Mathematical modelling

Lecture 11, April 26th, 2022

Faculty of Computer and Information Science
University of Ljubljana

2021/22

1/21



Runge-Kutta methods

The idea of those methods is to approximate the derivative on the interval
[Xn, Xn+1] not only based on the derivative in the point x,, but using a
weighted average of more different derivatives on the interval [x,, xpt1].

Example (Runge-Kutta of order 2 (RK2))

We approximate the derivate using the derivatives in the points x, and
Xp + €h € [Xn, Xpt1], where h = x,411 — x, and ¢ € [0,1]. The
approximation y,41 is computed using the weighted average of linear
approximations in the points x, and x, + ch:

Ynt1 = Yn+ \bfl_, “(h- f(Xn,yn)) + \bg_, (h- f(xa + ch,y(xa + ch))) (1)

-~

weight move along weight move along
the tangent in x, the tangent in x,+ch

We use a linear approximation
Y(Xn + ch) = yn + chy'(xn) = yn + chf (Xn, ¥n) = Yo + ahf(xn, yn),  (2)

where a is a new parameter. 2/21



Using (2) in (1) we obtain
Yn+1 = Yn+ b1 (h-f(Xn,yn)) +b2- (h- f(xn+ ch,y, +a- k1)) . (3)
K ko
1 2

Using Taylor series’ of y(x, + h), f(xn + ch, yn + aki) and comparing the
coefficients at h and h? in (3) we get a system of equations

1= by + bo,
1
E(f;( + £, f)n = boc(f)n + boa(fF,)n,

y
where f,, (fi)n, (f,)n stands for f(xn, ¥n), fx(Xn; ¥n), fy(Xn, ¥n). The system
(4) has many different solutions, e.g.:

(4)

> by =by =3 and c = a=1. RK method is:

1
Ynt1 =Yn+ E(kl + k2):

ki = hf(Xn, yn),
ko = hf(xp + h,yn + k).
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> b =1, b2:Oinc:a:%. RK method is:

Ynt1 =Yn+ ko,
kl - hf(Xna)/n)7

1 1
— hf (% + =B,y + =k1).
ko (X+2 y+21)

A general RK method is of the form

Yn+1 = Yn + biki + boko + ... + bsks,
ki = hf (xn, yn),
ko = hf(x, + c2h. v, + a2 1k1),
ks = hf (%o + Csh,yn + a3 1kt + 23 2k2), ()

")

ks = hf(xn + Csh,yn + ac1ki + ...+ ks—1)-
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Butcher tableau

In a compact form the RK method (5) is given in the form of a Butcher

tableau:

where

0 0
& |a1 0
C3 | d31 a3z2 0
Cs ds; ds, ds3 ' dss—1 0
bl b2 b3 to bs—l bs>
C = a1,

C3 = a31 + as o,

Cs=das1+asp+...+3ass 1.
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Runge-Kutta mehod of order 4

Butcher tableau:

HNI=NI= O

olH ©O O NIRr O
WlH OoONI+k O
WlH = O

ol O

The method is

1 1 1 1
il = Yn+ —ki + ko + — ks + = kg,
Yn+1 )/+61+32+33+64
ki = hf(xn, yn),

1 1
k2 = hf(Xn + Eh’y" + §k1)7

1 1
ks = hf(Xn + Ehy)/n + §k2)7
ks = hf(Xn + h» Yn+ k3)

The error at each step is of order O(h®). The cumulative error is of order O(h*).
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Euler vs RK4

Below is a comparison of Euler's and Rk4 methods for the DE

with step size h=0.3:

1

y(0)

Y =-y-1,
The red curve is the exact solution y = 2e™™ — 1.
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Algorithms and example:

https://zalara.github.io/Algoritmi/euler_eng.m
https://zalara.github.io/Algoritmi/RK4_eng.m

https://zalara.github.io/Algoritmi/Euler

vs_RK4.m
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Adaptive Runge Kutta methods

Let My, M> be two RK methods with the same matrices of coefficients a; ;
(and hence also ¢;), but different vectors of weights b; and b*. Let M; be
of order p (global error O(hP)), while the other of order p + 1 (global error
O(hPT1Y).

