervals

Since the model is convex, we know tt&T ) is monotone, more precisely, non-decreasing. We
can split the codomain and domain of this function into intervals. Intervals indderoain of
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thresholds will be represented with the lettesind intervals in the domain of cost proportions or
scores between 0 and 1 will be denoted by latteFhe series of intervals are denoted as follows:

l¢ = (00,01),(01,02)...(0i,0i+1)...(0On-1,0n)
Tre(t) ()
It = (To,T1),(T1,T2) ... (Ti, Tix1) ... (Tn-1,Tn)

whereog =0, 0, =1, Tp = — andt, = . Even though we cannot make a bijective mapping for
every point, we can construct a bijective mapping betwigeandl;. Because of this bijection, we
may occasionally drop the subindex fgrandl;.

We need to distinguish three kinds of intervals:

e Intervals wherec(T) is strictly increasing, denoted Hy We call these intervalbijective
sincec(T) is invertible. These correspond to non-straight parts of the ROC cEaeh point
inside these segments is optimal for one specific cost proportion.

e Intervals where(T) is constant, denoted By We call these non-injective intervatenstant
These correspond to straight parts of the ROC curve. All the points instde tegments
are optimal for just one cost proportion, and we only need to consigeofahem (e.g., the
extremes).

e Intervals in the codomain where no valliefor ¢(T) has an image, denoted by We call
these ‘intervalssingular, and address non-surjectiveness. In the codomain they may usually
correspond to one single point, but also can correspond to an actughintden the density
functions are O for some intervals in the codomain. In the end, these jpone:$o discontin-
uous points of the ROC curve. The points(@t0) and(1,1) are generally (but not always)
discontinuous. These points are optimal for many cost proportions.

Table 7 shows how these three kinds of intervals work.

bijegtive constant  singular
I I I
16i,0i11[  [0i,0i1] 01, 0isa]
Tt /N NS

1, Tial U, Tiga] [T, Tisd]

Table 7: lllustration for the three types of intervals.

Now we are ready to get some results:
Lemma 46 If the model m is convex, we have that minimal expected loss can lessegras:
L3 0 (m) = A(m) +A(m)
where:

Tit1

Am =% 2¢(T)To(1— Fo(T)) +2(1 — o(T))muFy(T)}¢'(T)dT (22)

, Ti
JtTialel
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where ¢(T) is the derivative of €T) and:

" 2emo(1— Fo(t)) + 2(1 - ¢)raFu(t) hde (23)
01.0i11[€lg " 7
= S {m(1-Fo(1))(0i11° — 01%) + TuF1 (1) (20111 — 0i11° — 201+ Gi°) } . (24)

10i.0is1[€lo

A(m)

Note that the constant intervals ig are not considered (their loss is 0).

Proof We take the expression for optimal loss from Equation (13):

g = /0 lmtin{ZCTro(l ~Fo(t) +2(1— c)TuFa(t) }dc (25)

In order to calculate the minimum, we make the derivative of the min expressith td0:

2cp(0— fo(t)) +2(1—c)myfi(t) =0
—2c- %slope{T) +2(1-c)=0
1

O _1-c

ﬁslope(T) =

1 l-c

1=
c(T) c
c(T)=c
We now check the sign of the second derivative, which is:

o 1 —c(T) c(T)
—2c- —slopé(t) = —2cx (—— —1)' = —2¢ =2c )
o or ® (c(T) ) o(T)? c(T)?

For the bijective interval;, where the model is strictly convex an(r) is strictly decreasing,
its derivative is> 0. Also,c is always between 0 and 1, so the above expression is positive, and it is
a minimum. And this cannot be a ‘local’ minimum, since the model is convex.

For the constant intervalg where the model is convex (but not strictly), this means ¢ig) is
constant, and its derivative is 0. That means that the minimum can be foang pointT in these
intervals|t;, Ti1[ for the samdo; = oj1]. But their contribution to the loss will be 0, as can be
seen since'(T) equals 0.

For the singular intervalk;, on the contrary, all the values in each intenal o;;1] will give a
minimum for the samé; = 1;44].

So we decompose the loss with the bijective and singular intervals only:

L3 (M) = A(m) +A(m).

For the strictly convex (bijective) intervals, we now know that the minimum &®&j = ¢, and
c(T) is invertible. We can use exactly this change of variable over Equatiora(&bexpress this
for the series of intervalg;, Tj1/.
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Am = S " oe(T (1= Fo(T)) + 2(1 — o(T))TuFa(T) 1 (T)dT.

, Ti
|t Tiralels ™

which corresponds to Equation (22). Note that when there is only ondibgeaterval (the model
is continuous and strictly convex), we have that there is only one integita isum and its limits go
from ¢c~1(0) to c~1(1), which in some cases can go fromw to «, if the scores are not understood
as probabilities.

