Cognitive Load Inference for Ubiquitous **Computing Adaptation**

Master studies, 2021/2022

Dr Veljko Pejović Veljko.Pejovic@fri.uni-lj.si

Mobile Notifications

- Increasingly interactive lives
 - 100 notifications/day per user
- For recipients, a means of information awareness
 - Anxious without notifications
- For senders, a way to initiate remote communication

Poor Notification Timing

• Reduced work efficiency

University of Ljubljana Faculty of Computer and Information Science

	1 255 OISCA 65 0 ATB TALB CHARS 1 255 0 OISCA 68 0 DISCA
	Con
	Test10.java 0,6667
ponentExpression);	Rezutat: 7,3333/10
	Ogled rezultatov: prikaz.htm
	D:\delovni\vaje\vaje2014\izpiti\tret; Verifies a <java> program or class by</java>
	testjava [-?] [-version] JavaProgram[.java] [tests]
<pre>ull).Replace(".java", "");</pre>	[Java class] [test classes] [-txn>[s ms] seconds] [-t seconds] JavaProgram[.ja
, classTestProgram, null, mapa	
	JavaProgram tested java program Java class folder with tested cl tests folder with reference results folder for program ou test classes folder with test class
17	48 0 09 TYER CHARS 1 255 DISCA 50 0 2011

CHARS

Poor Notification Timing

- Reduced work efficiency
- Missed marketing opportunities

Poor Notification Timing

- Reduced work efficiency
- Missed marketing opportunities
- Critical safety consequences

"There is more information available at our fingertips during a walk in the woods than in any computer system, yet people find a walk among trees relaxing and computers frustrating. Machines that fit the human environment instead of forcing humans to enter theirs will make using a computer as refreshing as taking a walk in the woods."

Mark Weiser, 1991

Building a system for intelligent notification scheduling

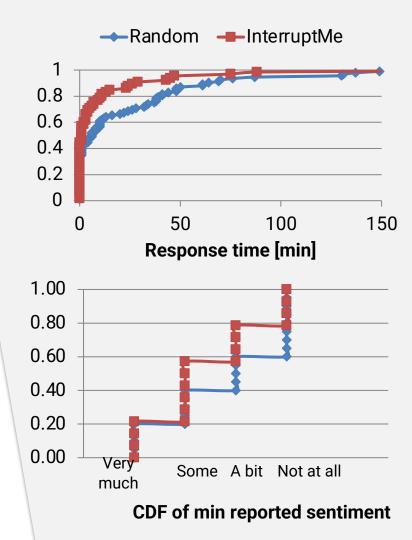
University of Ljubljana Faculty of Computer and Information Science V. Pejovic and M. Musolesi InterruptMe: Designing Intelligent Prompting Mechanisms for Pervasive Applications UbiComp'14, Seattle, WA, USA

Towards Timely Interaction

- **Premise:** notification timing is the key!
- Path: identify opportune moments to deliver information
- Hypothesis: sensed context reveals interruptibility

InterruptMe

- Android library for notification management
- Senses
 - accelerometer
 - location
 - time of day
- Machine learning model learns a user's interruptibility patterns bitbucket.org/veljkop/intelligenttrigger



Problem solved?

Real-world Trial

 ... no significant effects of notification scheduling on the usage of a behavioural change intervention app

L Morrison et al., The effect of timing and frequency of push notifications on usage of a smartphone-based stress management intervention: an exploratory trial, PLoS ONE, Vol 12, (2017).

University of Ljubljana Faculty of Computer and Information Science



Who do you want to spend more time with? What will you do? When will it happen?

lan 1

Who

Family

(e.g. partner, friends, colleagues, family, general public)

hat Go for a walk

.g. call round, meet in town, tea break at work)

^{re} Park

. Saturday lunchtime, Sunday morning, nday at 11am)

Understanding factors affecting notification acceptance

University of Ljubljana Faculty of Computer and Information Science A. Mehrotra, M. Musolesi, R. Hendley and V. Pejovic Designing Content-driven Intelligent Notification Mechanisms for Mobile Applications UbiComp'15, Osaka, Japan, September 2015.

Towards Timely Interaction

- **Premise:** location, movement, and time sensing is not enough
- Path: monitor other on-device factors that may impact interruptibility
- Hypothesis: application type, content, sender, etc. determine a user's reaction

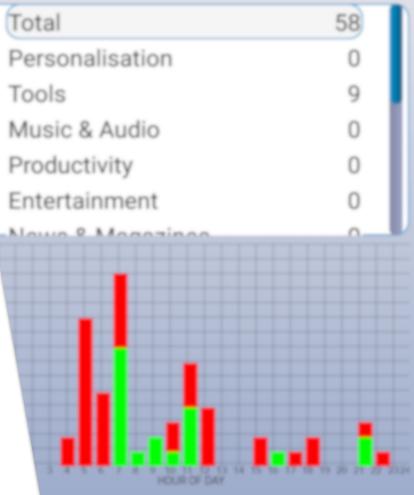
NotifyMe Mobile App

- Senses context
- Records reaction to a notification
 - Notification data
 - Category
 - Sender ID

content

- Gathers user preferences
 - Where and when would you like to receive notifications with similar

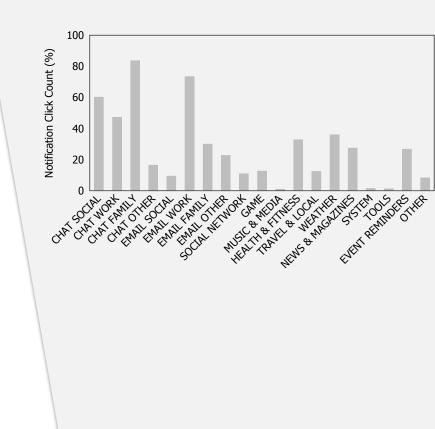
University of Ljubljana Faculty of Computer and Information Science



cates accepted notifications and red indicates the notifications with no response.

