Mathematical modelling

Lecture 13, May 10th, 2022

Faculty of Computer and Information Science University of Ljubljana

2021/22

The dynamics of systems of 2 equations

For an autonomous linear system

$$
\dot{x}_{1}=a_{11} x_{1}+a_{12} x_{2}, \quad \dot{x}_{2}=a_{21} x_{1}+a_{22} x_{2},
$$

the origin $(0,0)$ is always a stationary point, i.e., an equilibrium solution.
The eigenvalues of the matrix

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

determine the type of the stationary point $(0,0)$ and the shape of the phase portrait.

We will assume that $\operatorname{det} A \neq 0$. Let λ_{1}, λ_{2} be the eigenvalues of A. We also assume that there exist two linearly independent vectors v_{1}, v_{2} of A (even if $\lambda_{1}=\lambda_{2}$).

Case 1: $\lambda_{1}, \lambda_{2} \in \mathbb{R}$

The general solution is

$$
x(t)=C_{1} e^{\lambda_{1} t} v_{1}+C_{2} e^{\lambda_{2} t} v_{2} .
$$

- If $C_{1}=0$, the trajectory $x_{1}(t)$ is a ray in the direction of v_{2} if $C_{2}>0$, or $-v_{1}$ if $C_{2}<0$.
- Similarly, if $C_{2}=0$ the trajectory $x_{2}(t)$ is a ray in the direction of v_{2} or $-v_{2}$.
- The behaviour of other trajectories depends on the signs of λ_{1} and λ_{2}.

Subcase 1.1: $0<\lambda_{1}<\lambda_{2}$

- as $t \rightarrow \infty, x(t)$ asymptotically approaches the solution $\pm e^{\lambda_{2} t} v_{2}$,
- as $t \rightarrow-\infty, x(t)$ asymptotically approaches the solution $\pm e^{\lambda_{1} t} v_{1}$.

The point $(0,0)$ is a source.
Example. The general solution of the system $\dot{x}_{1}=3 x_{1}+x_{2}, \dot{x}_{2}=x_{1}+3 x_{2}$ is

$$
x(t)=C_{1} e^{4 t}\left[\begin{array}{ll}
1 & 1
\end{array}\right]^{T}+C_{2} e^{2 t}\left[\begin{array}{ll}
-1 & 1
\end{array}\right]^{T}
$$

Algorithm:
https://zalara.github.io/Algoritmi/phaseportrait_1_1.m

Subcase 1.2: $\lambda_{2}<\lambda_{1}<0$

- as $t \rightarrow \infty, x(t)$ asymptotically approaches the solution $\pm e^{\lambda_{1} t} v_{2}$,
- as $t \rightarrow-\infty, x(t)$ asymptotically approaches the solution $\pm e^{\lambda_{2} t} v_{1}$.

The point $(0,0)$ is a sink.
Example. The general solution of the system $\dot{x}_{1}=-3 x_{1}-x_{2}, \dot{x}_{2}=-x_{1}-3 x_{2}$ is

$$
x(t)=C_{1} e^{-4 t}\left[\begin{array}{ll}
1 & 1
\end{array}\right]^{T}+C_{2} e^{-2 t}\left[\begin{array}{ll}
-1 & 1
\end{array}\right]^{T} .
$$

Algorithm:
https://zalara.github.io/Algoritmi/phaseportrait_1_2.m

Subcase 1.3: $\lambda_{1}<0<\lambda_{2}$

- as $t \rightarrow \infty, x(t)$ asymptotically approaches the solution $\pm e^{\lambda_{2} t} v_{2}$,
- as $t \rightarrow-\infty, x(t)$ asymptotically approaches the solution $\pm e^{\lambda_{1} t} v_{1}$.

