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Runge-Kutta methods
The idea of those methods is to approximate the derivative on the interval
[xn, xn+1] not only based on the derivative in the point xn, but using a
weighted average of more different derivatives on the interval [xn, xn+1].

Example (Runge-Kutta of order 2 (RK2))

We approximate the derivate using the derivatives in the points xn and
xn + ch ∈ [xn, xn+1], where h = xn+1 − xn and c ∈ [0, 1]. The
approximation yn+1 is computed using the weighted average of linear
approximations in the points xn and xn + ch:

yn+1 = yn + b1︸︷︷︸
weight

· (h · f (xn, yn))︸ ︷︷ ︸
move along

the tangent in xn

+ b2︸︷︷︸
weight

· (h · f (xn + ch, y(xn + ch)))︸ ︷︷ ︸
move along

the tangent in xn+ch

(1)

We use a linear approximation

y(xn + ch) ≈ yn + chy ′(xn) = yn + chf (xn, yn) ≈ yn + ahf (xn, yn), (2)

where a is a new parameter.
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Using (2) in (1) we obtain

yn+1 = yn + b1 · (h · f (xn, yn))︸ ︷︷ ︸
k1

+b2 · (h · f (xn + ch, yn + a · k1))︸ ︷︷ ︸
k2

. (3)

Using Taylor series’ of y(xn + h), f (xn + ch, yn + ak1) and comparing the
coefficients at h and h2 in (3) we get a system of equations

1 = b1 + b2,

1

2
(fx + fy f )n = b2c(fx)n + b2a(ffy )n,

(4)

where fn, (fx)n, (fy )n stands for f (xn, yn), fx(xn, yn), fy (xn, yn). The system
(4) has many different solutions, e.g.:

I b1 = b2 = 1
2 and c = a = 1. RK method is:

yn+1 = yn +
1

2
(k1 + k2),

k1 = hf (xn, yn),

k2 = hf (xn + h, yn + k1).
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I b1 = 1, b2 = 0 in c = a = 1
2 . RK method is:

yn+1 = yn + k2,

k1 = hf (xn, yn),

k2 = hf (xn +
1

2
h, yn +

1

2
k1).

A general RK method is of the form

yn+1 = yn + b1k1 + b2k2 + . . .+ bsks ,

k1 = hf (xn, yn),

k2 = hf (xn + c2h, yn + a2,1k1),

k3 = hf (xn + c3h, yn + a3,1k1 + a3,2k2),

...,

ks = hf (xn + csh, yn + as,1k1 + . . .+ as,s−1ks−1).

(5)
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Butcher tableau

In a compact form the RK method (5) is given in the form of a Butcher
tableau:

0 0
c2 a2,1 0
c3 a3,1 a3,2 0
...

...
cs as1 as2 as,3 · · · as,s−1 0

b1 b2 b3 · · · bs−1 bs ,

where

c2 = a2,1,

c3 = a3,1 + a3,2,

...

cs = as,1 + as,2 + . . .+ as,s−1.
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Runge-Kutta mehod of order 4
Butcher tableau:

0 0

1

2

1

2
0

1

2
0

1

2
0

1 0 0 1 0

1

6

1

3

1

3

1

6
The method is

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4,

k1 = hf (xn, yn),

k2 = hf (xn +
1

2
h, yn +

1

2
k1),

k3 = hf (xn +
1

2
h, yn +

1

2
k2),

k4 = hf (xn + h, yn + k3).

The error at each step is of order O(h5). The cumulative error is of order O(h4).
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Euler vs RK4
Below is a comparison of Euler’s and Rk4 methods for the DE

y ′ = −y − 1, y(0) = 1 with step size h = 0.3 :

The red curve is the exact solution y = 2e−x − 1.

Euler’s method RK4

Algorithms and example:
https://zalara.github.io/Algoritmi/euler_eng.m

https://zalara.github.io/Algoritmi/RK4_eng.m

https://zalara.github.io/Algoritmi/Euler_vs_RK4.m
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Adaptive Runge Kutta methods
Let M1, M2 be two RK methods with the same matrices of coefficients ai ,j
(and hence also ci ), but different vectors of weights bi and b∗i . Let M1 be
of order p (global error O(hp)), while the other of order p + 1 (global error
O(hp+1)).

Example: We use the adaptive method for the Butcher tableaus:

0 0
1 1 0

1 0
1
2

1
2

.

