Mathematical modelling

Lecture 13, May 10th, 2022

Faculty of Computer and Information Science University of Ljubljana

2021/22

The dynamics of systems of 2 equations

For an autonomous linear system

$$\dot{x}_1 = a_{11}x_1 + a_{12}x_2, \quad \dot{x}_2 = a_{21}x_1 + a_{22}x_2,$$

the origin (0,0) is always a stationary point, i.e., an equilibrium solution.

The eigenvalues of the matrix

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$$

determine the type of the stationary point (0,0) and the shape of the phase portrait.

We will assume that det $A \neq 0$. Let λ_1, λ_2 be the eigenvalues of A. We also assume that there exist two linearly independent vectors v_1, v_2 of A (even if $\lambda_1 = \lambda_2$).

$\mathsf{Case}\ 1:\ \lambda_1,\lambda_2\in\mathbb{R}$

The general solution is

$$x(t) = C_1 e^{\lambda_1 t} v_1 + C_2 e^{\lambda_2 t} v_2.$$

- If C₁ = 0, the trajectory x₁(t) is a ray in the direction of v₂ if C₂ > 0, or −v₁ if C₂ < 0.</p>
- Similarly, if C₂ = 0 the trajectory x₂(t) is a ray in the direction of v₂ or −v₂.
- The behaviour of other trajectories depends on the signs of λ_1 and λ_2 .

Subcase 1.1: $0 < \lambda_1 < \lambda_2$

- ▶ as $t \to \infty$, x(t) asymptotically approaches the solution $\pm e^{\lambda_2 t} v_2$,
- ▶ as $t \to -\infty$, x(t) asymptotically approaches the solution $\pm e^{\lambda_1 t} v_1$.

The point (0,0) is a source.

Example. The general solution of the system $\dot{x}_1 = 3x_1 + x_2$, $\dot{x}_2 = x_1 + 3x_2$ is

$$x(t) = C_1 e^{4t} \begin{bmatrix} 1 & 1 \end{bmatrix}^T + C_2 e^{2t} \begin{bmatrix} -1 & 1 \end{bmatrix}^T$$

Algorithm:

https://zalara.github.io/Algoritmi/phaseportrait_1_1.m

Subcase 1.2: $\lambda_2 < \lambda_1 < 0$

as t→∞, x(t) asymptotically approaches the solution ±e^{λ₁t}v₂,
 as t→-∞, x(t) asymptotically approaches the solution ±e^{λ₂t}v₁.

The point (0,0) is a <u>sink</u>.

Example. The general solution of the system $\dot{x}_1 = -3x_1 - x_2$, $\dot{x}_2 = -x_1 - 3x_2$ is $x(t) = C_1 e^{-4t} \begin{bmatrix} 1 & 1 \end{bmatrix}^T + C_2 e^{-2t} \begin{bmatrix} -1 & 1 \end{bmatrix}^T$.

Algorithm:

https://zalara.github.io/Algoritmi/phaseportrait_1_2.m

Subcase 1.3: $\lambda_1 < 0 < \lambda_2$

as t→∞, x(t) asymptotically approaches the solution ±e^{λ₂t}v₂,
 as t→-∞, x(t) asymptotically approaches the solution ±e^{λ₁t}v₁.

The point (0,0) is a <u>saddle</u>. Example. The general solution of the system $\dot{x}_1 = x_1 - 3x_2$, $\dot{x}_2 = -3x_1 + x_2$ is

$$x(t) = C_1 e^{-2t} \begin{bmatrix} 1 & 1 \end{bmatrix}^T + C_2 e^{4t} \begin{bmatrix} 1 & -1 \end{bmatrix}^T$$

Algorithm:

https://zalara.github.io/Algoritmi/phaseportrait_1_3.m

Subcase 2.1: $\lambda_{1,2} = \alpha \pm i\beta$, $\alpha \neq 0$

The general solution is

 $x(t) = e^{\alpha t} \left[(C_1 \cos(\beta t) + C_2 \sin(\beta t)) u + (-C_1 \sin(\beta t) + C_2 \cos(\beta t)) w \right].$

Hence,

- ▶ if $\alpha < 0$, x(t) spirals towards (0,0) as $t \to \infty$, and
- if $\alpha > 0$, x(t) spirals away from (0,0) as $t \to \infty$.

The point (0,0) is a <u>spiral sink</u> in the first case and a <u>spiral source</u> in the second case.

Example

$$\dot{x}_1 = -3x_1 + 2x_2, \dot{x}_2 = -x_1 - x_2$$
$$x(t) = e^{-2t} \cdot \left((C_1 \cos t + C_2 \sin t) \begin{bmatrix} 2 \\ 1 \end{bmatrix} + (-C_1 \sin t + C_2 \cos t) \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

Subcase 2.2: $\lambda_{1,2} = \pm i\beta$, $\alpha \neq 0$

The trajectories are periodic with period $2\pi/\beta$, i.e. the point x(t) circles around (0,0).