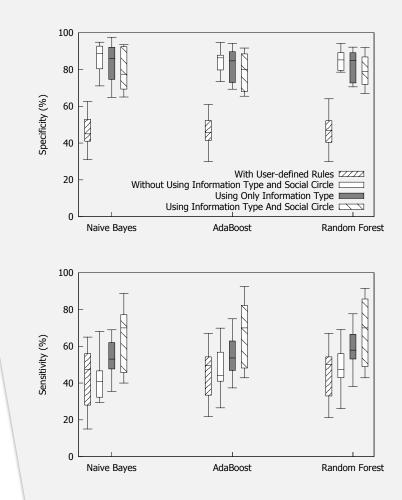
Notification Reaction Analysis

 Notification click count differs between application types (i.e. content type) and sender-receiver relations



Notification Reaction Prediction

- By using information type and social circle we were able to predict the acceptance of a notification within 10 minutes from its arrival time with an average sensitivity of 70% and a specificity of 80%
- Better than user-defined rules



User reaction does not imply user satisfaction

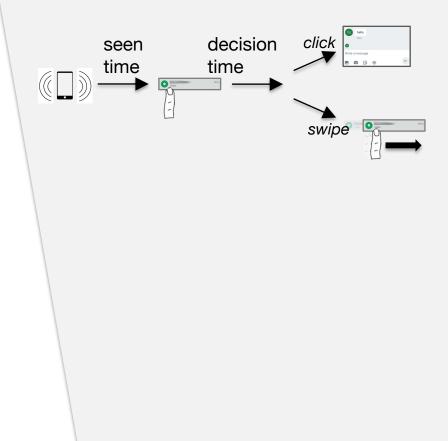
University of Ljubljana Faculty of Computer and Information Science A. Mehrotra, V. Pejovic, J. Vermeulen, R. Hendley and M. Musolesi My Phone and Me: Understanding User's Receptivity to Mobile Notifications ACM CHI'16, San Jose, CA, USA, May 2016.

Towards Timely Interaction

- Premise: we identified a number of factors that impact reactions, but reactions are diverse
- **Path:** monitor users' actions and the surrounding factors
- Hypothesis: sensed context reveals reaction and disruption

My Phone and Me App

- Automated logging:
 - Notification time of arrival, seen, removal
 - Notification response
 - Notification details (title, app)
 - Alert type
 - Context (activity, location, etc.)
- Experience sampling:
 - Sender-receiver relationship, personality, task engagement



Disruption Analysis

- Task complexity and interruptibility:
 - More disruptive if it arrives when the user is in the middle of or finishing a task
 - Perceived disruption increases with the complexity of an ongoing task
 - Faster to react if engaged in a complex task

University of Ljubljana Faculty of Computer and Information Science Also confirmed:

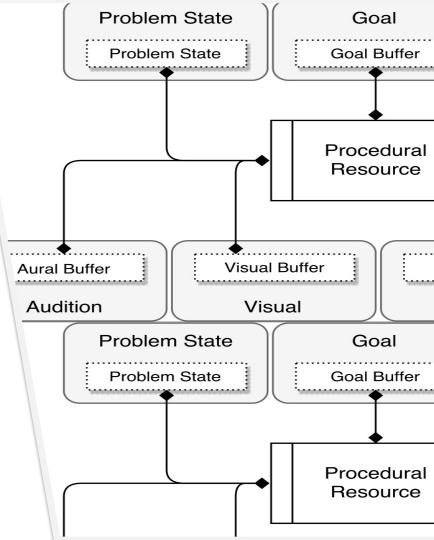
Pejovic et al., "Investigating The Role of Task Engagement in Mobile Interruptibility", Smarttention workshop with Ubicomp'15

How does a thought get disrupted?

Theory of Multitasking

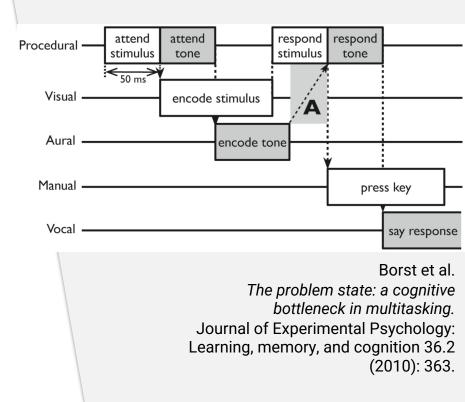
- Resources:
 - Perceptual and motor
 - Cognitive
 - Procedural memory
 - Declarative memory
- Mechanisms:
 - Resource use is exclusive one task at a time per resource
 - Multiple problem threads run in parallel, but processing is still serial

University of Ljubljana Faculty of Computer and Information Science Salvucci and Taatgen. *Threaded cognition: an integrated theory of concurrent multitasking*. Psychological review 115.1 (2008): 101.



