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Sound Sensing Opportunities

« Microphones included with
— Smarpthones
— Wearables
— Home loT devices

* Microphone array
(multiple mics on a device)
— Noise cancellation — the one

close to the speaker records
sound that is subtracted

— Beamforming — signal processing
e allows you to “focus” micsin a
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Sound Sensing Applications

* Environment sensing and
citizen science

— Noise pollution monitoring
— Bird sound recording

» Speech recognition
— Device interaction, dictation
— Home automation system

Voice Controlled Home Automation System
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Sound Sensing Applications

Speaker recognition
— ldentification — who is talking?
— Verification — is it user X that is talking?

— Passphrase verification — was “X” said? > N
- Voice property analysis can be used for
— ldentify speaker demographics authentication
» Gender - /
« Age
— Health-related voice analysis:
« Smoker

L  Parkinson'’s disease
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Speech Processing

* Speech creation: ol
— Lungs push air through i
the trachea

— Vocal folds open and close

creating vibrations ﬁ : /\/V\

(basic vibration 125 Hz male,

210 Hz female voice) T e
vocaltactshapestie x|,
vibrating sound to produce v e d

different phonemes
(composed of phones)

University of Ljubljana
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Speech Processing

» Speech detection: N
— Eardrum transports vibrations \
via the small three bones RESAC\.
to cochlea L L

— Cochlea contains fluid
that vibrates when excited
by the eardrum vibration

— Hair cells within cochlea 2
send electrical impulses via
the hearing nerve, yet different
hair cells react to different
fluid vibration frequencies
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Speech Processing

Speech is composed of phonemes, which last
for about 30 — 200 ms

 Different frequencies
are prominent with
each phoneme/phone

We want to pinpoint | | | | |
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Speech Features — MFCC

« Mel-frequency cepstral coefficients (MFCCs)
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Speech Features — MFCC

« Sampling and framing
— Usually 16 kHz sampling rate, 16b samples
— Frames of 20 ms to 40 ms (compare to phoneme)
— Offset 10 ms between successive frames

* Preemphasis

— Boost high frequencies, as these are pronounced with
a lower intensity

-
Performed as

a time
domain filter

I\
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Speech Features — MFCC

-l

« Windowing
— Hamming window to avoid
sharp amplitude changes

e Discrete Fourier Transform

Amplitude

(DFT)
— To obtain a frequency view of
the signal N
— Calculate the intensity at FFT from
different frequencies Sa’;‘iﬁ'e”r‘i?] g”d
as cochlea’s hair cells capture lecture
1 vibrations at certain frequencies \_ y
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Speech Features — MFCC

 Mel filter bank

— Cochlea cannot discern the difference between two
closely spaced frequencies

— This effect becomes more pronounced as the
frequencies increase

DFT(STFT) power spectrum [X[k]|’
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Speech Features — MFCC

* Log scaling
— We are less sensitive to small change at high energy
than small changes at a low energy level

— Log scaling levels it out

120
14
100 !w
12
80 10 #M%“b‘
&0 8 = W'
§ = XVM%T
4
- M - \.‘P1
o o
0 1000 2000 3000 4000 5000 S000 7000 8000 o 1000 2000 3000 4000 S000 6000 7000 8000
normalize fregquency normalize frequency

University of Ljubljana
Faculty of Computer and
Information Science




Speech Features — MFCC

* Inverse Discrete Fourier Transform (IDFT)

— The spectrum picture we have contains info about the
phoneme and about the pitch (FO)

— IDFT, in this case discrete cosine 12
transform (DCT), lets us single s
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Speech Features — MFCC

* Dynamic MFCC-related features

— Besides the original MFCC features extract

e First derivative of the features
e Second derivative of the features

« Final feature vector contains about 39 real
numbers per each 20ms-40ms window

 How do we go from these features to speech
recognition?
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Speech Recognition Models

« Hidden Markov Model (HMM) with
Gausian Mixture Models (GMM)

— Based on the MFCC observations explains how the
underlying phonemes are transitioned

— The existing model is easilly re-trained for a particular
person, emotional expression, etc.

* Deep neural networks

— No need for feature (MFCC) extraction, although it
might help

— Nowadays better performance than HMM-GMM

— Might be difficult to re-train
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HMM with GMM

/k/
Cat: /keet/
. Sits: /s1ts/
:; ol On: Ian
A adl A lel Y = “cat sits
Mat: /maet/ on a mat’

% X=x1x2...xT

speech > features <3 acoustic 5 pronunciation . language
preprocessing models models models

W* = arg max P(W|X)
wW* = arg max P(X|W) P(W) /P(X) ApplyBayes’ Theorem

w ' =arg max P(X|W) P(W) Remove P(X) because X does not change w.r.t. W
"o b
word sequence acoustic model language model

)" B
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Hidden Markov Model (HMM)

« A Markov chain where the states are not directly
observable

— However, some other variables are observable, and
their values depend on the underlying state
 Transition probability: the probability of
transiting from one internal state to another

« Emission probability: the probability of observing
an observable given an internal state
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Hidden Markov Model (HMM)

* In speech recognition
— Observables are audio properties (MFCC)
— States are phonemes

« We aim to infer the sequence of phonemes, i.e.
words according to:
— The probability of the word

— The probability of the sequence of observations
reflecting the sequence of phonemes representing
that word

* Training HMM and inferring on it:

mim — Baum—Welch and Viterbi algorithms
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Gaussian Mixture Model (GMM)

 GMM is a weighted combination of multiple
Gaussian distributions

— GMM that is built upon uncorrelated dimensions is
computationally light
» Acoustic model — how is a phoneme
represented in terms of the MFCC features

— GMM is a good representation of speech
pronunciation
— MFCC features as dimensions
— Multiple components
Lﬂj — One GMM per each phoneme
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HMM with GMM — Full Pipeline

/k/
\ Cat: /keet/
. /_ _i Sits: /sits/
M & a - On: /lon
A iklis ' A lel Y = “cat sits
Mat. /maet/ on a mat”
% X=X, X X+

- language

speech > features <3 acoustic 4 pronunciation =

preprocessing models models

— Extract MFCC features and train GMM
— Add the language model to train HMM
— Observe a sequence of observations (MFCC features)

— Use Viterbi to find the most likely sequence of
phonemes, i.e. the most likely word
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Deep Neural Networks

 Different parts of the pipeline can be adapted to
neural network processing

— Language model with a neural network
— Acoustic model with a DNN+HMM or LSTM+HMM

— Features extracted using neural network approaches

* Furthermore, a full end-to-end inference can be
performed with deep learning
— Example in the labs this week!
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Beyond Speech Recognition

* Mental health-related applications might require
additional speech features to be extracted:

— Rate of speech [slow, rapid]

— Flow of speech [hesitant, long pauses, stuttering]
— Intensity of speech [loud, soft]

— Clarity [clear, slurred]

— Liveliness [pressured, monotonous, explosive]

— Quality [verbose, scant]

« Example application — EmotionSense

ok o The “other” paper
. University of Ljubljana for this week
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