The point (0,0) is a <u>center</u>.

Example

 $\dot{x} = v, \quad \dot{v} = -\omega^2 x$ $x(t) = (C_1 \cos(\omega t) + C_2 \sin(\omega t)) \begin{bmatrix} 1 \\ 0 \end{bmatrix} + (-C_1 \sin(\omega t) + C_2 \cos(\omega t)) \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Algorithm:

https://zalara.github.io/Algoritmi/phaseportrait_2_1.m https://zalara.github.io/Algoritmi/phaseportrait_2_2.m

Nonlinear autonomous systems of equations

$$\dot{x}_1 = f_1(x_1, x_2), \quad \dot{x}_2 = f_2(x_1, x_2)$$

If $a = (a_1, a_2)$ is a critical point, that is,

$$f_1(a_1, a_2) = f_2(a_1, a_2) = 0,$$

then the behaviour of trajectories close to a is approximated by trajectories of the linearization of the system at the point a:

$$\dot{x}_1 \doteq \frac{\partial f_1}{\partial x_1}(x_1 - a_1) + \frac{\partial f_1}{\partial x_2}(x_2 - a_2), \quad \dot{x}_2 \doteq \frac{\partial f_2}{\partial x_1}(x_1 - a_1) + \frac{\partial f_2}{\partial x_2}(x_2 - a_2).$$

This is a linear homogeneous system with coefficient matrix the Jacobian matrix of the vector function f(x):

$$\dot{x} \doteq Df(a)(x-a) = \left[egin{array}{cc} rac{\partial f_1}{\partial x_1} & rac{\partial f_1}{\partial x_2} \\ rac{\partial f_2}{\partial x_1} & rac{\partial f_1}{\partial x_2} \end{array}
ight](x-a).$$

The critical point is classified as a <u>source</u>, <u>sink</u>, <u>saddle</u>, <u>spiral source</u>, <u>spiral</u> sink or center depending on the eigenvalues of Df(a).

In addition to critical points, that is, equillibrium solutions, a plane nonlinear system (that is, a nonlinear system of two differential equations) can also have limit cycles.

A limit cycle is a periodic solutions $x_{\infty}(t)$ such that for initial conditions $x(t_0) = x_0$ in a certain domain the corresponding solutions x(t)

► either asymptotically tend towards x_∞(t) as t → ∞ − in this case x_∞ is an attracting limit cycle, or

• $x(t) \rightarrow x_{\infty}(t)$ as $t \rightarrow -\infty$ – in this case x_{∞} is a <u>repelling limit cycle</u>. Systems of more than two differential equations can exhibit much more complex, chaotic behaviour.

Algorithm:

https://zalara.github.io/Algoritmi/example_predator_prey_linearization.m

Differential equations of order 2

$$\ddot{x} = f(t, x, \dot{x})$$

The general solution is a two-parametric family

$$x=x(t,C_1,C_2).$$

A particular solution is given by specifying

• <u>initial conditions</u>: $x(t_0) = \alpha_0$, $\dot{x}(t_0) = \alpha_1$, where the values of the solution and its derivative are given at some initial time t_0

or

boundary conditions: x(a) = x₀, x(b) = x₁ where values of the solution at different times a, b are given (i.e., on the boundary of some interval [a, b])

Differential equations of order n

$$x^{(n)} = f(t, x, \dot{x}, \ldots, x^{(n-1)})$$

The general solution is an *n*-parametric family

$$x = x(t, C_1, \ldots, C_n).$$

A particular solution is given by

► <u>initial conditions</u>: x(t₀) = α₀,...x⁽ⁿ⁻¹⁾(t₀) = α_{n-1} where the values of the solution and its first (n − 1) derivatives are given at some initial time t₀ or

boundary conditions

where values of the solution or its derivatives are given in different times.

Linear DE's of order n

A linear DE (LDE) of degree n is of the form

$$x^{(n)} + a_{n-1}(t)x^{(n-1)} + \dots + a_0(t)x = f(t).$$
 (1)

The equation is

- <u>homogeneous</u> if f(t) = 0, and
- nonhomogeneous if $f(t) \neq 0$.
- The general solution of the homogeneous part is the family of all linear combinations

$$y(t) = C_1 x_1(t) + \cdots + C_n x_n(t)$$

of *n* linearly independent solutions $x_1(t), \ldots, x_n(t)$.

