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Test for linear independence of solutions

Let x1(t),...,xn(t) be the solutions of the homogeneous part of (??) and
form a matrix
x(t) Xn(t)
x1(t) Xn(t)
Wa(e)ooxa(®) = | _
X{n_l)(t) . X,(,n_l)(t)

We call the determinant
o(t) = det W(xq(t),...,xa(t)): I = R

the Wronskian determinant of W(xy(t),...,xn(t)), where [ is the interval
on which t lives.

Theorem (Existence and uniqueness of solutions)

If x1(t),...,xa(t) are solutions of a LDE with continuous coefficient
functions a1 (t), ... an(t), then their Wronskian is either identically equal to
0 or nonzero at every point. In other words, if W(x1,...,x,) has a zero at

some point tg, then it is identically equal to O.
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Proof of theorem

Let 7, be the set of all permutations of the set {1,...,n}. Now we differentiate ¢(t) and
obtain

¢ (t) = (Z X)Xy X ) ()

oET
/ 1 n—1
= 3 (o) X0 < ()
oET

1)\’ -1
+x(8) (X)) (0 X000 + -

omOx (0 (X (0) )
(Z <0y (00, )~~-x£,"(;)”<t)> +

(Zxa @ (X ()X (1) - 1<t)>

oETy

+ (Z o () (E)X 0y (£) - xf."(;@(t)x;"&)(r)) :

oETy
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Now notice that the first n — 1 summand are the determinants of the matrices

[ xa(t) xa(t)
() ()
x7(t) x(t)

L) )

and hence are equal to 0.
For the last summand use the initial DE (?7?) to express

)

n—1
o(n) = _a"_l(t)xt(y(n) - ao(t)XU(”)'

The summands of the from —a;(t)x((fi()n) for i < n—1 give 0 terms in the sum > __
since the sum is just the —a;(t) multiple of the determinant of the form (1), while the
term fan_l(t)xc(r'g;)l) gives
—an-1()é(t).
It follows that ¢(t) satisfies the DE
¢'(t) = —an-1(t)o(t).

The theorem follows by noticing that the solution of this DE is
o(t) = ke /=10 " where k € R.

(1)
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Second order homogeneous LDE with constant coefficients

We are given a DE
ax + bx + cx =0,

where a, b, c € R are real numbers. We know from the theory above that

the general solution is
X(t, G, C2) = C1X1(1.') + C2X2(1.'),

where (i, C; € R are parameters and
1. x1(t) = eMt and xp(t) = et if the characteristic polynomial has two
distinct real roots,
2. x1(t) = e“fcos At and xo(t) = e*'sin Bt if the characteristic
polynomial has a complex pair A1p = a + i3 of roots, and
3. x1(t) = e, xo(t) = te’ if the characteristic polynomial has one
double real root.
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Nonhomogeneous LDEs
We are given the nonhomogeneous LDE

XM a1 ()XY 4 ag(t)x = F(1),

where f : | = R is a nonzero function on the interval /. The following
holds:
> If x; and x» are solutions of the nonhomogeneous equation, the
difference x; — x> is a solution of the corresponding homogeneous
equation.
» The general solution is a sum

X(ta Cla C2) = Xp + Xp = Xp + Clxl + -+ CnXm

where x,, is a particular solution of the nonhomogeneous equation and
X1,...,Xp are linearly independent solutions of the homogeneous
equation.

» The particular solution can be obtained using the method of
“intelligent guessing” or the method of variation of constants.
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The method of “intelligent guessing” typically works if the function 7(t)

belongs to a class of functions that is closed under derivations, like
polynomials, exponential functions and sums of these.

Example (X + x + x = t?)
We are guessing that the particular solution will be of the form
x,(t) = At?> + Bt + C.

We have that
Xp(t) = 2At + B, X,(t) = 2A,

and so

X+ x+x=2A+ (2At + B) + (At? + Bt + C)
= A2+ 2A+B)t+(2A+ B+ ()

The initial DE gives us a linear system in A, B, C :
A=1 2A4+B=0, 2A+B+C=0

with the solution A=1,B = —2,C = 0. Hence, x,(t) = t> — 2t.
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Example (X — 3x + 2x = &%)

We are guessing that the particular solution will be of the form
_ An3t
xp(t) = Ae.

We have that
xp(t) = 34e,  %,(t) = 9Ae™,

and so
X — 3% + 2x = 9Ae3" — 3(3Ae) 4 24" = 24

3t

The initial DE gives us an equation 2A = 1 and hence, x,(t) = €.
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Example (X — x = ef)
The particular solution will not be of the form x,(t) = Ae', since this is a solution
of the homogeneous equation, we are guessing that the correct form in this case is

xp(t) = Ate’.

We have that
xp(t) = A(e' + te'), X,(t) = A(2e" + te),

and so

X —x = A(2e" + te') — Ate' = 2Ae".