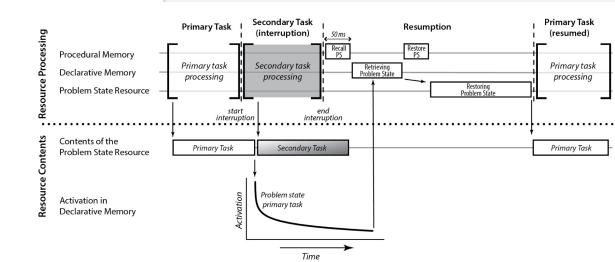
Theory of Multitasking

• Interference when two or more threads ask for the same resource at a time



Theory of Multitasking

 Complex tasks require problem state saving/retrieving

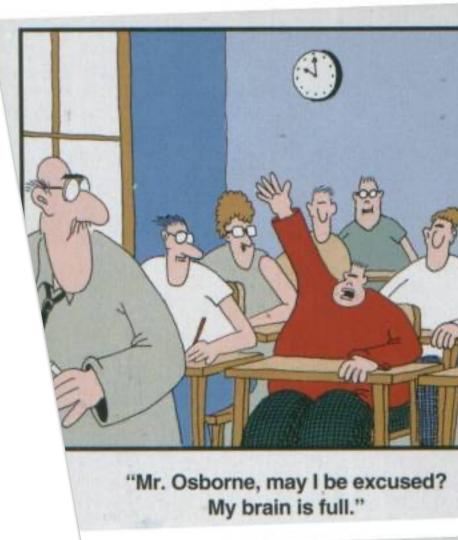


Borst et al.

What Makes Interruptions Disruptive?: A Process-Model Account of the Effects of the Problem State Bottleneck on Task Interruption and Resumption. CHI'15, 2015.

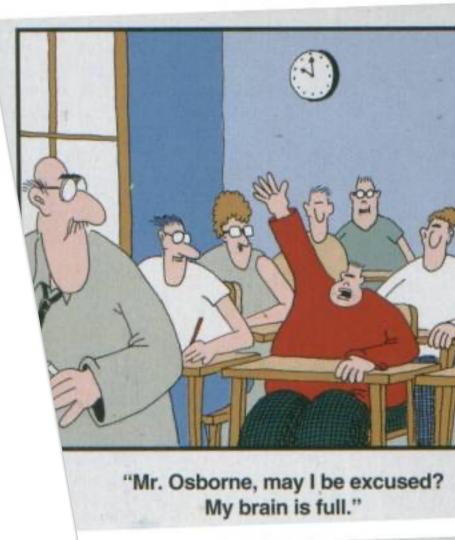
Implications on Mobile Attention Management

 Interruptions are more disruptive if they require problem state switching



Implications on Mobile Attention Management

- Make them less disruptive by interrupting:
 - At moments when a task is not fully active (e.g. just starting, or just finished)
 - At moments when a task does not require a problem state
 - At moments when a user is working on a task that is well practiced, a routine



Can we automatically infer task engagement with smartphones?

University of Ljubljana Faculty of Computer and Information Science G. Urh and V. Pejovic, *TaskyApp: Inferring Task Engagement via Smartphone Sensing* Ubittention workshop with ACM UbiComp'16, Heidelberg, Germany.

No

University of Ljubljana Faculty of Computer and Information Science G. Urh and V. Pejovic, *TaskyApp: Inferring Task Engagement via Smartphone Sensing* Ubittention workshop with ACM UbiComp'16, Heidelberg, Germany.

Can we automatically infer task engagement with wearables?

University of Ljubljana Faculty of Computer and Information Science M. Gjoreski, M. Luštrek and V. Pejović, My Watch Says I'm Busy: Inferring Cognitive Load with Low-Cost Wearables Ubittention workshop with ACM UbiComp'18, Singapore.

Physiological Signals for Cognitive Load Inference

- Premise: heart rate (variability), electrodermal activity, pupil dilation, EEG changes correlate with CL changes
- Path: low-cost wearable sensing devices can capture signals ~ cognitive load
- **Hypothesis:** ML on these data to infer cognitive load

Collected Data

- Preliminary data:
 - Demographics
 - Cognitive capacities (N-back test)
 - Personality (Hexaco) test

Collected Data

- Primary (PC-based) task
 - Adapted from Haapalainen et al.
 - Six task types, each with three difficulty levels
 - NASA TLX after each task
- Physiological measurements
 - Heart rate intervals (R-R), galvanic skin response (GSR) and skin temperature (ST)
 - Secondary task

Experiment

Part 1 Questionnaire		hic aire 2-back	task 3	minutes Rest	3-back tasl	3 minu Rest		Personality Questionnaire	
Part 2				Task load Quest. + Rest			3 minutes Rest	6 cycles	

• Demographics:

- 25 users (21 completed successfully)
- 20-58 years old
- 5 female

Data Overview

- Extracted 81 physiological, demographic, cognitive capacity, and personality features
- Predicting three CL measures:
 - TLX (subjective)
 - Opacity (sec. task performance)
 - Task label (objective)

