Mathematical modelling

Lecture 11, April 26th, 2022

Faculty of Computer and Information Science University of Ljubljana

2021/22

Runge-Kutta methods

The idea of those methods is to approximate the derivative on the interval [x_{n}, x_{n+1}] not only based on the derivative in the point x_{n}, but using a weighted average of more different derivatives on the interval $\left[x_{n}, x_{n+1}\right]$.

Example (Runge-Kutta of order 2 (RK2))

We approximate the derivate using the derivatives in the points x_{n} and $x_{n}+c h \in\left[x_{n}, x_{n+1}\right]$, where $h=x_{n+1}-x_{n}$ and $c \in[0,1]$. The approximation y_{n+1} is computed using the weighted average of linear approximations in the points x_{n} and $x_{n}+c h$:

$$
y_{n+1}=y_{n}+\underbrace{b_{1}}_{\text {weight }} \cdot \underbrace{\left(h \cdot f\left(x_{n}, y_{n}\right)\right)}_{\begin{array}{c}
\text { move along } \tag{1}\\
\text { the tangent in } x_{n}
\end{array}}+\underbrace{b_{2}}_{\text {weight }} \cdot \underbrace{\left(h \cdot f\left(x_{n}+c h, y\left(x_{n}+c h\right)\right)\right)}_{\begin{array}{c}
\text { move along } \\
\text { the tangent in } x_{n}+c h
\end{array}}
$$

We use a linear approximation

$$
\begin{equation*}
y\left(x_{n}+\operatorname{ch}\right) \approx y_{n}+\operatorname{chy}^{\prime}\left(x_{n}\right)=y_{n}+\operatorname{chf}\left(x_{n}, y_{n}\right) \approx y_{n}+\operatorname{ahf}\left(x_{n}, y_{n}\right) \tag{2}
\end{equation*}
$$

where a is a new parameter.

Using (2) in (1) we obtain

$$
\begin{equation*}
y_{n+1}=y_{n}+b_{1} \cdot \underbrace{\left(h \cdot f\left(x_{n}, y_{n}\right)\right)}_{k_{1}}+b_{2} \cdot \underbrace{\left(h \cdot f\left(x_{n}+c h, y_{n}+a \cdot k_{1}\right)\right)}_{k_{2}} . \tag{3}
\end{equation*}
$$

Using Taylor series' of $y\left(x_{n}+h\right), f\left(x_{n}+c h, y_{n}+a k_{1}\right)$ and comparing the coefficients at h and h^{2} in (3) we get a system of equations

$$
\begin{align*}
1 & =b_{1}+b_{2} \\
\frac{1}{2}\left(f_{x}+f_{y} f\right)_{n} & =b_{2} c\left(f_{x}\right)_{n}+b_{2} a\left(f f_{y}\right)_{n} \tag{4}
\end{align*}
$$

where $f_{n},\left(f_{x}\right)_{n},\left(f_{y}\right)_{n}$ stands for $f\left(x_{n}, y_{n}\right), f_{x}\left(x_{n}, y_{n}\right), f_{y}\left(x_{n}, y_{n}\right)$. The system (4) has many different solutions, e.g.:

- $b_{1}=b_{2}=\frac{1}{2}$ and $c=a=1$. RK method is:

$$
\begin{aligned}
y_{n+1} & =y_{n}+\frac{1}{2}\left(k_{1}+k_{2}\right), \\
k_{1} & =h f\left(x_{n}, y_{n}\right), \\
k_{2} & =h f\left(x_{n}+h, y_{n}+k_{1}\right) .
\end{aligned}
$$

- $b_{1}=1, b_{2}=0$ in $c=a=\frac{1}{2}$. RK method is:

$$
\begin{aligned}
y_{n+1} & =y_{n}+k_{2} \\
k_{1} & =h f\left(x_{n}, y_{n}\right) \\
k_{2} & =h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{1}\right) .
\end{aligned}
$$