Example: We use the adaptive method for the Butcher tableaus:

0|0

111 0
1 0°
11
2 2

The first is Euler's method and has order 1, while the other is RK method of order 2:
Ynt1 = Yo + ku,
Yoy1 = yn+ %(kl + k).
The approximation of the local error:
Loyt R Y1 — Yor1 = (—ki + ko) /2.

If £,41 is small enough (we choose what this means in our problem), we accept y,+1 and

continue, otherwise we decrease the step size and repeat the computations.
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DOPRI5, Fehlberg, Cash-Karp

Very useful methods for practical computations are DOPRI5 (1980, authors
Dormand in Prince), Fehlberg (1969), , which are adaptive
methods combining two RK methods, one of order 4 and one of order 5.

» https://en.wikipedia.org/wiki/Dormand,E2%80%93Prince_method

> https:
//en.wikipedia.org/wiki/Runge,E2%80%93KuttaE2%80%93Fehlberg_method

» https://en.wikipedia.org/wiki/Cash’E2/80%93Karp_method

Algorithm:
https://zalara.github.io/Algoritmi/DOPRI5_eng.m

https://zalara.github.io/Algoritmi/DOPRI5_example.m
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Systems of first order ODE's

Let
fo=(f,...,f) R™ 5 R",

(X1, xnr1) = (A1, ooy Xnt1), - oo (X1, - ooy Xng1))-
be a vector function. A system of first order DE’s is an equation
x(t) = f(x(t), 1), (6)

where
x(t) == (xa(t),...,xp(t)) : I = R"

is an unknown vector function and / C R is some interval. Coordinate-wise
the system (6) is equal to

x1(t) = f(x(t),...,xn(t), 1),

xn(t) = fu(xa(t),...,xa(t),t).
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Solution of the system of DE's

For every (x,t) € R"™ in the domain of f, the value f(x, t) is the tangent
vector x(t) to the solution x(t) at the given t.

The general solution is a family of parametric curves

X(t, C1, ey Cn),
where C1, Gy, ..., C, € R are parameters, with the given tangent vectors.

An initial condition

X(to) =xp €R"
gives a particular solution, that is, a specific parametric curve from the
general solution that goes through the point xp at time tg.
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Linear systems of 1st order ODEs
A linear system of DEs is of the form

)'(1(t) all(t) al,,(t) Xl(t) gl(t)

Xn(t) anl(t) oo ann(t) Xn(t) gn(t)
where
xi:l—R, aj:I—R and g:I—=R

are functions of t and / C R is an interval. In a compact form (7) can be
written as

x(t) = A(t)x + g(t), (8)
where
A(t) = [ai(8)]7 =1
is a n X n matrix function and

g(t)=1[ a(t) ... galt) ]

is a n x 1 vector function.

T
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The system (8)
» is homogeneous if for every t in the domain | we have g(t) = 0.

» has constant coefficients, if the matrix A is constant, i.e., independent
of t.

P is autonomous, if it is homogeneous and has constant coefficients.

An autonomous linear system
x = Ax (9)

of 1st order DEs can be solved analytically, using methods from linear
algebra. Recall that such a system can be written in coordinates as:

X1 = aiix1 + apxg + - -+ + ainXn,

Xo = a21X1 + axnxp + - -+ + apXn,

Xn = an1X1 + an2x2 + - -+ + appXn.
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Autonomous system: diagonal matrix A

Assume first that the matrix A in (9) is diagonal. Then (9) is the following:

X1 )\1 0 X1
Xn 0 An Xn
Or equivalently,
X1 = A1x1, X2 = Aax2, ; Xn = AnXp-

In this (simple) case the general solution is easily determined:

Cle)‘lt 1 0
C2e>‘2t 0 1

X(t) = . = Cle’\lt . + C2e/\2t ] + .4 Cne/\”t
C,eMt 0 0
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Autonomous system: n linearly independent eigenvectors

Assume next, that A in (9) has n linearly independent eigenvectors vy, ... v,
with the corresponding eigenvalues A1,..., A,.

