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Chapter 1:

What is Mathematical Modelling?

» Types of models
» Modelling cycle

» Numerical errors
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Introduction

Tha task of mathematical modelling is to find and evaluate solutions to real
world problems with the use of mathematical concepts and tools.

In this course we will introduce some (by far not all) mathematical tools
that are used in setting up and solving mathematical models.

We will (together) also solve specific problems, study examples and work on
projects.
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Linear models: systems of linear equations, matrix inverses, SVD
decomposition, PCA

Nonlinear models: vector functions, linear approximation, solving
systems of nonlinear equations
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Modelling cycle

Simplification

| Real world problem | Idealization

Exphnaﬂon] JGenemHzann

Solution

| Mathematical model

s;mh A/Program

| Computer solution |
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What should we pay attention to?

» Simplification: relevant assumptions of the model (distinguish
important features from irrelevant)

» Generalization: choice of mathematical representations and tools (for
example: how to represent an object - as a point, a geometric shape,

)

Solution: as simple as possible and well documented

v

» Conclusions: are the results within the expected range, do they
correspond to "facts” and experimantal results?

A mathematical model is not universal, it is an approximation of the real

world that works only within a certain scale where the assumptions are at
least approximately realistic.
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Example

An object (ball) with mass m is thrown vertically into the air. What should
we pay attention to when modelling its motion?

» The assumptions of the model: relevant forces and parameters

(gravitation, friction, wind, ...), how to model the object (a point, a
homogeneous or nonhomeogeneous geometric object, angle and
rotation in the initial thrust, ...)

» Choice of mathematical model: differential equation, discrete model,

» Computation: analytic or numeric, choice of method,. ..

» Do the results make sense?
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Errors

An important part of modelling is estimating the errors!
Errors are an integral part of every model.

Errors come from: assumptions of the model, imprecise data, mistakes in
the model, computational precision, errors in numerical and computational
methods, mistakes in the computations, mistakes in the programs, ...

Absolute error = Approximate value - Correct value

Ax =X —x

Absolute error

Relative error =
_— Correct value

8/196



Example: quadratic equation

x> +2a%°x—q=0
Analytic solutions are

x1=—a>—+a*+q and x=-a’+a*+gq.

What happens if 2> = 10000, g = 1?7 Problem with stability in calculating
X2.

More stable way for computing x (so that we do not subtract numbers

which are nearly the same) is

(=2 +Va* +q) (& + v/ a* + q)
a2+ +/a*+q

X2:—32+ a4—|—q=

_ q
a?++/a*+q
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Example of real life disasters

» Disasters caused because of numerical errors:
(http://www-users.math.umn.edu/~arnold//disasters/)

>

>

The Patriot Missile failure, Dharan, Saudi Arabia, February 25
1991, 28 deaths: bad analysis of rounding errors.

The explosiong of the Ariane 5 rocket, French Guiana, June 4,
1996: the consequence of overflow in the horizontal velocity.
https://www.youtube.com/watch?v=PK_yguLapgA
https://www.youtube.com/watch?v=W3YJeoYgozw
https://www.arianespace.com/vehicle/ariane-5/

The sinking of the Sleipner offshore platform, Stavanger, Norway,
August 12, 1991, billions of dollars of the loss: inaccurate finite
element analysis, i.e., the method for solving partial differential
equations.

https://www.youtube.com/watch?v=eGdiPs4THW8
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Chapter 2:

L inear model

Definition

Systems of linear equations
Generalized inverses

The Moore-Penrose (MP) inverse
Singular value decomposition
Principal component analysis

MP inverse and solving linear systems
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1. Linear mathematical models

Given points

{(X17y1)7' ) (vaym)}a Xj € Rn’ yi € R’

the task is to find a function F(x, a1, ..., ap) that is a good fit for the data.
The values of the parameters ay,. .., a, should be chosen so that the
equations

yi=F(x,a1,...3p), i=1,....,m,

are satisfied or, if this is not possible, that the error is as small as possible.