A general RK method is of the form

$$
\begin{align*}
y_{n+1} & =y_{n}+b_{1} k_{1}+b_{2} k_{2}+\ldots+b_{s} k_{s}, \\
k_{1} & =h f\left(x_{n}, y_{n}\right), \\
k_{2} & =h f\left(x_{n}+c_{2} h, y_{n}+a_{2,1} k_{1}\right), \\
k_{3} & =h f\left(x_{n}+c_{3} h, y_{n}+a_{3,1} k_{1}+a_{3,2} k_{2}\right), \tag{5}\\
\vdots & , \\
k_{s} & =h f\left(x_{n}+c_{s} h, y_{n}+a_{s, 1} k_{1}+\ldots+a_{s, s-1} k_{s-1}\right) .
\end{align*}
$$

Butcher tableau

In a compact form the RK method (5) is given in the form of a Butcher tableau:

where

$$
\begin{aligned}
c_{2} & =a_{2,1} \\
c_{3} & =a_{3,1}+a_{3,2} \\
& \vdots \\
c_{s} & =a_{s, 1}+a_{s, 2}+\ldots+a_{s, s-1}
\end{aligned}
$$

Runge-Kutta mehod of order 4

Butcher tableau:

0	0			
$\frac{1}{2}$	$\frac{1}{2}$	0		
$\frac{1}{2}$	0	$\frac{1}{2}$	0	
1	0	0	1	0
	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

The method is

$$
\begin{aligned}
y_{n+1} & =y_{n}+\frac{1}{6} k_{1}+\frac{1}{3} k_{2}+\frac{1}{3} k_{3}+\frac{1}{6} k_{4}, \\
k_{1} & =h f\left(x_{n}, y_{n}\right), \\
k_{2} & =h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{1}\right), \\
k_{3} & =h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{2}\right), \\
k_{4} & =h f\left(x_{n}+h, y_{n}+k_{3}\right) .
\end{aligned}
$$

The error at each step is of order $\mathcal{O}\left(h^{5}\right)$. The cumulative error is of order $\mathcal{O}\left(h^{4}\right)$.

Euler vs RK4

Below is a comparison of Euler's and Rk4 methods for the DE

$$
y^{\prime}=-y-1, \quad y(0)=1 \quad \text { with step size } h=0.3:
$$

The red curve is the exact solution $y=2 e^{-x}-1$.

Algorithms and example:
https://zalara.github.io/Algoritmi/euler_eng.m
https://zalara.github.io/Algoritmi/RK4_eng.m
https://zalara.github.io/Algoritmi/Euler_vs_RK4.m

Adaptive Runge Kutta methods

Let M_{1}, M_{2} be two RK methods with the same matrices of coefficients $a_{i, j}$ (and hence also c_{i}), but different vectors of weights b_{i} and b_{i}^{*}. Let M_{1} be of order p (global error $\mathcal{O}\left(h^{p}\right)$), while the other of order $p+1$ (global error $\left.\mathcal{O}\left(h^{p+1}\right)\right)$.

Example: We use the adaptive method for the Butcher tableaus:

0	0	
1	1	0
	1	0
	$\frac{1}{2}$	$\frac{1}{2}$

The first is Euler's method and has order 1, while the other is RK method of order 2:

$$
\begin{aligned}
& y_{n+1}=y_{n}+k_{1} \\
& y_{n+1}^{*}=y_{n}+\frac{1}{2}\left(k_{1}+k_{2}\right)
\end{aligned}
$$

The approximation of the local error:

$$
\ell_{n+1} \approx y_{n+1}^{*}-y_{n+1}=\left(-k_{1}+k_{2}\right) / 2
$$

If ℓ_{n+1} is small enough (we choose what this means in our problem), we accept y_{n+1} and continue, otherwise we decrease the step size and repeat the computations.

DOPRI5, Fehlberg, Cash-Karp

Very useful methods for practical computations are DOPRI5 (1980, authors Dormand in Prince), Fehlberg (1969), Cash-Karp, which are adaptive methods combining two RK methods, one of order 4 and one of order 5.

