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Chapter 1:

What is Mathematical Modelling?
I Types of models

I Modelling cycle

I Numerical errors
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Introduction

Tha task of mathematical modelling is to find and evaluate solutions to real
world problems with the use of mathematical concepts and tools.

In this course we will introduce some (by far not all) mathematical tools
that are used in setting up and solving mathematical models.

We will (together) also solve specific problems, study examples and work on
projects.
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Contents

I Introduction

I Linear models: systems of linear equations, matrix inverses, SVD
decomposition, PCA

I Nonlinear models: vector functions, linear approximation, solving
systems of nonlinear equations

I Geometric models: curves and surfaces

I Dynamical models: differential equations, dynamical systems
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Modelling cycle

Real world problem Idealization

Simplification

Mathematical model

Generalization

Conclusions

Solution

Computer solution

ProgramSimulation

Explanation
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What should we pay attention to?

I Simplification: relevant assumptions of the model (distinguish
important features from irrelevant)

I Generalization: choice of mathematical representations and tools (for
example: how to represent an object - as a point, a geometric shape,
. . . )

I Solution: as simple as possible and well documented

I Conclusions: are the results within the expected range, do they
correspond to ”facts” and experimantal results?

A mathematical model is not universal, it is an approximation of the real
world that works only within a certain scale where the assumptions are at
least approximately realistic.
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Example

An object (ball) with mass m is thrown vertically into the air. What should
we pay attention to when modelling its motion?

I The assumptions of the model: relevant forces and parameters
(gravitation, friction, wind, . . . ), how to model the object (a point, a
homogeneous or nonhomeogeneous geometric object, angle and
rotation in the initial thrust, . . . )

I Choice of mathematical model: differential equation, discrete model,
. . .

I Computation: analytic or numeric, choice of method,. . .

I Do the results make sense?
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Errors

An important part of modelling is estimating the errors!

Errors are an integral part of every model.

Errors come from: assumptions of the model, imprecise data, mistakes in
the model, computational precision, errors in numerical and computational
methods, mistakes in the computations, mistakes in the programs, . . .

Absolute error = Approximate value - Correct value

∆x = x̄ − x

Relative error = Absolute error
Correct value

δx =
∆x

x
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Example: quadratic equation

x2 + 2a2x − q = 0

Analytic solutions are

x1 = −a2 −
√

a4 + q and x2 = −a2 +
√

a4 + q.

What happens if a2 = 10000, q = 1? Problem with stability in calculating
x2.

More stable way for computing x2 (so that we do not subtract numbers
which are nearly the same) is

x2 = −a2 +
√

a4 + q =
(−a2 +

√
a4 + q)(a2 +

√
a4 + q)

a2 +
√

a4 + q

=
q

a2 +
√

a4 + q
.
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Example of real life disasters

I Disasters caused because of numerical errors:
(http://www-users.math.umn.edu/~arnold//disasters/)

I The Patriot Missile failure, Dharan, Saudi Arabia, February 25
1991, 28 deaths: bad analysis of rounding errors.

I The explosiong of the Ariane 5 rocket, French Guiana, June 4,
1996: the consequence of overflow in the horizontal velocity.
https://www.youtube.com/watch?v=PK_yguLapgA

https://www.youtube.com/watch?v=W3YJeoYgozw

https://www.arianespace.com/vehicle/ariane-5/

I The sinking of the Sleipner offshore platform, Stavanger, Norway,
August 12, 1991, billions of dollars of the loss: inaccurate finite
element analysis, i.e., the method for solving partial differential
equations.
https://www.youtube.com/watch?v=eGdiPs4THW8
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Chapter 2:

Linear model
I Definition

I Systems of linear equations

I Generalized inverses

I The Moore-Penrose (MP) inverse

I Singular value decomposition

I Principal component analysis

I MP inverse and solving linear systems
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1. Linear mathematical models

Given points

{(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R,

the task is to find a function F (x , a1, . . . , ap) that is a good fit for the data.

The values of the parameters a1, . . . , ap should be chosen so that the
equations

yi = F (x , a1, . . . ap), i = 1, . . . ,m,

are satisfied or, if this is not possible, that the error is as small as possible.

Least squares method: the parameters are determined so that the sum of
squared errors

m∑
i=1

(F (xi , a1, . . . ap)− yi )
2

is as small as possible.
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The mathematical model is linear, when the function F is a linear function
of the parameters:

F (x , a1, . . . , ap) = a1ϕ1(x) + ϕ2(x) + · · ·+ apϕp(x),

where ϕ1, ϕ2, . . . ϕp are functions of a specific type.

Examples of linear models:

1. linear regression: x , y ∈ R, ϕ1(x) = 1, ϕ2(x) = x ,

2. polynomial regression: x , y ∈ R, ϕ1(x) = 1, . . . , ϕp(x) = xp−1,

3. multivariate linear regression: x = (x1, . . . , xn) ∈ Rn, y ∈ R,

ϕ1(x) = 1, ϕ2(x) = x1, . . . , ϕn(x) = xn,

4. frequency or spectral analysis:

ϕ1(x) = 1, ϕ2(x) = cosωx , ϕ3(x) = sinωx , ϕ4(x) = cos 2ωx , . . .

(there can be infinitely many functions ϕi (x) in this case)

Examples of nonlinear models: F (x , a, b) = aebx and F (x , a, b, c) =
a + bx

c + x
.
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Given the data points {(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R, the
parameters of a linear model

y = a1ϕ1(x) + a2ϕ2(x) + · · ·+ apϕp(x)

should satisfy the system of linear equations

yi = a1ϕ1(xi ) + a2ϕ2(xi ) + · · ·+ apϕp(xi ), i = 1, . . . ,m,

or, in a matrix form,
ϕ1(x1) ϕ2(x1) . . . ϕp(x1)
ϕ1(x2) ϕ2(x2) . . . ϕp(x2)
. . . . . . . . . . . .

ϕ1(xm) ϕ2(xm) . . . ϕp(xm)




a1

a1
...

ap

 =


y1

y1
...

yp

 .
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1.1 Systems of linear equations and generalized inverses

A system of linear equations in the matrix form is given by

Ax = b,

where

I A is the matrix of coefficients of order m× n where m is the number of
equations and n is the number of unknowns,

I x is the vector of unknowns and

I b is the right side vector.
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Existence of solutions:

Let A = [a1, . . . , an], where ai are vectors representing the columns of A.

For any vector x =

 x1
...

xn

 the product Ax is a linear combination

Ax =
∑
i

xiai .

The system is solvable if and only if the vector b can be expressed as a
linear combination of the columns of A, that is, it is in the column space of
A, b ∈ C(A).
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By adding b to the columns of A we obtain the extended matrix of the
system

[A | b] = [a1, . . . , an | b],

Theorem
The system Ax = b is solvable if and only if the rank of A equals the rank
of the extended matrix [A | b], i.e.,

rank A = rank [A | b] =: r .

The solution is unique if the rank of the two matrices equals the number of
unknowns, i.e., r = n.

An especially nice case is the following:

If A is a square matrix (n = m) that has an inverse matrix A−1, the system
has a unique solution

x = A−1b.
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Let A ∈ Rn×n be a square matrix. The following conditions are equivalent
and characterize when a matrix A is invertible or nonsingular:

I The matrix A has an inverse.

I The rank of A equals n.

I det(A) 6= 0.

I The null space N(A) = {x : Ax = 0} is trivial.

I All eigenvalues of A are nonzero.

I For each b the system of equations Ax = b has precisely one solution.
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A square matrix that does not satisfy the above conditions does not have
an inverse.

Example

A =

 1 0 1
0 1 −1
1 1 1

 , B =

 1 0 1
0 1 −1
1 1 0


A is invertible and is of rank 3, B is not invertible and is of rank 2.

For a rectangular matrix A of dimension m × n, m 6= n, its inverse is not
defined (at least in the above sense...).
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Definition
A generalized inverse of a matrix A ∈ Rn×m is a matrix G ∈ Rm×n such that

AGA = A. (1)

Remark
Note that the dimension of A and its generalized inverse are transposed to each
other. This is the only way which enables the multiplication A · ∗ · A.

Proposition

If A is invertible, it has a unique generalized inverse, which is equal to A−1.

Proof.
Let G be a generalized inverse of A, i.e., (1) holds. Multiplying (1) with
A−1 from the left and the right side we obtain:

Left hand side (LHS): A−1AGAA−1 = IGI = G ,

Right hand side (RHS): A−1AA−1 = IA−1 = A−1,

where I is the identity matrix. The equality LHS=RHS implies that
G = A−1. 20/244



Theorem
Every matrix A ∈ Rn×m has a generalized inverse.

Proof.
Let r be the rank of A.

Case 1. rank A = rank A11, where

A =

[
A11 A12

A21 A22

]
and A11 ∈ Rr×r ,A12 ∈ Rr×(m−r),A21 ∈ R(n−r)×r , A22 ∈ R(n−r)×(m−r).
We claim that

G =

[
A−1

11 0
0 0

]
,

where 0s denote zero matrices of appropriate sizes, is the generalized
inverse of A. To prove this claim we need to check that

AGA = A.
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AGA =

[
A11 A12

A21 A22

] [
A−1

11 0
0 0

] [
A11 A12

A21 A22

]
=

[
I 0

A21A−1
11 0

] [
A11 A12

A21 A22

]
=

[
A11 A12

A21 A21A−1
11 A12

]
.

For AGA to be equal to A we must have

A21A−1
11 A12 = A22. (2)

It remains to prove (2). Since we are in Case 1, it follows that every column

of

[
A12

A22

]
is in the column space of

[
A11

A21

]
. Hence, there is a cofficient

matrix W ∈ Rr×(m−r) such that[
A12

A22

]
=

[
A11

A21

]
W =

[
A11W
A21W

]
.

We obtain the equations A11W = A12 and A21W = A22. Since A11 is
invertible, we get W = A−1

11 A12 and hence A21A−1
11 A12 = A22, which is (2).

22/244



Case 2. The upper left r × r submatrix of A is not invertible.

One way to handle this case is to use permutation matrices P and Q, such

that PAQ =

[
Ã11 Ã12

Ã21 Ã22

]
, Ã11 ∈ Rr×r and rank Ã11 = r . By Case 1 we

have that the generalized inverse (PAQ)g of PAQ equals to

[
Ã−1

11 0
0 0

]
.

Thus,

(PAQ)

[
Ã−1

11 0
0 0

]
(PAQ) = PAQ. (3)

Multiplying (3) from the left by P−1 and from the right by Q−1 we get

A

(
Q

[
Ã−1

11 0
0 0

]
P

)
A = A.

So, Q

[
Ã−1

11 0
0 0

]
P =

(
PT

[(
Ã−1

11

)T
0

0 0

]
QT

)T

is a generalized inverse of

A.
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Algorithm for computing a generalized inverse of A
Let r be the rank of A.

1. Find any nonsingular submatrix B in A of order r × r ,
2. in A substitute

I elements of the submatrix B for corresponding elements of (B−1)T ,
I all other elements with 0,

3. the transpose of the obtained matrix is a generalized inverse G .

Example

Compute at least one generalized inverse of

A =

0 0 2 0
0 0 1 0
2 0 1 4

 .
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I Note that rank A = 2. For B from the algorithm one of the possibilities is

B =

[
1 0
1 4

]
,

i.e., the submatrix in the right lower corner.

I Computing B−1 we get B−1 =

[
1 0
− 1

4
1
4

]
and hence

(
B−1

)T
=

[
1 − 1

4
0 1

4

]
.

I A generalized inverse of A is then

G =

0 0 0 0
0 0 1 − 1

4
0 0 0 1

4

T

=


0 0 0
0 0 0
0 1 0
0 − 1

4
1
4

 .
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Generalized inverses of a matrix A play a similar role as the usual inverse
(when it exists) in solving a linear system Ax = b.

Theorem
Let A ∈ Rn×m and b ∈ Rm. If the system

Ax = b (4)

is solvable (that is, b ∈ C(A)) and G is a generalized inverse of A, then

x = Gb (5)

is a solution of the system (4).

Moreover, all solutions of the system (4) are exaclty vectors of the form

xz = Gb + (GA− I )z , (6)

where z varies over all vectors from Rm.
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Proof.
We write A in the column form

A =
[
a1 a2 . . . am

]
,

where ai are column vectors of A. Since the system (4) is solvable, there
exist real numbers α1, . . . , αm ∈ R such that

m∑
i=1

αiai = b. (7)

First we will prove that Gb also solves (4). Multiplying (7) with G we get

Gb =
m∑
i=1

αiGai . (8)

Multiplying (9) with A the left side becomes A(Gb), so we have to check
that

m∑
i=1

αiAGai = b. (9)
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Since G is a generalized inverse of A, we have that AGA = A or restricting
to columns of the left hand side we get

AGai = ai for every i = 1, . . . ,m.

Plugging this into the left side of (9) we get exactly (??), which holds and
proves (9).

For the moreover part we have to prove two facts:

(i) Any xz of the form (6) solves (4).

(ii) If Ax̃ = b, then x̃ is of the form xz for some z ∈ Rm.

(i) is easy to check:

Axz = A (Gb + (GA− I )z) = AGb + A(GA− I )z

= b + (AGA− A)z = b.
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To prove (ii) note that
A(x̃ − Gb) = 0,

which implies that
x̃ − Gb ∈ ker A.

It remains to check that

ker A = {(GA− I )z : z ∈ Rm} . (10)

The inclusion (⊇) of (10) is straightforward:

A((GA− I )z) = (AGA− A)z = 0.

For the inclusion (⊆) of (10) we have to notice that any v ∈ ker A is equal
to (GA− I )z for z = −v :

(GA− I )(−v) = −GAv + v = 0 + v = v .
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Example

Find all solutions of the system

Ax = b,

where A =

0 0 2 0
0 0 1 0
2 0 1 4

 and b =

2
1
4

.

I Recall from the example a few slides above that G =


0 0 0
0 0 0
0 1 0

0 − 1
4

1
4

.

I Calculating Gb and GA− I we get

Gb =


0
0
1
3
4

 and A =


−1 0 0 0
0 −1 0 0
0 0 0 0
1
2

0 0 0

 .

I Hence,

xz =
[
−z1 −z2 1 3

4
+ 1

2
z1

]T
where z1, z2 vary over R.
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1.2 The Moore-Penrose generalized inverse

Among all generalized inverses of a matrix A, one has especially nice
properties.

Definition
The Moore-Penrose generalized inverse, or shortly the MP inverse of
A ∈ Rn×m is any matrix A+ ∈ Rm×n satifying the following four conditions:

1. A+ is a generalized inverse of A: AA+A = A.

2. A is a generalized inverse of A+: A+AA+ = A+.

3. The square matrix AA+ ∈ Rn×n is symmetric: (AA+)T = AA+.

4. The square matrix A+A ∈ Rm×m is symmetric: (A+A)T = A+A.

Remark
There are two natural questions arising after defining the MP inverse:

I Does every matrix admit a MP inverse? Yes.

I Is the MP inverse unique? Yes.
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Theorem
The MP inverse A+ of a matrix A is unique.

Proof.
Assume that there are two matrices M1 and M2 that satisfy the four
conditions in the definition of MP inverse of A. Then,

AM1 = (AM2A)M1 by property (1)
= (AM2)(AM1) = (AM2)T (AM1)T by property (3)
= MT

2 (AM1A)T = MT
2 AT by property (1)

= (AM2)T = AM2 by property (3)

A similar argument involving properties (2) and (4) shows that

M1A = M2A,

and so
M1 = M1AM1 = M1AM2 = M2AM2 = M2.
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Remark
Let us assume that A+ exists (we will shortly prove this fact). Then the
following properties are true:

I If A is a square invertible matrix, then it A+ = A−1.

I (A+)+ = A.

I (AT )+ = (A+)T .

In the rest of this chapter we will be interested in two obvious questions:

I How do we compute A+?

I Why would we want to compute A+?

To answer the first question, we will begin by three special cases.
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Construction of the MP inverse of A ∈ Rn×m:

Case 1: ATA ∈ Rm×m is an invertible matrix. (In particular, m ≤ n.)

In this case A+ = (ATA)−1AT .

To see this, we have to show that the matrix (ATA)−1AT satisfies
properties (1) to (4):

1. AMA = A(ATA)−1ATA = A(ATA)−1(ATA) = A.

2. MAM = (ATA)−1ATA(ATA)−1AT = (ATA)−1AT = M.

3.

(AM)T =
(

A(ATA)−1AT
)T

= A

((
ATA

)−1
)T

AT =

= A

((
ATA

)T)−1

AT = A(ATA)−1AT = AM.

4. Analoguous to the previous fact.
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Case 2: AAT is an invertible matrix. (In particular, n ≤ m.)

In this case AT satisfies the condition for Case 1, so (AT )+ = (AAT )−1A.

Since (AT )+ = (A+)T it follows that

A+ =
(

(A+)T
)T

=
(

(AAT )−1A
)T

= AT
(

(AAT )−1
)T

= AT
(

(AAT )−T
)−1

= AT (AAT )−1.