Least squares method: the parameters are determined so that the sum of
squared errors

m

> (F(xi a1, .. ap) = yi)?

i=1
is as small as possible.
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The mathematical model is linear, when the function F is a linear function
of the parameters:

F(x,a1,...,ap) = ap1(x) + pa(x) + - + appp(x),
where @1, @2, ... pp are functions of a specific type.

Examples of linear models:
1. linear regression: x,y € R, p1(x) = 1, pa(x) = x,

2. polynomial regression: x,y € R, ¢1(x) = 1,...,¢pp(x) = xP7L,

3. multivariate linear regression: x = (x1,...,x,) € R",y € R,

(,OI(X) = ]-7902(X) = X1,... ,(pn(x) = Xp,

4. frequency or spectral analysis:

v1(x) = 1, pa(x) = coswx, p3(x) = sinwx, @a(x) = cos2wx, . ..

(there can be infinitely many functions ¢;(x) in this case)
a+ bx
c+x’

Examples of nonlinear models: F(x, a, b) = ae®™ and F(x, a, b, c) =
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Given the data points {(x1,¥1),--., (Xm, ¥m)}, xi € R", y; € R, the
parameters of a linear model

y = a1p1(x) + a22(x) + -+ - + appp(x)
should satisfy the system of linear equations
yi = a101(x;) + a2pa(xi) + -+ -+ apep(xi), i=1,...,m,

or, in a matrix form,

e1(x1)  a(x1) ... ep(x) a 1
p1(x2)  @2x) ... pplxe) 3.1 _|n
p10m) e2lm) o oolm) | | 4 .,
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1.1 Systems of linear equations and generalized inverses

A system of linear equations in the matrix form is given by
Ax = b,

where
» A is the matrix of coefficients of order m x n where m is the number of
equations and n is the number of unknowns,

» x is the vector of unknowns and

> b is the right side vector.
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Existence of solutions:

Let A= [a1,...,an], where a; are vectors representing the columns of A.
X1

For any vector x = : the product Ax is a linear combination
Xn

Ax = E Xjdaj.
i

The system is solvable if and only if the vector b can be expressed as a
linear combination of the columns of A, that is, it is in the column space of

A, b e C(A).
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By adding b to the columns of A we obtain the extended matrix of the
system

[A| b] =[a1,...,an | b],

Theorem
The system Ax = b is solvable if and only if the rank of A equals the rank
of the extended matrix [A | b], i.e.,

rank A=rank [A| b] =: r.

The solution is unique if the rank of the two matrices equals the number of
unknowns, i.e., r = n.

An especially nice case is the following:

If Ais a square matrix (n = m) that has an inverse matrix A~!, the system

has a unique solution
x=A"1h.
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Let A € R™" be a square matrix. The following conditions are equivalent
and characterize when a matrix A is invertible or nonsingular:

> The matrix A has an inverse.

» The rank of A equals n.

> det(A) #0.

» The null space N(A) = {x : Ax = 0} is trivial.
> All eigenvalues of A are nonzero.

» For each b the system of equations Ax = b has precisely one solution.
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A square matrix that does not satisfy the above conditions does not have
an inverse.

Example
10 1 10 1
A=|01 -1|, B=|0 1 -1
11 1 11 0

A is invertible and is of rank 3, B is not invertible and is of rank 2.

For a rectangular matrix A of dimension m x n, m # n, its inverse is not
defined (at least in the above sense...).
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Definition
A generalized inverse of a matrix A € R is a matrix G € R™*" such that

AGA = A. (1)

Remark
Note that the dimension of A and its generalized inverse are transposed to each
other. This is the only way which enables the multiplication A - x - A.

Proposition
If A is invertible, it has a unique generalized inverse, which is equal to AL

Proof.