- https://en.wikipedia.org/wiki/Dormand\�\�\�Prince_method
- https:
//en.wikipedia.org/wiki/Runge\�\�\�Kutta\�\�\�Fehlberg_method
- https://en.wikipedia.org/wiki/Cash\�\�\�Karp_method

Algorithm:
https://zalara.github.io/Algoritmi/DOPRI5_eng.m
https://zalara.github.io/Algoritmi/DOPRI5_example.m

Systems of first order ODE's

Let

$$
\begin{aligned}
f & :=\left(f_{1}, \ldots, f_{n}\right): \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n} \\
f\left(x_{1}, \ldots, x_{n+1}\right) & =\left(f_{1}\left(x_{1}, \ldots, x_{n+1}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n+1}\right)\right)
\end{aligned}
$$

be a vector function. A system of first order DE's is an equation

$$
\begin{equation*}
\dot{x}(t)=f(x(t), t) \tag{6}
\end{equation*}
$$

where

$$
x(t):=\left(x_{1}(t), \ldots, x_{n}(t)\right): I \rightarrow \mathbb{R}^{n}
$$

is an unknown vector function and $I \subset \mathbb{R}$ is some interval. Coordinate-wise the system (6) is equal to

$$
\begin{aligned}
\dot{x}_{1}(t) & =f_{1}\left(x_{1}(t), \ldots, x_{n}(t), t\right), \\
& \vdots \\
\dot{x}_{n}(t) & =f_{n}\left(x_{1}(t), \ldots, x_{n}(t), t\right) .
\end{aligned}
$$

Solution of the system of DE's

For every $(x, t) \in \mathbb{R}^{n+1}$ in the domain of f, the value $f(x, t)$ is the tangent vector $\dot{x}(t)$ to the solution $x(t)$ at the given t.

The general solution is a family of parametric curves

$$
x\left(t, C_{1}, \ldots, C_{n}\right)
$$

where $C_{1}, C_{2}, \ldots, C_{n} \in \mathbb{R}$ are parameters, with the given tangent vectors.
An initial condition

$$
x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}
$$

gives a particular solution, that is, a specific parametric curve from the general solution that goes through the point x_{0} at time t_{0}.

Linear systems of 1st order ODEs

A linear system of DEs is of the form

$$
\left[\begin{array}{c}
\dot{x}_{1}(t) \tag{7}\\
\vdots \\
\dot{x}_{n}(t)
\end{array}\right]=\left[\begin{array}{ccc}
a_{11}(t) & \ldots & a_{1 n}(t) \\
\vdots & \ddots & \vdots \\
a_{n 1}(t) & \ldots & a_{n n}(t)
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]+\left[\begin{array}{c}
g_{1}(t) \\
\vdots \\
g_{n}(t)
\end{array}\right]
$$

where

$$
x_{i}: I \rightarrow \mathbb{R}, \quad a_{i j}: I \rightarrow \mathbb{R} \quad \text { and } \quad g_{i}: I \rightarrow \mathbb{R}
$$

are functions of t and $I \subseteq \mathbb{R}$ is an interval. In a compact form (7) can be written as

$$
\begin{equation*}
\dot{x}(t)=A(t) x+g(t) \tag{8}
\end{equation*}
$$

where

$$
A(t)=\left[a_{i j}(t)\right]_{i, j=1}^{n}
$$

is a $n \times n$ matrix function and

$$
g(t)=\left[\begin{array}{lll}
g_{1}(t) & \ldots & g_{n}(t)
\end{array}\right]^{T}
$$

is a $n \times 1$ vector function.

The system (8)

- is homogeneous if for every t in the domain I we have $g(t)=\mathbf{0}$.
- has constant coefficients, if the matrix A is constant, i.e., independent of t.
- is autonomous, if it is homogeneous and has constant coefficients.