The first is Euler’s method and has order 1, while the other is RK method of order 2:

yn+1 = yn + k1,

y∗n+1 = yn +
1

2
(k1 + k2).

The approximation of the local error:

`n+1 ≈ y∗n+1 − yn+1 = (−k1 + k2)/2.

If `n+1 is small enough (we choose what this means in our problem), we accept yn+1 and

continue, otherwise we decrease the step size and repeat the computations.
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DOPRI5, Fehlberg, Cash-Karp

Very useful methods for practical computations are DOPRI5 (1980, authors
Dormand in Prince), Fehlberg (1969), Cash-Karp, which are adaptive
methods combining two RK methods, one of order 4 and one of order 5.

I https://en.wikipedia.org/wiki/Dormand%E2%80%93Prince_method

I https:

//en.wikipedia.org/wiki/Runge%E2%80%93Kutta%E2%80%93Fehlberg_method

I https://en.wikipedia.org/wiki/Cash%E2%80%93Karp_method

Algorithm:
https://zalara.github.io/Algoritmi/DOPRI5_eng.m

https://zalara.github.io/Algoritmi/DOPRI5_example.m
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Systems of first order ODE’s
Let

f := (f1, . . . , fn) : Rn+1 → Rn,

f (x1, . . . , xn+1) = (f1(x1, . . . , xn+1), . . . , fn(x1, . . . , xn+1)).

be a vector function. A system of first order DE’s is an equation

ẋ(t) = f (x(t), t), (6)

where
x(t) := (x1(t), . . . , xn(t)) : I → Rn

is an unknown vector function and I ⊂ R is some interval. Coordinate-wise
the system (6) is equal to

ẋ1(t) = f1(x1(t), . . . , xn(t), t),
...

ẋn(t) = fn(x1(t), . . . , xn(t), t).
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Solution of the system of DE’s

For every (x , t) ∈ Rn+1 in the domain of f , the value f (x , t) is the tangent
vector ẋ(t) to the solution x(t) at the given t.

The general solution is a family of parametric curves

x(t,C1, . . . ,Cn),

where C1,C2, . . . ,Cn ∈ R are parameters, with the given tangent vectors.

An initial condition
x(t0) = x0 ∈ Rn

gives a particular solution, that is, a specific parametric curve from the
general solution that goes through the point x0 at time t0.
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Linear systems of 1st order ODEs
A linear system of DEs is of the form ẋ1(t)

...
ẋn(t)

 =

 a11(t) . . . a1n(t)
...

. . .
...

an1(t) . . . ann(t)


 x1(t)

...
xn(t)

+

 g1(t)
...

gn(t)

 , (7)

where
xi : I → R, aij : I → R and gi : I → R

are functions of t and I ⊆ R is an interval. In a compact form (7) can be
written as

ẋ(t) = A(t)x + g(t), (8)

where
A(t) = [aij(t)]ni ,j=1

is a n × n matrix function and

g(t) =
[

g1(t) . . . gn(t)
]T

is a n × 1 vector function.
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The system (8)

I is homogeneous if for every t in the domain I we have g(t) = 0.

I has constant coefficients, if the matrix A is constant, i.e., independent
of t.

I is autonomous, if it is homogeneous and has constant coefficients.

An autonomous linear system

ẋ = Ax (9)

of 1st order DEs can be solved analytically, using methods from linear
algebra. Recall that such a system can be written in coordinates as:

ẋ1 = a11x1 + a12x2 + · · ·+ a1nxn,

ẋ2 = a21x1 + a22x2 + · · ·+ a2nxn,

...

ẋn = an1x1 + an2x2 + · · ·+ annxn.
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Autonomous system: diagonal matrix A

Assume first that the matrix A in (9) is diagonal. Then (9) is the following: ẋ1
...

ẋn

 =

 λ1 . . . 0
...

. . .
...

0 . . . λn


 x1

...
xn

 .
Or equivalently,

ẋ1 = λ1x1, ẋ2 = λ2x2, . . . , ẋn = λnxn.

In this (simple) case the general solution is easily determined:

x(t) =


C1eλ1t

C2eλ2t

...
Cneλnt

 = C1eλ1t


1
0
...
0

+ C2eλ2t


0
1
...
0

+ · · ·+ Cneλnt


0
0
...
1

 .
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Autonomous system: n linearly independent eigenvectors
Assume next, that A in (9) has n linearly independent eigenvectors v1, . . . vn
with the corresponding eigenvalues λ1, . . . , λn.

