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The dynamics of systems of 2 equations
For an autonomous linear system
X1 = au1xy + apxe, X2 = apiXi + axnxy,
the origin (0,0) is always a stationary point, i.e., an equilibrium solution.

The eigenvalues of the matrix

a a
A— 1 a12
a1 a2

determine the type of the stationary point (0,0) and the shape of the phase
portrait.

We will assume that det A £ 0. Let A1, A2 be the eigenvalues of A. We also
assume that there exist two linearly independent vectors vq, vo of A (even if
A1 = A2).
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Case 1: A\, R

The general solution is
x(t) = CieMtvy + Gty
> If C; =0, the trajectory x1(t) is a ray in the direction of v, if C; > 0,

or —vq iIf G < 0.
» Similarly, if C; = 0 the trajectory x»(t) is a ray in the direction of v, or

—va.
» The behaviour of other trajectories depends on the signs of A; and \s.
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Subcase 1.1: 0 < A1 < Xy
> as t — 0o, x(t) asymptotically approaches the solution d=e*2tv;,
» as t — —oo, x(t) asymptotically approaches the solution e*tv;.

The point (0,0) is a source.
Example. The general solution of the system x; = 3x; + xp, % = x1 + 3x is

x(t):Cle‘“[ 11 ]T+C262t[ -1 1 ]T.

| / oA L

SNV AN 2 AT

~ AN o WA
-~ W L ppors A
s 1 7 a2 A
- ! A
3 2 7 1 z 3
7 ‘o
[ a4 2 ¥ ~ e
s VAN \ ~
A VA i\ ~
3 ////// S T T S

VAT AN A & LA SO § R B BRI VY

Algorithm:

https://zalara.github.io/Algoritmi/phaseportrait_1_1.m
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https://zalara.github.io/Algoritmi/phaseportrait_1_1.m

Subcase 1.2: My < A1 <0

At

> as t — 0o, x(t) asymptotically approaches the solution +e*1fvs,

> as t — —oo, x(t) asymptotically approaches the solution +etaty,.

The point (0,0) is a sink.
Example. The general solution of the system x; = —3x1 — x2, % = —x1 — 3x2 is
X(t) = C1€_4t [ 11 ]T+ C2€_2t[ -1 1 ]T.

Algorithm:
https://zalara.github.io/Algoritmi/phaseportrait_1_2.m
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https://zalara.github.io/Algoritmi/phaseportrait_1_2.m

Subcase 1.3: A1 <0 < X

> as t — oo, x(t) asymptotically approaches the solution +e
> as t — —oo, x(t) asymptotically approaches the solution +e*tv;.

>\2tV2,

The point (0,0) is a saddle.

Example. The general solution of the system x; = x; — 3x2, % = —3x1 + X is

x()=Ce[1 1] +Ge*[1 -1]".

Algorithm:

https://zalara.github.io/Algoritmi/phaseportrait_1_3.m
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https://zalara.github.io/Algoritmi/phaseportrait_1_3.m

Subcase 2.1: i =axif, a#0

The general solution is
x(t) = e [(Cy cos(Bt) + Cosin(Bt))u + (—Cysin(Bt) + Gy cos(Bt))w] .

Hence,

» if a <0, x(t) spirals towards (0,0) as t — oo, and
> if « >0, x(t) spirals away from (0,0) as t — oo.

The point (0,0) is a spiral sink in the first case and a spiral source in the

second case.

Example

X1 = —3X1 + 2x0,Xp = —X1 — X2

x(
((Cl cost + Gsin t) [ 2
(—

Cisint + Gycost) [ 0
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Subcase 2.2: A1 ==£if3, a #0

The trajectories are periodic with period 27 //3, i.e. the point x(t) circles
around (0, 0).

The point (0,0) is a center.

Example

X=V, V=—-Wwx .
0
1

+

Algorithm:
https://zalara.github.io/Algoritmi/phaseportrait_2_1.m
https://zalara.github.io/Algoritmi/phaseportrait_2_2.m

(G cos(wt) + Cosin(wt)) [

1
0
(—Gysin(wt) + G cos(wt)) [
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https://zalara.github.io/Algoritmi/phaseportrait_2_1.m
https://zalara.github.io/Algoritmi/phaseportrait_2_2.m

Nonlinear autonomous systems of equations

x1 = fi(x,x2), X2 = f(x1,x)
If a = (a1, az) is a critical point, that is,
fi(a1, a2) = f(a1,a2) = 0,

then the behaviour of trajectories close to a is approximated by trajectories
of the linearization of the system at the point a:

. of ofy .. Of. of;
X1 = 87)(11()(1 —31)+87X12(X2—32), Xp = a—xi(xl—al)—i—a—xz(xz—ag).

This is a linear homogeneous system with coefficient matrix the Jacobian
matrix of the vector function f(x):

of Of
x = Df(a)(x — a) = [ o P ](X—a).
o ox

The critical point is classified as a source, sink, saddle, spiral source, spiral
sink or center depending on the eigenvalues of Df(a).
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In addition to critical points, that is, equillibrium solutions, a plane
nonlinear system (that is, a nonlinear system of two differential equations)
can also have limit cycles.