Hence, A+ = AT (AAT )−1.
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Case 3: Σ ∈ Rn×m is a diagonal matrix of the form

Σ =


σ1

σ2

. . .

σn

 or Σ̃ =



σ1

σ2

. . .

σm


.

The MP inverse is

Σ+ =



σ+
1

σ+
2

. . .

σ+
n


or Σ̃+ =


σ+

1

σ+
2

. . .

σ+
m

 ,

where σ+
i =

{ 1
σi
, σi 6= 0,

0, σi = 0.
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Case 4: A general matrix A. (using SVD)

Theorem (Singular value decomposition - SVD)

Let A ∈ Rn×m be a matrix. Then it can be expressed as a product

A = UΣV T ,

where

I U ∈ Rn×n is an orthogonal matrix with left singular vectors ui as its
columns,

I V ∈ Rm×m is an orthogonal matrix with right singular vectors vi as its
columns,

I Σ =


σ1 0

. . .
...

σr 0

0 0

 =

[
S 0
0 0

]
∈ Rn×m is a diagonal matrix

with singular values
σ1 ≥ σ2 ≥ · · · ≥ σr > 0

on the diagonal.
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Derivations for computing SVD

If A = UΣV T , then

ATA = (V ΣTUT )(UΣV T ) = V ΣTΣV T = V

[
S2 0
0 0

]
V T ∈ Rm×m,

AAT = (UΣV T )(UΣV T )T = UΣΣTUT = U

[
S2 0
0 0

]
UT ∈ Rn×n.

Let
V =

[
v1 v2 · · · vm

]
and U =

[
u1 u2 · · · un

]
be the column decompositions of V and U.

Let e1, . . . , em ∈ Rm and f1, . . . , fn ∈ Rn be the standard coordinate vectors
of Rm and Rn, i.e., the only nonzero component of ei (resp. fj) is the i-th
one (resp. j-th one), which is 1. Then

ATAvi = V ΣTΣV T vi = V ΣTΣei =

{
σ2
i vi , if i ≤ r ,

0, if i > r ,

AATuj = UΣΣTUTuj = UΣΣT fj =

{
σ2
i uj , if j ≤ r ,

0, if j > r .
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Further on,

(AAT )(Avi ) = A(ATA)vi =

{
σ2
i Avi , if i ≤ r ,

0, if i > r ,

(ATA)(ATuj) = AT (AAT )uj =

{
σ2
j ATuj , if j ≤ r ,

0, if j > r .

It follows that:

I ΣTΣ =

[
S2 0
0 0

]
∈ Rm×m (resp. ΣΣT =

[
S2 0
0 0

]
∈ Rn×n) is the

diagonal matrix with eigenvalues σ2
i of ATA (resp. AAT ) on its

diagonal, so the singular values σi are their square roots.

I V has the corresponding eigenvectors (normalized and pairwise
orthogonal) of ATA as its columns, so the right singular vectors are
eigenvectors of ATA.

I U has the corresponding eigenvectors (normalized and pairwise
orthogonal) of AAT as its columns, so the left singular vectors are
eigenvectors of AAT .
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I Avi is an eigenvector of AAT corresponding to σ2
i and so

ui =
Avi
‖Avi‖

=
Avi
σi

is a left singular vector corresponding to σi , where in the second
equality we used that

‖Avi‖ =
√

(Avi )T (Avi ) =
√

vT
i ATAvi =

√
σ2
i v

T
i vi = σi‖vi‖ = σi .

I ATuj is an eigenvector of ATA corresponding to σ2
j and so

vj =
ATuj

‖ATuj‖
=

ATuj

σj

is a right singular vector corresponding to σj , where in the second
equality we used that

‖ATuj‖ =
√

(ATuj)T (ATuj) =
√

uT
j AA

Tuj =
√
σ2
j u

T
j uj = σj‖uj‖ = σj .
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Algorithm for SVD computation

I Compute the eigenvalues and an orthonormal basis consisting of
eigenvectors of the symmetric matrix ATA or AAT (depending on
which is of them is of smaller size).

I The singular values of the matrix A ∈ Rn×m are equal to σi =
√
λi ,

where λi are the nonzero eigenvalues of ATA (resp. AAT ).

I The left singular vectors are the corresponding orthonormal
eigenvectors of AAT .

I The right singular vector are the corresponding orthonormal
eigenvectors of ATA.

I If u (resp. v) is a left (resp. right) singular vector corresponding to the
singular value σi , then v = Au (resp. u = AT v) is a right (resp. left)
singular vector corresponding to the same singular value.

I The remaining columns of U (resp. V ) consist of an orthonormal basis
of the kernel (i.e., the eigenspace of λ = 0) of AAT (resp. ATA).
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General algorithm for computation of A+ (long version)

1. For ATA compute its eigenvalues

λ1 ≥ λ2 ≥ · · · ,≥ λr > λr+1 = . . . = λm = 0

and the corresponding orthonormal eigenvectors

v1, . . . , vr , vr+1, . . . , vm,

and form the matrices

Σ = diag(
√
λ1, . . . ,

√
λm) ∈ Rn×m,

V1 =
[
v1 · · · vr

]
, V2 =

[
vr+1 · · · vm

]
and V =

[
V1 V2

]
.

2. Let

u1 =
Av1

σ1
, u2 =

Av2

σ2
, . . . , ur =

Avr
σr

,

and ur+1, . . . , un vectors, such that {u1, . . . , un} is an ortonormal basis
for Rn. Form the matrices

U1 =
[
u1 · · · ur

]
, U2 =

[
ur+1 · · · un

]
and U =

[
U1 U2

]
.

3. Then
A+ = V Σ+UT .

Remark
Note that the eigenvectors vr+1, . . . , vn corresponding to the eigenvalue 0
of ATA do not need to be computed.
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General algorithm for computation of A+ (short version)

1. For ATA compute its nonzero eigenvalues

λ1 ≥ λ2 ≥ · · · ,≥ λr > 0

and the corresponding orthonormal eigenvectors

v1, . . . , vr ,

and form the matrices

S = diag(
√
λ1, . . . ,

√
λr ) ∈ Rr×r ,

V1 =
[
v1 · · · vr

]
∈ Rm×r .

2. Put the vectors

u1 =
Av1

σ1
, u2 =

Av2

σ2
, . . . , ur =

Avr
σr

in the matrix
U1 =

[
u1 · · · ur

]
.

3. Then
A+ = V1Σ+UT

1 .
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Correctness of the computation of A+

Step 1. V Σ+UT is equal to A+.

(i) AA+A = A:

AA+A = (UΣV T )(V Σ+UT )(UΣV T ) = UΣ(V TV )Σ+(UTU)ΣV T

= UΣΣ+ΣV T = UΣV T = A.

(ii) A+AA+ = A+: Analoguous to (i).

(iii) (AA+)T = AA+:

(AA+)T =
(

(UΣV T )(V Σ+UT )
)T

=
(

UΣΣ+UT
)T

=

(
U

[
Ir 0
0 0

]
UT

)T

= U

[
Ir 0
0 0

]
UT

= (UΣV T )(V Σ+UT ) = A+.

(iv) (A+A)T = A+A: Analoguous to (iii).
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Step 2. V Σ+UT is equal to V1Σ+UT
1 .

V ΣUT =
[
V1 V2

] [S 0
0 0

] [
UT

1

UT
2

]
=
[
V1S 0

] [UT
1

UT
2

]
= V1SUT

1 .

Example

Compute the SVD and A+ of the matrix A =

[
3 2 2
2 3 −2

]
.

I AAT =

[
17 8
8 17

]
has eigenvalues 25 and 9.

I The eigenvectors of AAT corresponding to the eigenvalues 25, 9 are

u1 =
[

1√
2

1√
2

]T
, u2 =

[
1√
2
− 1√

2

]T
.

I The left singular vectors of A are

v1 =
ATu1

σ1
=
[

1√
2

1√
2

0
]T
, v2 =

ATu2

σ2
=
[

1

3
√

2
− 1

3
√

2

4

3
√

2

]T
.

v3 = v1 × v2 =
[

2√
3
− 2

3
− 1

3

]T
.

45/244



I

A = UΣV T =

 1√
2

1√
2

1√
2
− 1√

2

5 0 0

0 3 0




1√
2

1√
2

0

1

3
√

2
− 1

3
√

2

4

3
√

2

2√
3

− 2
3

− 1
3

 .
I

A+ = VΣ+UT =


1√
2

1

3
√

2

2√
3

1√
2
− 1

3
√

2
− 2

3

0 4

3
√

2
− 1

3




1
5

0

0 1
3

0 0


 1√

2

1√
2

1√
2
− 1√

2



=


7

45
2

45

2
45

7
45

2
9
− 2

9

 .
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1.3 The MP inverse and systems of linear equations

Let A ∈ Rn×m, where m > n. A system of equations Ax = b that has more
variables than constraints. Typically such system has infinitely many
solutions, but it may happen that it has no solutions. We call such system
an underdetermined system.

Theorem

1. An underdetermined system of linear equations

Ax = b (11)

is solvable if and only if AA+b = b.

2. If there are infinitely many solutions, the solution A+b is the one with
the smallest norm, i.e.,

‖A+b‖ = min {‖x‖ : Ax = b} .

Moreover, it is the unique solution of smallest norm.
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Proof of Theorem.
We already know that Ax = b is solvable iff Gb is a solution, where G is
any generalized inverse of A. Since A+ is one of the generalized inverses,
this proves the first part of the theorem.

To prove the second part of the theorem, first recall that all the solutions of
the system are precisely the set

{A+b + (A+A− I )z : z ∈ Rm}.

So we have to prove that for every z ∈ Rm,

‖A+b‖ ≤ ‖A+b + (A+A− I )z‖.

We have that:

‖A+b + (A+A− I )z‖2 =

=
(
A+b + (A+A− I )z

)T (
A+b + (A+A− I )z

)
=
(
A+b

)T (
A+b

)
+ 2

(
A+b

)T
(A+A− I )z +

(
(A+A− I )z

)T (
(A+A− I )z

)
= ‖A+b‖2 + 2

(
A+b

)T
(A+A− I )z + ‖(A+A− I )z‖2
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Now, (
A+b

)T
(A+A− I )z = bT (A+)T (A+A− I )z

= bT (A+)T (A+A)T z − bT (A+)T z

= bT
(
(A+A)A+

)T
z − bT (A+)T z

= bT
(
A+AA+

)T
z − bT (A+)T z

= bT (A+)T z − bT (A+)T z = 0,

where we used the fact (A+A)T = A+A in the second equality.

Thus,

‖A+b + (A+A− I )z‖2 = ‖A+b‖2 + ‖(A+A− I )z‖2 ≥ ‖A+b‖2,

with the equality iff (A+A− I )z = 0. This proves the second part of the
theorem.
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Example

I The solutions of the underdetermined system x + y = 1 geometrically
represent an affine line. Matricially, A =

[
1 1

]
, b = 1. Hence,

A+b = A+1 is the point on the line, which is the nearest to the origin.
Thus, the vector of this point is perpendicular to the line.

I The solutions of the underdetermined system x + 2y + 3z = 5
geometrically represent an affine hyperplane. Matricially,
A =

[
1 2 3

]
, b = 5. Hence, A+b = A+5 is the point on the

hyperplane, which is the nearest to the origin. Thus, the vector of this
point is normal to the hyperplane.

I The solutions of the underdetermined system x + y + z = 1 and
x + 2y + 3z = 5 geometrically represent an affine line in R3.

Matricially, A =

[
1 1 1
1 2 3

]
, b =

[
1
5

]
. Hence, A+b is the point on the

line, which is the nearest to the origin. Thus, the vector of this point is
perpendicular to the line.
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Example

Find the point on the plane 3x + y + z = 2 closest to the origin.

I In this case,
A =

[
3 1 1

]
and b = [2].

I We have that AAT = [11] and hence its only eigenvalue is λ = 11 with eigenvector
u = [1], implying that

U = [1] and Σ =
[ √

11 0 0
]
.

I Hence,

v1 =
ATu

‖ATu‖ =
ATu

σ1
=

1√
11

[
3 1 1

]T
.

I

A+ = VΣ+UT =
1√
11

 3
1
1

 1√
11

[1] =


3

11

1
11

1
11

 .
I

x+ = A+b =
[

6
11

2
11

2
11

]T
.
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Overdetermined systems

Let A ∈ Rn×m, where n > m. This system is called overdetermined, since
here are more constraints than variables. Such a system typically has no
solutions, but it might have one or even infinitely many solutions.

Least squares approximation problem: if the system Ax = b has no
solutions, then a best fit for the solution is a vector x such that the error
||Ax − b|| or, equivalently in the row decomposition

A =

α1
...
αn

 ,
its square

||Ax − b||2 =
n∑

i=1

(αix − bi )
2,

is the smallest possible.
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Theorem
If the system Ax = b has no solutions, then x+ = A+b is the unique
solution to the least squares approximation problem:

||Ax+ − b|| = min{‖Ax − b‖ : x ∈ Rn}.

Proof.
Let A = UΣV T be the SVD decomposition of A. We have that

‖Ax − b‖ = ‖UΣV T − b‖ = ‖ΣV T − UTb‖,

where we used that
‖UT v‖ = ‖v‖

in the second equality (which holds since UT is an orthogonal matrix). Let

Σ =

[
S 0
0 0

]
, U =

[
U1 U2

]
, V =

[
V1 V2

]
, where

S ∈ Rr×r , U1 ∈ Rn×r ,U2 ∈ Rn×(n−r), V1 ∈ Rm×r , V2 ∈ Rm×(m−r).
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Thus,

‖ΣV T − UTb‖ =

∥∥∥∥[S 0
0 0

] [
V T

1

V T
2

]
x −

[
UT

1

UT
2

]
b

∥∥∥∥
=

∥∥∥∥[SV T
1 x − UT

1 b
UT

2 b

]∥∥∥∥ .
But this norm is minimal iff

SV T
1 x − UT

1 b = 0

or equivalently
x = V1S−1UT

1 b = A+b.

Remark
The closest vector to b in the column space C (A) = {Ax : x ∈ Rm} of A is
the orthogonal projection of b onto C (A). It follows that A+b is this
projection. Equivalently, b − (A+b) is orthogonal to any vector Ax ,
x ∈ Rm, which can be proved also directly.
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Example

Given points {(x1, y1), . . . , (xn, yn)} in the plane, we are looking for the line
ax + b = y which is the least squares best fit.

If n > 2, we obtain an overdetermined system x1 1
...

xn 1

[ a
b

]
=

 y1
...

yn

 .

The solution of the least squares approximation problem is given by

[
a
b

]
= A+

 y1
...

ym

.

The line y = ax + b in the regression line.
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An application of SVD: principal component analysis or PCA

PCA is a very well-known and efficient method for data compression,
dimension reduction, . . .

Due to its importance in different fields, it has many other names: discrete

Karhunen-Loève transform (KLT), Hotelling transform, empirical orthogonal functions

(EOF), . . .

Let {X1, . . . ,Xm} be a sample of vectors from Rn.

In applications, often m << n, where n is very large, for example,
X1, . . . ,Xm can be

I vectors of gene expressions in m tissue samples or

I vectors of grayscale in images

I bag of words vectors, with components corresponding to the numbers
of certain words from some dictionary in specific texts, . . . ,

or n << m for example if the data represents a point cloud in a low
dimensional space Rn (for example in the plane).
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We will assume that m << n. Also assume that the data is centralized, i.e., the centeroid
is in the origin

µ =
1

m

m∑
i=1

Xi = 0 ∈ Rn.

If not, we substract µ from all vectors in the data set.

A matrix norm ‖ · ‖ : Rn×m → R is a function, which generalizes the notion
of the absolute value for numbers to matrices. It is used to measure a
distance between matrices. In contrast with the absolute value, which is
unique up to multiplication with a positive constant, there are many
different matrix norms.

Two important matrix norms are the following:

1. Spectral norm ‖ · ‖2:

‖A‖2 := max
‖x‖2=1

‖Ax‖2 = max
j=1,...,min(n,m)

σj(A).

2. Frobenius norm ‖ · ‖F :

‖A‖F :=

√∑
i ,j

a2
i ,j =

√ ∑
j=1,...,min(n,m)

σj(A)2.
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Let
X =

[
X1 X2 · · · Xm

]T
be the matrix of dimension m × n with data in the rows.

Let XTX ∈ Rm×m and XXT ∈ Rn×n be the covariance matrices of the
data.

I The principal values of the data set {X1, . . . ,Xr} are the nonzero eigenvalues
λi = σ2

i of the covariance matrices (where σi are the singular values of X ).

I The principal directions in Rn are corresponding eigenvectors v1, . . . , vr , i.e. the
columns of the matrix V from the SVD of X . The remaining clolumns of V (i.e.
the eigenvectors correspondong to 0) form a basis of the null space of X .

I The first column v1, the first principal direction, corresponds to the direction in Rn

with the largest variance in the data Xi , that is, the most informative direction for
the data set, the second the second most important, . . .

