Mathematical modelling

Lecture 11, April 26th, 2022

Faculty of Computer and Information Science University of Ljubljana

2021/22

Runge-Kutta methods

The idea of those methods is to approximate the derivative on the interval $[x_n, x_{n+1}]$ not only based on the derivative in the point x_n , but using a weighted average of more different derivatives on the interval $[x_n, x_{n+1}]$.

Example (Runge-Kutta of order 2 (RK2))

We approximate the derivate using the derivatives in the points x_n and $x_n + ch \in [x_n, x_{n+1}]$, where $h = x_{n+1} - x_n$ and $c \in [0, 1]$. The approximation y_{n+1} is computed using the weighted average of linear approximations in the points x_n and $x_n + ch$:

$$y_{n+1} = y_n + \underbrace{b_1}_{\text{weight}} \cdot \underbrace{(h \cdot f(x_n, y_n))}_{\text{move along the tangent in } x_n} + \underbrace{b_2}_{\text{weight}} \cdot \underbrace{(h \cdot f(x_n + ch, y(x_n + ch)))}_{\text{move along the tangent in } x_n + ch}$$
(1)

We use a linear approximation

$$y(x_n + ch) \approx y_n + chy'(x_n) = y_n + chf(x_n, y_n) \approx y_n + ahf(x_n, y_n), \quad (2)$$

where *a* is a new parameter.

Using (2) in (1) we obtain

$$y_{n+1} = y_n + b_1 \cdot \underbrace{\left(h \cdot f(x_n, y_n)\right)}_{k_1} + b_2 \cdot \underbrace{\left(h \cdot f(x_n + ch, y_n + a \cdot k_1)\right)}_{k_2}.$$
 (3)

Using Taylor series' of $y(x_n + h)$, $f(x_n + ch, y_n + ak_1)$ and comparing the coefficients at h and h^2 in (3) we get a system of equations

$$1 = b_1 + b_2,$$

$$\frac{1}{2}(f_x + f_y f)_n = b_2 c(f_x)_n + b_2 a(ff_y)_n,$$
(4)

where f_n , $(f_x)_n$, $(f_y)_n$ stands for $f(x_n, y_n)$, $f_x(x_n, y_n)$, $f_y(x_n, y_n)$. The system (4) has many different solutions, e.g.:

►
$$b_1 = b_2 = \frac{1}{2}$$
 and $c = a = 1$. RK method is:
 $y_{n+1} = y_n + \frac{1}{2}(k_1 + k_2),$
 $k_1 = hf(x_n, y_n),$
 $k_2 = hf(x_n + h, y_n + k_1).$

• $b_1 = 1$, $b_2 = 0$ in $c = a = \frac{1}{2}$. RK method is:

$$y_{n+1} = y_n + k_2,$$

$$k_1 = hf(x_n, y_n),$$

$$k_2 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1).$$

A general RK method is of the form

$$y_{n+1} = y_n + b_1 k_1 + b_2 k_2 + \ldots + b_s k_s,$$

$$k_1 = hf(x_n, y_n),$$

$$k_2 = hf(x_n + c_2 h, y_n + a_{2,1} k_1),$$

$$k_3 = hf(x_n + c_3 h, y_n + a_{3,1} k_1 + a_{3,2} k_2),$$

$$\vdots,$$

$$k_s = hf(x_n + c_s h, y_n + a_{s,1} k_1 + \ldots + a_{s,s-1} k_{s-1}).$$
(5)

Butcher tableau

In a compact form the RK method (5) is given in the form of a Butcher tableau:

where

$$c_{2} = a_{2,1},$$

$$c_{3} = a_{3,1} + a_{3,2},$$

$$\vdots$$

$$c_{s} = a_{s,1} + a_{s,2} + \ldots + a_{s,s-1}.$$

Runge-Kutta mehod of order 4

Butcher tableau:

The method is

$$y_{n+1} = y_n + \frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4,$$

$$k_1 = hf(x_n, y_n),$$

$$k_2 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1),$$

$$k_3 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_2),$$

$$k_4 = hf(x_n + h, y_n + k_3).$$

The error at each step is of order $\mathcal{O}(h^5)$. The cumulative error is of order $\mathcal{O}(h^4)$.

