Behavioural Biometrics-Based User Authentication

Andraž Krašovec, Ispra, 11.5.2022 andraz.krasovec@ec.europa.eu

Univerza *v Ljubljani* Fakulteta *za računalništvo in informatiko*

Towards Password-less Authentication

- Current user authentication methods have many shortcomings
 - Frustration handling passwords
 - Privacy concerns of physical biometrics
 - User is an active component
- Behavioural biometrics:
 - Convenient
 - Multimodal
 - Privacy oriented

Identification, Authentication, Authorisation

facebook

Facebook ti pomaga ohranjati stike in deliti podatke z ljudmi iz tvojega življenja.

Email or phone nu ber Password						
Prijava						
Se ne spomniš gesla?						
Ustvari nov račun						

Not Quite Yourself Today: Behaviour-Based Continuous Authentication in IoT Environments

User Study

- 21 test subjects
- 3 experimental tasks
- 2 runs per task
- ~1 hour of data per person
- Tasks stimulate responses from different sensors

Environment

- Office space
- PC resource monitor
- 6-axis IMU
- Force sensors
- IR sensors
- Hall sensors

Fsr board dimensions: 64cm x 37cm 8 m

Data Collection Architecture

Data Collection Architecture

- Django framework
- PostgreSQL database
- MQTT protocol + Mosquitto broker
- RabbitMQ message broker
- Custom deployment software

Торіс	Publisher	Subscriber	Name	Message type	Description
data/{device_id} /{sensor_topic}	Devices	Data manager	Data	float	Send sensor values to be stored in db.
command/{device_id} /{command}	Device manager, Seance manager	Devices	Command	string	Issue commands to devices.
configure/{device_id} /{command}	Devices	Device manager	Configure	string	Receive commands from devices.
seance/{device_id} /{command}	Device rc522	Seance manager	Seance	string	Used to indicate seance state.

Challenges

- Supplying power
- Fragile sensor connections
- Sampling rate
- Data ingestion rate
- RFID reader
- Users copying text between runs
- Users not following instructions
- Shared space equipment borrowing

Machine Learning Pipeline

Feature Engineering

- Segmenting data into time intervals
- Time domain features
- Frequency domain features
- Evaluating feature quality
- Autoencoders?

Preliminary Data Analysis

PCA TECHNIQUE; number of users: 7, segment interval: 60 seconds, score: 10.0

12 of 30

Sensor and Feature Informativeness

Inertial measurement unit and force sensors perform best

One-shot Authentication

- Comparison of machine learning algorithms
- Effect of number of users and time segment intervals
- Can we replace passwords?

Transition to Continuous Authentication

Difference between true and false confidence

Continuous Authentication

- Confidence level threshold
- n (lookback) last datapoints
- Evaluation metrics:
 - False rejection rate (FRR)
 - False acceptance rate (FAR)
 - Detection time delay
 - Attack detection rate (99.3%)

Continuous Authentication

- Confidence level threshold
- n (lookback) last datapoints
- Evaluation metrics:
 - False rejection rate (FRR)
 - False acceptance rate (FAR)
 - Detection time delay
 - Attack detection rate (99.3%)

Continuous Authentication

- Confidence level threshold
- n (lookback) last datapoints
- Evaluation metrics:
 - False rejection rate (FRR)
 - False acceptance rate (FAR)
 - Detection time delay
 - Attack detection rate (99.3%)

Opposing Data Exploitation: Behaviour Biometrics for Privacy-Preserving Authentication in IoT Environments

System Design

- Based on Privacy Adversarial Network [1]
- Adversarial learning
- Obfuscate activity information

User

[1] Liu et al.: Privacy Adversarial Network: Representation Learning for Mobile Data Privacy, 2019.

Adversarial Training Algorithm

Adversarial Training Algorithm

Adversarial Training Algorithm

Authentication Results

- 79% user classification accuracy
- 30% reduction in activity classification accuracy
- Inverse problem
- Effect of number of users

On-Device Training Issue

Conclusion

- One-shot authentication with behaviuoral biometrics is tricky
- Very well suited for continuous authentication

Future work:

- Improving one-shot auth. accuracy
- Focus on cognitive load
- Collecting a new dataset
- Development of auth. evaluation toolbox

- Bridge between science and policy for the European Commission
- 3000 researchers
- 5 sites in Geel, Karlsruhe, Petten, Sevilla, and **Ispra**
- Former Italian nuclear research site
- ELSA laboratory
- VELA laboratory

Thank you

Andraž Krašovec

andraz.krasovec@ec.europa.eu

Data available at: https://gitlab.fri.uni-lj.si/lrk/ca-iot

Univerza *v Ljubljani* Fakulteta *za računalništvo in informatiko*