A limit cycle is a periodic solutions x(t) such that for initial conditions
x(to) = xp in a certain domain the corresponding solutions x(t)
> either asymptotically tend towards x.(t) as t — 0o — in this case x
is an attracting limit cycle, or

> x(t) = xo(t) as t — —o0 — in this case x, is a repelling limit cycle.

Systems of more than two differential equations can exhibit much more
complex, chaotic behaviour.

Algorithm:

https://zalara.github.io/Algoritmi/example_predator_prey_linearization.m
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https://zalara.github.io/Algoritmi/example_predator_prey_linearization.m

Differential equations of order 2

X = f(t,x,x)

The general solution is a two-parametric family

X = X(l‘7 G, Cz)

A particular solution is given by specifying

» initial conditions: x(tp) = ap, x(to) = o,
where the values of the solution and its derivative are given at some
initial time ty
or

» boundary conditions: x(a) = xp, x(b) = x1
where values of the solution at different times a, b are given (i.e., on
the boundary of some interval [a, b])
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Differential equations of order n

x(M) = f(t,x,x,... ,x(”*l))

The general solution is an n-parametric family

x=x(t, C,...,Cp).

A particular solution is given by
> initial conditions: x(tg) = ag, ... x(" D(tg) = a,_1
where the values of the solution and its first (n — 1) derivatives are
given at some initial time ty
or

» boundary conditions
where values of the solution or its derivatives are given in different

times.
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Linear DE's of order n
A linear DE (LDE) of degree n is of the form

XM 4 a, (x0T 4 ag(t)x = F(1). (1)

The equation is
» homogeneous if f(t) =0, and
» nonhomogeneous if f(t) # 0.

» The general solution of the homogeneous part is the family of all linear
combinations

y(t) = Gxa(t) + -+ + Coaxa(t)

of n linearly independent solutions xi(t), ..., x,(t).

» If the coefficients aj(t),...,a,(t) are continuous functions, then for
any «g, ..., «p there exists exactly one solution satisfying the initial
condition

X(to) = g, ).((tO):Oél, ey X(n_l)(to) = Qp.
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LDEs with constant coefficients
Assume that the coefficient functions a;(t), ... an(t) in a homogeneous
LDE are constant:

x(M 4 g, 1x" V. 4 a0x=0, a,...ap€R (2)

Translating (2) to the system by the usual trick of introducing new variables

/ / o
X1 =X, X2=X, X3=Xp, ', Xpn=Xu 1,

(2) becomes
!/
X, = —apX1 — adixX2 — ... — adnp—1Xn,
or matricially X' = Ax:

0 1 o - 0
0 0 1 0 0
)= c R0
0 0 1
[~ —a1 - o —ap2 —an-1 |

14/18



The solutions to this system are of the form

x(t) = pr(t)eMyv,

where A is the eigenvalue of A, pk(t) is a polynomial of degree k in t
and v is the generalized eigenvector. (This follows most easily by the
use of the Jordan form of the matrix.)

In particular, if there are n linearly independent eigenvectors of the
matrix A, then all polynomials p, are constants and generalized
eigenvectors are usual eigenvectors.

By a simple calculation of expressing the determinant of A — A/
according to the coefficients and cofactors of the last row, it turns out
that the eigenvalues of A are precisely the roots of the characteristic
polynomial corresponding to (2):

P(A) =X+ a1 A" 1 ag\ + ap. (3)

A (trivial) fact with a nontrivial proof, called the fundamental theorem
of algebra, states that a polynomial of degree n has exactly n roots,
counted by multiplicity. In case the matrix A is real, these roots are
real or complex conjugate pairs.
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» From the roots of the characteristic polynomial (3), n linearly
independent solutions of the LDE can be reconstructed.
» For every real root A € R,

x(t) = e

is a solution of the homogeneous LDE.
» For a complex conjugate pair of roots A = a &+ if3, the real and
imaginary parts of the complex-valued exponential functions

elotiB)t — ot (cos(Bt) + isin(Bt))
are two linearly independent solutions
x1 = e cos(Bt), xp = e*sin(ft).
Proposition

If a root (or a complex pair of roots) \ has multiplicity k > 1, then it can

be shown that
e)\t’ te’\t, kLAt

are all linearly independent solutions.
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Proof of proposition

Let us prove the last fact by an interesting trick. We introduce the operator
1y — c(r)

L(u) = o + ap_1u" Vo agu,
where C(" (1) stands for the vector space of n-times continuously differentiable functions
on the interval | and C(/) stands for the vector space of continuous functions on /.

Let Ao be the root of the characteristic polynomial (3) of multiplicity k, i.e.,

P(A) = (A= 2)“Q(N).

Let 0 < g < k by an integer. We will check that t7e** solves (2).

Notice that
tq At d? At

= e
dXd
For ease of notation we define a, := 1. We have that:

n

(i) n , dq
q Aty __ At
Hr'e™) =2 a (qu ) Z"’ dti (qu )

i=0

. _df? . e\ df At
= o (Za'dt' >—W(ZQ'“ )—wp(”e )

i=0
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Since . _
a3 (PO =30 5 (PON) - Q)

where Q;(t, \) are functions of ¢, A and

di
d\i

(P(X)) =0, for i=0,...,q,

it follows that
L(t7e™") = 0.
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