Euler vs RK4

Below is a comparison of Euler's and Rk4 methods for the DE

$$y' = -y - 1$$
, $y(0) = 1$ with step size $h = 0.3$:

The red curve is the exact solution $y = 2e^{-x} - 1$.

Algorithms and example:

https://zalara.github.io/Algoritmi/euler_eng.m https://zalara.github.io/Algoritmi/RK4_eng.m https://zalara.github.io/Algoritmi/Euler_vs_RK4.m

Adaptive Runge Kutta methods

Let M_1 , M_2 be two RK methods with the same matrices of coefficients $a_{i,j}$ (and hence also c_i), but different vectors of weights b_i and b_i^* . Let M_1 be of order p (global error $\mathcal{O}(h^p)$), while the other of order p + 1 (global error $\mathcal{O}(h^{p+1})$).

Example: We use the adaptive method for the Butcher tableaus:

The first is Euler's method and has order 1, while the other is RK method of order 2:

$$y_{n+1} = y_n + k_1,$$

 $y_{n+1}^* = y_n + \frac{1}{2}(k_1 + k_2)$

The approximation of the local error:

$$\ell_{n+1} \approx y_{n+1}^* - y_{n+1} = (-k_1 + k_2)/2.$$

If ℓ_{n+1} is small enough (we choose what this means in our problem), we accept y_{n+1} and continue, otherwise we decrease the step size and repeat the computations.

DOPRI5, Fehlberg, Cash-Karp

Very useful methods for practical computations are DOPRI5 (1980, authors Dormand in Prince), Fehlberg (1969), Cash-Karp, which are adaptive methods combining two RK methods, one of order 4 and one of order 5.

- https://en.wikipedia.org/wiki/Dormand%E2%80%93Prince_method
- https: //en.wikipedia.org/wiki/Runge%E2%80%93Kutta%E2%80%93Fehlberg_method
- https://en.wikipedia.org/wiki/Cash%E2%80%93Karp_method

Algorithm:

https://zalara.github.io/Algoritmi/DOPRI5_eng.m
https://zalara.github.io/Algoritmi/DOPRI5_example.m

Systems of first order ODE's Let

$$f := (f_1, \dots, f_n) : \mathbb{R}^{n+1} \to \mathbb{R}^n,$$

$$f(x_1, \dots, x_{n+1}) = (f_1(x_1, \dots, x_{n+1}), \dots, f_n(x_1, \dots, x_{n+1})).$$

be a vector function. A system of first order DE's is an equation

$$\dot{x}(t) = f(x(t), t), \tag{6}$$

where

$$x(t) := (x_1(t), \ldots, x_n(t)) : I \to \mathbb{R}^n$$

is an unknown vector function and $I \subset \mathbb{R}$ is some interval. Coordinate-wise the system (6) is equal to

$$\dot{x}_1(t) = f_1(x_1(t), \dots, x_n(t), t),$$

$$\vdots$$

$$\dot{x}_n(t) = f_n(x_1(t), \dots, x_n(t), t).$$

Solution of the system of DE's

For every $(x, t) \in \mathbb{R}^{n+1}$ in the domain of f, the value f(x, t) is the tangent vector $\dot{x}(t)$ to the solution x(t) at the given t.

The general solution is a family of parametric curves

 $x(t, C_1, \ldots, C_n),$

where $C_1, C_2, \ldots, C_n \in \mathbb{R}$ are parameters, with the given tangent vectors.

An initial condition

$$x(t_0) = x_0 \in \mathbb{R}^n$$

gives a <u>particular solution</u>, that is, a specific parametric curve from the general solution that goes through the point x_0 at time t_0 .