I For every fixed t, the vector x(t) can be expressed as a linear combination

x(t) = ϕ1(t)v1 + · · ·+ ϕn(t)vn.

I Hence, the coefficients

ϕi (t) : I → R, i = 1, . . . , n,

are functions of t.

I Since v1, . . . vn are eigenvectors it follows from ẋ = Ax , that
n∑

i=1

ϕ̇i (t)vi =
n∑

i=1

ϕi (t)Avi =
n∑

i=1

ϕi (t)λivi .

I Since v1, . . . vn are linearly independent, it follows that for every i we have

ϕ̇i (t) = λiϕi (t) ⇒ ϕi (t) = Cie
λi t , Ci ∈ R.

I Hence the general solution of the system is

x(t) = C1eλ1tv1 + · · ·+ Cneλntvn.
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Example

Find the general solution of the system

ẋ1 = x1 + x2,

ẋ2 = 4x1 − 2x2.

The matrix of the system is A =

[
1 1
4 −2

]
. Its eigenvalues are the

solutions of

det(A− λI ) = (1− λ)(−2− λ)− 4 = λ2 + λ− 6 = 0,

so λ1 = −3 and λ2 = 2, and the corresponding eigenvectors are

v1 =
[

1 −4
]T

and v2 =
[

1 1
]T
.

The general solution of the system is

x(t) = C1e−3t
[

1
−4

]
+ C2e2t

[
1
1

]
.
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Example

Find the general solution of

ẋ1 = x2,

ẋ2 = −4x1.

The matrix of the system is A =

[
0 1
−4 0

]
. It has a conjugate pair of

complex eigenvalues and a corresponding conjugate pair of eigenvectors:

λ1,2 = ±2i , v1,2 =
[

1 ±2i
]T
.

The general solution is a family of complex valued functions

x(t) = C1e2it
[

1
2i

]
+ C2e−2it

[
1

−2i

]
(which is not very useful in modelling real-valued phenomena).
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Autonomous system: complex conjugate eigenvalues

Assume that the matrix of the system A has a complex pair of eigenvalues
λ1,2 = α± iβ and corresponding eigenvectors v1,2 = u ± iw .

The real and imaginary parts of the two complex valued solutions are:

e(α±iβ)t(u ± iw)

= eαt(cos(βt)± i sin(βt))(u ± iw)

= eαt [cos(βt)u − sin(βt)w ± i(sin(βt)u + cos(βt)w)] .

Any linear combination (with coefficients C1,C2 ∈ R) of these is a
real-valued solution, so the real-valued general solution is

x(t) = eαt [C1(cos(βt)u − sin(βt)w) + C2(sin(βt)u + cos(βt)w)] .
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Autonomous system: complex conjugate eigenvalues

Example

In the case of the previous example, λ1,2 = ±2i , i.e. α = 0 and β = 2, and

v1,2 =

[
1

±2i

]
⇒ u =

[
1
0

]
and w =

[
0
2

]
.

Hence, the general solution is

x(t) = C1

(
cos(2t)

[
1
0

]
− sin(2t)

[
0
2

])
+ C2

(
sin(2t)

[
1
0

]
+ cos(2t)

[
0
2

])
.
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Autonomous system: less than n eigenvectors

If A has less than n linearly independent eigenvectors, additional solutions
can also be obtained (e.g., with the use of Jordan form of A), but we will
not consider this case here.

The general solution of a system ẋ = Ax of n equations is of the form

x(t) = C1x (1)(t) + . . .+ Cnx (n)(t),

where x (1)(t), . . . , x (n)(t) are specific, linearly independent solutions.

For every eigenvalue λ ∈ R or a pair of eigenvalues λ = α± iβ we obtain as
many solutions as there are corresponding linearly independent eigenvectors.
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Adding initial conditions to an autonomous system
An initial condition x(t0) = x (0) gives a nonsingular system (if the vectors
x1(t0), . . . , xn(t0) are linearly independent) of n linear equations for the
constants C1, . . . ,Cn.

x (0) = C1x1(t0) + . . .+ Cnxn(t0).

This implies that a problem

ẋ = Ax , x(t0) = x (0)

has a unique solution for any x (0).

Example
The initial condition x (0) = x(0) =

[
0 5

]T
for the system in the first example

above gives the following system of equations for C1 and C2:

C1 + C2 = 0, −4C1 + C2 = 5,

so C1 = −1 and C2 = 1.
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