I The principal directions in Rm are the columns u1, . . . , ur of the matrix U and
represent the coefficients in the linear decomposition of the vectors X1, . . . ,Xm

along the orthonormal basis v1, . . . vn of Rn.
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PCA provides a linear dimension reduction method based on a projection of
the data from the space Rn into a lower dimensional subspace spanned by
the first few principal vectors v1, . . . , vk in Rn.

The idea is to approximate

Xi = σ1u1,iv1 + · · ·+ σmum,ivm ∼= σ1u1,iv1 + · · ·+ σkuk,ivk

with the first k most informative directions in Rn and supress the last
m − k .

PCA has the following amazing property:

Theorem
Among all possible projections of p : Rn → Rk onto a k-dimensional
subspace, PCA provides the best in the sense that the errors

‖X − p(X )‖2
F and ‖X − p(X )‖2

2,

where p(X ) =
[
p(X1) · · · p(Xm)

]T
, are the smallest possible.
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Chapter 3:

Nonlinear models
I Definition and examples

I Systems of nonlinear equations
I Vector functions of vector variables

I Derivative and Jacobian matrix
I Linear approximation

I Newton’s method for square systems
I Univariate case: Tangent method
I Use in optimization

I Gauss-Newton’s method for rectangular systems
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3. Nonlinear models
General formulation

Given is a sample of points {(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R.

The mathematical model is nonlinear if the function

y = F (x , a1, . . . , ap) (12)

is a nonlinear function of the parameters ai . This means it cannot be
written in the form

y = a1f1(x) + a2f2(x) + . . .+ apfp(x),

where each fi : Rn → R is some function.

Plugging each data points into (12) we obtain a system of nonlinear
equations

y1 = F (x1, a1, . . . , ap),

...

ym = F (xm, a1, . . . , ap),

(13)

in the parameters a1, . . . , ap ∈ R.
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Examples

1. Exponential decay or growth: F (x , a, k) = aekx , a and k are
parameters.

A quantity y changes at a rate proportional to its current value, which
can be described by the differential equation

dy

dx
= ky .

The solution to this equation (obtained by the use of separation of
variables) is y = F (x , a, k).
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Examples

2. Gaussian model: F (x , a, b, c) = ae−( x−b
c )

2

, a, b, c ∈ R parameters.

a is the value of the maximum obtained at x = b and c determines the
width of the curve.

It is used in statistics to describe the normal distribution, but also in
signal and image processing.

In statistics a = 1
σ
√

2π
, b = µ, c =

√
2σ, where µ, σ are the expected

value and the standard deviation of a normally distributed random
variable.
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Examples

3. Logistic model: F (x , a, b, k) = a
(1+be−kx )

, k > 0

The logistic function was devised as a model of population size by
adjusting the exponential model which also considers the saturation of
the environment, hence the growth first changes to linear and then
stops.

The logistic function F (x , a, b, k) is a solution of the first order
non-linear differential equation

dy(x)

dx
= ky(x)

(
1− y(x)

a

)
.
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Examples

4. In the area around a radiotelescope the use of microwave ovens is forbidden, since
the radiation interferes with the telescope. We are looking for the location (a, b) of
a microwave oven that is causing problems.

The radiation intensity decreases with the distance r from the source according to

u(r) =
α

1 + r
. In cartesian coordinates:

u(x , y) =
α

1 +
√

(x − a)2 + (y − b)2
,

where (a, b) is a position of the microwave.

Task: Find the position of the microwave, if the measured values of the signal at
three locations are u(0, 0) = 0.27, u(1, 1) = 0.36 in u(0, 2) = 0.3.

This gives the following system of equations for the parameters α, a, b:

α

1 +
√
a2 + b2

= 0.27

α

1 +
√

(1− a)2 + (1− b)2
= 0.36

α

1 +
√

a2 + (2− b)2
= 0.3
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An equivalent, more convenient formulation of the nonlinear system

I Our goal is to fit the data points

{(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R.

I We choose a fitting function

F (x , a1, . . . , ap)

which depends on the unknown parameters a1, . . . , ap.
I Equivalent formulation of the system (13) ( which will be more suitable for solving with

numerical algorithms) is:
1. For i = 1, . . . ,m define the functions

gi : Rp → R by the rule gi (a1, . . . , ap) = yi − F (xi , a1, . . . , ap).

2. Solve or approximate the following system by the least squares method

g1(a1, . . . , ap) = 0,

...

gm(a1, . . . , ap) = 0.

(14)
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An equivalent, more convenient formulation of the nonlinear system - continued

In a compact way (14) can be expressed by introducing a vector function

G : Rp → Rm, G (a1, . . . , ap) = (g1(a1, . . . , ap), . . . , gm(a1 . . . , ap)),
(15)

and search for the tuples (a1, . . . , ap) that solve the system (or minimize
the norm of the left-hand side)

G (a1, . . . , ap) = (0, . . . , 0). (16)

Remark
Solving (16) is a difficult problem. Even if the exact solution exists, it is not easy
(or even impossible) to compute. For example, there does not even exist an
analytic formula to determine roots of a general polynomial of degree 5 or more.

But we will learn some numerical algortihms to approximate the solutions
of (16).
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3.1 Vector functions of a vector variable
Neccessary terminology to achieve our plan

G from (15) is an example of

I a vector function: since it maps into Rm, where m might be bigger
than 1.

I a vector variable: since it maps from Rp, where p might be bigger than
1.

Remark

I If m = 1 and p > 1, then G is a usual multivariate function.

I If m = 1 and p = 1, then G is a usual (univariate) function.

For easier reference in the continuation we call g1, . . . , gm from (15) the
component (or coordinate) functions of G .
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Examples

1. A linear vector function G : Rn → Rm is such that all the component
functions gi are linear:

gi (x1, . . . , xn) = ai1 · x1 + ai2 · x2 + . . .+ ain · xn, where aij ∈ R. (17)

In this case
G (x) = Ax ,

where

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .
2. Adding constants bi ∈ R to the left side of (17) we get the definition

of an affine linear vector function,

gi (x1, . . . , xn) = ai1x1 + ai2x2 + . . . ainxn + bi ,

and then

G (x) = Ax + b, where b =
[

b1 b2 . . . bn

]T
.
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Examples

3. Most of the (vector) functions are nonlinear, e.g.,

f : R3 → R2, f (x , y , z) = (x2 + y 2 + z2 − 1, x + y + z),

g : R2 → R3, g(z ,w) = (zw , cos z + w 2 − 2, e2z),

h : R→ R2, h(t) = (t + 3, e−3t).
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Derivative of a vector function - is needed in the algorithms we will use

The derivative of a vector function F : Rn → Rm in the point

a := (a1, . . . , an) ∈ Rn

is called the Jacobian matrix of F in a:

JF (a) = DF (a) =


∂f1
∂x1

(a) · · · ∂f1
∂xn

(a)
...

. . .
...

∂fm
∂x1

(a) · · · ∂fm
∂xn

(a)

 .
I If n = m = 1, the Df (x) = f ′(x) is the usual derivative.
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Derivative - continued

I For general n and m = 1, f is a function of n variables and

Df (x) = grad f (x)

is its gradient.

I For general m and n, Df (x) =

grad f1

...
grad fm

 is a vector of gradients of

component functions.
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Examples

1. For an affine linear function f : Rn → Rm, given by f (x) = Ax + b, it
is easy to check that

Df (x) = A.

2. For a vector function f : R3 → R2, given by

f (x , y , z) = (x2 + y 2 + z2 − 1, x + y + z),

then

Df (x) =

[
2x 2y 2z
1 1 1

]
.
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Application of the derivative - linear approximation

A linear approximation of the vector function f : Rn → Rm at the point
a ∈ Rn is the affine linear function

La : Rn → Rm, La(x) = Ax + b

that satisfies the following conditions:

1. It has the same value as f in a: La(a) = f (a).

2. It has the same derivative as f at a: DLa(a) = Df (a).

It is easy to check that

La(x) = f (a) + Df (a)(x − a).

I n = m = 1:
La(x) = f (a) + f ′(a)(x − a)

The graph y = La(x) is the tangent to the graph y = f (x) at the point a.
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Application of the derivative - linear approximation continued

I If n = 2 and m = 1, then

L(a,b)(x , y) = f (a, b) + gradf (a, b)

[
x − a
y − b

]
.

The graph
z = L(a,b)(x , y)

is the tangent plane to the surface z = f (x , y) at the point (a, b).
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Example

The linear approximation of the function

f : R3 → R2, f (x , y , z) = (x2 + y 2 + z2 − 1, x + y + z)

at a = (1,−1, 1) is the affine linear function

La(x , y , z) = f (1,−1, 1) + Df (1,−1, 1)

x − 1
y + 1
z − 1


=

[
2
1

]
+

[
2 −2 2
1 1 1

] x − 1
y + 1
z − 1


=

[
2 + 2(x − 1)− 2(y + 1) + 2(z − 1)

1 + (x − 1) + (y + 1) + (z − 2)

]

=

[
2 −2 2
1 1 1

]x
y
z

+

[
−4
0

]
.
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3.2 Solving systems of nonlinear equations

Let f : D → Rm be a vector function, defined on some set D ⊂ Rn.

We will study the Gauss-Newton method to solve the system f (x) = 0 in
terms of least squares. This is one of the numerical methods for searching
approximate solution of this system. It is based on linear approximations of
f .
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Newton’s method for n = m = 1

We are searching zeroes of the function f : D → R, D ⊆ R, i.e., we are
solving f (x) = 0.

Newton’s or tangent method:

We construct a recursive sequence with:

I x0 is an initial term,

I xk+1 is a solution of

Lxk (x) = f (xk) + f ′(xk)(x − xk) = 0, so xk+1 = xk − f (xk )
f ′(xk ) .
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Newton’s method for n = m = 1 - continued

Theorem
The sequence xi converges to a solution α, f (α) = 0, if:

(1) 0 6= |f ′(x)| for all x ∈ I , where I is some interval containing α,

(2) x0 is sufficiently close to α.

Under these assumptions the convergence is quadratic, meaning that:

If we denote by εj = |xj − α|, then εi+1 ≤ Mε2
i ,

where M is some constant. If f is twice differentiable, then

M ≤ max
x∈I
|f ′′(x)|/min

x∈I
|f ′(x)|.
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Proof.
Condition (1) implies in particular that α is a simple zero of f . Plugging α
in the Taylor expansion of f around xi we get

0 = f (α) = f (xi ) + f ′(xi )(α− xi ) +
f ′′(η)

2
(α− xi )

2

= f (xi ) + f ′(xi )(α− xi ) +
f ′′(η)

2
(α− xi )

2

(18)

where η is between α and xi . Dividing (18) with f ′(xi ) we get

0 =
f (xi )

f ′(xi )
− (α− xi ) +

f ′′(η)

2f ′(xi )
e2
i

and hence (
xi −

f (xi )

f ′(xi )

)
− α = xi+1 − α =

f ′′(η)

2f ′(xi )
e2
i .

Thus,

ei+1 =

∣∣∣∣ f ′′(η)

2f ′(xi )

∣∣∣∣ e2
i
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Now ∣∣∣∣ f ′′(η)

2f ′(xi )

∣∣∣∣ ≤ maxx∈I |f ′′(x)|
minx∈I |f ′(x)|

.

To prove that the sequence converges note that there exists δ0 > 0 such
that

Mδ0 <
1

2
.

Hence, if ei ≤ δ0, then

ei+1 =

∣∣∣∣ f ′′(η)

2f ′(xi )

∣∣∣∣ e2
i =

1

2
ei .

Therefore

lim
n→∞

en = lim
n→∞

1

2n
· e0 = 0.
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Newton’s method for n = m > 1

Newton’s method generalizes to systems of n nonlinear equations in n
unknowns:

I x0 – initial approximation,

I xk+1 – solution of

Lxk (x) = f (xk) + Df (xk)(x − xk) = 0,

so
xk+1 = xk − Df (xk)−1f (xk).

In practice inverses are difficult to calculate (require to many operations)
and the linear system for ∆xk = xk+1 − xk

Df (xk)∆xk = −f (xk)

is solved at each step (using LU decomposition of Df (xk)) and hence

xk+1 = xk + ∆xk .
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Example

Derive Newton’s method for solving the system of quadratic equations:

x2 + y 2 − 10x + y = 1,

x2 − y 2 − x + 10y = 25.

We are searching for the zero of the vector function

F : R2 → R2, F (x , y) = (x2 + y 2 − 10x + y − 1, x2 − y 2 − x + 10y − 25).

The Jacobian of F in (x , y) is

DF (x , y) =

[
2x − 10 2x − 1
2y + 1 −2y + 10

]
.

Using Newton’s metod we:

I Choose an initial term (x0, y0).

I Calculate xr+1 = xr + ∆xr , where DF (xr , yr )∆xr = −F (xr , yr )
T .
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Application of Newton’s method for n = m > 1 to optimization

Newton optimization method:

We would like to find the extrema of the function F : Rn → R.

Since the extrema are critical (or stationary) points, the candidates are
zeroes of the gradient, i.e.,

G (x) := grad F (x) =
[

Fx1(x) · · · Fxn(x)
]

= 0. (19)

(19) is a system of n equations for n variables, the Jacobian of the vector
function G is the so called Hessian of F :

DG (x) = H(x) =

Fx1x1 . . . Fx1xn
...

. . .
...

Fxnx1 . . . Fxnxn

 .
If the sequence of iterates

x0, xk+1 = xk − H−1(xk)G (xk)

converges, the limit is a critical point of F , i.e., a candidate for the
minimum (or maximum).
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Gradient descent
Optimization methods can also be used to ensure a sufficiently accurate starting

approximation for the Newton-based techniques. (Like bisection does for a single

one-variable equation.)

Finding solutions of the system F (x) = 0, where

F = [F1, . . . ,Fn]T : Rn → Rn

is equivalent to finding global minima of

g(x) := ‖F‖2 = F1(x)2 + . . .+ Fn(x)2 : Rn → R.

We search for the local minima (which are not necessarily global minima!) of g
as follows:

1. Choose x0.

2. Determine the constant α in xr − α · grad(g(xr )) which mimimizes

h(α) = g(xr − α · grad(g(xr )).

(Or is significantly smaller than h(0) = g(xr ).)

3. xr+1 = xr − α · grad(g(xr )).
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Quasi-Newtonov methods: Broyden’s method
I For large n, the Newton’s method is very expensive, since we need to evaluate n2

partial derivatives at each step and use O(n3) flops (+,−, ·, :) to solve the linear
system.

I Broyden’s method avoids computing derivatives. For n = m = 1 it replaces the
tangent by a secant throught the last two iterates. It mimicks this idea also for
larger n = m.

Let Br be an approximate for Jf (xr ). Broyden’s method works as follows:

1. Solve Br∆xr = −f (xr ),

2. xr+1 = xr + ∆xr ,

3. Determine Br+1.

The last step searches for a matrix Br+1, which fulfils the secant condition:

Br+1(xr+1 − xr ) = f (xr+1)− f (xr )

and is the closest to Br in the spectral norm ‖ · ‖2.

It turns out that

Br+1 = Br +
f (xr+1)(∆xr )T

‖∆xr‖2
2

.
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Application on the microwave oven example

Recall from above the microwave oven example. The system of equations
for the parameters α, a, b is:

α

1 +
√

a2 + b2
− 0.27 = 0

α

1 +
√

(1− a)2 + (1− b)2
− 0.36 = 0

α

1 +
√

a2 + (2− b)2
− 0.3 = 0.

https://zalara.github.io/Algoritmi/newtonsys.m

https://zalara.github.io/Algoritmi/broyden.m

https://zalara.github.io/Algoritmi/gradient_descent.m

https://zalara.github.io/Algoritmi/test_newtonsys_2.m
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Newton’s method for m > n > 0

We have an overdetermined system

f : Rn → Rm, f (x) = (0, . . . , 0) (20)

of m nonlinear equations for n unknowns, where m > n.

The system (20) generally does not have a solution, so we are looking for a
solution of (20) by the least squares method, i.e., α ∈ Rn such that the
distance of f (α) from the origin is the smallest possible:

‖f (α)‖2 = min{‖f (x)‖2}.
The Gauss-Newton method is a generalization of the Newton’s method,
where instead of the inverse of the Jacobian its MP inverse is used at each
step:

x0 . . . initial approximation, xk+1 = xk − Df (xk)+f (xk),

where Df (xk)+ is the MP inverse of Df (xk). If the matrix

(Df (xk)TDf (xk)) is nonsingular at each step k, then

xk+1 = xk − (Df (xk)TDf (xk))−1Df (xk)T f (xk).
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Newton’s method for m > n > 0 - continued

At each step xk+1 is the least squares approximation to the solution of the
overdetermined linear system Lxk (x) = 0, that is,

‖Lxk (xk+1)‖2 = min{‖Lxk (x)‖2, x ∈ Rn}.

Convergence is not guaranteed, but:

I if the sequence xk converges, the limit x = limk xk is a local (but not
necessarily global) minimum of ‖f (x)‖2.