> For every fixed t, the vector x(t) can be expressed as a linear combination
x(t) = ei(t)vi + - - + ©n(t) Vi
» Hence, the coefficients
oi(t): I = R, i=1,...,n,
are functions of t.

» Since vy, ...V, are eigenvectors it follows from x = Ax, that

S gitvi =D ei(A = pi(t)Aivi.
i=1 i=1 i=1

» Since vq,...V, are linearly independent, it follows that for every i/ we have
gb,'(t) = )\,‘(,0,'(1') = QD,'(t) = C,-e>"'t, C eR.
» Hence the general solution of the system is

x(t) = GieMtvy + -+ CpeMty,.
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Example
Find the general solution of the system

X1 = X1 + X2,

).(2 = 4X1 — 2X2.

1

The matrix of the system is A = [ 4 o

]. Its eigenvalues are the

solutions of
det(A—A)=(1—=A)(—2—-A)—4=X+X1-6=0,

so A\1 = —3 and A2 = 2, and the corresponding eigenvectors are

:|T

n=[1 —4 and  w=[11]",

The general solution of the system is

x(t) = Cre3t { » } + Ge?t [ X ] |
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Example
Find the general solution of

).(1 = X2,

).Q = —4X1.

01

4 0 ] It has a conjugate pair of

The matrix of the system is A = [

complex eigenvalues and a corresponding conjugate pair of eigenvectors:

)\1’2 = i2i, Vi2 = [ 1 £2i ]T.

The general solution is a family of complex valued functions
; 1 ; 1
_ 2it —2it
X(t) = Cie |: o ] + Ge [ _oj :|

(which is not very useful in modelling real-valued phenomena).
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Autonomous system: complex conjugate eigenvalues

Assume that the matrix of the system A has a complex pair of eigenvalues
A1,2 = o £ i3 and corresponding eigenvectors vy = u £ iw.

The real and imaginary parts of the two complex valued solutions are:

(aiiﬁ)t(ui iw)
= e*(cos(Bt) £ isin(ft))(u + iw)
= e“ [cos(Bt)u — sin(Bt)w % i(sin(Bt)u + cos(Bt)w)] .

Any linear combination (with coefficients C;, C; € R) of these is a
real-valued solution, so the real-valued general solution is

x(t) = e** [C1(cos(Bt)u — sin(Bt)w) + Ca(sin(Bt)u + cos(St)w)].
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Autonomous system: complex conjugate eigenvalues

Example

In the case of the previous example, A\ = £2/, i.,e. a =0 and 8 =2, and

1 1 0
vl,gz[jﬂi} = u:{o] and W:|:2:|.

Hence, the general solution is

x(t) = G (cos(2t) [ . ] _sin(2t) [ : ] )
+G(sin(21) [ . ] + cos(2t) [ : ] )
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Autonomous system: less than n eigenvectors

If A has less than n linearly independent eigenvectors, additional solutions
can also be obtained (e.g., with the use of Jordan form of A), but we will
not consider this case here.

The general solution of a system x = Ax of n equations is of the form

x(t) = CxV(t) + ...+ Cx"(1),

where x((t), ..., x("(t) are specific, linearly independent solutions.

For every eigenvalue A € R or a pair of eigenvalues A\ = o & i3 we obtain as
many solutions as there are corresponding linearly independent eigenvectors.
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Adding initial conditions to an autonomous system

An initial condition x(tp) = x(©) gives a nonsingular system (if the vectors
x1(to), ..., xn(to) are linearly independent) of n linear equations for the
constants Cy,..., C,.

x©) = Cixi(to) + ... + Caxn(to).

This implies that a problem
x = Ax, x(to) = x©

has a unique solution for any x(0).

Example

The initial condition x(® = x(0) = [ 0 5 ] for the system in the first example
above gives the following system of equations for C; and G;:

C1_|_C2:07 —4-C1-|—C2:57

so Gt =—-1land G =1.
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