An autonomous linear system

$$
\begin{equation*}
\dot{x}=A x \tag{9}
\end{equation*}
$$

of 1st order DEs can be solved analytically, using methods from linear algebra. Recall that such a system can be written in coordinates as:

$$
\begin{aligned}
& \dot{x}_{1}=a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
& \dot{x}_{2}=a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
& \quad \vdots \\
& \dot{x}_{n}=a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}
\end{aligned}
$$

Autonomous system: diagonal matrix A

Assume first that the matrix A in (9) is diagonal. Then (9) is the following:

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\vdots \\
\dot{x}_{n}
\end{array}\right]=\left[\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

Or equivalently,

$$
\dot{x}_{1}=\lambda_{1} x_{1}, \quad \dot{x}_{2}=\lambda_{2} x_{2}, \quad \ldots \quad, \quad \dot{x}_{n}=\lambda_{n} x_{n}
$$

In this (simple) case the general solution is easily determined:
$x(t)=\left[\begin{array}{c}C_{1} e^{\lambda_{1} t} \\ C_{2} e^{\lambda_{2} t} \\ \vdots \\ C_{n} e^{\lambda_{n} t}\end{array}\right]=C_{1} e^{\lambda_{1} t}\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right]+C_{2} e^{\lambda_{2} t}\left[\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right]+\cdots+C_{n} e^{\lambda_{n} t}\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 1\end{array}\right]$.

Autonomous system: n linearly independent eigenvectors

 Assume next, that A in (9) has n linearly independent eigenvectors $v_{1}, \ldots v_{n}$ with the corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.- For every fixed t, the vector $x(t)$ can be expressed as a linear combination

$$
x(t)=\varphi_{1}(t) v_{1}+\cdots+\varphi_{n}(t) v_{n}
$$

- Hence, the coefficients

$$
\varphi_{i}(t): I \rightarrow \mathbb{R}, \quad i=1, \ldots, n,
$$

are functions of t.

- Since $v_{1}, \ldots v_{n}$ are eigenvectors it follows from $\dot{x}=A x$, that

$$
\sum_{i=1}^{n} \dot{\varphi}_{i}(t) v_{i}=\sum_{i=1}^{n} \varphi_{i}(t) A v_{i}=\sum_{i=1}^{n} \varphi_{i}(t) \lambda_{i} v_{i} .
$$

- Since $v_{1}, \ldots v_{n}$ are linearly independent, it follows that for every i we have

$$
\dot{\varphi}_{i}(t)=\lambda_{i} \varphi_{i}(t) \quad \Rightarrow \quad \varphi_{i}(t)=C_{i} e^{\lambda_{i} t}, \quad C_{i} \in \mathbb{R}
$$

- Hence the general solution of the system is

$$
x(t)=C_{1} e^{\lambda_{1} t} v_{1}+\cdots+C_{n} e^{\lambda_{n} t} v_{n} .
$$

Example

Find the general solution of the system

$$
\begin{aligned}
& \dot{x}_{1}=x_{1}+x_{2} \\
& \dot{x}_{2}=4 x_{1}-2 x_{2}
\end{aligned}
$$

The matrix of the system is $A=\left[\begin{array}{rr}1 & 1 \\ 4 & -2\end{array}\right]$. Its eigenvalues are the solutions of

$$
\operatorname{det}(A-\lambda I)=(1-\lambda)(-2-\lambda)-4=\lambda^{2}+\lambda-6=0
$$

so $\lambda_{1}=-3$ and $\lambda_{2}=2$, and the corresponding eigenvectors are

$$
v_{1}=\left[\begin{array}{ll}
1 & -4
\end{array}\right]^{T} \quad \text { and } \quad v_{2}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]^{T}
$$

The general solution of the system is

$$
x(t)=C_{1} e^{-3 t}\left[\begin{array}{r}
1 \\
-4
\end{array}\right]+C_{2} e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Example

Find the general solution of

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-4 x_{1}
\end{aligned}
$$

The matrix of the system is $A=\left[\begin{array}{rr}0 & 1 \\ -4 & 0\end{array}\right]$. It has a conjugate pair of complex eigenvalues and a corresponding conjugate pair of eigenvectors:

$$
\lambda_{1,2}= \pm 2 i, \quad v_{1,2}=\left[\begin{array}{ll}
1 & \pm 2 i
\end{array}\right]^{T}
$$

The general solution is a family of complex valued functions

$$
x(t)=C_{1} e^{2 i t}\left[\begin{array}{c}
1 \\
2 i
\end{array}\right]+C_{2} e^{-2 i t}\left[\begin{array}{r}
1 \\
-2 i
\end{array}\right]
$$

(which is not very useful in modelling real-valued phenomena).