Linear systems of 1st order ODEs

A linear system of DEs is of the form

$$\begin{bmatrix} \dot{x}_{1}(t) \\ \vdots \\ \dot{x}_{n}(t) \end{bmatrix} = \begin{bmatrix} a_{11}(t) & \dots & a_{1n}(t) \\ \vdots & \ddots & \vdots \\ a_{n1}(t) & \dots & a_{nn}(t) \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix} + \begin{bmatrix} g_{1}(t) \\ \vdots \\ g_{n}(t) \end{bmatrix}, \quad (7)$$

where

$$x_i: I
ightarrow \mathbb{R}, \quad a_{ij}: I
ightarrow \mathbb{R} \quad \text{and} \quad g_i: I
ightarrow \mathbb{R}$$

are functions of t and $I \subseteq \mathbb{R}$ is an interval. In a compact form (7) can be written as

$$\dot{x}(t) = A(t)x + g(t), \tag{8}$$

where

$$A(t) = [a_{ij}(t)]_{i,j=1}^n$$

is a $n \times n$ matrix function and

$$g(t) = \begin{bmatrix} g_1(t) & \dots & g_n(t) \end{bmatrix}^T$$

is a $n \times 1$ vector function.

The system (8)

- ▶ is <u>homogeneous</u> if for every t in the domain I we have $g(t) = \mathbf{0}$.
- has <u>constant coefficients</u>, if the matrix A is constant, i.e., independent of t.
- is <u>autonomous</u>, if it is homogeneous and has constant coefficients.

An autonomous linear system

$$\dot{x} = Ax$$
 (9)

of 1st order DEs can be solved analytically, using methods from linear algebra. Recall that such a system can be written in coordinates as:

$$\dot{x}_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n, \dot{x}_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n, \vdots \dot{x}_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n.$$

Autonomous system: diagonal matrix A

Assume first that the matrix A in (9) is diagonal. Then (9) is the following:

$$\begin{bmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

•

Or equivalently,

$$\dot{x}_1 = \lambda_1 x_1, \qquad \dot{x}_2 = \lambda_2 x_2, \qquad \dots \qquad , \qquad \dot{x}_n = \lambda_n x_n.$$

In this (simple) case the general solution is easily determined:

$$x(t) = \begin{bmatrix} C_1 e^{\lambda_1 t} \\ C_2 e^{\lambda_2 t} \\ \vdots \\ C_n e^{\lambda_n t} \end{bmatrix} = C_1 e^{\lambda_1 t} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + C_2 e^{\lambda_2 t} \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + C_n e^{\lambda_n t} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Autonomous system: *n* linearly independent eigenvectors Assume next, that <u>A in (9) has *n* linearly independent eigenvectors</u> $v_1, \ldots v_n$ with the corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$.

For every fixed t, the vector x(t) can be expressed as a linear combination

$$x(t) = \varphi_1(t)v_1 + \cdots + \varphi_n(t)v_n.$$

Hence, the coefficients

$$\varphi_i(t): I \to \mathbb{R}, \qquad i=1,\ldots,n,$$

are functions of t.

Since $v_1, \ldots v_n$ are eigenvectors it follows from $\dot{x} = Ax$, that

$$\sum_{i=1}^{n} \dot{\varphi}_i(t) \mathbf{v}_i = \sum_{i=1}^{n} \varphi_i(t) A \mathbf{v}_i = \sum_{i=1}^{n} \varphi_i(t) \lambda_i \mathbf{v}_i.$$

Since $v_1, \ldots v_n$ are linearly independent, it follows that for every i we have $\dot{\varphi}_i(t) = \lambda_i \varphi_i(t) \implies \varphi_i(t) = C_i e^{\lambda_i t}, \quad C_i \in \mathbb{R}.$

Hence the general solution of the system is

$$x(t) = C_1 e^{\lambda_1 t} v_1 + \cdots + C_n e^{\lambda_n t} v_n.$$

Example

Find the general solution of the system

$$\dot{x}_1 = x_1 + x_2,$$

 $\dot{x}_2 = 4x_1 - 2x_2.$

The matrix of the system is $A = \begin{bmatrix} 1 & 1 \\ 4 & -2 \end{bmatrix}$. Its eigenvalues are the solutions of

$$\det(A - \lambda I) = (1 - \lambda)(-2 - \lambda) - 4 = \lambda^2 + \lambda - 6 = 0,$$

so $\lambda_1 = -3$ and $\lambda_2 = 2$, and the corresponding eigenvectors are

$$v_1 = \begin{bmatrix} 1 & -4 \end{bmatrix}^T$$
 and $v_2 = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$

The general solution of the system is

$$x(t) = C_1 e^{-3t} \begin{bmatrix} 1 \\ -4 \end{bmatrix} + C_2 e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