_	P-Task	(μ±δ)TLX	(μ±δ)Opacity	r(TLX-DTD)	r(TLX-Opacity)	r(DTD-Opacity)
_	HP	13.8 ± 4.7	0.1 ± 0.04	0.34	-0.01	0.13
	FA	17.9 ± 7.8	0.1 ± 0.03	0.16	-0.08	0.07
	GC	17.4 ± 6.1	0.1 ± 0.06	0.48	-0.06	-0.05
	NC	17.7 ± 7.7	0.08 ± 0.03	0.34	-0.14	-0.01
	SX	17.1 ± 7.7	0.12 ± 0.1	0.40	-0.21	-0.33
	PT	17.4 ± 9.0	0.14 ± 0.16	0.43	-0.08	-0.27
	Overall	16.9 ± 7.4	0.1 ± 0.08	0.34	-0.09	-0.13
					Λ	

Secondary task shows very weak correlation with TLX or DTD

Cognitive Load Prediction

- Cast into a classification task
- Classifiers: Naïve Bayesian, Random Forest, Gradient Boosting, AdaBoost, SVM, KNN, Trees
- Modestly better than the baseline
- Confuses neighbouring difficulties

Target		μ		Best model Accuracy increase relative to Majorit					ty		
	Taiget	Majority	model	μ Accuracy	HP	FA	GC	NC	SX	PT	μ
	TLX	40%	RF	47%	6%	-5%	5%	6%	21%	10%	7%
	DTD	33%	NB	51%	27%	11%	10%	22%	14%	24%	18%
	Opacity	36%	GB	46%	16%	5%	13%	6%	3%	20%	10%

	Easy	Medium	Difficult			
Easy	158	101	65			
Medium	98	163	63			
Difficult	69	91	164			
Precision	49%	46%	56%			
Recall	49%	50%	51%			
F1	49%	48%	53%			
Accuracy		51%				

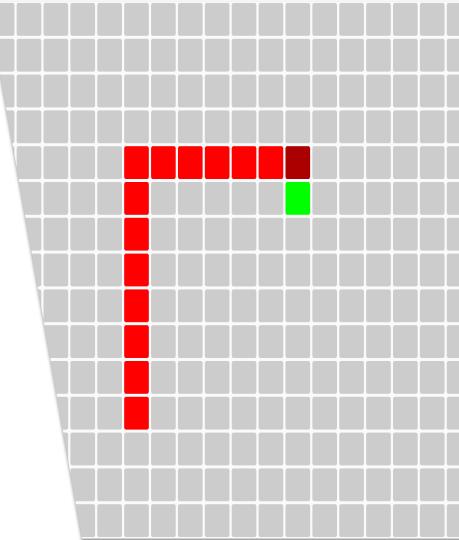
What if the task is a mobile game?

University of Ljubljana Faculty of Computer and Information Science T. Knez, M. Gjoreski, and V. Pejović, Analiza vpliva težavnosti računalniške igre na izmerjenevrednosti fizioloških signalov HCI-IS '19, Ljubljana, Slovenia

Collected Data

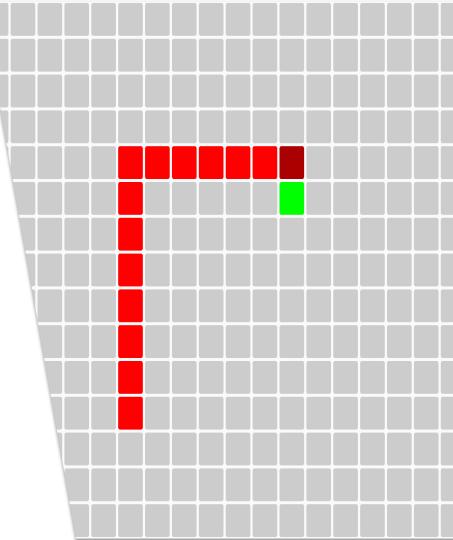
https://gitlab.fri.uni-lj.si/lrk/mobile-cogload-dataset

- Physiological signals with MS Band 2
 - Heart rate intervals (R-R), galvanic skin response (GSR) and skin temperature (ST)
- Mobile game
 - Objective difficulty data
 - Subjective difficulty (NASA-TLX)
- Personality test



Cognitive Load Prediction

- Predicting subjective difficulty was not achieved
- Objective difficulty for the twoclass problem (easy vs difficult) predicted with 67% accuracy (c.f. 59% baseline)
- Heart rate and skin conductance features are the most informative

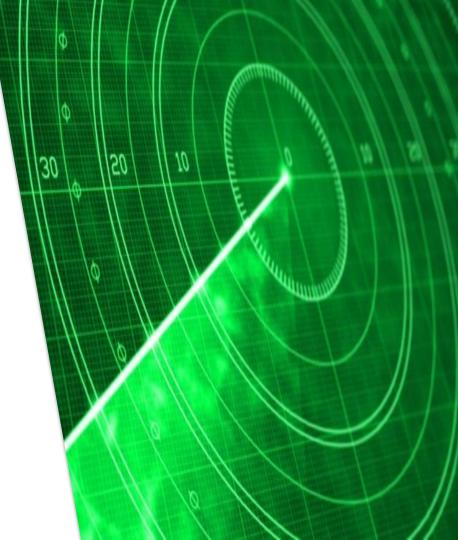


Fully unobtrusive task engagement inference

University of Ljubljana Faculty of Computer and Information Science T. Matkovič and V. Pejović, *Wi-Mind: Wireless Mental Effort Inference* Ubittention workshop with ACM UbiComp'18, Singapore.