Let G be a generalized inverse of A, i.e., (1) holds. Multiplying (1) with
AL from the left and the right side we obtain:

Left hand side (LHS): A"*AGAA™! = IGI = G,
Right hand side (RHS): A7!AA™! = /A7l = AL,

where [ is the identity matrix. The equality LHS=RHS implies that
G = A_l. 2@196



Theorem
Every matrix A € R"*™ has a generalized inverse.

Proof.
Let r be the rank of A.

Case 1. rank A = rank A11, where

Air A }
A—
{ A1 Ax

and A € ]Rrxr,A12 e Rrx(m—r)7A21 c R(n—r)xr, Ay € R(n—r)x(m—r)'

We claim that 1
G— Ag O
0 o0}’
where Os denote zero matrices of appropriate sizes, is the generalized
inverse of A. To prove this claim we need to check that

AGA = A.
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AGA — [An AIZ] [ v 0} [An AIZ] _ [ / 0] [An AIZ]
A1 Azl | 0 0] |[Aar Ax ApAl 0] |An Ax
_ [An A2 }
Ay AnAt AL
For AGA to be equal to A we must have
An AL Az = Ag. (2)
It remains to prove (2). Since we are in Case 1, it follows that every column

Hence, there is a cofficient

of [A2J is in the column space of [221]

matrix W € R™(m=1) sych that
-1 1%
A Az AW |~
We obtain the equations Aj1 W = Ajs and A1 W = Ajyy. Since A1 is

invertible, we get W = AI11A12 and hence A21Af11A12 = Az, which is (2).
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Case 2. The upper left r X r submatrix of A is not invertible.

One way to handle this case is to use permutation matrices P and @, such

that PAQ = 411 412 , le € R™" and rank/zll =r. By Case 1 we
A Az
. A 0
have that the generalized inverse (PAQ)# of PAQ equals to o ol
Thus, _
Ay 0 _
(PAQ) 0 0 (PAQ) = PAQ. (3)

Multiplying (3) from the left by P~! and from the right by Q! we get

A7l 0 _
a5 e)a-a

-

(/Kl—ll) T 0] T) . . .

Q is a generalized inverse of
0 0

A. Ol
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Algorithm for computing a generalized inverse of A
Let r be the rank of A.

1. Find any nonsingular submatrix B in A of order r x r,

2. in A substitute
> elements of the submatrix B for corresponding elements of (B~1)7,
» all other elements with 0,

3. the transpose of the obtained matrix is a generalized inverse G.
Example

Compute at least one generalized inverse of

A=

N O O
o O O
= o= N
N O O
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» Note that rank A = 2. For B from the algorithm one of the possibilities is

10
o= 3
i.e., the submatrix in the right lower corner.
» Computing B~! we get B! = {_11 (1)} and hence
4 4

> A generalized inverse of A is then

ooonggg
G:OOI—%:OIO
000 3 0 _1 1
1 1
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Generalized inverses of a matrix A play a similar role as the usual inverse
(when it exists) in solving a linear system Ax = b.

Theorem
Let A€ R™™ and b € R™. If the system

Ax =b (4)
is solvable (that is, b € C(A)) and G is a generalized inverse of A, then
x = Gb (5)

is a solution of the system (4).

Moreover, all solutions of the system (4) are exaclty vectors of the form
x; = Gb+ (GA — 1)z, (6)

where z varies over all vectors from R™.
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Proof.

We write A in the column form
A= [al a ... am],

where a; are column vectors of A. Since the system (4) is solvable, there
exist real numbers ag,...,am € R such that

ia;ai = b. (7)
i=1

First we will prove that Gb also solves (4). Multiplying (7) with G we get
Gb = Z a,-Ga,-. (8)
i=1

Multiplying (9) with A the left side becomes A(Gb), so we have to check
that

> " aiAGa; = b. 9)
=1
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Since G is a generalized inverse of A, we have that AGA = A or restricting
to columns of the left hand side we get

AGa; =a; foreveryi=1,..., m

Plugging this into the left side of (9) we get exactly (??), which holds and
proves (9).

For the moreover part we have to prove two facts:

(i) Any x, of the form (6) solves (4).