16/21

Example

Find the general solution of

$$\begin{aligned} \dot{x}_1 &= x_2, \\ \dot{x}_2 &= -4x_1. \end{aligned}$$

The matrix of the system is $A = \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix}$. It has a conjugate pair of complex eigenvalues and a corresponding conjugate pair of eigenvectors:

$$\lambda_{1,2} = \pm 2i, \quad v_{1,2} = \begin{bmatrix} 1 & \pm 2i \end{bmatrix}^T.$$

The general solution is a family of complex valued functions

$$x(t) = C_1 e^{2it} \begin{bmatrix} 1\\ 2i \end{bmatrix} + C_2 e^{-2it} \begin{bmatrix} 1\\ -2i \end{bmatrix}$$

(which is not very useful in modelling real-valued phenomena).

Autonomous system: complex conjugate eigenvalues

Assume that the matrix of the system <u>A has a complex pair of eigenvalues</u> $\lambda_{1,2} = \alpha \pm i\beta$ and corresponding eigenvectors $v_{1,2} = u \pm iw$.

The real and imaginary parts of the two complex valued solutions are:

$$e^{(\alpha \pm i\beta)t}(u \pm iw)$$

= $e^{\alpha t}(\cos(\beta t) \pm i\sin(\beta t))(u \pm iw)$
= $e^{\alpha t}[\cos(\beta t)u - \sin(\beta t)w \pm i(\sin(\beta t)u + \cos(\beta t)w)].$

Any linear combination (with coefficients $C_1, C_2 \in \mathbb{R}$) of these is a real-valued solution, so the real-valued general solution is

$$x(t) = e^{\alpha t} \left[C_1(\cos(\beta t)u - \sin(\beta t)w) + C_2(\sin(\beta t)u + \cos(\beta t)w) \right].$$

Autonomous system: complex conjugate eigenvalues

Example

In the case of the previous example, $\lambda_{1,2} = \pm 2i$, i.e. $\alpha = 0$ and $\beta = 2$, and

$$v_{1,2} = \begin{bmatrix} 1 \\ \pm 2i \end{bmatrix} \Rightarrow u = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } w = \begin{bmatrix} 0 \\ 2 \end{bmatrix}.$$

Hence, the general solution is

$$\begin{aligned} x(t) &= C_1 \Big(\cos(2t) \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \sin(2t) \begin{bmatrix} 0 \\ 2 \end{bmatrix} \Big) \\ &+ C_2 \Big(\sin(2t) \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \cos(2t) \begin{bmatrix} 0 \\ 2 \end{bmatrix} \Big). \end{aligned}$$

Autonomous system: less than *n* eigenvectors

If A has less than n linearly independent eigenvectors, additional solutions can also be obtained (e.g., with the use of Jordan form of A), but we will not consider this case here.

The general solution of a system $\dot{x} = Ax$ of *n* equations is of the form

$$x(t) = C_1 x^{(1)}(t) + \ldots + C_n x^{(n)}(t),$$

where $x^{(1)}(t), \ldots, x^{(n)}(t)$ are specific, linearly independent solutions.

For every eigenvalue $\lambda \in \mathbb{R}$ or a pair of eigenvalues $\lambda = \alpha \pm i\beta$ we obtain as many solutions as there are corresponding linearly independent eigenvectors.

Adding initial conditions to an autonomous system An initial condition $x(t_0) = x^{(0)}$ gives a nonsingular system (if the vectors $x_1(t_0), \ldots, x_n(t_0)$ are linearly independent) of *n* linear equations for the constants C_1, \ldots, C_n .

$$x^{(0)} = C_1 x_1(t_0) + \ldots + C_n x_n(t_0).$$

This implies that a problem

$$\dot{x} = Ax, \quad x(t_0) = x^{(0)}$$

has a unique solution for any $x^{(0)}$.

Example

The initial condition $x^{(0)} = x(0) = \begin{bmatrix} 0 & 5 \end{bmatrix}^T$ for the system in the first example above gives the following system of equations for C_1 and C_2 :

$$C_1 + C_2 = 0, \quad -4C_1 + C_2 = 5,$$

so $C_1 = -1$ and $C_2 = 1$.