Autonomous system: complex conjugate eigenvalues

Assume that the matrix of the system A has a complex pair of eigenvalues $\lambda_{1,2}=\alpha \pm i \beta$ and corresponding eigenvectors $v_{1,2}=u \pm i w$.

The real and imaginary parts of the two complex valued solutions are:

$$
\begin{aligned}
& e^{(\alpha \pm i \beta) t}(u \pm i w) \\
= & e^{\alpha t}(\cos (\beta t) \pm i \sin (\beta t))(u \pm i w) \\
= & e^{\alpha t}[\cos (\beta t) u-\sin (\beta t) w \pm i(\sin (\beta t) u+\cos (\beta t) w)] .
\end{aligned}
$$

Any linear combination (with coefficients $C_{1}, C_{2} \in \mathbb{R}$) of these is a real-valued solution, so the real-valued general solution is

$$
x(t)=e^{\alpha t}\left[C_{1}(\cos (\beta t) u-\sin (\beta t) w)+C_{2}(\sin (\beta t) u+\cos (\beta t) w)\right]
$$

Autonomous system: complex conjugate eigenvalues

Example

In the case of the previous example, $\lambda_{1,2}= \pm 2$ i, i.e. $\alpha=0$ and $\beta=2$, and

$$
v_{1,2}=\left[\begin{array}{r}
1 \\
\pm 2 i
\end{array}\right] \Rightarrow u=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad w=\left[\begin{array}{l}
0 \\
2
\end{array}\right] .
$$

Hence, the general solution is

$$
\begin{aligned}
x(t)=C_{1} & \left(\cos (2 t)\left[\begin{array}{l}
1 \\
0
\end{array}\right]-\sin (2 t)\left[\begin{array}{l}
0 \\
2
\end{array}\right]\right) \\
& +C_{2}\left(\sin (2 t)\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\cos (2 t)\left[\begin{array}{l}
0 \\
2
\end{array}\right]\right) .
\end{aligned}
$$

Autonomous system: less than n eigenvectors

If A has less than n linearly independent eigenvectors, additional solutions can also be obtained (e.g., with the use of Jordan form of A), but we will not consider this case here.

The general solution of a system $\dot{x}=A x$ of n equations is of the form

$$
x(t)=C_{1} x^{(1)}(t)+\ldots+C_{n} x^{(n)}(t)
$$

where $x^{(1)}(t), \ldots, x^{(n)}(t)$ are specific, linearly independent solutions.
For every eigenvalue $\lambda \in \mathbb{R}$ or a pair of eigenvalues $\lambda=\alpha \pm i \beta$ we obtain as many solutions as there are corresponding linearly independent eigenvectors.

Adding initial conditions to an autonomous system

An initial condition $x\left(t_{0}\right)=x^{(0)}$ gives a nonsingular system (if the vectors $x_{1}\left(t_{0}\right), \ldots, x_{n}\left(t_{0}\right)$ are linearly independent) of n linear equations for the constants C_{1}, \ldots, C_{n}.

$$
x^{(0)}=C_{1} x_{1}\left(t_{0}\right)+\ldots+C_{n} x_{n}\left(t_{0}\right) .
$$

This implies that a problem

$$
\dot{x}=A x, \quad x\left(t_{0}\right)=x^{(0)}
$$

has a unique solution for any $x^{(0)}$.

Example

The initial condition $x^{(0)}=x(0)=\left[\begin{array}{ll}0 & 5\end{array}\right]^{T}$ for the system in the first example above gives the following system of equations for C_{1} and C_{2} :

$$
C_{1}+C_{2}=0, \quad-4 C_{1}+C_{2}=5
$$

so $C_{1}=-1$ and $C_{2}=1$.