(i) If AX = b, then X is of the form x, for some z € R™.
(i) is easy to check:

Ax; = A(Gb+ (GA—1)z) = AGb + A(GA— I)z
= b+ (AGA— A)z = b.
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To prove (ii) note that

A(X — Gb) =0,
which implies that
X — Gb € ker A.
It remains to check that
kerA={(GA—1)z: ze R™}. (10)

The inclusion (2) of (10) is straightforward:
A((GA—1)z) = (AGA—A)z =0.

For the inclusion (C) of (10) we have to notice that any v € ker A is equal
to (GA— 1)z for z= —v:

(GA—I)(-v)=—-GAv+v=0+v=v. O

29/196



Example

Find all solutions of the system

Ax =

00 20 2

where A= 10 0 1 O0f and b= |1
2 01 4 4

0

P Recall from the example a few slides above that G = g

0

»  Calculating Gb and GA — | we get

Gb =

Mo OO
o
El
o
>
Il

»  Hence,

-2z

where z1, zp vary over R.

= oo

N

oo o |

0

0

ol-

1

s

0 0 0
-1 0 o0
0 0 0"
0 0 0

T

%‘F%Zl]
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1.2 The Moore-Penrose generalized inverse

Among all generalized inverses of a matrix A, one has especially nice
properties.

Definition

The Moore-Penrose generalized inverse, or shortly the MP inverse of

A € R™™M is any matrix AT € R™*" satifying the following four conditions:

. AT is a generalized inverse of A: AATA = A.

. Alis a generalized inverse of AT: ATAAT = AT,

. The square matrix AAT € R™" is symmetric: (AAT)T = AAT.
. The square matrix AT A € R™*™ is symmetric: (ATA)T = ATA.

N S

Remark
There are two natural questions arising after defining the MP inverse:

» Does every matrix admit a MP inverse? Yes.
» s the MP inverse unique? Yes.
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Theorem
The MP inverse A" of a matrix A is unique.

Proof.
Assume that there are two matrices M; and M, that satisfy the four
conditions in the definition of MP inverse of A. Then,

AM; = (AMxA)M; by property (1)
= (AMp)(AM:) = (AM2)T(AM1)T by property (3)
= M (AMA)T = M AT by property (1)
= (AM,)T = AM, by property (3)

A similar argument involving properties (2) and (4) shows that
MiA = MhA,

and so
My = MiAM; = M1AMy = Mo AMy = Ms.
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Remark
Let us assume that AY exists (we will shortly prove this fact). Then the
following properties are true:

» If A is a square invertible matrix, then it AT = A~L.
> (ATt = A
> (AT)-i- - (A+)T,

In the rest of this chapter we will be interested in two obvious questions:

» How do we compute AT?

» Why would we want to compute A™*?

To answer the first question, we will begin by three special cases.
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Construction of the MP inverse of A € R"™<™:

Case 1: ATA e R™™ js an invertible matrix. (In particular, m < n.)

In this case AT = (ATA)1AT.

To see this, we have to show that the matrix (AT A)~*AT satisfies
properties (1) to (4):

1. AMA = A(ATA)"LATA = A(ATA)"1(ATA) = A.

2. MAM = (ATA)TIATAATA)TIAT = (ATA)TLAT = M.

3.

(AM)T = (A(ATA)*lAT> " A <<ATA>_1> T AT
—A ((ATA> T) AT AATA)LAT = AM.

4. Analoguous to the previous fact.
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Case 2: AAT is an invertible matrix. (In particular, n < m.)
In this case AT satisfies the condition for Case 1, so (A7) = (AAT)71A.