It follows that the Gauss-Newton method is an algorithm for the local
minimum of ‖f (x)‖2.
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Example

We are given point (xi , yi ) ∈ R2 for i = 1, . . . ,m and are searching for the
function

f (x , a, b) = aebx

which fits this data best by the method of least squares.

So we have the overdetermined system F (a, b) = 0, where

F : R2 → Rm
, F (a, b) = (y1 − aebx1 , . . . , ym − aebxm ).

The Jacobian of F is

DF (a, b) =


−ebx1 ax1e

bx1

.

.

.

−ebxm axmebxm

 .
Using the Gauss-Newton method:

I We choose initianl approximation (a0, b0),

I Calculate iterates [
ar+1
br+1

]
=

[
ar
br

]
− DF (ar , br )+F (ar , br )T .
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Chapter 4:

Curves and surfaces
I Curves

I Definition and examples
I Derivative
I Arc length and the natural parametrization
I Curvature
I Plotting plane curves
I Area bounded by plane curves
I Curves in the polar form
I Motion in R3

I Surfaces
I Definition and examples
I Cartesian, cylindrical and spherical coordinates
I Surface of revolution
I Tangent plane
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Curves - definition and examples

A parametric curve (or parametrized curve) in Rm is a vector function

f : I → Rm, f (t) =

 f1(t)
...

fm(t)

,
where I ⊂ R is a bounded or unbounded interval.

The independent variable (in this case t) is the parameter of the curve.

For every value t ∈ I , f (t) represents a point in Rm.

As t runs through I , f (t) traces a path, or a curve, in Rm.
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If m = 2, then for every t ∈ I ,

f (t) =

[
x(t)
y(t)

]
= r(t)

is the position vector of a point in the plane R2.

All points {f (t), t ∈ I} form a plane curve:

In this example x(t) = t cos t, y(t) = t sin t, t ∈ [−3π/4, 3π/4]
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If m = 3, then

f (t) =

x(t)
y(t)
z(t)

 = r(t)

is the position vector of a point in R3 for every t, and {f (t), t ∈ I} is a
space curve:

In this example x(t) = cos t, y(t) = sin t, z(t) = t/5, t ∈ [0, 4π]
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Example

f (t) =

[
2 cos t
2 sin t

]
, t ∈ [0, 2π]

a circle with radius 2 and center (0, 0)

f (t) = r0 + te, t ∈ R,
r0, e ∈ Rm, e 6= 0

line through r0 in the direction of e in
Rm

m=2:
slope k = e2/e1 if e1 6= 0
vertical if e = (0, e2)
horizontal if e = (e1, 0)
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Example

f (t) =

[
t3 − 2t
t2 − t

]
, t ∈ R

f (t) =

[
t + sin(3t)
t + cos(5t)

]
, t ∈ R
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A parametric curve f (t), t ∈ [a, b] is closed if f (a) = f (b).

Example

f (t) =

[
cos 3t
sin 5t

]
, t ∈ [0, 2π]
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Problem: What path does the valve on your bicycle wheel trace as you bike
along a straight road?

Represent the wheel as a circle of radius a rolling along the x-axis, the valve
as a fixed point on the circle, the parameter is the angle of rotation:

The curve is a cycloid: x(θ) = aθ − a sin θ, y(θ) = a− a cos θ.
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The following parametric curves all describe the circle with radius a around
the origin (as well as many others):

f1(t) =

[
a sin t
a cos t

]
, t ∈ [0, 2π]

f2(t) =

[
a cos 2t
a sin 2t

]
, t ∈ [0, 2π]

f3(t) =

[
a cos t
a sin t

]
, t ∈ R
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Derivative, linear approximation, tangent

The derivative of the vector function f (t) =

 x1(t)
...

xm(t)

 at the point a is

the vector:

Df (a) =

 x ′1(a)
...

x ′m(a)

 = f ′(a) = lim
h→0

1

h
(f (a + h)− f (a))

The vector f ′(a) (if it exists) represents the velocity vector of a point
moving along the curve at the point t = a.

If f ′(a) 6= 0 it points in the direction of the tangent at t = a.
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The linear approximation of the function f at t = a is

La(t) = f (a) + (t − a)f ′(a)

I If f ′(a) 6= 0, this is a parametric line corresponding to the tangent line
to the curve f (t) at t = a. In this case f (a) is a regular point of the
parametrization.

I If f ′(a) = 0 (or if it does not exist), the parametrization of the curve is
singular in the point f (a).

I A curve C ∈ Rm is smooth at a point P on C if there exists a
parametrization f (t) of C , such that f (a) = P and f ′(a) 6= 0.

I A smooth curve has a tangent at every point P ∈ C .
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Problem: Is the curve C = {f (t), t ∈ [0,
√

2π]},

f (t) =

[
cos(t2)
sin(t2)

]
, smooth?

Since x2 + y 2 = 1, f (t) is a parametrization of the unit circle which is a
smooth curve (it has a tangent at every point).

Since f ′(0) = 0 the parametrization f is singular in the point (1, 0).

However, a smooth parametrization exists. Can you find it?
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Problem: Is the cycloid a smooth curve?

Our parametrization

f (t) =

[
t − sin t
1− cos t

]
, f ′(t) =

[
1− cos t

sin t

]
is not smooth at t = 2kπ since f ′(2kπ) = 0.

Does a tangent exist?
The slope of the tangent line at a point f (t) is:

kt =
y ′(t)

x ′(t)
=

sin t

1− cos t

The left and right limits as t → 2kπ are

lim
t↗2kπ

kt = lim
t↗2kπ

cos t

sin t
= −∞, limt↘2kπkt = lim

t↘2kπ

cos t

sin t
=∞,

so at these points the curve forms a sharp spike (a cusp) and a tangent does not exist.

So, the cycloid is not smooth at the points where it touches the x axis.

(l’Hospital’s rule was used to compute the limits.)
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Arc length and the natural parametrization

The arc length s of a parametric curve f (t), t ∈ [a, b], in Rm is the length
of the curve between the points t = a in t = b, i.e. the distance covered by
a point moving along the curve between these two points.

Example
For example, what distance does a point on the circle cover when the circle makes one
full turn?

Proposition

The arc length s of a parametric curve f (t) between the points t = a and
t = b is given by

s =

∫ b

a
‖f ′(t)‖ dt.
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Proof of the Proposition
An aproximate value for s is the length of a polygonal curve connecting close enough
points on the curve:

sn =
n∑

i=1

‖f (ti )− f (ti−1)‖

=
n∑

i=1

‖f ′(ti−1)‖∆t

→n→∞

∫ b

a

‖f ′(t)‖ dt

where:

I The value f (ti ) = f (ti−1 + ∆t), where ∆t = ti − ti−1, was approximated as
f (ti ) = f (ti−1) + f ′(ti−1)∆t and hence f (ti ) = f (ti−1) + f ′(ti−1)∆t. (Under the
assumption that f ′ is continuous.

I In the last line we used that the sum represents a Riemannian sum of the function
‖f ′(t)‖.

I For n big enough, sn is a practical approximation for s.
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Problem: The length of the path traced by a point on the circle after a full turn?

A parametrization is f (t) =

[
t − sin t
1− cos t

]
and hence:

s =

∫ 2π

0

√
(1− cos t)2 + sin2 t dt =

∫ 2π

0

√
2− 2 cos t dt =

∫ 2π

0

√
4 sin2(t/2) dt

=

∫ 2π

0

2 sin(t/2) dt = −4(cos(π)− cos(0)) = 8.

Problem: What is the arc length of the helix f (t) =

a cos t
a sin t
bt

, 0 ≤ t ≤ 2π?

Problem: The circumference of the elipse

[
a cos t
b sin t

]
, a 6= b?

∫ 2π

0

√
a2 sin2 t + b2 cos2 t dt = 4a

∫ π/2

0

√
1− e2 sin2 t dt = 4aE(e)

where e =
√

1− (b/a)2 is its eccentricity and the function E is the nonelementary elliptic
integral of 2nd kind. It can be computed numerically, which is briefly explained in the
next few slides.
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Numerical integration

The integral
∫ b

a
f (x) dx can be approximated by a linear approximation of f over the

interval [a, b] and computing the area of the trapezoid formed.

∫ b

a

f (x) dx ≈ f (a) +
f (b)− f (a)

b − a
(x − a) =: T (b − a)

Of course the error of this approximation is usually large and we are not satisfied. How do

we estimate how good is this approximation?
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Adaptive trapezoid rule (integral(· · · ) in Matlab)
1. T (b − a) = f (a) + f (b)−f (a)

b−a
(x − a).

2. We add another point in the middle of the interval, i.e., x = a+b
2

and compute the
sum of the areas of two trapezoids formed:

T ((b − a)/2) =
1

2
T (b − a) +

b − a

2
· f ((a + b)/2).

3. If e := |T (b − a)− T ((b − a)/2)| is smaller than the tolerance tol , we are satisfied
and return T ((b − a)/2).

4. Otherwise we have to repeat the procedure on each of the subintervals
[a, (a + b)/2] and [(a + b)/2, b], where the tolerance on each of them must be
smaller than tol/2.

5. We can implement this recursively, obtaining the so called adaptive trapezoid rule,
where on different subintervals of [a, b] different number of recursions is needed
(this depends on the behaviour of the function f ).
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Natural parametrization

The arc length from the initial t = a to an arbitrary t = T

s(t) =

∫ t

a
‖f ′(u)‖ du

is an increasing function of t if f is a smooth parametrization, so it has an
inverse

t(s) : [0, s(T )]→ [a,T ].

So, the original parameter t can be expressed as a funcion of the arc length
s.

Inserting this into the parametrization gives the same curve with a different
parametrization:

g(s) = f (t(s)).

The arc length s is called the natural parameter of the curve.
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Proposition

A curve C is parametrized with the natural parameter s satisfies

‖g ′(s)‖ = 1, (21)

i.e., the length of the velocity vector is 1 at every point and so a
parametrization with the natural parameter is the unit speed
parametrization.

Proof. Indeed,

g ′(s) =
dg

ds
(s) =

d(f ◦ t)

ds
(s) =

df

dt
(t(s)) · dt

ds
(s) = f ′(t(s))t′(s). (22)

Now note that by the fundamental theorem of calculus we have that

s ′(t) = ‖f ′(t)‖
and hence

t′(s) =
1

‖f ′(t(s))‖ .

Plugging this into (22) we get

g ′(s) =
f ′(t(s))

‖f ′(t(s))‖ ,

which is equivalent to (21).
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Example

The standard parametrization of the circle

f (t) =

[
a cos t
a sin t

]
is not the natural parametrization if a 6= 1, since

‖f ′(t)‖ =
√

a2 cos2 t + a2 sin2 t = a 6= 1.

Since

s(t) =

∫ t

0
a dt = at,

it follows that t = s/a and the natural parametrization is

g(s) =

[
a cos(s/a)
a sin(s/a)

]
.
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Remember:

A parametric curve: f (t) =

x1(t)
...

xm(t)

,

t ∈ I ⊂ R,

The derivative f ′(t) =

x
′
1(t)
...

x ′m(t)


is the velocity vector or
tangent vector if f ′(t) 6= 0,

The image C = {f (t), t ∈ I}: a (geometric) curve in Rm.A curve C has many
parametrizations.

The arc length parametrization or natural parametrization f (s):
s is the length of the chord from f (a) to f (s), ‖f ′(s)‖ = 1.
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Brachistochrone problem
Problem: Given points A and B what is the fastest path of a mass starting
in A and ending in B, being accelerated only by gravity? We assume no
friction is present.

BASICS OF CALCULUS OF VARIATIONS

MARKUS GRASMAIR

1. Brachistochrone problem

The classical problem in calculus of variation is the so called brachistochrone
problem1 posed (and solved) by Bernoulli in 1696. Given two points A and B,
find the path along which an object would slide (disregarding any friction) in the
shortest possible time from A to B, if it starts at A in rest and is only accelerated
by gravity (see Figure 1).

x

B

A

y

Figure 1. Sketch of the brachistochrone problem.

This is obviously an optimization problem—after all, we want to minimize travel
time—, but the minimization takes place over all possible paths from A to B. Thus
we cannot expect this problem to fall directly into the (finite dimensional) setting
we have discussed previously.

First, we will need a good mathematical model of this problem. We may assume
without loss of generality that the point A is at the origin, that is, A = (0, 0). Next
we write the point B as B = (a, b). We may assume that a > 0, that is, the point
B lies to the right of A; if a < 0, we could simply reflect the whole setup around
the y-axis, and for a = 0 the solution is trivial (if B is directly below A, then free
fall is the optimal path). In order to simplify the notation in the long run, we
now assume that the y-axis points downwards (dealing only with positive numbers
will make life much easier). Then we can additionally assume that b > 0; else the
end point of the path lies above the starting point, and no physical solution of the
problem is possible.

Next, it seems plausible that we can write the path we look for as a curve of the
form

x 7→
(

x
y(x)

)
with y : (0, x)→ R satisfying y(0) = 0 and y(a) = b. Doing so, we actually exclude
a large number of possible paths (all those that pass the same x-coordinate more

Date: April 2015.
1The term is composed of the greek words brachistos meaning shortest and chronos meaning

time. Thus it literally translates to shortest time problem.

1

I We denote A = (0, 0) and B = (b, 0). We are searching for a curve

y(x) : [0, b]→ R.
I Law of conservation of energy:

Potential energy + Kinetic energy=constant
1

2
mv(x)2 = mgy(x) ⇒ v(x) =

√
2gy(x).
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I Let s(x) be the arc length of the curve from A to (x , y(x)). We have:

s(x) =

∫ x

0

√
1 + y ′(x)2dx

and hence

s ′(x) =
ds

dx
=
√

1 + y ′(x)2.

I Let T (y) be the travel time along the curve {(x , y(x)) : x ∈ [0, b]}.
We have:

T (y) =

∫ T (y)

0
dt =

∫ s(b)

0

ds

v(s)
=

∫ b

0

√
1 + y ′(x)√

2gy(x)
dx .

I We need to minimize the functional T (y) : C [0, b]→ R on the vector
space of continuous functions on [0, b].

Theorem (Euler-Lagrange equation)

If y∗ is the solution of the minimization problem miny∈C [0,b] T (y), then it
satisfies the equation

∂

∂y
f (x , y(x), y ′(x)) =

d

dx

∂

∂y ′
f (x , y(x), y ′(x)).
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Applying Euler-Lagrange equations for the brachistochrone problem, we
come to the differential equation

y ′ =

√
C − y

y
for some constant C .

Separation of variables: √
y

C − y
dy = dx .

Integrating both sides and using the substitution y = C sin2(t) we get

x(t) = C

(
t − 1

2
sin 2t

)
, y(t) = C

(
1

2
− 1

2
cos 2t

)
,

which is the cycloide.

For those who want to know more:

https://wiki.math.ntnu.no/_media/tma4180/2015v/calcvar.pdf

https://www.youtube.com/watch?v=Cld0p3a43fU
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Curvature

1. Intuitively we would like to measure for what amount does the curve
deviate from being the straight line.

2. For the circle of radius R we would like that the curvature is
proportional to 1/R.

The curvature κ(t) of a smooth curve f (t) at a point t = a is the rate of

change of the unit tangent vector T (t) =
f ′(t)

‖f ′(t)‖
:

κ(t) =

∥∥∥∥ 1

ds/dt
T ′(t)

∥∥∥∥ .
If the curve is parametrized by the arc length s, i.e., ‖f ′(s)‖ = 1, then this
is simply

κ(s) =
∥∥f ′′(s)

∥∥
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Problem: what is the curvature of a circle with radius a?

The natural parametrization of the circle is f (s) =

[
a cos(s/a)
a sin(s/a)

]
, so

f ′(s) =

[
− sin(s/a)
cos(s/a)

]
and f ′′(s) =

[
− cos(s/a)/a
− sin(s/a)/a

]
.

The curvature
κ(s) = ‖f ′′(s)‖ = 1/a

is constant along the circle.

I As a→∞, the circle goes towards a line and κ→ 0.

I On the other hand, as a→ 0, the circle goes towards a point and
κ→∞.
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Problem: designing roads and railways

Roads, railway bends, roller coaster
loops, the ski jump in Planica . . . are
designed so that the transitions from
the straight to the circular parts are
as smooth as possible.

The force acting on a moving point on the curve (car, train, ski jumper,. . . )
increases and decreases as evenly as possible.

The transition curve from

I the straight part (with curvature 0) to

I the circular part (with curvature a > 0)

has several names: clotoid, Euler spiral, Cornu

spiral . . .

Its characteristic property is that the curvature κ(s) is a linear function of
arc length s.
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Let us find its arc length parametrization f (s). Assume that
κ(s) = ‖f ′′(s)‖ = 2s.

Remember that the arc length parametrization is the unit speed
parametrization, so ‖f ′(s)‖ = 1 and so f ′(s) can be written in the form

f ′(s) =

[
x ′(s)
y ′(s)

]
=

[
cosϕ(s)
sinϕ(s)

]
.

