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The dynamics of systems of 2 equations

For an autonomous linear system

ẋ1 = a11x1 + a12x2, ẋ2 = a21x1 + a22x2,

the origin (0, 0) is always a stationary point, i.e., an equilibrium solution.

The eigenvalues of the matrix

A =

[
a11 a12
a21 a22

]
determine the type of the stationary point (0, 0) and the shape of the phase
portrait.

We will assume that detA 6= 0. Let λ1, λ2 be the eigenvalues of A. We also
assume that there exist two linearly independent vectors v1, v2 of A (even if
λ1 = λ2).
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Case 1: λ1, λ2 ∈ R

The general solution is

x(t) = C1e
λ1tv1 + C2e

λ2tv2.

I If C1 = 0, the trajectory x1(t) is a ray in the direction of v2 if C2 > 0,
or −v1 if C2 < 0.

I Similarly, if C2 = 0 the trajectory x2(t) is a ray in the direction of v2 or
−v2.

I The behaviour of other trajectories depends on the signs of λ1 and λ2.
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Subcase 1.1: 0 < λ1 < λ2

I as t →∞, x(t) asymptotically approaches the solution ±eλ2tv2,
I as t → −∞, x(t) asymptotically approaches the solution ±eλ1tv1.

The point (0, 0) is a source.
Example. The general solution of the system ẋ1 = 3x1 + x2, ẋ2 = x1 + 3x2 is

x(t) = C1e
4t
[

1 1
]T

+ C2e
2t
[
−1 1

]T
.

Algorithm:

https://zalara.github.io/Algoritmi/phaseportrait_1_1.m
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Subcase 1.2: λ2 < λ1 < 0

I as t →∞, x(t) asymptotically approaches the solution ±eλ1tv2,

I as t → −∞, x(t) asymptotically approaches the solution ±eλ2tv1.

The point (0, 0) is a sink.

Example. The general solution of the system ẋ1 = −3x1 − x2, ẋ2 = −x1 − 3x2 is

x(t) = C1e
−4t
[

1 1
]T

+ C2e
−2t
[
−1 1

]T
.

Algorithm:

https://zalara.github.io/Algoritmi/phaseportrait_1_2.m
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Subcase 1.3: λ1 < 0 < λ2

I as t →∞, x(t) asymptotically approaches the solution ±eλ2tv2,
I as t → −∞, x(t) asymptotically approaches the solution ±eλ1tv1.

The point (0, 0) is a saddle.
Example. The general solution of the system ẋ1 = x1 − 3x2, ẋ2 = −3x1 + x2 is

x(t) = C1e
−2t
[

1 1
]T

+ C2e
4t
[

1 −1
]T
.

Algorithm:

https://zalara.github.io/Algoritmi/phaseportrait_1_3.m
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Subcase 2.1: λ1,2 = α± iβ, α 6= 0

The general solution is

x(t) = eαt [(C1 cos(βt) + C2 sin(βt))u + (−C1 sin(βt) + C2 cos(βt))w ] .

Hence,
I if α < 0, x(t) spirals towards (0, 0) as t →∞, and
I if α > 0, x(t) spirals away from (0, 0) as t →∞.

The point (0, 0) is a spiral sink in the first case and a spiral source in the
second case.

Example

ẋ1 = −3x1 + 2x2, ẋ2 = −x1 − x2

x(t) = e−2t ·(
(C1 cos t + C2 sin t)

[
2
1

]
+

(−C1 sin t + C2 cos t)

[
0
1

])
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Subcase 2.2: λ1,2 = ±iβ, α 6= 0

The trajectories are periodic with period 2π/β, i.e. the point x(t) circles
around (0, 0).

The point (0, 0) is a center.

Example

ẋ = v , v̇ = −ω2x

x(t) =

(C1 cos(ωt) + C2 sin(ωt))

[
1
0

]
+

(−C1 sin(ωt) + C2 cos(ωt))

[
0
1

]
Algorithm:
https://zalara.github.io/Algoritmi/phaseportrait_2_1.m

https://zalara.github.io/Algoritmi/phaseportrait_2_2.m

8/18

https://zalara.github.io/Algoritmi/phaseportrait_2_1.m
https://zalara.github.io/Algoritmi/phaseportrait_2_2.m


Nonlinear autonomous systems of equations

ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2)

If a = (a1, a2) is a critical point, that is,

f1(a1, a2) = f2(a1, a2) = 0,

then the behaviour of trajectories close to a is approximated by trajectories
of the linearization of the system at the point a:

ẋ1
.

=
∂f1
∂x1

(x1 − a1) +
∂f1
∂x2

(x2 − a2), ẋ2
.

=
∂f2
∂x1

(x1 − a1) +
∂f2
∂x2

(x2 − a2).

This is a linear homogeneous system with coefficient matrix the Jacobian
matrix of the vector function f (x):

ẋ
.

= Df (a)(x − a) =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f1
∂x2

]
(x − a).

The critical point is classified as a source, sink, saddle, spiral source, spiral
sink or center depending on the eigenvalues of Df (a).
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In addition to critical points, that is, equillibrium solutions, a plane
nonlinear system (that is, a nonlinear system of two differential equations)
can also have limit cycles.

A limit cycle is a periodic solutions x∞(t) such that for initial conditions
x(t0) = x0 in a certain domain the corresponding solutions x(t)

I either asymptotically tend towards x∞(t) as t →∞ – in this case x∞
is an attracting limit cycle, or

I x(t)→ x∞(t) as t → −∞ – in this case x∞ is a repelling limit cycle.

Systems of more than two differential equations can exhibit much more
complex, chaotic behaviour.