Since (AT)* = (A*)T it follows that

T

— AT ((AAT)—T) T AT(AAT) L

Hence, A* = AT(AAT)" 1.
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Case 3: X € R™"™ js a diagonal matrix of the form

o .
01 g2
0o -
> = or y =
Om
On
The MP inverse is
_ -
71 + +
) 0y N
. o
2
Yt = or YT = ,
oy
T
1
= o0;#0,
where o o 07
0, o;=0.
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Case 4: A general matrix A. (using SVD)
Theorem (Singular value decomposition - SVD)

Let A € R™™ be a matrix. Then it can be expressed as a product

A=UzVT,
where
» U € R™" js an orthogonal matrix with left singular vectors u; as its
columns,
» V € R™™ js an orthogonal matrix with right singular vectors v; as its
columns,
o1 0
- : S0 nxm . .
> 3 = | = eR is a diagonal matrix
g, | 0 0 0
0 |0

with singular values

on the diagonal. 37/196



Derivations for computing SVD

If A= UZVT, then

2
ATA=(vzTuTyuzv=vITzv’ =v [ 50 8 ] vl e R™m
T T T T S? 01,7 poxn
AAT =(UZV ) (UZV') =Ux2'U’' =U 0 0 U' e R™"
Let
V:[Vl Vo - Vm] and U:[Ul u - Un]
be the column decompositions of V' and U.
Let e1,...,em € R™ and f1,...,f;, € R" be the standard coordinate vectors

of R™ and R”, i.e., the only nonzero component of e; (resp. f;) is the i-th

one (resp. j-th one), which is 1. Then
2y, if i <
ATAv = VETEVTy = VETxe = | iV s,
0, ifi>r,
2 . .
T, _ TT,, _ T, _ ) ooju, ifj<r,
AATy; = USETUT u; = UST 5_{ o iy
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Further on,

2. if i<
(AAT)(Av)) = A(AT A); = { o2Av;, ifi<r,

0, ifi>r,

24T e
T T N AT aaTy.,. _ J OjA U, ifj<r,
(ATA)(ATuj) = AT (AA )uj—{ 0. ifj>r.

It follows that:
S2 0 S0 .
> Ty — mxm T _ nxn
Y'Yy {0 O}ER (resp. XX [O O]ER ) is the

diagonal matrix with eigenvalues o,-z of ATA (resp. AAT) on its
diagonal, so the singular values o; are their square roots.

» V has the corresponding eigenvectors (normalized and pairwise
orthogonal) of AT A as its columns, so the right singular vectors are
eigenvectors of AT A.

» U has the corresponding eigenvectors (normalized and pairwise
orthogonal) of AAT as its columns, so the left singular vectors are
eigenvectors of AAT.
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» Av; is an eigenvector of AAT corresponding to a,-2 and so

Av; Av;
u, = = —
O lAv] o

is a left singular vector corresponding to o;, where in the second
equality we used that

JAvi|| = v (Avi) T (Avi) = \/ TATAv;, = \/O‘ vilvi = ai||vi|]| = 0.

> ATuJ- is an eigenvector of AT A corresponding to sz and so

ATUJ' ATUJ'
[ATwll o

is a right singular vector corresponding to o;, where in the second
equality we used that

ATl = VATu)T(ATw) = \/ul ATy = \Jo2uT uj = o ]| = .
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Algorithm for SVD computation

» Compute the eigenvalues and an orthonormal basis consisting of
eigenvectors of the symmetric matrix AT A or AAT (depending on
which is of them is of smaller size).

» The singular values of the matrix A € R"*™ are equal to g; = V/;,
where )\; are the nonzero eigenvalues of AT A (resp. AAT).

» The left singular vectors are the corresponding orthonormal
eigenvectors of AAT.

» The right singular vector are the corresponding orthonormal
eigenvectors of ATA.

» If u (resp. v) is a left (resp. right) singular vector corresponding to the
singular value o;, then v = Au (resp. u= ATv) is a right (resp. left)
singular vector corresponding to the same singular value.