The initial DE gives us an equation 2A = 1 and hence, x,(t) = 3 te’.
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Example (X + x = =)

cost
Let us first solve the homogeneous part X + x = 0. The characteristic polynomial
is p(A\) = A% + 1 with zeroes

A2 ==xi=cost=Eisint.
Hence, real solutions of the DE are
x1(t) = cost and xp(t) = sint. (2)
So the general solution to the homogeneous part is
x(t) = Cixa(t) + Goxo(t), where (i, G € R are constants.
Now we are searching for the particular solution x,(t) of the form

xp(t) = Gi(t)xa(t) + Go(t)xa(t).
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Thus,

)-(P(t) = Cl(f)Xl(t) + Cl(t)).(l(t) + Cz(t)Xz(t) + Cz(t)).Q(t). (3)
We force an equation _ _
G(t)x(t) + G(t)x(t) = 0. (4)
Differentiang (3) further under the assumption (4) we get
(1) = (GB)5a(t) + G(t)5() + (Gt k(1) + Co(t)%a(1))- (5)
Plugging this into the initial DE and using that x;, x> are solutions of X +x =0
G5 (t) + Ca(t)a(t) = Colst. (6)
Expressing Cy(t) from (4) and plugging into (6) we get
C Gxa(t), o = a(t)e(t) —x(t)x(t) 1
Cl(t)Xl(t) — WXQ(Z’) = Cl(f) Xg(t) = cost (7)
Using (2) in (7) we get _
Ci(t) = —1”5'; (8)

Hence,

int 1
(_‘l(t):_/sm dt‘:—/;du:—log\u|:—Iog|cost|7

cost

where we used the substitution u = cos t. .



Using (8) in (4) we get

Cz(t) =1.
Hence,
G(t) =t
So,
Xp(t) = —log | cos t| - cos t + tsin t.

The complete solution to DE is
x(t) = CGicost+ Gysint — log | cost| - cost + tsint,

where C;, G, are parameters.
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Vibrating systems

There are many vibrating systems in many different domains. The
mathematical model is always the same, though. We will have in mind a
vibrating mass attached to a spring.

Case 1: Free vibrations without damping

Let x(t) denote the displacement of the mass from the equillibrium position.
» According to Newton’s second law of motion

mi=> F,
where F; are forces acting on the mass.
> By Hooke’s law, the only force acting on the mass pulls towards the
equilibrium, its size is proportional to the displacement and the
direction is opposite
F = —kx(t), k>0.
» So the DE in this case is

o =0
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https://en.wikipedia.org/wiki/File:Simple_harmonic_oscillator.gif

» The characteristic equation
m\? + k=0

has complex solutions \ = +wi, w? = k/m.

> The general solution is
x(t) = G coswt + Gy sinwt.

» So the solutions x(t) are periodic. The equillibrium point (0, 0) in the
phase plane (x,v) is a center.
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Case 2: Free vibrations with damping
We assume a linear damping force

Fd:_ﬁkv

so the DE is

|mk + B+ kx =0 where m,3,k>0.

Depending on the solutions of the characteristic equation there are three
cases:

» Overdamping when D = 32 — 4km > 0 and x(t) = CieMt + CeMt,
A1,2 < 0. The mass slides towards the equilibrium. The point (0,0) in
the (x, v) plane is a sink.

» Critical damping when D = 0 and x(t) = Gie*t + Gote*, A < 0. The
point mass slides towards the equillibrium after, possibly, one swing.
The point (0,0) in the (x, v) plane is a sink,

» Damped vibration when D < 0 and x(t) = e**(C; cos Bt + Gy sin (t).
The mass oscillates around the equillibrium with decreasing
amplitudes. The point (0,0) is a spiral sink.
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Case 3: Forced vibration without damping

In addition to internal forces of the system there is an additional external
force f(t) acting on the system, so

| ms + ko = £(t)].

The general solution is of the form
x(t, G, ) = Gy cos(wt) + Cosin(wt) + xp(t),

where x;, is a particular solution of the nonhomogeneous equations.

Example
Let (t) = asin ut.

Using the method of intelligent guessing,
> if 11 # w, then x,(t) = Asin put + B cos ut
» if 4 = w, then x, = t(Asinwt + Bcoswt), so the solutions of the

equation are unbonded and incerase towards co as t — oo — the well
known phenomenion of resonance occurs.
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Case 4: Forced vibration with damping:

ms + B% + kx = f(t)].

Example
Let f(t) = asin ut.
The general solution is of the form

X(t, G, C2) =Xp+ Xp = C1X1(t) + C2X2(t) + Xp(t)

where x,(t) is of the form Asin put 4+ B cos ut, and the two solutions x; and
xp both converge to 0 as t — oo. For any i, G, the solution x(t, C1, Gy)
asymptotically tends towards x,(t).
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