This gives

κ(s) =
√

x ′′(s)2 + y ′′(s)2 = ϕ′(s) = 2s, ϕ(s) = s2,

x ′(s) = cos(s2), y ′(s) = sin(s2),

so

x(s) =

∫ s

0
cos(u2) du, y(s) =

∫ s

0
sin(u2) du
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The functions

x(s) =

∫ s

0
cos(u2) du = C (s), y(s) =

∫ t

0
sin(u2) du = S(s)

are nonelementary functions called the Fresnel integrals

Fresnel integrals clotoid
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Plane curves

For a plane curve f (t) =

[
x(t)
y(t)

]
the tangent at a regular point f (a) is

I the vertical line
x = x(a)

if x ′(a) = 0 and y ′(a) 6= 0,

I the line

y − y(a) =
y ′(a)

x ′(a)
(x − x(a))

if x ′(a) 6= 0,

I the horizontal line
y = y(a)

if y ′(a) = 0 and x ′(a) 6= 0.
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Plotting a parametric plane curve

Here is a general strategy:

I find the asymptotic behaviour: lim
t→∞

f (t), lim
t→−∞

f (t)

I find intersections with coordinate axes: solve y(t) = 0 and x(t) = 0

I find points where the tangent is vertical or horizontal: solve x ′(t) = 0 and y ′(t) = 0

I find self-intersections: solve f (t) = f (s), t 6= s

I and the two tangents there

I look for other helpful features . . .

I connect points r(t) = f (t) by increasing t
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Problem: find the self-intersection (if there is one) of a parametric curve

Let f (t) =

[
t3 − 2t
t2 − t

]

A self-intersection is at a point f (t) = f (s), with t 6= s, so:

t3 − 2t = s3 − 2s and t2 − t = s2 − s

⇒ t3 − s3 = 2t − 2s and t2 − s2 = t − s

Since t 6= s we can divide by t − s:

t2 + ts + s2 = 2 and t + s = 1

⇒ t = 1− s and (1− s)2 + s(1− s) + s2 = 2.

The self-intersection (where s and t can be interchanged) is at

s = (1 +
√

5)/2, t = (1−
√

5)/2, f (t) = f (s) =

[
1
1

]
.

123/244



Problem: do two parametric curves intersect. Imagine two cars speeding
along the two curves. Do they crash?

Let f1(t) =

[
t2 − 1

−t3 − t2 + t + 1

]
, f2(s) =

[
s − 1
1− s2

]
.

To find the intersections, solve the system

t2 − 1 = s − 1 and − t3 − t2 + t + 1 = 1− s2

⇒ s = t2 and − s6 − s4 + s2 + 1 = 1− s2

There are three solutions:

t = −1, s = 1 ⇒ x = 0, y = 0
t = 0, s = 0 ⇒ x = −1, y = 1
t = 1, s = 1 ⇒ x = 0, y = 0

The cars meet at t = 0, s = 0 at the point (−1, 1) and at t = 1, s = 1 at the point (0, 0).

124/244



Problem: plot f (t) =

[
t2 − 1

−t3 − t2 + t + 1

]
, f ′(t) =

[
2t

−3t2 − 2t + 1

]

I Asymptotic behaviour: lim
t→∞

f (t) =

[
∞
−∞

]
, lim
t→−∞

f (t) =

[
∞
∞

]
,

I intersections with axes:t = ±1, at
(0, 0)
this is also a self-intersection

I the two tangent lines at (0, 0)
I at t = −1: y = 0,

I at t = 1: y = −2x

I vertical tangent: t = 0 at (−1, 1)

I horizontal tangent
I at t1 = −1, y = 0,

I at t2 = 1/3, y = 32/27
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Areas bounded by plane curve

I. Let f (t) =

[
x(t)
y(t)

]
, t ∈ [a, b]

x ′(t) > 0

The area of the quadrilateral bounded by the curve and the x-axis is

P =

∫ x(b)

x(a)
|y(x)| dx =

∫ b

a
|y(t)|x ′(t) dt

Problem: the area under one arc of the cycloid:

x(t) = at − a sin t, y(t) = a− a cos t,

P =

∫ 2π

0

a2(1− cos t)2 dt = a2

∫ 2π

0

(
3

2
− 2 cos t +

1

2
cos(2t)

)
dt = 3a2π.
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II. The area of the triangular region bounded by the curve f (t), t ∈ [a, b],
and the two end-point position vectors f (a) and f (b):

P =
1

2

∫ b

a
|x(t)y ′(t)− y(t)x ′(t)| dt.
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Proof of the area formula

An approximate value of the area is the sum of areas of triangles obtained by subdividing
the interval [a, b] into n intervals of length ∆t = (b − a)/n.

The area of a triangle with vertices (0, 0), f (ti ), f (ti+1) is

∆Pi =
1

2
‖f (ti+1)× f (ti )‖

.
=

1

2
‖(f (ti ) + f ′(ti )∆t)× f (ti )‖

=
1

2
‖f ′(ti )× f (ti )‖∆t =

1

2
|y ′(ti )x(ti )− x ′(ti )y(ti )|∆t,

where the last equlatiy follows from the calculation

f ′(ti )× f (ti ) = (x ′(ti ), y
′(ti ), 0)× (x(ti ), y(ti ), 0)

= (x ′(ti )y(ti )− y ′(ti )x(ti ), 0, 0).

The area is obtained by adding these and letting n→∞:

P = lim
n→∞

1

2

n−1∑
i=0

|y ′(ti )x(ti )− x ′(ti )y(ti )|∆t

=
1

2

∫ b

a

|x(t)y ′(t)− y(t)x ′(t)| dt.
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Problem: the area bounded by

1. the asteroid x(t) = cos3 t, y(t) = sin3 t, t ∈ [0, 2π] is

2. the elipse x = a cos t, y = b sin t, t ∈ [0, 2π] is

Hint. In both problems use the identities

sin2 t =
1

2
(1− cos(2t)), cos2 t =

1

2
(1 + cos(2t)).

In the first problem all you have to really integrate after subtractions of some terms is

1− cos2(2t). The results are 3π
8

for the first and abπ for the second problem.
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Curves in the polar plane

Polar coordinates of a point in the plane are

I distance to the origin r , r ≥ 0, and

I polar angle ϕ, determined up to a
multiple of 2π, defined for r 6= 0.

Usually the polar axis corresponds to the positive part of the x-axis, so

I x = r cosϕ, y = r sinϕ

I r =
√

x2 + y 2, tanϕ = y
x
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A curve in polar coordinates is given by r = r(ϕ), ϕ ∈ I ⊂ R.

Rule. If r(ϕ) < 0, then the point on the curve at an angle ϕ is equal to

(x(ϕ), y(ϕ)) := |r(ϕ)|(cosϕ, sinϕ) · e iπ.
In other words, we reflect the point

|r(ϕ)|(cosϕ, sinϕ)

over the origin.

Example

r = 1 unit circle

r = ϕ Arhimedean spiral
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Example

line y = 1, r = 1
sinϕ

cardioid, r = 1− sinϕ

132/244



Example

a butterfly

r = sin5
(ϕ−π

12

)
+ esinϕ − 2 cos(4ϕ)

-3 -2 -1 1 2 3

-2

-1

1

2

3

4

Matlab files:

https://zalara.github.io/Algoritmi/curves_polar.m
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A parametrization of the curve with parameter being the polar angle is:

f (ϕ) =

[
r(ϕ) cos(ϕ)

r(ϕ) sin(ϕ)

]
, ϕ ∈ I .

Example

The hyperbolic spiral r =
1

ϕ
is parametrized by f (t) =

[ cosϕ
ϕ

sinϕ
ϕ

]
,

as ϕ→ 0, r(ϕ)→∞

x(ϕ) =
cosϕ

ϕ
→∞

y(ϕ) =
sinϕ

ϕ
→ 1

as ϕ→∞, r(ϕ)→ 0
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The tangent vector to the curve at a point r(ϕ) is given by

f ′(ϕ) =

[
r ′(ϕ) cos(ϕ)− r(ϕ) sin(ϕ)

r ′(ϕ) sin(ϕ) + r(ϕ) cos(ϕ)

]

Problem: compute the angle between the coordinate vector of a point on
the logarithmic spiral r(ϕ) = beaϕ and the tangent vector at that point.

coordinate vector: f (ϕ) =

[
beaϕ cos(ϕ)

beaϕ sin(ϕ)

]
,

tangent vector: f ′(ϕ) =

[
beaϕ(a cosϕ− sinϕ)

beaϕ(a sinϕ+ cosϕ)

]
,

angle: cosα =
f (t) · f ′(t)

‖f (t)‖ ‖f ′(t)‖
=

a
√

1 + a2
,

so the angle is independent of ϕ so it is the same at every point on the
curve.
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Area in polar coordinates

P =
1

2

∫ β

α
|xy ′ − x ′y | dϕ =

1

2

∫ β

α
r 2 dϕ

Indeed:

xy ′ − x ′y = r cosϕ(r ′ sinϕ+ r cosϕ)− r sinϕ(r ′ cosϕ− r sinϕ)

= r 2(cos2 ϕ+ sin2 ϕ) = r
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Problem: what is the area of one petal of the clover r(ϕ) =
cos(3ϕ)

2
?

To plot the clover it is convenient to sketch the function r(ϕ) first.

Useful angles are

ϕ 0 π
6

2π
6

3π
6

4π
6

5π
6

6π
6

7π
6

8π
6

9π
6

10π
6

11π
6

12π
6

r(ϕ) 1
2

0 − 1
2

0 1
2

0 − 1
2

0 1
2

0 − 1
2

0 1
2

P = 2

∫ π/6

0

cos2(3ϕ)

4
dϕ =

π

12
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Motion in R3

Let r(t) = f (t) be the position vector of a particle in space at time t,
1 ≤ t ≤ 2.

Then v(t) = r′(t) is its velocity and a(t) = r′′(t) is its acceleration at time
t.

Problem: Let r(t) =

 t2

2t
log t

.

1. Compute its position, velocity and acceleration at time t = 1, and the length of its
path between t = 1 and t = 2.

2. If at time t = 2 the particle leaves its path and goes off in the tangential direction
with constant velocity, where will it be at time t = 3? What is the length of its
path from t = 1 to t = 3?
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1. Since r′(t) =

 2t
2

1/t

 and r′′(t) =

 2
0

−1/t2

, the position, velocity and acceleration

at t = 1 are

r(1) =

1
2
0

 , v(1) =

2
2
1

 a(1) =

 2
0
−1


and the length of path∫ 2

1

‖r′(t)‖ dt =

∫ 2

1

√
4t2 + 4 + (1/t)2 dt =

∫ 2

1

(2t + 1/t) dt =

[2t2/2 + log t]2
1 = 3 + log 2

2. The tangent line at t = 2, and the position at t = 3 are:

L2(t) =

 4
4

log 2

+ (t − 2)

 4
2

1/2

 , L2(3) =

 8
6

log 2 + 1/2


and length of the path along the tangent from t = 2 to t = 3 is∫ 3

2

‖v(2)‖ dt = 9/2,

so the total length is log 2 + 7 + 1
2
.
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Parametric surfaces

A parametric surface in Rm is given by a continuous vector function

f : D → Rm, D ⊂ R2.

We will consider the case m = 3:

[
u
v

]
∈ D f (u, v) =

 x(u, v)
y(u, v)
z(u, v)

 ∈ R3
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Example

1. A parametric plane through a given point r0 ∈ R3 with given
(noncolinear) vectors e1 and e2:

f (u, v) = r0 + ue1 + ve2, u, v ∈ R,

The normal to the plane is n = e1 × e2 6= 0.

The equation the plane: (r − r0) · n = 0

Matlab file:

https://zalara.github.io/Algoritmi/plane.m 141/244
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2.

f (u, v) =

 cos u
sin u

v

 , u ∈ [0, 2π], v ∈ [0, 1]

a cylinder with radius 1 and axis
the z-axis

Matlab file:

https://zalara.github.io/Algoritmi/cylinder.m
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For every point f (u0, v0) on the surface there are two coordinate curves
through it:

I f (u0, v),

I f (u, v0),

both lie on the surface.

Example

1. In the parametrized plane f (u, v) = r0 + ue1 + ve2, e1 × e2 6= 0,
coordinate curves are lines parallel to e2 for a fixed u = u0 and to e1

for a fixed v = v0.

2. In the cylinder, coordinate curves u = u0 are vertical lines, and v = v0

are circles.
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Coordinate systems in R3

The parameters u and v in surface parametrizations often have a geometric
meaning.

For example, they could be two coordinates from one of the standard
coordinate systems in R3:

Cartesian coordinates x , y , z (we know these well)
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Example

f (x , y) =

 x
y

1− (x − 1)2 − (y − 1)2

, 0 ≤ x , y ≤ 2

The surface is the graph
z = 1− (x − 1)2 − (y − 1)2,

Coordinate curves:
intersection with planes

x = x0 and y = y0

Matlab file:

https://zalara.github.io/Algoritmi/surfaces_coordinate_curves.m
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Cylindrical coordinates:

ρ ≥ 0 distance from z axis, po-
lar radius in plane z = 0

ϕ polar angle in plane z = 0

Conversion to cartesian coordinates: x = ρ cosϕ, y = ρ sinϕ, z = z
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Example

f (u, v) =

u cos v
u sin v

v



Coordinate curves:

u = u0: helix with radius u0

v = v0: ray from z-axis with polar angle

and height v0

Matlab file:

https://zalara.github.io/Algoritmi/cylindrical_coordinates_helix.m
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Spherical coordinates: r , ϕ, ψ, where

r , r ≥ 0: distance to the origin,

ϕ: polar angle in plane z = 0

ψ, −π/2 ≤ ψ ≤ π/2: azimuthal angle
between the coordinate vector and plane
z = 0,

ψ = π/2: positive part of z axis
ψ = 0: plane z = 0

ψ = −π/2 negative part of z-axis

Conversion to cartesian coordinates: x = r cosϕ cosψ, y = r sinϕ cosψ,
z = r sinψ

Conversion to cylindrical coordinates: ρ = r cosψ, z = r sinψ

148/244



Example

f (u, v) =

cos u cos v
sin u cos v

sinv

, 0 ≤ u ≤ 2π,−π/2 ≤ v ≤ π/2

The surface is the unit sphere r = 1

Coordinate curves:

u = u0: latitude u = u0

v = v0: longitude v = v0

Matlab file:

https://zalara.github.io/Algoritmi/spherical_coordinates.m
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Surfaces of revolution

A surface of revolution is obtained by revolving a curve x = x(u), z = z(u)
in the (x , z)-plane around the z axis:

f (u, v) =

x(u) cos v
x(u) sin v

z(u)


u ∈ [a, b]
v ∈ [0, 2π],

x = 2 + cos t, z = t, from wikipedia

Coordinate curves:

I u = u0, horizonal circle

x(u0) cos v
x(u0) sin v

z(u0)

,

I v = v0, original curve rotated by the angle v0
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Example

Revolving the line z = x = u: a coneu cos v
u sin v

u



Revolving the line x = a: a cylinder

f (u, v) =

a cos v
a sin v

u
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Revolving the half-circle
x = cos t, z = sin t,−π/2 ≤ t ≤ π/2: a sphere

f (t, v) =

cos t cos v
cos t sin v

sin t



Revolving the circle x = 2 + cos t, z = sin t,

0 ≤ t ≤ 2π: a torus
1 2 3

x

-1.5

-1.0

-0.5

0.5

1.0

1.5
z

f (u, v) =

(2 + cos t) cos v
(2 + cos t) sin v

sin t



Matlab file: https://zalara.github.io/Algoritmi/surface_of_revolution.m
152/244
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Smooth surfaces

Let r0 = f (u0, v0) be a point on the surface.

Coordinate curves through this point:

I f (u0, v) with parameter v and tangent vector fv (u0, v0),

I f (u, v0) with parameter u and tangent vector fu(u0, v0).

The parametric surface is smooth at the point f (u0, v0), if both tangent
vectors exist and

fu(u0, v0)× fv (u0, v0) 6= 0.

The vector n0 = fu(u0, v0)× fv (u0, v0) is the normal vector to the surface
at the point r0.
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Tangent plane

If the surface is smooth at a point r0 = f (u0, v0) then it has a tangent
plane at this point that is given:

I in implicit form by (r − r0) · n0 = 0

I in parametric form by

r(u, v) = r0 + ufu(u0, v0) + vfv (u0, v0) = L(u0,v0)(u, v)

where L(u0,v0)(u, v) = f (u0, v0) + Df (u0, v0)

[
u
v

]
is the linear approximation and

Df (u0, v0) =

 xu(u0, v0) xv (u0, v0)
yu(u0, v0) yv (u0, v0)
zu(u0, v0) zv (u0, v0)


is the Jacobian.
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Problem: find the tangent plane to the surface f (u, v) =

u cos v
u sin v

u2

 at

u = 1, v = π/2.