» The remaining columns of U (resp. V') consist of an orthonormal basis
of the kernel (i.e., the eigenspace of A = 0) of AAT (resp. AT A).
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General algorithm for computation of AT (long version)

1. For AT A compute its eigenvalues
AL > A > 72)\r>)\r+1:--~:/\m:0
and the corresponding orthonormal eigenvectors
Vi ooy Vi Vet ds o+ 5 Vi,

and form the matrices

¥ =diag(v/ AL, .o VAm) € R,

Vi=[w o v, Vo=|vgr -+ vm] and V=[Vi V.
2. Let
Avi Avy Av,
u=—, u=—-—, s ur = y
01 g2 Or
and uy41,. .., U, vectors, such that {uy,..., u,} is an ortonormal basis
for R”. Form the matrices
Ulz[ul ur], U2:[Ur+1 un] and U= [Ul UQ].
3. Then
At =vyityuT.
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General algorithm for computation of A" (short version)

1. For AT A compute its nonzero eigenvalues
AM>X> 2N >0
and the corresponding orthonormal eigenvectors
Vi, ooy Vr,

and form the matrices

S= diag(\/)\»l, cey \/)T,) e R™",

Vi = [Vl Vr] e R™*,
2. Put the vectors
Avi Avo Av,
n=—, Wh=— ... , U=
o1 02 Or
in the matrix
U = [ul u,].
3. Then
At =wvixtul.
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Correctness of the computation of A™

Step 1. VXTUT is equal to A™.
(i) AATA = A;

AATA=(UzZvT)(vZtuT)uzvh =vuz(vT Vst uzv’
=Urrtrv’T =uzv’ = A
(i) ATAAT = AT: Analoguous to (i).
(i) (AAT)T = AAT:

(AAD)T = ((Usz)(vsz))T - (Uzsz)T
=(ufs Jor) =[5 G
= (UzVvT)(vEZtuT) = AT,

(iv) (ATA)T = ATA: Analoguous to (iii).
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Step 2. VZtUT is equal to ViXTU; .

VEUT = [V V) [5 O] [UlT] ~ (WS 0] {Uq — sy

T T
0 0] |U; U,
Example
N . 3 2 2
Compute the SVD and A™ of the matrix A = > 3 _o|
17 8
> T = i
AA {8 17] has eigenvalues 25 and 9.
> The eigenvectors of AA” corresponding to the eigenvalues 25, 9 are
_[x a7 _[x _a77
mw=\1vz =1 Vil -
» The left singular vectors of A are
A,ATulgr 1 L) T AVATW T 1 .17
1= gl_[ﬁ V2 ]’ va = o9 _[37\/5 T3V2 ﬁ]
T
V3=V1><V2:|:% —% —%:| .
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1 1 0
L L[5 0 0] |2 V2
. VARV, 1 1 4
A=UsVi=1T i) 5 ol |3E TnE s
V2 V2 2 2 1
V3 -3 -3
1L 1 2-9rl g
VR EEEEES
1 1 2 1 V2 V2
At=vsUT =% s s |0 5|y L
0 ;% -il]o ofLv
r’ 2
3% 35
2 s
=\ 5
2 2
L9 9
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1.3 The MP inverse and systems of linear equations

Let A€ R™™ where m > n. A system of equations Ax = b that has more
variables than constraints. Typically such system has infinitely many
solutions, but it may happen that it has no solutions. We call such system
an underdetermined system.

Theorem

1. An underdetermined system of linear equations
Ax=b (11)

is solvable if and only if AATb = b.

2. If there are infinitely many solutions, the solution A™ b is the one with
the smallest norm, i.e.,

|ATb|| = min {||x||: Ax = b}.

Moreover, it is the unique solution of smallest norm.

47/196



Proof of Theorem.

We already know that Ax = b is solvable iff Gb is a solution, where G is
any generalized inverse of A. Since AT is one of the generalized inverses,
this proves the first part of the theorem.