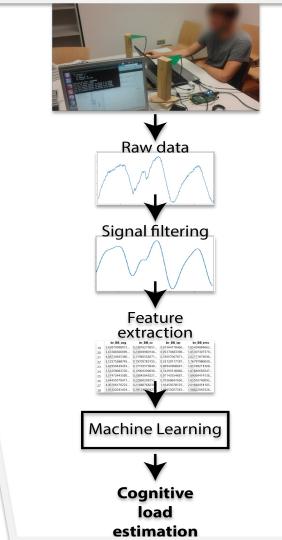
Wireless Cognitive Load Inference

- Premise: radar can detect breathing and heart beat related body movement
- Path: custom radar
- **Hypothesis:** filtered radar signals as a basis for ML models of CL



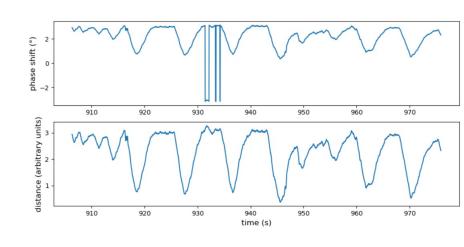
Wi-Mind

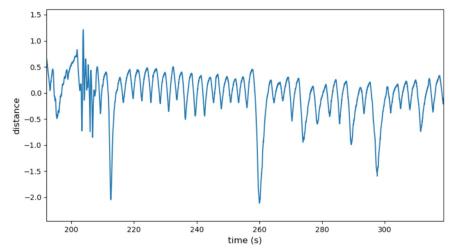
- Software-Defined Radio (SDR) implementation of FMCW radar followed by phase analysis
- Monitor movement as a user is solving tasks of different difficulty
- Extract heart beat and breathing-related features
- Build ML models



From EM Waves to Physiological Signals

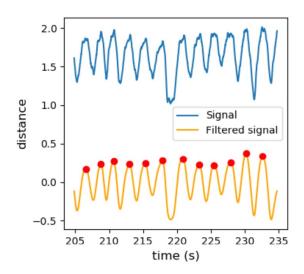
- Preprocessing:
 - Unwrapping phase
 - Filtering HF and LF noise

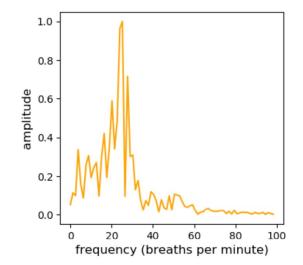




From EM Waves to Physiological Signals

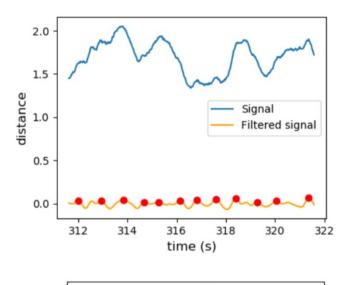
- Preprocessing:
 - Unwrapping phase
 - Filtering HF and LF noise
- Extracting breathing signal
 - Breathing rate (via FFT) features: mean rate, power in different bands, etc.
 - Inter-breath features (peak detection): avg. interval, variation, I:E, etc.
- Meta-feature
 - Is the signal "clean"?

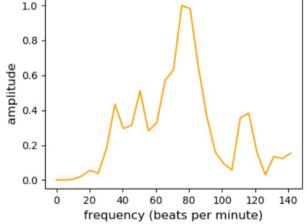




From EM Waves to Physiological Signals

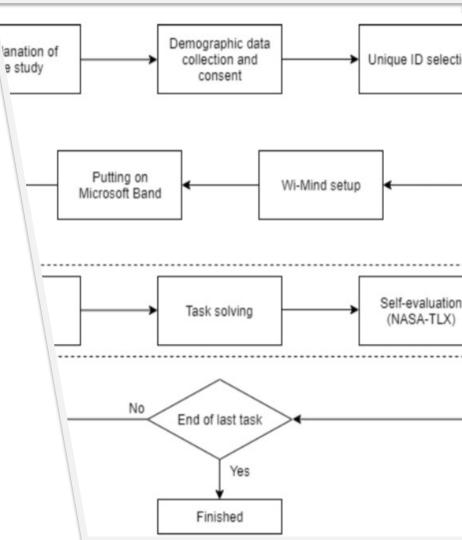
- Preprocessing:
 - Unwrapping phase
 - Filtering HF and LF noise
- Extracting heart beat signals:
 - Heart rate (FFT)
 - Heart rate variability HRV (peak detection + filtering) features: RR intervals, LF and HF HRV





WiMind Experiments

- Primary (PC-based) task
 - Adapted from Haapalainen et al.
 - NASA TLX after each task



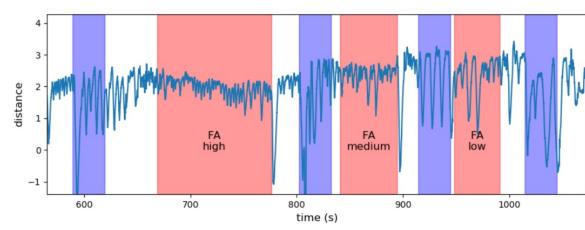
WiMind Experiments

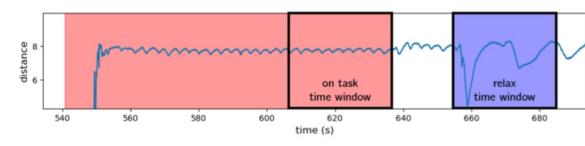
- Primary (PC-based) task
 - Adapted from Haapalainen et al.
 - NASA TLX after each task
- WiMind wireless measurements
- MS Band + Android app
- Demographics
 - 23 users
 - 20-38 years old