The point $(0,0)$ is a saddle.
Example. The general solution of the system $\dot{x}_{1}=x_{1}-3 x_{2}, \dot{x}_{2}=-3 x_{1}+x_{2}$ is

$$
x(t)=C_{1} e^{-2 t}\left[\begin{array}{ll}
1 & 1
\end{array}\right]^{T}+C_{2} e^{4 t}\left[\begin{array}{ll}
1 & -1
\end{array}\right]^{T}
$$

Algorithm:
https://zalara.github.io/Algoritmi/phaseportrait_1_3.m

Subcase 2.1: $\lambda_{1,2}=\alpha \pm i \beta, \alpha \neq 0$
The general solution is

$$
x(t)=e^{\alpha t}\left[\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right) u+\left(-C_{1} \sin (\beta t)+C_{2} \cos (\beta t)\right) w\right]
$$

Hence,

- if $\alpha<0, x(t)$ spirals towards $(0,0)$ as $t \rightarrow \infty$, and
- if $\alpha>0, x(t)$ spirals away from $(0,0)$ as $t \rightarrow \infty$.

The point $(0,0)$ is a spiral sink in the first case and a spiral source in the second case.
Example
$\dot{x}_{1}=-3 x_{1}+2 x_{2}, \dot{x}_{2}=-x_{1}-x_{2}$
$x(t)=e^{-2 t}$.
$\left(\left(C_{1} \cos t+C_{2} \sin t\right)\left[\begin{array}{l}2 \\ 1\end{array}\right]+\right.$
$\left.\left(-C_{1} \sin t+C_{2} \cos t\right)\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$

Subcase 2.2: $\lambda_{1,2}= \pm i \beta, \alpha \neq 0$
The trajectories are periodic with period $2 \pi / \beta$, i.e. the point $x(t)$ circles around $(0,0)$.

The point $(0,0)$ is a center.
Example
$\dot{x}=v, \quad \dot{v}=-\omega^{2} x$
$x(t)=$
$\left(C_{1} \cos (\omega t)+C_{2} \sin (\omega t)\right)\left[\begin{array}{l}1 \\ 0\end{array}\right]+$
$\left(-C_{1} \sin (\omega t)+C_{2} \cos (\omega t)\right)\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Algorithm:
https://zalara.github.io/Algoritmi/phaseportrait_2_1.m https://zalara.github.io/Algoritmi/phaseportrait_2_2.m

Nonlinear autonomous systems of equations

$$
\dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right), \quad \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
$$

If $a=\left(a_{1}, a_{2}\right)$ is a critical point, that is,

$$
f_{1}\left(a_{1}, a_{2}\right)=f_{2}\left(a_{1}, a_{2}\right)=0
$$

then the behaviour of trajectories close to a is approximated by trajectories of the linearization of the system at the point a :

$$
\dot{x}_{1} \doteq \frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}-a_{1}\right)+\frac{\partial f_{1}}{\partial x_{2}}\left(x_{2}-a_{2}\right), \quad \dot{x}_{2} \doteq \frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}-a_{1}\right)+\frac{\partial f_{2}}{\partial x_{2}}\left(x_{2}-a_{2}\right) .
$$

This is a linear homogeneous system with coefficient matrix the Jacobian matrix of the vector function $f(x)$:

$$
\dot{x} \doteq D f(a)(x-a)=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}}
\end{array}\right](x-a) \text {. }
$$

The critical point is classified as a source, sink, saddle, spiral source, spiral sink or center depending on the eigenvalues of $\operatorname{Df}(a)$.

In addition to critical points, that is, equillibrium solutions, a plane nonlinear system (that is, a nonlinear system of two differential equations) can also have limit cycles.

A limit cycle is a periodic solutions $x_{\infty}(t)$ such that for initial conditions $x\left(t_{0}\right)=x_{0}$ in a certain domain the corresponding solutions $x(t)$

- either asymptotically tend towards $x_{\infty}(t)$ as $t \rightarrow \infty-$ in this case x_{∞} is an attracting limit cycle, or
- $x(t) \rightarrow x_{\infty}(t)$ as $t \rightarrow-\infty-$ in this case x_{∞} is a repelling limit cycle.

Systems of more than two differential equations can exhibit much more complex, chaotic behaviour.