To prove the second part of the theorem, first recall that all the solutions of
the system are precisely the set

{ATh+ (ATA—-1)z: z€ R™}.
So we have to prove that for every z € R,
|IATB| < [[ATh + (ATA = 1)z].
We have that:
|ATh+ (ATA - )z||? =
— (ATb+ (ATA—=1)z)T (ATb+ (ATA—1)z)
— (A*h)T (ATh) +2(ATH) T (ATA— Dz + (ATA=1)2) (ATA=1)2)
— |ATB|2+2(ATh) T (ATA =Dz + [(ATA = I)z|?
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Now,
(ATh) T (AYA— 1)z =bT(AN)T(ATA— 1)z

=bT(ANT(ATA) T z-b" (A2
—bT (ATA)AT) 2 = bT(AT)T2
—bT (ATAAT)T 2 — b (AM)7 2
=b" (AN z-bT(AT)Tz =0,

where we used the fact (AT A)T = ATA in the second equality.

Thus,

IA*b + (ATA = 1)z||* = | A*b||* + [|(A*A — 1)z|* > || A" b]?,

with the equality iff (AT A — 1)z = 0. This proves the second part of the
theorem. n
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Example

» The solutions of the underdetermined system x + y = 1 geometrically
represent an affine line. Matricially, A = [1 1], b = 1. Hence,
AThb = AT1 is the point on the line, which is the nearest to the origin.
Thus, the vector of this point is perpendicular to the line.

» The solutions of the underdetermined system x +2y +3z =5
geometrically represent an affine hyperplane. Matricially,
A=[1 2 3], b=5. Hence, A¥b = AT5 is the point on the
hyperplane, which is the nearest to the origin. Thus, the vector of this
point is normal to the hyperplane.

» The solutions of the underdetermined system x + y 4+ z =1 and
x + 2y + 3z = 5 geometrically represent an affine line in R3.

Matricially, A = E ; ;] b= [é] Hence, AT b is the point on the

line, which is the nearest to the origin. Thus, the vector of this point is
perpendicular to the line.
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Example
Find the point on the plane 3x 4 y 4+ z = 2 closest to the origin.

» |n this case,
A=[3 1 1] and b=[2].

> We have that AA” = [11] and hence its only eigenvalue is A = 11 with eigenvector
u = [1], implying that

U=[1] and =[+V11 0 0 ].

» Hence,
ATu ATy 1 T
V= = =—1[3 1 1]".
VAT T o VAL ]
>
3
3 11
Af—vstuT = L | i[l]: L
Vil | | | V11 N
11
»
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Overdetermined systems

Let A € R™™ where n > m. This system is called overdetermined, since
here are more constraints than variables. Such a system typically has no
solutions, but it might have one or even infinitely many solutions.

Least squares approximation problem: if the system Ax = b has no
solutions, then a best fit for the solution is a vector x such that the error
||Ax — b|| or, equivalently in the row decomposition

a1
A=,

Qp

its square
n

|Ax = bl[> = (cvix — bi)?,

i=1
is the smallest possible.
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Theorem
If the system Ax = b has no solutions, then x™ = AT b is the unique
solution to the least squares approximation problem:

[|[AxT — b|| = min{||Ax — b||: x € R"}.
Proof.
Let A= UX VT be the SVD decomposition of A. We have that
IAx = b]| = UZVT = bl| = [IZVT — U b,

where we used that
-
(U vl =]v]

in the second equality (which holds since U7 is an orthogonal matrix). Let

S0
2:[0 0], U=[U; W], V=[Vi V], where

SER™X U € Rnxr’ U, € Rnx(n—r), Vi € R™XT VY, € Rmx(m—r)'
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Thus,
S o] [v, Ul
T T _ 1 o 1
v o= g of Vi) (U]
sV x— U b
- Uj b '

But this norm is minimal iff
SVi'x— U b=0

or equivalently
x=WVS'Ub=ATb.

O

Remark

The closest vector to b in the column space C(A) = {Ax: x € R™} of A is
the orthogonal projection of b onto C(A). It follows that A*b is this
projection. Equivalently, b — (AT b) is orthogonal to any vector Ax,

x € R™, which can be proved also directly.