Since fu(u, v) =

cos v
sin v
2u

 and fv (u, v) =

−u sin v
u cos v

0

 the tangent plane in parametric form is

r(u, v) =

0
1
1

+ u

0
1
2

+ v

−1
0
0

 .
In implicit form:

n = fu(u0, v0)×fv (u0, v0) =

 0
1
−2

×
−1

0
0

 =

0
2
1


so:

n · (r − r0) = −2(y − 1) + (z − 1) = 0.
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A curve α(t) =

[
u(t)
v(t))

]
in the (u, v)-plane corresponds to a curve on the

parametric surface:

f (α(t)) =

 x(u(t), v(t))
y(u(t), v(t))
z(u(t), v(t))


Example

The line α(t) =

[
3t
t

]
corresponds to a curve on the torus

(f ◦ α)(t) =

 (2 + sin 3t) cos t
(2 + sin 3t) sin t

cos 3t
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An application: the configuration space of a robot

A robot, or a mechanical device, is described by its

I work space : the space of points reached by the end effector

I configuration space: the space of parameter values that determine the
position of the robot

The number of parameters is the degrees of freedom, (DOF), this
determines the dimension of the configuration space.

If DOF=2, thet the configuration space is (often) a parametric surface.
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Classical example: A robotic arm with two links of lengths l1 and l2, l2 < l1 and two rotational
joints.

The work space is a ring with interior circle of radius l1 − l2 and exterior circle of radius l1 + l2,

The configuration space is parametrized by the angles u and v in the joints, the two independent

rotations can be represented by a torus:

(a + b cos u) cos v
(a + b cos u) sin v

b sin u

 , b < a, u ∈ [0, 2π], v ∈ [0, 2π]

In robot motion planning, the motion of the robotic arm from point T0 to T1 in the work space is

directed by a curve, or path, in the configuration space.
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Chapter 5:

Differential equations and dynamic
models

I Ordinary differential equation (ODE)
I Definition and examples
I Solving first order ODEs

I Separable ODEs
I First order linear ODEs
I Homogeneous ODEs

I Orthogonal trajectories
I Exact ODEs
I Geometric picture of ODEs

I Systems of first order ODEs
I Numerical methods for solving ODEs
I Autonomous system of ODEs
I Dynamics of systems of 2 linear ODEs
I Linear ODEs of order n
I Application - vibrating systems
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Differential equations and dynamic models

Ordinary differential equation, ODE, is an equation of an unknown function
and an independent variable. ODE relates the independent variable with
the function and its derivatives.

If t is an independent variable, x(t) is a function of t, then the ODE is of
the form:

F (t, x , ẋ , ẍ , . . . , x (n)) = 0.

Similarly if x is an independent variable, y(x) a function of x , then the
ODE is of the form:

F (x , y , y ′, y ′′, . . . , y (n)) = 0.

The order of a differential equation is the order of the highest derivative.
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Examples of ODEs
I ẋ − 3t2 = 0.

So,
dx

dt
= 3t2 ⇒ x(t) = t3 + C , where C is a constant.

If we want to determine C , we need an additional condition, e.g.,
initial condition x(0) = x0, x0 ∈ R, or any other condition x(t0) = x0,
x0 ∈ R.

I y ′′(x) + 2y ′(x) = 3y(x).

We will learn how to solve such an ODE, but right now let us only
check that y(x) = Ce−3x , C ∈ R a constant, is a solution:
I Calculate y ′′(x), y ′(x):

y ′(x) = −3Ce−3x , y ′′(x) = 9Ce−3x .

I Plug into the given ODE:

9Ce−3x − 6Ce−3x = 3Ce−3x .
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I cos t · ẍ − 3t4 · ẋ + 5et = 0.

Such ODE’s cannot be solved analytically (or are at least hard to
solve). We will learn how to solve such ODE’s by using numerical
methods.

Partial differential equation, PDE, is an equation for an unknown function u
of n ≥ 2 independent variables, e.g., for n = 2 we have

F (x , y , ux , uy , uxx , . . .) = 0,

where x , y are the independent variables.

We will not consider PDE’s, from now on DE means an ODE.
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Applications of DEs

Differential equations are used for modelling a deterministic process: a law
relating a certain quantity depending on some independent variable (for
example time) with its rate of change, and higher derivatives.

1. Newton’s law of cooling:

Ṫ = k(T − T∞), (23)

where T (t) is the temperature of a homogeneous body (can of beer)
at time t, T0 is the initial temperature at time t0 = 0, T∞ is the
temperature of the environment, k is a constant (heat transfer
coefficient).

(23) is an example of a separable ODE and also the first order linear
ODE. We will see shortly how to solve such types of ODE’s. For now
you can check easily by yourself that the solution is

T (t) = (T0 − T∞)ekt .
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2. Radioactive decay:

ẏ(t) = −ky(t), k =
log 2

t1/2
,

where y(t) is the remaining quantity of a radioactive isotope at time t,
t1/2 is the half-life and k is the decay constant. The solution is

y(t) = Ce−kt , where C is a constant.

Let’s verify, that t1/2 really represents the time in which the amount of
the isotope decreases to half of its current amount. At time t = 0 the
amount is y(0) = Ce0 = C . We have to check that y(t1/2) = C

2 :

y(t1/2) = Ce−
k log 2

k = Ce− log 2 = Ce log 1/2 =
C

2
.

3. Simple harmonic oscillator:

ẍ + ωx = 0.
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Solution of a DE

The function x(t) is a solution of a DE

F (t, x , ẋ , ẍ , . . . , x (n)) = 0

on an interval I if it is at least n times differentiable and satisfies the
identity

F (t, x(t), ẋ(t), ẍ(t), . . . , x (n)(t)) = 0

for all t ∈ I .

Analytically solving a DE is typically very difficult, very often impossible.

To find approximate solutions we use different simplifications and numerical
methods.
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First order ODEs

We will (mostly) consider first order ODEs in the form

ẋ = f (t, x).

I The general solution is a one-parametric family of solutions
x = x(t,C ).

I A particular solution is a specific function from the general solution,
that usually satisfies some initial condition x(t0) = x0.

I A singular solution is an exceptional solution that is not part of the
general solution.

We will first look at some simple types of 1.-st order DEs that are
analytically solvable.
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Separable DE
A separable DE is of the form

ẋ = f (t)g(x). (24)

This can be solved by:

I Inserting ẋ =
dx

dt
into (24):

dx

dt
= f (t)g(x). (25)

I Separating variables in (25):

dx

g(x)
= f (t) dt. (26)

I Integrating both sides of (25):∫
1

g(x)
dx =

∫
f (t) dt + C
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Example 1 of a separable DE

ẋ = kx where k ∈ R is a fixed real number (27)

I
dx

dt
= kx ,

I
dx

x
= kdt,

I

log |x | =

∫
dx

x
=

∫
k dt = kt + C ,

where C is a constant and so

|x | = ekt+C

is a general solution to (27). Clearly, x(t) = 0 is also a solution of the
equation. By introducing a new constant eC which, by abuse of notation,
we again denote by C , this is equivalent to

x(t) = Cekt ,C ∈ R.
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Example 2 of a separable DE

ẋ = kx(1− x) where k ∈ R is a fixed real number (28)

I
dx

dt
= kx(1− x),

I
dx

x(1− x)
= kdt,

I By the method of partial fractions we get

log

∣∣∣∣ x

1− x

∣∣∣∣ = log |x |−log |1−x | =

∫
dx

x
−
∫

dx

1− x
=

∫
k dt = kt+C ,

where C is a constant and so
x

1− x
= Cekt .

Expressing x(t) we get

x(t) =
1

Ce−kt + 1
(29)

is a general solution to (28). x(t) from (29) is called a logistic function.
169/244



Example 3 of a separable DE

y ′ =
−x

yex2 , y(0) = 1. (30)

I
dy

dx
=
−x

yex2 ,

I
ydy = −xe−x

2
dx ,

I Integrating:

y 2

2
=

∫
ydy =

∫
(−xe−x

2
)dx =

1

2
e−x

2
+ C ,

where C is a constant.
I 1

2 = y2(0)
2 = 1

2 + C ⇒ C = 0.

Expressing y(x) we get y(x) = ±
√

e−x2 and since y(0) > 0 we have

y(x) =
√

e−x2 .
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Real life DE example: population growth

Let x(t) be the size of a population (bacteria, trees, people, . . .) at time t.
The most common models for population growth are:

I exponential growth: the growth rate is proportional to the size,
modelled by ẋ = kx , with the solution the exponential function
x(t) = x0ekt , where x0 = x(0) is the initial population size.

I logistic growth: the growth rate is proportional to the size and the
resources, modelled by ẋ = kx(1− x/xmax), where xmax is the capacity
of the environment, i.e., maximal population size that it still supports,
with the solution is the logistic function.

I general model: the growth rate is proportional to the size, but the
proportionality factor depends on time and size, modelled by
ẋ = k(x , t)f (x); the equation is not separable and is analytically
solvable only in very specific cases.
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Real life DE example: information spreading

x(t) is the ratio of people in a given group that at time t knows a certain
piece of information.

Let x0 = x(t0) be the ‘informed’ ratio at time t = t0.

Consider two possible models:

I spreading through an external source: the rate of change is
proportional to the uninformed ratio ẋ = k(1− x) with x0 = 0,

I spreading through ”word of mouth” the rate of change is proportional
to the number of encounters between informed and uninformed
members ẋ = kx(1− x) logistic law, again, with x0 > 0.
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First order linear ODE
A first order linear DE is of the form

ẋ + f (t)x = g(t) (31)

The equation is homogeneous if g(t) = 0 and nonhomogenous if g(t) 6= 0.

A homogeneous part of (31),

ẋ + f (t)x = 0, (32)

has a general solution of the form

Cxh(t), (33)

where C ∈ R is a constant and xh(t) is a particular solution. Indeed:

I Every x(t) of the form (33) is a solution of (32):

x ′(t) + f (t)x(t) = (Cxh)′(t) + f (t)Cxh(t)

= Cx ′h(t) + f (t)Cxh(t)

= C (x ′h(t) + f (t)xh(t))

= 0
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I If x(t) is a solution of (32), then it must be of the form (33). Indeed,
since x(t) and xh(t) both solve (32),(

x(t)

xh(t)

)′
=

x ′(t)xh(t)− x(t)x ′h(t)

x2
h (t)

=
−f (t)x(t)xh(t) + f (t)x(t)xh(t)

x2
h (t)

= 0.

Hence, x(t)
xh(t) = C for some constant C and x(t) is of the form (33).

Let xp(t) be any particular solution of (31):

x ′p(t) + f (t)xp(t) = g(t). (34)

The general solution of (31) is a sum

x(t) = Cxh(t) + xp(t). (35)
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Indeed:

I Every x(t) of the form (35) is a solution of (31):

x ′(t) + f (t)x(t) = (Cxh(t) + xp(t))′ + f (t)(Cxh(t) + xp(t))

= Cx ′h(t) + x ′p(t) + f (t)Cxh(t) + f (t)xp(t)

= (Cx ′h(t) + f (t)Cxh(t)) + (x ′p(t) + f (t)xp(t))

= 0 + g(t),

where we used (34) in the last equality.

I If x(t) is a solution of (31), then it must be of the form (35). Indeed,
since x(t) and xp(t) both solve (31), x(t)− xp(t) solves the
homogenous part (32) of (31). Hence, x(t)− xp(t) = Cxh(t) for some
C and x(t) = Cxh(t) + xp(t).

The particular solution xp can be obtained by variation of the constant,
that is, by substituting the constant C is the homogenous solution by an
unknown function C (t) which is then determined from the equation.
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Example of a linear ODEs

t2ẋ + tx = 1 , x(1) = 2 . (36)

1. The homogenous part is

t2ẋ + tx = 0. (37)

So the solution xh to (37) is

t2 dx = −tx dt ⇒ dx

x
= −dt

t
⇒ log |x | = − log |t|+ log C = log

C

|t|

⇒ xh =
C

t
.

2. A particular solution of the nonhomogenous equation is obtained by
variation of the constant:

x =
C (t)

t
, ẋ =

C ′(t)t − C (t)

t2

by inserting into (36) we obtain

C ′(t)t − C (t) + C (t) = 1 ⇒ C ′(t) =
1

t
⇒ C (t) = log |t|.
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3. So the general solution of the nonhomogenous equation is

x(t) =
C

t
+

log |t|
t

. (38)

4. Finally, since x(1) = 2, we get by plugging t = 1 into (38)

2 = x(1) = C

and hence the solution of (36) is

x(t) =
2 + log |t|

t
.
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General solution of a linear DE

y ′(x) = f (x)y(x) + g(x) . (39)

1. The homogenous part is

y ′(x) = f (x)y(x). (40)

So the solution y(x) to (40) is

log |y | =

∫
dy

y
=

∫
f (x)dx + C ⇒ y(x) = C · e

∫
f (x)dx

2. A particular solution of the nonhomogenous equation is obtained by
the variation of the constant:

y(x) = C (x) · e
∫
f (x)dx . (41)

y ′(x) = C ′(x) · e
∫
f (x)dx + C (x)f (x)e

∫
f (x)dx . (42)

Using that (39)=(42) and by inserting the RHS of (41) instead of y(x)
in (39), we obtain

C ′(x) · e
∫
f (x)dx + C (x)f (x)e

∫
f (x)dx = f (x)C (x) · e

∫
f (x)dx + g(x)
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Hence
C ′(x) · e

∫
f (x)dx = g(x),

and so

C (x) =

∫
(g(x)e−

∫
f (x)dx)dx .

Proposition

The solution of (39) is

y(x) = e
∫
f (x)dx(C +

∫
(g(x)e−

∫
f (x)dx)dx).

In the example t2ẋ + tx = 1 (or ẋ = −1
t x + 1

t2 ) above we get

x(t) = e
∫
− 1

t
dt
(

C +

∫ ( 1

t2
e
∫

1
t
dt
)

dt
)

= e log | 1
t
|
(

C +

∫ ( 1

t2
t
)

dt
)

=
1

t
(C + log |t|).
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Real life example: Newton’s second law
A ball of mass m kg is thrown vertically into the air with initial velocity
v0 = 10 m/s. We follow its trajectory. By Newton’s second law of motion,

F = ma,

where m is the mass, a = v̇ = ẍ is acceleration and v velocity, and F is the
sum of forces acting on the ball.
I Assuming no air friction the model is

mv̇ = −mg ,

where g is the gravitational constant. The solution is

v = −gt + C where C is a constant.

I Assuming the linear law of resistance (drag) Fu = −kv the model is

mv̇ = −mg − kv .

The solution is v = vh + vp where

vh = Ce−kt/m and vp = −mg/k .
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Motion of ball in the case m = 1, k = 1 and approximating g
.

= 10 (we will
omit units)

Model Velocity and position Solution

ma = −mg

v̇ = −10

v(t) = −10t + 10
x(t) = −5t2 + 10t

ma = −mg − kv

v̇ = −v − 10

v(t) = 20e−t − 10
x(t) = 20− 20e−t − 10t

181/244



The ball reaches the top at time t where v(t) = 0 and the ground at time t
where x(t) = 0.

I Assuming no friction, the ball is at the top at t = 10.

At time t = 1, x(t) = 0, so it takes the same time going up and falling
down.

I Assuming linear friction, the ball reaches the top at t = log 2.

At time 2 log 2, x(2 log 2) = 20− 5− 20 log 2 > 0 so it takes longer
falling down than going up.
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Homogeneous DE
A homogeneous (nonlinear) DE is of the form

ẋ = f
(x

t

)
. (43)

The solution is obtained by introducing a new dependent variable

u =
x

t
.

Hence x = ut and differentiating with respect to t we get

ẋ = u̇t + u. (44)

Plugging (44) into (43) we get

u̇t + u = f (u). (45)

Rearranging (45) we obtain

tu̇ = f (u)− u,

which is a separable DE.
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Example (Homogeneous DE)

y ′ =
y − x

x

can be written as
y ′ =

y

x
− 1. (46)

Introducing a new dependent variable

u =
y

x
,

plugging in (46), we get
u′x + u = u − 1. (47)

This is equivalent to
u′x = −1

and hence

u =
y

x
= log

(C

x

)
.
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Orthogonal trajectories
Given a 1-parametric family of curves

F (x , y , a) = 0 where a ∈ R,

an orthogonal trajectory is a curve

G (x , y) = 0

that intersects each curve from the given family at a right angle.

Algorithm to obtain orthogonal trajectories:

1. The family F (x , y , a) = 0 is the general solution of a 1st order DE,
that is obtained by differentiating the equation with respect to the
independent variable (using implicit differentiation) and eliminating the
parameter a.

2. By substituting y ′ for −1/y ′ in the DE for the original family, we
obtain a DE for curves with orthogonal tangents at every point of
intersection.