– 6 female, 17 male

Results

- Labelling signals via time windows:
 - Last 30 seconds of task engagement (label "busy")
 - 30 seconds of explicit relaxation (label "relax")

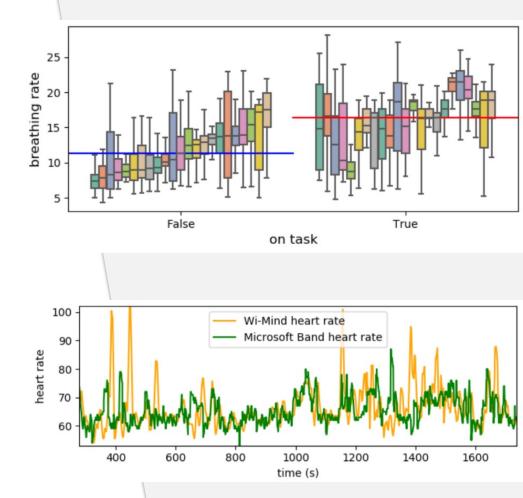




But first...

• Breathing rate validation

• Heart rate validation



Inferring Task Engagement (Binary)

- Normalised breathing rate
- Different ML models from the "standard" toolbox
- Leave-one-person-out validation

Method	AUC	Accuracy
k-NN	0.752	0.704
SVM	0.670	0.580
Random forest	0.806	0.746
Naïve Bayes	0.780	0.723
Majority	0.5	0.5

Inferring Task Engagement (Binary)

- Normalised breathing rate
- Different ML models from the "standard" toolbox
- Leave-one-person-out validation
- Personalised models improve performance for some users but overall no improvement

Method	Accuracy
k-NN	0.604
SVM	0.721
Random forest	0.721
Naïve Bayes	0.734
Majority	0.5

Inferring Task Engagement (E/M/H)

- Unable to distinguish among different complexity levels
- Results are better if we consider only Easy and Hard tasks
- Linear regression for TLX gives similarly poor results

Method	Accuracy
k-NN	0.343
SVM	0.328
Random forest	0.369
Naïve Bayes	0.337
Majority	0.34

Neural Network Approach

- Long Short-Term Memory (LSTM) neural network
- Raw wireless phase signal
- Accuracy results:
 - Binary (busy/relaxed): 0.752 (vs 0.5 majority; 0.746 random forest)
 - No improvement with tertiary (E/M/H) or task-specific models

Towards (very accurate) unobtrusive cognitive load inference

Summary

- (Relatively) successfully detect whether a person is engaged in a task or not even with WiMind
- Detecting the level of engagement is challenging even with direct sensing with off-the-shelf wearables
- Secondary task (the way we designed it) is not a reliable proxy for task complexity or TLX

Expanding Our Approach

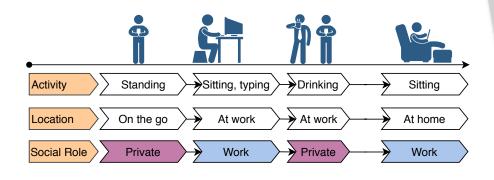
- The role of personality traits
- Heterogeneous data sources:
 - Phone: accelerometer, calendar info, screen on/off
 - Wristband: HR(V), GSR, accelerometer, barometer, UV
 - Wireless: breathing, HR(V)
- Task types that elicit the strongest physiological response

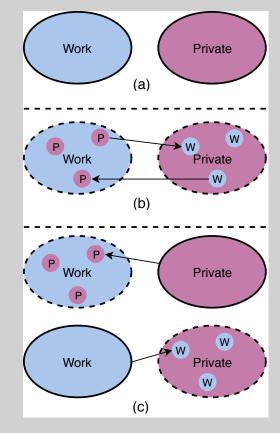
Research Directions

- Which type of cognitive load can/should we detect:
 - Intrinsic
 - Extraneous
 - Germane
- Should we infer objective or subjective task difficulty?

Research Directions

• How do social roles impact interruptibility?





C.Anderson, et al.

University of Ljubljana Faculty of Computer and Information Science The Impact of Private and Work-Related Smartphone Usage on Interruptibility Ubittention workshop with ACM UbiComp'19, London, UK

Collaboration Opportunities

- Pick up our work and develop it further:
 - InterruptMe on Bitbucket
 - Wi-Mind on Github (data, too)
 - Wearables study data on Github
 - "A Survey of Attention Management Systems in Ubiquitous Computing Environments" by Anderson et al., ACM IMWUT (Ubicomp) 2018

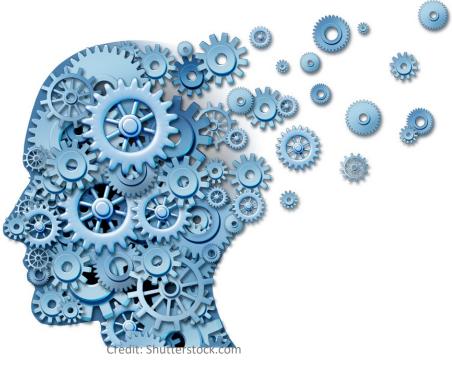
Collaborators

- Wi-Mind:
 - Tilen Matkovič, Uni. of Ljubljana
- Wearables:
 - Martin Gjoreski, Mitja Luštrek, Institut Jožef Stefan, Ljubljana
 - Timotej Knez, Uni. of Ljubljana
- TaskyApp:
 - Gašper Urh, Uni. of Ljubljana
- Mobile Interruptibility:
 - Christoph Anderson, University of Kassel
 - Abhinav Mehrotra, Samsung Al, UK
 - Mirco Musolesi, University College London

Thank You!