For the singular intervals, we can work from Equation (25):

Am) = z OHlmin{Zcrro(l—Fo(t))+2(1—c)rt1F1(t)}dc.

o
10i,Gia[€lg ™ ™

As said, all the values in each intervat, o 1[ will give a minimum for the samér; = 1i;4],
so this reduces to:

Am = Y [ o1 Ro(w) + 2(1- omR(n) bde
oi,Giy1[€ls " O

Git1

(1—c)dc}

Gi

= 2 Z {rro(l—Fo(ri)) [(:er+l+n1F1(ri)[c—czzrﬂ}

i,0i11[€lo Oi Oi

= Y {101 -Fo())(0i+1° - 6i%) + TuF1(Ti) (20141 — Gi1° — 20i +0i%) } .

10i,0i11[€lo

which corresponds to Equation (24). |

B.2 c(T) is Idempotent

Now we work with the transformatiof — s= c(T). The resulting model using this transformation
will be denoted bym(©. We will useHo(s) andHs(s) for the cumulative distributions, which are
defined as follows. Since= c(T) by definition we have thay(T) = Ho(c(T)) = Ho(s) and
similarly F1(T) = Hy(c(T)) = Hy(9).

For the intervalst;, Ti,1[ in Iz, we havec(T) is strictly convex we just use 1(s) to deriveHo
andH;. This may imply discontinuities at or Tj; for those values of for which constant intervals
have been mapped, nametyando; 1. So, we need to define the density functions as follows. For
the bijective intervals we just ud®g(s)ds= fo(T)dT andhy(s)ds= f1(T)dT as a shorthand for
a change of variable, and we can clégrandh; usingc=1(s). We do that using open intervals
|, Ti+1[ In T. These correspond {o(Ti), c(Ti+1)[ = ]0i, Ci+1].
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The constant intervals afe, Tiy1] in l;. There is probability mass for every constant interval
[Ti, Tit+1] mapping to a poing = ¢(Tj) = c(Ti+1) = O; = 01, as follows:

[Ho(T)g*t = /T i fo(T)dt = [Fo(T)]"* = Fo(Ti+1) — Fo(Ti). (26)
[Hi(T)Jg*t = /T i f1(T)dt = [Fo(T)]t** = F1(Tir1) — Fa(Ti). (27)

Finally, we just definehg(s) = hi(s) = O for thoses € [0i,0i11] € I, since for the singular
intervals there is only one poimt and the mass to share is 0.

This makesn(® well-defined for convex models (not necessarily continuous and striotly c
vex).

T[lh]_(S)

Lemma 47 For model n® we have that, for the non-singular intervalgg(s) = ToRo(S +TeR(S is
idempotent, that is:

Cro(S) =Ss.

Proof For the bijective (strictly convex) intervals;, 11| mapped intojc(T;),c(Ti+1)[, that is,
|61, 0iqal:

c (S) T[]_h]_(S) . T[lh]_(S)dS
mic) Toho(s) + Tuhi(s)  Toho(s)ds+ Tahy(s)ds
'lTlfl(T)dT T[lf]_(T)

Tofo(T)dT + e fo(T)dT  Tofo(T)+Tufi(T) c(T)=s

For the pointss = ¢(T1;) = ¢(Ti+1) corresponding to constant intervals, we have that using Equation
(26) and (27):

6 o(s) = mhy(s) _ m [Fa(T)]g
m Toho(S) +Tahi(s)  To[Fo(T)]et + M [Fa(T)]r

Sincec(T) is constant in the intervat;, Ti;1[, we have:

_ . ﬂlfl(T) o .
Cmo(S) = beo(T)JrTrlfl(T)_C(T)_S"

B.3 Main Result

Finally, we are ready to prove the theorem treating the three kinds of itderva

Theorem 48 (Theorem 29 in the paper) For every convex model m, we have that:

La(c)(m) =RL(m).
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Proof
Let us start from Lemma 46:

L3 o (M) = A(m) + A(m).
working with Equation (22) first for the bijective intervals:
, Tir1
ANmy= % 2¢(T)To(1— Fo(T)) +2(1—c(T))mFy(T) }c/(T)dT.
[t Tialel 70
Since this only includes the bijective intervals, we can use the correspoadthetween thel
and theF, and making the change= c(T).
. Tir1
ANm) = % 2¢(T)Tio(1— Ho(c(T))) +2(1 —¢(T))muH1 (c(T)) }c'(T)d T
i Tialel 70

C(Tit1)
= > 2s19(1—Ho(s)) +2(1—s)muHi(s) }ds
Jo(ti).cltr,0) el ? <)
Oi+1
S " 251(1— Ho(9)) + 2(1 — )TuH4 () }ds
03,01 [elg ”
and now working with Equation (23) for the singular intervals and also usiegorrespondence
between théd and theF:
. Ci+1
Am) = z 2cH(1— Fo(Ti)) +2(1—¢)Ty (i) Fdc

s
10i,0ia[€lg ™

= > o 2c1(1 — Ho(c(Ti))) +2(1 — ¢)myH, (c(ti)) }dc
16i,0i11/€ls
— v [ 2sm(1- Ho(o)) + 2(1— 9)muth(0y)}ds

o
10i,Gi1[€lg ™!