3. The general solution to this equation is the family of orthogonal
trajectories to the original equation.
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Example (Orthogonal trajectories to the family of circles)

Let us find the orthogonal trajectories to the family of circles through the
origin with centers on the y axis:

x2 + y 2 − 2ay = 0. (48)

Differentiating (48) w.r.t. the independent variable gives

2x + 2yy ′ − 2ay ′ = 0. (49)

Expressing a from (49) gives

a =
x

y ′
+ y . (50)

Inserting (50) into (48) we obtain the DE for the given family

x2 − y 2 − 2xy

y ′
= 0. (51)

186/244



Next we express y ′ from (51) and obtain

y ′ =
2xy

x2 − y 2
. (52)

The DE for orthogonal trajectories is obtained by substituting y ′ for −1/y ′

in (52) to obtain

− 1

y ′
=

2xy

x2 − y 2
, (53)

which is equivalent to

y ′ = −x2 − y 2

2xy
. (54)

(54) is a homogeneous DE:

y ′ = −x2 − y 2

2xy
= − x

2y
+

y

2x

By introducing y = ux we obtain

u′x + u = − 1

2u
+

u

2
⇒ u′x = −1 + u2

2u
⇒ 2udu

1 + u2
= −dx

x

⇒ log (1 + u2) = − log x + log C ⇒ 1 + u2 =
C

x
,
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Plugging in u = y
x again gives the general solution

x2 + y 2 = Cx .

Orthogonal trajectories to circles through the origin with centers on the y
axis are circles through the origin with centers on the x axis.

Both families together form an orthogonal net:
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Exact ODEs
Notice first that a 1st order DE

ẋ = f (t, x)

can be rewritten in the form

M(t, x)dt + N(t, x)dx = 0. (55)

Recall that the differential of a function u(t, x) is equal to

du =
∂u

∂t
dt +

∂u

∂x
dx =

(
∂u

∂t
,
∂u

∂x

)
· (dt, dx),

where · denotes the usual inner product in R2.

DE (55) is exact if there exists a differentiable function u(t, x) such that

∂u

∂t
= M(t, x) and

∂u

∂x
= N(t, x).
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Proposition

If the DE (55) is exact, then the solutions are level curves of the function u:

u(t, x) = C , where C ∈ R.

Recall from Calculus that if u has continuous second order partial derivatives then

∂u

∂x∂t
=

∂u

∂t∂x
.

Proposition

The necessary condition for the DE (55) to be exact is

∂M

∂x
=
∂N

∂t
. (56)

Moreover, if M and N are differentiable for every (t, x) ∈ R2, the condition
(56) is also sufficient.
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A potential function u can be determined from the following equality

u(x , t) =

∫
M(t, x) dt + C (x) =

∫
N(t, x) dx + D(t),

where C (x) and D(t) are some functions.

Example. The DE
x + ye2xy + xe2xyy ′ = 0

can be rewritten as
(x + ye2xy )dx + xe2xydy = 0.

The equation is exact since

∂(x + ye2xy )

∂y
=
∂(xe2xy )

∂x
= (e2xy + 2xye2xy ).

A potential function is equal to

u(x , y) =

∫
(x + ye2xy ) dx =

x2

2
+

1

2
e2xy + C (y)

=

∫
(xe2xy ) dy =

1

2
e2xy + D(x),

Defining C (y) = 0 and D(x) = x2/2, we get u(x , y) = x2

2 + 1
2 e2xy . The general

solution is the family of level curves u(x , y) = E , where E ∈ R.
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Geometric picture of ODEs

Let D ⊂ R2 be the domain of the function f (x , y). For each point
(x , y) ∈ D the DE

y ′ = f (x , y)

gives the value y ′ of the coefficient of the tangent to the solution y(x)
through this specific point, that is, the direction in which the solution
passes through the point.

All these directions together form the directional field of the equation.

A solution of the equation is represented by a curve y = y(x) that follows
the given directions at every point x , i.e., the coefficient of the tangent
corresponds to the value f (x , y(x)).

The general solution to the equation is a family of curves, such that each of
them follows the given direction.
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Directional fields and solutions of

y ′ = ky y ′ = ky(1− y)

Examples: https://zalara.github.io/Algoritmi/example_direction_fields.m
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Theorem (Existence and uniqueness of solutions)

If f (x , y) is continuous and differentiable with respect to y on the rectangle

D = [x0 − a, x0 + a]× [y0 − b, y0 + b], a, b > 0

then the DE with initial condition

y ′ = f (x , y), y(x0) = y0,

has a unique solution y(x) defined at least on the interval

[x0 − α, x0 + α], α = min

{
a,

b

M
,

1

N

}
,

where

M = max{f (x , y) : (x , y) ∈ D} and N = max

{
∂f (x , y)

∂y
: (x , y) ∈ D

}
.

Proof: https://en.wikipedia.org/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem.
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Numerical methods for solving DE’s

We are given the DE with the initial condition

y ′(x) = f (y , x), y(x0) = y0.

Instead of analytically finding the solution y(x), we construct a recursive
sequence of points

xi = x0 + ih, yi
.

= y(xi ), i ≥ 0

where yi is an approximation to the value of the exact solution y(xi ), and h
is the step size.

A number of numerical methods exists, the choice depends on the type of
equation, desired accuracy, computational time,...

We will first look at the simplest and best known method and then a more
practical improvement.
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Euler’s method
Euler’s method is the simplest and most intuitive approach to numerically
solve a DE.

At each step the value yi+1 is obtained as the point on the tangent to the
solution through (xi , yi ) at xi+1 = xi + h:

I initial condition: (x0, y0)
I for each i : xi+1 = xi + h, yi+1 = yi + hf (xi , yi ).

The point (xi+1, yi+1) typically lies on a different particular solution than
(xi , yi ), at each step, the error at each step is of order O(h2). The
cumulative error is of order O(h). 196/244



Runge-Kutta methods
The idea of those methods is to approximate the derivative on the interval
[xn, xn+1] not only based on the derivative in the point xn, but using a
weighted average of more different derivatives on the interval [xn, xn+1].

Example (Runge-Kutta of order 2 (RK2))

We approximate the derivate using the derivatives in the points xn and
xn + ch ∈ [xn, xn+1], where h = xn+1 − xn and c ∈ [0, 1]. The
approximation yn+1 is computed using the weighted average of linear
approximations in the points xn and xn + ch:

yn+1 = yn + b1︸︷︷︸
weight

· (h · f (xn, yn))︸ ︷︷ ︸
move along

the tangent in xn

+ b2︸︷︷︸
weight

· (h · f (xn + ch, y(xn + ch)))︸ ︷︷ ︸
move along

the tangent in xn+ch

(57)

We use a linear approximation

y(xn + ch) ≈ yn + chy ′(xn) = yn + chf (xn, yn) ≈ yn + ahf (xn, yn), (58)

where a is a new parameter.
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Using (58) in (57) we obtain

yn+1 = yn + b1 · (h · f (xn, yn))︸ ︷︷ ︸
k1

+b2 · (h · f (xn + ch, yn + a · k1))︸ ︷︷ ︸
k2

. (59)

Using Taylor series’ of y(xn + h), f (xn + ch, yn + ak1) and comparing the
coefficients at h and h2 in (59) we get a system of equations

1 = b1 + b2,

1

2
(fx + fy f )n = b2c(fx)n + b2a(ffy )n,

(60)

where fn, (fx)n, (fy )n stands for f (xn, yn), fx(xn, yn), fy (xn, yn). The system
(60) has many different solutions, e.g.:

I b1 = b2 = 1
2 and c = a = 1. RK method is:

yn+1 = yn +
1

2
(k1 + k2),

k1 = hf (xn, yn),

k2 = hf (xn + h, yn + k1).
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I b1 = 1, b2 = 0 in c = a = 1
2 . RK method is:

yn+1 = yn + k2,

k1 = hf (xn, yn),

k2 = hf (xn +
1

2
h, yn +

1

2
k1).

A general RK method is of the form

yn+1 = yn + b1k1 + b2k2 + . . .+ bsks ,

k1 = hf (xn, yn),

k2 = hf (xn + c2h, yn + a2,1k1),

k3 = hf (xn + c3h, yn + a3,1k1 + a3,2k2),

...,

ks = hf (xn + csh, yn + as,1k1 + . . .+ as,s−1ks−1).

(61)
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Butcher tableau

In a compact form the RK method (61) is given in the form of a Butcher
tableau:

0 0
c2 a2,1 0
c3 a3,1 a3,2 0
...

...
cs as1 as2 as,3 · · · as,s−1 0

b1 b2 b3 · · · bs−1 bs ,

where

c2 = a2,1,

c3 = a3,1 + a3,2,

...

cs = as,1 + as,2 + . . .+ as,s−1.
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Runge-Kutta mehod of order 4
Butcher tableau:

0 0

1

2

1

2
0

1

2
0

1

2
0

1 0 0 1 0

1

6

1

3

1

3

1

6
The method is

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4,

k1 = hf (xn, yn),

k2 = hf (xn +
1

2
h, yn +

1

2
k1),

k3 = hf (xn +
1

2
h, yn +

1

2
k2),

k4 = hf (xn + h, yn + k3).

The error at each step is of order O(h5). The cumulative error is of order O(h4).
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Euler vs RK4
Below is a comparison of Euler’s and Rk4 methods for the DE

y ′ = −y − 1, y(0) = 1 with step size h = 0.3 :

The red curve is the exact solution y = 2e−x − 1.

Euler’s method RK4

Algorithms and example:
https://zalara.github.io/Algoritmi/euler_eng.m

https://zalara.github.io/Algoritmi/RK4_eng.m

https://zalara.github.io/Algoritmi/Euler_vs_RK4.m
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Adaptive Runge Kutta methods
Let M1, M2 be two RK methods with the same matrices of coefficients ai ,j
(and hence also ci ), but different vectors of weights bi and b∗i . Let M1 be
of order p (global error O(hp)), while the other of order p + 1 (global error
O(hp+1)).

Example: We use the adaptive method for the Butcher tableaus:

0 0
1 1 0

1 0
1
2

1
2

.

The first is Euler’s method and has order 1, while the other is RK method of order 2:

yn+1 = yn + k1,

y∗n+1 = yn +
1

2
(k1 + k2).

The approximation of the local error:

`n+1 ≈ y∗n+1 − yn+1 = (−k1 + k2)/2.

If `n+1 is small enough (we choose what this means in our problem), we accept yn+1 and

continue, otherwise we decrease the step size and repeat the computations.
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DOPRI5, Fehlberg, Cash-Karp

Very useful methods for practical computations are DOPRI5 (1980, authors
Dormand in Prince), Fehlberg (1969), Cash-Karp, which are adaptive
methods combining two RK methods, one of order 4 and one of order 5.

I https://en.wikipedia.org/wiki/Dormand%E2%80%93Prince_method

I https:

//en.wikipedia.org/wiki/Runge%E2%80%93Kutta%E2%80%93Fehlberg_method

I https://en.wikipedia.org/wiki/Cash%E2%80%93Karp_method

Algorithm:
https://zalara.github.io/Algoritmi/DOPRI5_eng.m

https://zalara.github.io/Algoritmi/DOPRI5_example.m
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Systems of first order ODE’s
Let

f := (f1, . . . , fn) : Rn+1 → Rn,

f (x1, . . . , xn+1) = (f1(x1, . . . , xn+1), . . . , fn(x1, . . . , xn+1)).

be a vector function. A system of first order DE’s is an equation

ẋ(t) = f (x(t), t), (62)

where
x(t) := (x1(t), . . . , xn(t)) : I → Rn

is an unknown vector function and I ⊂ R is some interval. Coordinate-wise
the system (62) is equal to

ẋ1(t) = f1(x1(t), . . . , xn(t), t),
...

ẋn(t) = fn(x1(t), . . . , xn(t), t).
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Solution of the system of DE’s

For every (x , t) ∈ Rn+1 in the domain of f , the value f (x , t) is the tangent
vector ẋ(t) to the solution x(t) at the given t.

The general solution is a family of parametric curves

x(t,C1, . . . ,Cn),

where C1,C2, . . . ,Cn ∈ R are parameters, with the given tangent vectors.

An initial condition
x(t0) = x0 ∈ Rn

gives a particular solution, that is, a specific parametric curve from the
general solution that goes through the point x0 at time t0.
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Linear systems of 1st order ODEs
A linear system of DEs is of the form ẋ1(t)

...
ẋn(t)

 =

 a11(t) . . . a1n(t)
...

. . .
...

an1(t) . . . ann(t)


 x1(t)

...
xn(t)

+

 g1(t)
...

gn(t)

 , (63)

where
xi : I → R, aij : I → R and gi : I → R

are functions of t and I ⊆ R is an interval. In a compact form (63) can be
written as

ẋ(t) = A(t)x + g(t), (64)

where
A(t) = [aij(t)]ni ,j=1

is a n × n matrix function and

g(t) =
[

g1(t) . . . gn(t)
]T

is a n × 1 vector function.
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The system (64)

I is homogeneous if for every t in the domain I we have g(t) = 0.

I has constant coefficients, if the matrix A is constant, i.e., independent
of t.

I is autonomous, if it is homogeneous and has constant coefficients.

An autonomous linear system

ẋ = Ax (65)

of 1st order DEs can be solved analytically, using methods from linear
algebra. Recall that such a system can be written in coordinates as:

ẋ1 = a11x1 + a12x2 + · · ·+ a1nxn,

ẋ2 = a21x1 + a22x2 + · · ·+ a2nxn,

...

ẋn = an1x1 + an2x2 + · · ·+ annxn.
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Autonomous system: diagonal matrix A

Assume first that the matrix A in (65) is diagonal. Then (65) is the
following:  ẋ1

...
ẋn

 =

 λ1 . . . 0
...

. . .
...

0 . . . λn


 x1

...
xn

 .
Or equivalently,

ẋ1 = λ1x1, ẋ2 = λ2x2, . . . , ẋn = λnxn.

In this (simple) case the general solution is easily determined:

x(t) =


C1eλ1t

C2eλ2t

...
Cneλnt

 = C1eλ1t


1
0
...
0

+ C2eλ2t


0
1
...
0

+ · · ·+ Cneλnt


0
0
...
1

 .
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Autonomous system: n linearly independent eigenvectors
Assume next, that A in (65) has n linearly independent eigenvectors
v1, . . . vn with the corresponding eigenvalues λ1, . . . , λn.

I For every fixed t, the vector x(t) can be expressed as a linear combination

x(t) = ϕ1(t)v1 + · · ·+ ϕn(t)vn.

I Hence, the coefficients

ϕi (t) : I → R, i = 1, . . . , n,

are functions of t.

I Since v1, . . . vn are eigenvectors it follows from ẋ = Ax , that
n∑

i=1

ϕ̇i (t)vi =
n∑

i=1

ϕi (t)Avi =
n∑

i=1

ϕi (t)λivi .

I Since v1, . . . vn are linearly independent, it follows that for every i we have

ϕ̇i (t) = λiϕi (t) ⇒ ϕi (t) = Cie
λi t , Ci ∈ R.

I Hence the general solution of the system is

x(t) = C1eλ1tv1 + · · ·+ Cneλntvn.
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Example

Find the general solution of the system

ẋ1 = x1 + x2,

ẋ2 = 4x1 − 2x2.

The matrix of the system is A =

[
1 1
4 −2

]
. Its eigenvalues are the

solutions of

det(A− λI ) = (1− λ)(−2− λ)− 4 = λ2 + λ− 6 = 0,

so λ1 = −3 and λ2 = 2, and the corresponding eigenvectors are

v1 =
[

1 −4
]T

and v2 =
[

1 1
]T
.

The general solution of the system is

x(t) = C1e−3t

[
1
−4

]
+ C2e2t

[
1
1

]
.
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Example

Find the general solution of

ẋ1 = x2,

ẋ2 = −4x1.

The matrix of the system is A =

[
0 1
−4 0

]
. It has a conjugate pair of

complex eigenvalues and a corresponding conjugate pair of eigenvectors:

λ1,2 = ±2i , v1,2 =
[

1 ±2i
]T
.

The general solution is a family of complex valued functions

x(t) = C1e2it

[
1

2i

]
+ C2e−2it

[
1

−2i

]
(which is not very useful in modelling real-valued phenomena).
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Autonomous system: complex conjugate eigenvalues

Assume that the matrix of the system A has a complex pair of eigenvalues
λ1,2 = α± iβ and corresponding eigenvectors v1,2 = u ± iw .

The real and imaginary parts of the two complex valued solutions are:

e(α±iβ)t(u ± iw)

= eαt(cos(βt)± i sin(βt))(u ± iw)

= eαt [cos(βt)u − sin(βt)w ± i(sin(βt)u + cos(βt)w)] .

Any linear combination (with coefficients C1,C2 ∈ R) of these is a
real-valued solution, so the real-valued general solution is

x(t) = eαt [C1(cos(βt)u − sin(βt)w) + C2(sin(βt)u + cos(βt)w)] .
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Autonomous system: complex conjugate eigenvalues

Example

In the case of the previous example, λ1,2 = ±2i , i.e. α = 0 and β = 2, and

v1,2 =

[
1

±2i

]
⇒ u =

[
1
0

]
and w =

[
0
2

]
.