Algorithm:
https://zalara.github.io/Algoritmi/example_predator_prey_linearization.m

Differential equations of order 2

$$
\ddot{x}=f(t, x, \dot{x})
$$

The general solution is a two-parametric family

$$
x=x\left(t, C_{1}, C_{2}\right)
$$

A particular solution is given by specifying

- initial conditions: $x\left(t_{0}\right)=\alpha_{0}, \quad \dot{x}\left(t_{0}\right)=\alpha_{1}$, where the values of the solution and its derivative are given at some initial time t_{0}
or
- boundary conditions: $x(a)=x_{0}, \quad x(b)=x_{1}$
where values of the solution at different times a, b are given (i.e., on the boundary of some interval $[a, b]$)

Differential equations of order n

$$
x^{(n)}=f\left(t, x, \dot{x}, \ldots, x^{(n-1)}\right)
$$

The general solution is an n-parametric family

$$
x=x\left(t, C_{1}, \ldots, C_{n}\right)
$$

A particular solution is given by

- initial conditions: $x\left(t_{0}\right)=\alpha_{0}, \ldots x^{(n-1)}\left(t_{0}\right)=\alpha_{n-1}$ where the values of the solution and its first $(n-1)$ derivatives are given at some initial time t_{0}
or
-boundary conditions
where values of the solution or its derivatives are given in different times.

Linear DE's of order n

A linear DE (LDE) of degree n is of the form

$$
\begin{equation*}
x^{(n)}+a_{n-1}(t) x^{(n-1)}+\cdots+a_{0}(t) x=f(t) \tag{1}
\end{equation*}
$$

The equation is

- homogeneous if $f(t)=0$, and
- nonhomogeneous if $f(t) \neq 0$.
- The general solution of the homogeneous part is the family of all linear combinations

$$
y(t)=C_{1} x_{1}(t)+\cdots+C_{n} x_{n}(t)
$$

of n linearly independent solutions $x_{1}(t), \ldots, x_{n}(t)$.

- If the coefficients $a_{1}(t), \ldots, a_{n}(t)$ are continuous functions, then for any $\alpha_{0}, \ldots, \alpha_{n}$ there exists exactly one solution satisfying the initial condition

$$
x\left(t_{0}\right)=\alpha_{0}, \quad \dot{x}\left(t_{0}\right)=\alpha_{1}, \quad \ldots, \quad x^{(n-1)}\left(t_{0}\right)=\alpha_{n}
$$

LDEs with constant coefficients

Assume that the coefficient functions $a_{1}(t), \ldots a_{n}(t)$ in a homogeneous LDE are constant:

$$
\begin{equation*}
x^{(n)}+a_{n-1} x^{(n-1)} \cdots+a_{0} x=0, \quad a_{1}, \ldots a_{n} \in \mathbb{R} \tag{2}
\end{equation*}
$$

Translating (2) to the system by the usual trick of introducing new variables

$$
x_{1}=x, \quad x_{2}=x_{1}^{\prime}, \quad x_{3}=x_{2}^{\prime}, \quad \cdots, \quad x_{n}=x_{n-1}^{\prime}
$$

(2) becomes

$$
x_{n}^{\prime}=-a_{0} x_{1}-a_{1} x_{2}-\ldots-a_{n-1} x_{n},
$$

or matricially $\vec{x}^{\prime}=A \vec{x}$:

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & & \ddots & \ddots & & \vdots \\
\vdots & & & \ddots & \ddots & \vdots \\
0 & \cdots & & \cdots & 0 & 1 \\
-a_{0} & -a_{1} & \cdots & \cdots & -a_{n-2} & -a_{n-1}
\end{array}\right] \vec{x}(t)
$$

- The solutions to this system are of the form

$$
x(t)=p_{k}(t) e^{\lambda t} v,
$$

where λ is the eigenvalue of $A, p_{k}(t)$ is a polynomial of degree k in t and v is the generalized eigenvector. (This follows most easily by the use of the Jordan form of the matrix.)