The last step also uses the renaming of the variable. But &i{se= h1(s) = 0 for the singular
intervals, we have thadp(s) andH1(s) are constant in these intervals, so this can be rewritten as:

Am = 5[ 2so(1- Ho(s) +2(1 - k(9 }ds

16i,0i11[€lg * @
Putting/A(m) and/A(m) together, because the constant intervistfave length 0 (and loss 0), we
have:
Oit+1
Bem = Y / 25151 — Ho(9)) + 2(1— 9)TuHs(9) }ds
16i,0i11[€lg *

We can join the integrals into a single one, even though the whole integral basctdculated by
intervals if it is discontinuous:

Bom = [ (25m0(1Ho(s)) +2(1- 9maH(9)}ds

0o

_ /O " {285(1— Ho(8)) + 2(1 — STy (5) s
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By Theorem 14 (Equation 10) in the paper (and also because this thbotdapointwise) we
have that the last expression equals the Brier score, so this leads to:

'—8 () (m) = Bam(c))'

And now we have that using Definition 8 for tB&S

BSmM%) = /O 1{Troszho(s) +mm(1—9)%hi(s)}ds

This is 0 wherhy(s) = hy(s) = 0, so we can ignore the singular intervals for the rest of the proof.
The calibration loss for modeh(© can be expanded as follows, and using Lemma 47 (which is
applicable except for non-singular intervals) we have:

1 2
cLm9) = /0 <S_Tbhog'1i(3hl(s)> (Toho(s) + Tuhy(s)) ds

1
_ /0 (s— ) (Toho(S) + Ty (s)) ds= 0.
So, we have that:
L9 (M) = RLmM(®)). (28)

And now we need to work witRRL:

1 mhy(s)Toho(s) mhy(s)
RL(M©®) = / 11 / ds
(m) 0 Toho(s) +mhy(s) Toho Tfoho (s)+mmhy(s)

1
= /Troho(s)cm<c)(s)ds:/ Toho(s)sds
0 0

The last step applies Lemma 47 again.
We now need to treat the bijective and the constant intervals separatagyvish the integral
cannot be calculated whéwg andh; are discontinuous.
Oit1
RUMT) = 5 [ roho(sdst Y moho(o)o,

16i.0i:1[€ls 7 O 16i,0i11[€ls

We apply the variable change= c(T) for the expression on the left:

C(Tit1) Tis1 do(T)
TrOhO(S)SdS = Z TrOhO(C(T))C(T) dT dT
16(Ti) C(Tit1)[Els o(ti) [Tl T
e 1 (T) dc(T)
= ho(c(T dT
}Ti,TiJrzl[el}‘/T‘ ol ))nlfl(T)+T[OfO(T) dT
do(T)  mafy(T)
= ho(c(T dT
}Ti,rprzl[el}‘/ri To(e(T)) dT mfy(T)+mofo(T)
Tirt my f1(T)
- fo(T dT.
Z / oo )T[lfl(T)-i-T[ofo(T)

rJT
It Tisafel ™
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We now work with the expression on the right using Equation (26):

) Tit1
oho(c(t)e(m) = Y molR(ME‘m = ¥ 1o/ fo(T)dTew)
Je(Ti),c(Tit1)[€lo T, Tiral€k [t tialele 7T
Ti+
-3 "o fo(T)c(T)dT
[t Ticafel " 0

B Tit+1 T[lfl(T)
N z / nOfO(T)Tllfl(T)—i-Tl'ofo(T)

[Tl 7T

The change frone(t;) to ¢(T) inside the integral can be performed sin¢€ ) is constant, because

here we are working with the constant intervals.
Putting everything together again:

RLM®) = " refo(M) i gp (T (M
(m™) ]Tm’é[el} T Tofo )ﬂlfl(T)+beo(T) +]T,T.+zl[6|1/ri oo )T[J_f]_(T)+Tl'0fo(T)
T T fo(T)m f1(T) © Tofe(T)m fa(T)
_ V) gt ORIV T —RUm).
L metimr 5 rotam T = L m T +roforT m)
This and Equation (28) complete the proof. |
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