Hence, the general solution is

x(t) = C1

(
cos(2t)

[
1
0

]
− sin(2t)

[
0
2

])
+ C2

(
sin(2t)

[
1
0

]
+ cos(2t)

[
0
2

])
.
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Autonomous system: less than n eigenvectors

If A has less than n linearly independent eigenvectors, additional solutions
can also be obtained (e.g., with the use of Jordan form of A), but we will
not consider this case here.

The general solution of a system ẋ = Ax of n equations is of the form

x(t) = C1x (1)(t) + . . .+ Cnx (n)(t),

where x (1)(t), . . . , x (n)(t) are specific, linearly independent solutions.

For every eigenvalue λ ∈ R or a pair of eigenvalues λ = α± iβ we obtain as
many solutions as there are corresponding linearly independent eigenvectors.
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Adding initial conditions to an autonomous system
An initial condition x(t0) = x (0) gives a nonsingular system (if the vectors
x1(t0), . . . , xn(t0) are linearly independent) of n linear equations for the
constants C1, . . . ,Cn.

x (0) = C1x1(t0) + . . .+ Cnxn(t0).

This implies that a problem

ẋ = Ax , x(t0) = x (0)

has a unique solution for any x (0).

Example
The initial condition x (0) = x(0) =

[
0 5

]T
for the system in the first example

above gives the following system of equations for C1 and C2:

C1 + C2 = 0, −4C1 + C2 = 5,

so C1 = −1 and C2 = 1.

216/244



Transformating DEs of higher order into 1st order ODEs
The differential equation of order 2

ẍ = f (t, x , ẋ) (66)

can be transformed into a system of two order 1 DE’s by introducing new
variables:

x1(t) = x(t),

x2(t) = ẋ(t).

Now DE (66) becomes

ẋ1(t) = x2(t),

ẋ2(t) = f (t, x1(t), x2(t)).

An initial condition
x(t0) = α0, ẋ(t0) = α1

is transformed into an initial condition[
x1(t0)
x2(t0)

]
=

[
α0

α1

]
.
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In the same way a differential equation of order n

x (n) = f (t, x , ẋ , . . . , x (n−1))

can be transformed into a system of n differential equations of order 1 by
introducing new dependent variables

x1 = x ,

x2 = ẋ ,

...

xn = x (n−1),

(67)

and hence (67) becomes:
ẋ1

ẋ2
...

ẋn

 =


x2

x3
...

f (t, x1, x2, . . . , xn)

 .
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Example: We are given the differential equation of order 2

2ẍ − 5ẋ + x = 0, (68)

with initial conditions

x(3) = 6, ẋ(3) = −1. (69)

We introduce new variables:

x1(t) = x(t),

x2(t) = ẋ(t),

and hence (68) becomes the system

ẋ1(t) = x2(t),

ẋ2(t) =
5

2
x2 −

1

2
x1.

An initial conditions (69) becomes

x1(3) = 6, x2(3) = −1.
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Numerical methods for a system of DEs

Numerical methods for a system of DEs work exactly in the same way as for
a single equation, with the exception that the unknown function is a vector
function

x(t) =
[

x1(t) · · · xn(t)
]T
.

Given the system with initial condition

ẋ =

 ẋ1
...

ẋn

 =

 f1(t, x1, . . . , xn)
...

fn(t, x1, . . . , xn)

 , x(t0) = x (0) =

 x
(0)
1
...

x
(0)
n

 ,
we construct a recursive sequence of points

ti = t0 + ih, x (i) .
= x(ti ), i ≥ 0

where the vector x (i) is an approximation to the value of the exact solution
x(ti ), and h is the step size.

220/244



Euler’s method and RK4

Euler’s method:

ti+1 = ti + h, x (i+1) = x (i) + hf (ti , x
(i)), i ≥ 0.

RK4 method:

ti+1 = ti + h, x (i+1) = x (i) + (k1 + 2k2 + 2k3 + k4)/6,

where

k1 = hf (ti , x
(i)),

k2 = hf (ti + h/2, x (i) + k1/2),

k3 = hf (ti + h/2, x (i) + k2/2),

k4 = hf (ti + h, x (i) + k3).
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Autonomous system of DE’s - general case
A system of DEs is autonomous if the function f : Rn → Rn does not
depend on t:

ẋ = f (x).

For an autonomous system, the tangent vector to a solution depends only
on the point x and is independent of the time t at which the solution
reaches a given point. In this case, the tangent vectors can be viewed as a
directional field in the space Rn.

In case of an autonomous system of 2 DE’s:

f = (f1, f2) : R2 → R2

ẋ = f1(x , y),

ẏ = f2(x , y),

gives a directional field in the (x , y) plane, which we call the phase plane of
the system.

The general solution is a family of parametric curves or trajectories which
respect the given directional field at every point (x , y).
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The points where f (x) = 0 are stationary points or equilibrium points of
the system.

At a stationary point x0 = x(t0), ẋ(t0) = 0, so x(t) = x0 represents a
constant, or equilibrium solution of the system.
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Real life example of autonomous system

The predator-prey or Volterra-Lotka model is a famous system of DE’s
proposed by Alfred J. Lotka (1920) for modelling certain chemical
reactions, and independently by Vito Volterra (1926) for dynamics of
biological systems. It was later applied in economics and is used in a
number of domains.

Two populations of species, for example rabbits and foxes, live together and
depend on each other.

The number of rabbits (the prey) at time t is R(t) and the number of foxes
(the predators) is F (t).

If they live apart, the rabbit, resp. fox, population grows, resp. declines,
with the exponential law:

Ṙ = kR, k > 0, resp. Ḟ = −rF , r > 0.
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If they live together, then interactions between rabbits and foxes cause a
decline in the rabbit population and a growth of the fox population.
This (basic) predator-prey model is the following:

Ṙ = kR − aRF , Ḟ = −rF + bFR, a, b > 0.

The system has two stationary or equilibrium points:

kR − aRF = −rF + bFR = 0⇒

⇒ R = F = 0 or R =
r

b
,F =

k

a
.

The meaning of these values is that the populations (ideally) coexist
peacefully, with no fluctuations in the population sizes.
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The left figure below shows the directional field and several solutions for the
system

Ṙ = 0.3R − 0.004RF Ḟ = −0.2F + 0.001FR

in the (R,F ) plane.

The right figure shows dynamics of the population sizes F (t) and R(t) with
respect to t:
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On the figure below, the blue curve is the exact solution and the black dots
are approximations for function values for the system with initial condition

R(0) = 500,F (0) = 50

using Euler’s method with step size h = 0.5:

Algorithm:

https://zalara.github.io/Algoritmi/example_predator_prey.m
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The dynamics of systems of 2 equations

For an autonomous linear system

ẋ1 = a11x1 + a12x2, ẋ2 = a21x1 + a22x2,

the origin (0, 0) is always a stationary point, i.e., an equilibrium solution.

The eigenvalues of the matrix

A =

[
a11 a12

a21 a22

]
determine the type of the stationary point (0, 0) and the shape of the phase
portrait.

We will assume that det A 6= 0. Let λ1, λ2 be the eigenvalues of A. We also
assume that there exist two linearly independent vectors v1, v2 of A (even if
λ1 = λ2).
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Case 1: λ1, λ2 ∈ R

The general solution is

x(t) = C1eλ1tv1 + C2eλ2tv2.

I If C1 = 0, the trajectory x1(t) is a ray in the direction of v2 if C2 > 0,
or −v1 if C2 < 0.

I Similarly, if C2 = 0 the trajectory x2(t) is a ray in the direction of v2 or
−v2.

I The behaviour of other trajectories depends on the signs of λ1 and λ2.
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Subcase 1.1: 0 < λ1 < λ2

I as t →∞, x(t) asymptotically approaches the solution ±eλ2tv2,
I as t → −∞, x(t) asymptotically approaches the solution ±eλ1tv1.

The point (0, 0) is a source.
Example. The general solution of the system ẋ1 = 3x1 + x2, ẋ2 = x1 + 3x2 is

x(t) = C1e4t
[

1 1
]T

+ C2e2t
[
−1 1

]T
.

Algorithm:

https://zalara.github.io/Algoritmi/phaseportrait_1_1.m
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Subcase 1.2: λ2 < λ1 < 0

I as t →∞, x(t) asymptotically approaches the solution ±eλ1tv2,

I as t → −∞, x(t) asymptotically approaches the solution ±eλ2tv1.

The point (0, 0) is a sink.

Example. The general solution of the system ẋ1 = −3x1 − x2, ẋ2 = −x1 − 3x2 is

x(t) = C1e−4t
[

1 1
]T

+ C2e−2t
[
−1 1

]T
.

Algorithm:

https://zalara.github.io/Algoritmi/phaseportrait_1_2.m
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Subcase 1.3: λ1 < 0 < λ2

I as t →∞, x(t) asymptotically approaches the solution ±eλ2tv2,
I as t → −∞, x(t) asymptotically approaches the solution ±eλ1tv1.

The point (0, 0) is a saddle.
Example. The general solution of the system ẋ1 = x1 − 3x2, ẋ2 = −3x1 + x2 is

x(t) = C1e−2t
[

1 1
]T

+ C2e4t
[

1 −1
]T
.

Algorithm:

https://zalara.github.io/Algoritmi/phaseportrait_1_3.m
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Subcase 2.1: λ1,2 = α± iβ, α 6= 0

The general solution is

x(t) = eαt [(C1 cos(βt) + C2 sin(βt))u + (−C1 sin(βt) + C2 cos(βt))w ] .

Hence,
I if α < 0, x(t) spirals towards (0, 0) as t →∞, and
I if α > 0, x(t) spirals away from (0, 0) as t →∞.

The point (0, 0) is a spiral sink in the first case and a spiral source in the
second case.

Example

ẋ1 = −3x1 + 2x2, ẋ2 = −x1 − x2

x(t) = e−2t ·(
(C1 cos t + C2 sin t)

[
2
1

]
+

(−C1 sin t + C2 cos t)

[
0
1

])
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Subcase 2.2: λ1,2 = ±iβ, α 6= 0

The trajectories are periodic with period 2π/β, i.e. the point x(t) circles
around (0, 0).

The point (0, 0) is a center.

Example

ẋ = v , v̇ = −ω2x

x(t) =

(C1 cos(ωt) + C2 sin(ωt))

[
1
0

]
+

(−C1 sin(ωt) + C2 cos(ωt))

[
0
1

]
Algorithm:
https://zalara.github.io/Algoritmi/phaseportrait_2_1.m

https://zalara.github.io/Algoritmi/phaseportrait_2_2.m
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Nonlinear autonomous systems of equations

ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2)

If a = (a1, a2) is a critical point, that is,

f1(a1, a2) = f2(a1, a2) = 0,

then the behaviour of trajectories close to a is approximated by trajectories
of the linearization of the system at the point a:

ẋ1
.

=
∂f1

∂x1
(x1 − a1) +

∂f1

∂x2
(x2 − a2), ẋ2

.
=
∂f2

∂x1
(x1 − a1) +

∂f2

∂x2
(x2 − a2).

This is a linear homogeneous system with coefficient matrix the Jacobian
matrix of the vector function f (x):

ẋ
.

= Df (a)(x − a) =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f1
∂x2

]
(x − a).

The critical point is classified as a source, sink, saddle, spiral source, spiral
sink or center depending on the eigenvalues of Df (a).
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In addition to critical points, that is, equillibrium solutions, a plane
nonlinear system (that is, a nonlinear system of two differential equations)
can also have limit cycles.

A limit cycle is a periodic solutions x∞(t) such that for initial conditions
x(t0) = x0 in a certain domain the corresponding solutions x(t)

I either asymptotically tend towards x∞(t) as t →∞ – in this case x∞
is an attracting limit cycle, or

I x(t)→ x∞(t) as t → −∞ – in this case x∞ is a repelling limit cycle.

Systems of more than two differential equations can exhibit much more
complex, chaotic behaviour.

Algorithm:

https://zalara.github.io/Algoritmi/example_predator_prey_linearization.m
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Differential equations of order 2

ẍ = f (t, x , ẋ)

The general solution is a two-parametric family

x = x(t,C1,C2).

A particular solution is given by specifying

I initial conditions: x(t0) = α0, ẋ(t0) = α1,
where the values of the solution and its derivative are given at some
initial time t0

or

I boundary conditions: x(a) = x0, x(b) = x1

where values of the solution at different times a, b are given (i.e., on
the boundary of some interval [a, b])
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Differential equations of order n

x (n) = f (t, x , ẋ , . . . , x (n−1))

The general solution is an n-parametric family

x = x(t,C1, . . . ,Cn).

A particular solution is given by

I initial conditions: x(t0) = α0, . . . x
(n−1)(t0) = αn−1

where the values of the solution and its first (n − 1) derivatives are
given at some initial time t0

or

I boundary conditions
where values of the solution or its derivatives are given in different
times.
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Linear DE’s of order n

A linear DE (LDE) of degree n is of the form

x (n) + an−1(t)x (n−1) + · · ·+ a0(t)x = f (t). (70)

The equation is

I homogeneous if f (t) = 0, and

I nonhomogeneous if f (t) 6= 0.

I The general solution of the homogeneous part is the family of all linear
combinations

y(t) = C1x1(t) + · · ·+ Cnxn(t)

of n linearly independent solutions x1(t), . . . , xn(t).

I If the coefficients a1(t), . . . , an(t) are continuous functions, then for
any α0, . . . , αn there exists exactly one solution satisfying the initial
condition

x(t0) = α0, ẋ(t0) = α1, . . . , x (n−1)(t0) = αn.
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LDEs with constant coefficients
Assume that the coefficient functions a1(t), . . . an(t) in a homogeneous
LDE are constant:

x (n) + an−1x (n−1) · · ·+ a0x = 0, a1, . . . an ∈ R (71)

Translating (71) to the system by the usual trick of introducing new
variables

x1 = x , x2 = x ′1, x3 = x ′2, · · · , xn = x ′n−1,

(71) becomes
x ′n = −a0x1 − a1x2 − . . .− an−1xn,

or matricially ~x ′ = A~x :

~x ′(t) =



0 1 0 · · · 0
0 0 1 0 · · · 0
...

. . .
. . .

...
...

. . .
. . .

...
0 · · · · · · 0 1
−a0 −a1 · · · · · · −an−2 −an−1


~x(t)
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I The solutions to this system are of the form

x(t) = pk(t)eλtv ,

where λ is the eigenvalue of A, pk(t) is a polynomial of degree k in t
and v is the generalized eigenvector. (This follows most easily by the
use of the Jordan form of the matrix.)

I In particular, if there are n linearly independent eigenvectors of the
matrix A, then all polynomials pk are constants and generalized
eigenvectors are usual eigenvectors.

I By a simple calculation of expressing the determinant of A− λI
according to the coefficients and cofactors of the last row, it turns out
that the eigenvalues of A are precisely the roots of the characteristic
polynomial corresponding to (71):

P(λ) := λn + an−1λ
n−1 + · · · a1λ+ a0. (72)

I A (trivial) fact with a nontrivial proof, called the fundamental theorem
of algebra, states that a polynomial of degree n has exactly n roots,
counted by multiplicity. In case the matrix A is real, these roots are
real or complex conjugate pairs.
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I From the roots of the characteristic polynomial (72), n linearly
independent solutions of the LDE can be reconstructed.

I For every real root λ ∈ R,

x(t) = eλt

is a solution of the homogeneous LDE.
I For a complex conjugate pair of roots λ = α± iβ, the real and

imaginary parts of the complex-valued exponential functions

e(α±iβ)t = eαt(cos(βt) + i sin(βt))

are two linearly independent solutions

x1 = eαt cos(βt), x2 = eαt sin(βt).

Proposition

If a root (or a complex pair of roots) λ has multiplicity k > 1, then it can
be shown that

eλt , teλt , . . . tk−1eλt

are all linearly independent solutions.
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Proof of proposition
Let us prove the last fact by an interesting trick. We introduce the operator

L : C(n)(I )→ C(I )

L(u) = u(n) + an−1u
(n−1) · · ·+ a0u,

where C(n)(I ) stands for the vector space of n-times continuously differentiable functions
on the interval I and C(I ) stands for the vector space of continuous functions on I .

Let λ0 be the root of the characteristic polynomial (72) of multiplicity k, i.e.,

P(λ) = (λ− λ0)kQ(λ).

Let 0 ≤ q ≤ k by an integer. We will check that tqeλt solves (71).
Notice that

tqeλt =
dq

dλq
eλt .

For ease of notation we define an := 1. We have that:

L(tqeλt) =
n∑

i=0

ai

(
dq

dλq
eλt
)(i)

=
n∑

i=0

ai
d i

dt i

(
dq

dλq
eλt
)

=
dq

dλq

(
n∑

i=0

ai
d i

dt i
eλt
)

=
dq

dλq

(
n∑

i=0

aiλ
ieλt

)
=

dq

dλq
(P(λ)eλt).
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Since
dq

dλq
(P(λ)eλt) =

q∑
i=1

d i

dλi
(P(λ)) · Qi (t, λ),

where Qi (t, λ) are functions of t, λ and

d i

dλi
(P(λ0)) = 0, for i = 0, . . . , q,

it follows that
L(tqeλ0t) = 0.
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