Algorithm:

https://zalara.github.io/Algoritmi/example_predator_prey_linearization.m

10/18

https://zalara.github.io/Algoritmi/example_predator_prey_linearization.m


Differential equations of order 2

ẍ = f (t, x , ẋ)

The general solution is a two-parametric family

x = x(t,C1,C2).

A particular solution is given by specifying

I initial conditions: x(t0) = α0, ẋ(t0) = α1,
where the values of the solution and its derivative are given at some
initial time t0
or

I boundary conditions: x(a) = x0, x(b) = x1
where values of the solution at different times a, b are given (i.e., on
the boundary of some interval [a, b])
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Differential equations of order n

x (n) = f (t, x , ẋ , . . . , x (n−1))

The general solution is an n-parametric family

x = x(t,C1, . . . ,Cn).

A particular solution is given by

I initial conditions: x(t0) = α0, . . . x
(n−1)(t0) = αn−1

where the values of the solution and its first (n − 1) derivatives are
given at some initial time t0
or

I boundary conditions
where values of the solution or its derivatives are given in different
times.
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Linear DE’s of order n

A linear DE (LDE) of degree n is of the form

x (n) + an−1(t)x (n−1) + · · ·+ a0(t)x = f (t). (1)

The equation is

I homogeneous if f (t) = 0, and

I nonhomogeneous if f (t) 6= 0.

I The general solution of the homogeneous part is the family of all linear
combinations

y(t) = C1x1(t) + · · ·+ Cnxn(t)

of n linearly independent solutions x1(t), . . . , xn(t).

I If the coefficients a1(t), . . . , an(t) are continuous functions, then for
any α0, . . . , αn there exists exactly one solution satisfying the initial
condition

x(t0) = α0, ẋ(t0) = α1, . . . , x (n−1)(t0) = αn.
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LDEs with constant coefficients
Assume that the coefficient functions a1(t), . . . an(t) in a homogeneous
LDE are constant:

x (n) + an−1x
(n−1) · · ·+ a0x = 0, a1, . . . an ∈ R (2)

Translating (2) to the system by the usual trick of introducing new variables

x1 = x , x2 = x ′1, x3 = x ′2, · · · , xn = x ′n−1,

(2) becomes
x ′n = −a0x1 − a1x2 − . . .− an−1xn,

or matricially ~x ′ = A~x :

~x ′(t) =



0 1 0 · · · 0
0 0 1 0 · · · 0
...

. . .
. . .

...
...

. . .
. . .

...
0 · · · · · · 0 1
−a0 −a1 · · · · · · −an−2 −an−1


~x(t)
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I The solutions to this system are of the form

x(t) = pk(t)eλtv ,

where λ is the eigenvalue of A, pk(t) is a polynomial of degree k in t
and v is the generalized eigenvector. (This follows most easily by the
use of the Jordan form of the matrix.)

I In particular, if there are n linearly independent eigenvectors of the
matrix A, then all polynomials pk are constants and generalized
eigenvectors are usual eigenvectors.

I By a simple calculation of expressing the determinant of A− λI
according to the coefficients and cofactors of the last row, it turns out
that the eigenvalues of A are precisely the roots of the characteristic
polynomial corresponding to (2):

P(λ) := λn + an−1λ
n−1 + · · · a1λ+ a0. (3)

I A (trivial) fact with a nontrivial proof, called the fundamental theorem
of algebra, states that a polynomial of degree n has exactly n roots,
counted by multiplicity. In case the matrix A is real, these roots are
real or complex conjugate pairs.
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I From the roots of the characteristic polynomial (3), n linearly
independent solutions of the LDE can be reconstructed.

I For every real root λ ∈ R,

x(t) = eλt

is a solution of the homogeneous LDE.
I For a complex conjugate pair of roots λ = α± iβ, the real and

imaginary parts of the complex-valued exponential functions

e(α±iβ)t = eαt(cos(βt) + i sin(βt))

are two linearly independent solutions

x1 = eαt cos(βt), x2 = eαt sin(βt).

Proposition

If a root (or a complex pair of roots) λ has multiplicity k > 1, then it can
be shown that

eλt , teλt , . . . tk−1eλt

are all linearly independent solutions.
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Proof of proposition
Let us prove the last fact by an interesting trick. We introduce the operator

L : C(n)(I )→ C(I )

L(u) = u(n) + an−1u
(n−1) · · ·+ a0u,

where C(n)(I ) stands for the vector space of n-times continuously differentiable functions
on the interval I and C(I ) stands for the vector space of continuous functions on I .

Let λ0 be the root of the characteristic polynomial (3) of multiplicity k, i.e.,

P(λ) = (λ− λ0)kQ(λ).

Let 0 ≤ q ≤ k by an integer. We will check that tqeλt solves (2).
Notice that

tqeλt =
dq

dλq
eλt .

For ease of notation we define an := 1. We have that:

L(tqeλt) =
n∑

i=0

ai

(
dq

dλq
eλt
)(i)

=
n∑

i=0

ai
d i

dt i

(
dq

dλq
eλt
)

=
dq

dλq

(
n∑

i=0

ai
d i

dt i
eλt
)

=
dq

dλq

(
n∑

i=0

aiλ
ieλt

)
=

dq

dλq
(P(λ)eλt).
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Since
dq

dλq
(P(λ)eλt) =

q∑
i=1

d i

dλi
(P(λ)) · Qi (t, λ),

where Qi (t, λ) are functions of t, λ and

d i

dλi
(P(λ0)) = 0, for i = 0, . . . , q,

it follows that
L(tqeλ0t) = 0.

18/18


	The dynamics of systems of 2 equations
	Nonlinear autonomous systems of equations
	Higher order differential equations
	Linear DE's of order n
	LDEs with constant coefficients