- In particular, if there are n linearly independent eigenvectors of the matrix A, then all polynomials p_{k} are constants and generalized eigenvectors are usual eigenvectors.
- By a simple calculation of expressing the determinant of $A-\lambda /$ according to the coefficients and cofactors of the last row, it turns out that the eigenvalues of A are precisely the roots of the characteristic polynomial corresponding to (2):

$$
\begin{equation*}
P(\lambda):=\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots a_{1} \lambda+a_{0} . \tag{3}
\end{equation*}
$$

- A (trivial) fact with a nontrivial proof, called the fundamental theorem of algebra, states that a polynomial of degree n has exactly n roots, counted by multiplicity. In case the matrix A is real, these roots are real or complex conjugate pairs.
- From the roots of the characteristic polynomial (3), n linearly independent solutions of the LDE can be reconstructed.
- For every real root $\lambda \in \mathbb{R}$,

$$
x(t)=e^{\lambda t}
$$

is a solution of the homogeneous LDE.

- For a complex conjugate pair of roots $\lambda=\alpha \pm i \beta$, the real and imaginary parts of the complex-valued exponential functions

$$
e^{(\alpha \pm i \beta) t}=e^{\alpha t}(\cos (\beta t)+i \sin (\beta t))
$$

are two linearly independent solutions

$$
x_{1}=e^{\alpha t} \cos (\beta t), \quad x_{2}=e^{\alpha t} \sin (\beta t) .
$$

Proposition

If a root (or a complex pair of roots) λ has multiplicity $k>1$, then it can be shown that

$$
e^{\lambda t}, t e^{\lambda t}, \ldots t^{k-1} e^{\lambda t}
$$

are all linearly independent solutions.

Proof of proposition

Let us prove the last fact by an interesting trick. We introduce the operator

$$
\begin{gathered}
L: \mathcal{C}^{(n)}(I) \rightarrow \mathcal{C}(I) \\
L(u)=u^{(n)}+a_{n-1} u^{(n-1)} \cdots+a_{0} u
\end{gathered}
$$

where $\mathcal{C}^{(n)}(I)$ stands for the vector space of n-times continuously differentiable functions on the interval I and $\mathcal{C}(I)$ stands for the vector space of continuous functions on I.
Let λ_{0} be the root of the characteristic polynomial (3) of multiplicity k, i.e.,

$$
P(\lambda)=\left(\lambda-\lambda_{0}\right)^{k} Q(\lambda)
$$

Let $0 \leq q \leq k$ by an integer. We will check that $t^{q} e^{\lambda t}$ solves (2).
Notice that

$$
t^{q} e^{\lambda t}=\frac{d^{q}}{d \lambda^{q}} e^{\lambda t}
$$

For ease of notation we define $a_{n}:=1$. We have that:

$$
\begin{aligned}
& L\left(t^{q} e^{\lambda t}\right)=\sum_{i=0}^{n} a_{i}\left(\frac{d^{q}}{d \lambda^{q}} e^{\lambda t}\right)^{(i)}=\sum_{i=0}^{n} a_{i} \frac{d^{i}}{d t^{i}}\left(\frac{d^{q}}{d \lambda^{q}} e^{\lambda t}\right) \\
& =\frac{d^{q}}{d \lambda^{q}}\left(\sum_{i=0}^{n} a_{i} \frac{d^{i}}{d t^{i}} e^{\lambda t}\right)=\frac{d^{q}}{d \lambda^{q}}\left(\sum_{i=0}^{n} a_{i} \lambda^{i} e^{\lambda t}\right)=\frac{d^{q}}{d \lambda^{q}}\left(P(\lambda) e^{\lambda t}\right)
\end{aligned}
$$

Since

$$
\frac{d^{q}}{d \lambda^{q}}\left(P(\lambda) e^{\lambda t}\right)=\sum_{i=1}^{q} \frac{d^{i}}{d \lambda^{i}}(P(\lambda)) \cdot Q_{i}(t, \lambda),
$$

where $Q_{i}(t, \lambda)$ are functions of t, λ and

$$
\frac{d^{i}}{d \lambda^{i}}\left(P\left(\lambda_{0}\right)\right)=0, \quad \text { for } \quad i=0, \ldots, q
$$

it follows that

$$
L\left(t^{q} e^{\lambda_{0} t}\right)=0 .
$$