If the coefficients a₁(t),..., a_n(t) are continuous functions, then for any α₀,..., α_n there exists exactly one solution satisfying the initial condition

$$x(t_0) = \alpha_0, \quad \dot{x}(t_0) = \alpha_1, \quad \dots, \quad x^{(n-1)}(t_0) = \alpha_n.$$

LDEs with constant coefficients

Assume that the coefficient functions $a_1(t), \ldots a_n(t)$ in a homogeneous LDE are constant:

$$x^{(n)} + a_{n-1}x^{(n-1)} \cdots + a_0x = 0, \quad a_1, \dots a_n \in \mathbb{R}$$
 (2)

Translating (2) to the system by the usual trick of introducing new variables

$$x_1 = x$$
, $x_2 = x'_1$, $x_3 = x'_2$, \cdots , $x_n = x'_{n-1}$,

(2) becomes

$$x'_n = -a_0x_1 - a_1x_2 - \ldots - a_{n-1}x_n,$$

or matricially $\vec{x}' = A\vec{x}$:

$$\vec{x'}(t) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & & \vdots \\ \vdots & & & \ddots & \ddots & & \vdots \\ 0 & \cdots & & \cdots & 0 & 1 \\ -a_0 & -a_1 & \cdots & \cdots & -a_{n-2} & -a_{n-1} \end{bmatrix} \vec{x}(t)$$

The solutions to this system are of the form

$$x(t)=p_k(t)e^{\lambda t}v,$$

where λ is the eigenvalue of A, $p_k(t)$ is a polynomial of degree k in t and v is the generalized eigenvector. (This follows most easily by the use of the Jordan form of the matrix.)

- In particular, if there are n linearly independent eigenvectors of the matrix A, then all polynomials p_k are constants and generalized eigenvectors are usual eigenvectors.
- By a simple calculation of expressing the determinant of A λl according to the coefficients and cofactors of the last row, it turns out that the eigenvalues of A are precisely the roots of the <u>characteristic</u> <u>polynomial</u> corresponding to (2):

$$P(\lambda) := \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0.$$
(3)

A (trivial) fact with a nontrivial proof, called the <u>fundamental theorem</u> of algebra, states that a polynomial of degree *n* has exactly *n* roots, counted by multiplicity. In case the matrix *A* is real, these roots are real or complex conjugate pairs.

- From the roots of the characteristic polynomial (3), n linearly independent solutions of the LDE can be reconstructed.
- For every real root $\lambda \in \mathbb{R}$,

$$x(t) = e^{\lambda t}$$

is a solution of the homogeneous LDE.

For a complex conjugate pair of roots λ = α ± iβ, the real and imaginary parts of the complex-valued exponential functions

$$e^{(\alpha \pm i\beta)t} = e^{\alpha t}(\cos(\beta t) + i\sin(\beta t))$$

are two linearly independent solutions

$$x_1 = e^{\alpha t} \cos(\beta t), \quad x_2 = e^{\alpha t} \sin(\beta t).$$

Proposition

If a root (or a complex pair of roots) λ has multiplicity k > 1, then it can be shown that

$$e^{\lambda t}, te^{\lambda t}, \dots t^{k-1}e^{\lambda t}$$

are all linearly independent solutions.

Proof of proposition

Let us prove the last fact by an interesting trick. We introduce the operator

$$L: \mathcal{C}^{(n)}(I) \to \mathcal{C}(I)$$
$$L(u) = u^{(n)} + a_{n-1}u^{(n-1)} \cdots + a_0u,$$

where $\mathcal{C}^{(n)}(I)$ stands for the vector space of *n*-times continuously differentiable functions on the interval *I* and $\mathcal{C}(I)$ stands for the vector space of continuous functions on *I*.

Let λ_0 be the root of the characteristic polynomial (3) of multiplicity k, i.e.,

$$P(\lambda) = (\lambda - \lambda_0)^k Q(\lambda).$$

Let $0 \le q \le k$ by an integer. We will check that $t^q e^{\lambda t}$ solves (2). Notice that

$$t^q e^{\lambda t} = \frac{d^q}{d\lambda^q} e^{\lambda t}.$$

For ease of notation we define $a_n := 1$. We have that:

$$L(t^{q}e^{\lambda t}) = \sum_{i=0}^{n} a_{i} \left(\frac{d^{q}}{d\lambda^{q}}e^{\lambda t}\right)^{(i)} = \sum_{i=0}^{n} a_{i}\frac{d^{i}}{dt^{i}} \left(\frac{d^{q}}{d\lambda^{q}}e^{\lambda t}\right)$$
$$= \frac{d^{q}}{d\lambda^{q}} \left(\sum_{i=0}^{n} a_{i}\frac{d^{i}}{dt^{i}}e^{\lambda t}\right) = \frac{d^{q}}{d\lambda^{q}} \left(\sum_{i=0}^{n} a_{i}\lambda^{i}e^{\lambda t}\right) = \frac{d^{q}}{d\lambda^{q}}(P(\lambda)e^{\lambda t}).$$

Since

$$rac{d^q}{d\lambda^q}(P(\lambda)e^{\lambda t}) = \sum_{i=1}^q rac{d^i}{d\lambda^i}(P(\lambda))\cdot Q_i(t,\lambda),$$

where $Q_i(t,\lambda)$ are functions of t, λ and

$$rac{d^i}{d\lambda^i}(P(\lambda_0))=0, \quad ext{for} \quad i=0,\ldots,q,$$

it follows that

$$L(t^q e^{\lambda_0 t}) = 0.$$