Find out more:

"A Survey of Attention Management Systems in Ubiquitous Computing Environments" by Anderson et al., ACM IMWUT (Ubicomp) 2018



Dr Veljko Pejović

Faculty of Computer and Information Science

University of Ljubljana, Slovenia

Veljko.Pejovic@fri.uni-lj.si

@veljkoveljko

TaskyApp

- Background sensing of device movement, ambient sound, collocation with other devices
- Data labelling via experience sampling and retroactive assisted labelling

University of Ljubljana Faculty of Computer and Information Science

TaskyApp

New task Task complexity will be: Pretty hard arting after: 5s 15s 30s 60s START SENSING LABEL TASKS CHECK STATISTICS

TaskyApp

- Recruited eight office workers for five weeks
 - 232 labelled instances (3035 unlabelled)
 - Most data between 8am and 6pm

University of Ljubljana Faculty of Computer and Information Science

TaskyApp

New task

Task complexity will be:

	Pretty hard	()
	•	
arting a	fter:	
) 5s	🧿 15s 🔵 30s 🔵 60s	
	START SENSING	
	LABEL TASKS	
CHECK STATISTICS		

Data Analysis

- Linear regression (N=232) fit with sensed features as independent variables and task difficulty (1-5) as a dependent variable
 - Movement data gives the most informative features
 - The regression explains only a small part of the data (R²=0.19)

Variable	Coefficient	t (sig.)
Acc. Y-axis mean	038	-1.84 (.068)
Acc. Z-axis mean	.026	1.43 (.153)
Gyro. mean intensity crossing rate	0.003	4.06 (.000)
Gyro. intensity variance	0.200	1.24 (.217)
Hour of day	.067	3.49 (.001)
Majority	0.5	0.5

Data Analysis

- Classify a task engagement moment as either "easy" or "difficult" depending on the sensed features
 - We experimented with different classifiers but Naïve Bayes seems to work best (probably due to the low amount of data)
 - 62.5% accuracy (52.8% baseline)
 - "Favourable" errors

EASY'	DIFFICULT'	
45 (19.4%)	62 (26.7%)	EASY
25 (10.8%)	100 (43.1%)	DIFFICULT

What's the role of social roles?

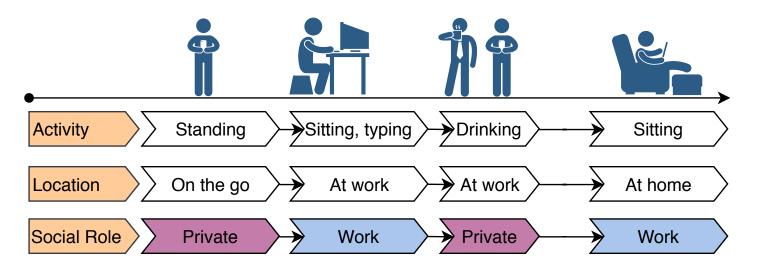
University of Ljubljana Faculty of Computer and Information Science C. Anderson, J. Heinisch, S. Ohly, K. David, and V. Pejovic The Impact of Private and Work-Related Smartphone Usage on Interruptibility Ubittention workshop with UbiComp'19, London, UK, September 2019

Social Role Theory

- People play roles
 - Work and family (private) are the most prominent roles
 - Our behaviour is driven by the assumed role

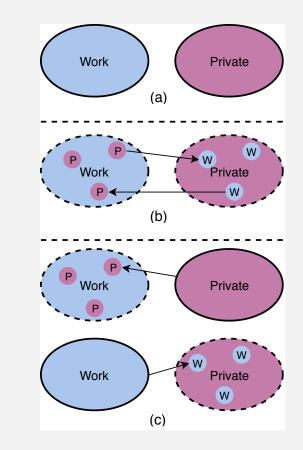
Social Role Theory

• Role is related to a wider context



Boundary Theory

- Role handling
 - Permeability of the role boundaries varies between roles and individuals
 - Personal preferences
 - Segmenters
 - Integrators
 - Private-first
 - Work-first



Impact of ICT

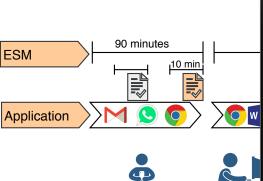
- Multiple roles may conflict
 - Time-based conflict
 - Strain-based conflict
 - Behaviour-based conflict
- ICTs can weaken the boundaries
- ICTs can also facilitate role switch
 - E.g. different email folders for private and work stuff

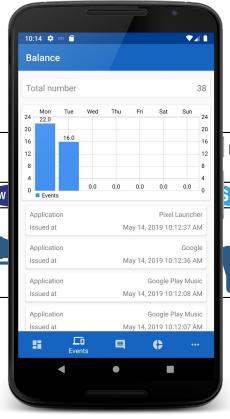
Research Questions

- How does the currently enacted role impact interruptibility?
- Do personal role boundary preferences modulate notification handling behaviour?
- Can we automatically detect the current role from smartphone usage data?

Methodology

- Android application
- Automated sensing
 - Notifications
 - Context
- Experience sampling
 - Social role
 - Interruptibility
- Four participants
 - 11 weeks

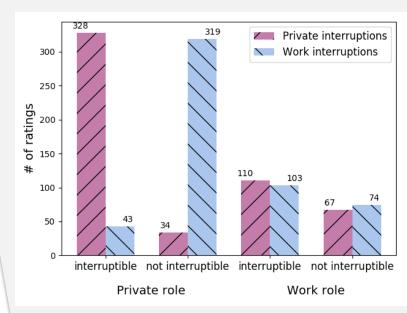




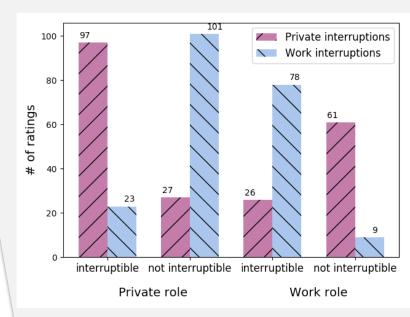
Roles and Smartphone Usage

- Application usage
 - Application sequence mining using Apriori algorithm
 - (User-)unique role-specific app sequences
 - Example:
 - {('Teams', 'System-UI', 'Gboard'}), ({'Teams', 'Gboard'}), ({'Einstellungen', 'System-UI'}), ({'Teams'}), ({'Slack'})...
 - ({'Chrome', 'Google News'}), ({'Chrome',
 'Gboard'}),
 ({'WhatsApp', 'Delta'}),
 ({'System-UI', 'Google News'}), ({'Chrome',
 'Delta'}),
 - ({'Delta', 'Gboard'})...

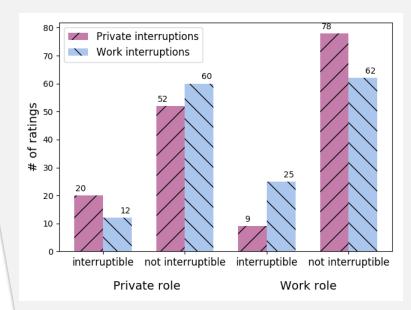
- Both current role and individual preferences impact notification handling
 - User #1:
 - Slightly more interruptible at work
 - Firm work->private boundary
 - More permeable private->work
 - Private-first person



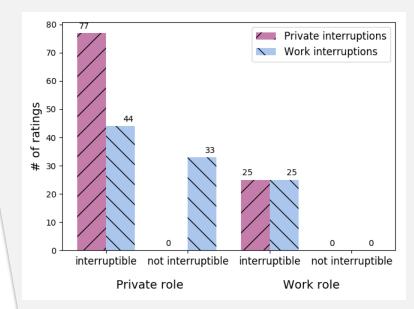
- Both current role and individual preferences impact notification handling
 - User #2:
 - Slightly more interruptible at work
 - Firm work->private boundary
 - Firm private->work
 - Segmenter



- Both current role and individual preferences impact notification handling
 - User #3:
 - Lower interruptibility throughout
 - Loose work->private boundary
 - Loose private->work boundary
 - Integrator (to an extent)



- Both current role and individual preferences impact notification handling
 - User #4:
 - High interruptibility throughout
 - Loose private->work boundary
 - Firmer work->private boundary
 - Private-first (to an extent)



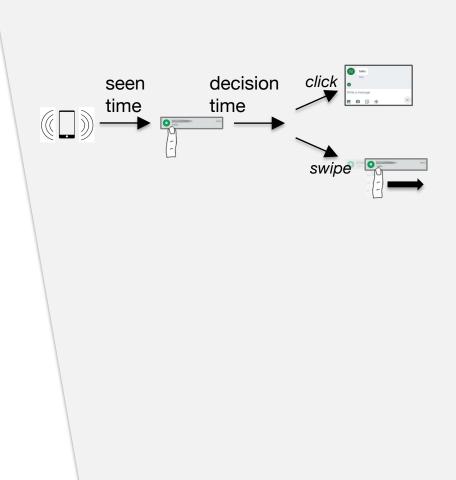
Why Does this Matter?

- "Influence of smartphone on workplace stress is modulated by how individuals use smartphones and how they desire to use them" Stich et al., Workplace stress from actual and desired computer-mediated communication use: a multi-method study, 2017
- We investigated disruptiveness of mobile notifications

A. Mehrotra, V. Pejovic, J. Vermeulen, R. Hendley and M. Musolesi, *My Phone and Me: Understanding User's Receptivity to Mobile Notifications* ACM CHI'16, San Jose, CA, USA, May 2016.

My Phone and Me App

- Automated logging:
 - Notification time of arrival, seen, removal
 - Notification response
 - Notification details (title, app)
 - Alert type
 - Context (activity, location, etc.)
- Experience sampling:
 - Sender-receiver relationship, personality, task engagement



Disruptiveness: Impact of Sender

- Most disruptive notifications come from:
 - Subordinates at work
 - Colleagues
- Least disruptive:
 - Family

However, no info on the current social role in this dataset

Next Steps

- Learn how people want to use ICTs
- Observe how people actually use ICTs
- Adapt notification management to user cater to needs

Next Steps

- Large-scale multi-device study
 - PC and phone usage monitoring
 - ESM
- Infer social roles from apps
- Infer preferences from phone usage
 - Silent mode activated
 - Notification dismissed
- Tuneable notification management system

Faculty of Computer and Information Science