54/196



Example

Given points {(x1,¥1),...,(Xn, ¥n)} in the plane, we are looking for the line

ax + b = y which is the least squares best fit.
If n > 2, we obtain an overdetermined system

xp 1 %1

Ym

The line y = ax + b in the regression line.
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An application of SVD: principal component analysis or PCA

PCA is a very well-known and efficient method for data compression,
dimension reduction, ...

Due to its importance in different fields, it has many other names: discrete
Karhunen-Logve transform (KLT), Hotelling transform, empirical orthogonal functions
(EOF), ...

Let {Xi,...,Xm} be a sample of vectors from R".

In applications, often m << n, where n is very large, for example,
X1,...,Xmn can be
P vectors of gene expressions in m tissue samples or
> vectors of grayscale in images
» bag of words vectors, with components corresponding to the numbers
of certain words from some dictionary in specific texts, ...,
or n << m for example if the data represents a point cloud in a low
dimensional space R” (for example in the plane).
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We will assume that m << n. Also assume that the data is centralized, i.e., the centeroid

is in the origin
1 m
=—> Xi=0eR"
mi3
If not, we substract 1 from all vectors in the data set.

A matrix norm || - || : R"™*™ — R is a function, which generalizes the notion
of the absolute value for numbers to matrices. It is used to measure a
distance between matrices. In contrast with the absolute value, which is
unique up to multiplication with a positive constant, there are many
different matrix norms.

Two important matrix norms are the following:
1. Spectral norm || - ||2:

All> := ma A = ma (A).
H ||2 ||x||2;(1|| XH2 j:l,...,mi)rj(n,m)aj( )

2. Frobenius norm || - [|¢

|A||F ZQI,J . Z Uj(A)2.
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Let -
X = [)(1 Xo e )Cn]

be the matrix of dimension m x n with data in the rows.

Let XTX € R™M and XX T € R™" be the covariance matrices of the
data.

» The principal values of the data set {Xi,..., X;} are the nonzero eigenvalues
Ai = o7 of the covariance matrices (where ; are the singular values of X).

» The principal directions in R" are corresponding eigenvectors vi, ..., v,, i.e. the
columns of the matrix V from the SVD of X. The remaining clolumns of V (i.e.
the eigenvectors correspondong to 0) form a basis of the null space of X.

» The first column v, the first principal direction, corresponds to the direction in R”
with the largest variance in the data X, that is, the most informative direction for
the data set, the second the second most important, ...

» The principal directions in R™ are the columns uy, ..., u, of the matrix U and
represent the coefficients in the linear decomposition of the vectors Xi, ..., Xn
along the orthonormal basis vi, ... v, of R".
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PCA provides a linear dimension reduction method based on a projection of
the data from the space R" into a lower dimensional subspace spanned by
the first few principal vectors v, ..., vk in R".

The idea is to approximate
Xi=o1uLivi+ -+ OmUm,iVm = o1u1jv1 + - - + Okl i Vi

with the first k most informative directions in R” and supress the last
m—k.
PCA has the following amazing property:

Theorem
Among all possible projections of p: R" — R¥ onto a k-dimensional
subspace, PCA provides the best in the sense that the errors

IX =p(X)IE  and X = p(X)]3,

where p(X) = [p(X1) -+ p(Xm)] T are the smallest possible.
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Chapter 3:

Nonlinear models

» Definition and examples
» Systems of nonlinear equations

» Vector functions of vector variables

» Derivative and Jacobian matrix
» Linear approximation

» Newton's method for square systems

» Univariate case: Tangent method
» Use in optimization

» Gauss-Newton's method for rectangular systems
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3. Nonlinear models
General formulation

Given is a sample of points {(x1,¥1),. .., (Xm,¥m)}, xi € R", y; € R.

The mathematical model is nonlinear if the function

y =F(x,a1,...,ap) (12)
is a nonlinear function of the parameters a;. This means it cannot be
written in the form

y = a1fi(x) + axfa(x) + ... + apfp(x),
where each f; : R" — R is some function.
Plugging each data points into (12) we obtain a system of nonlinear
equations
yi= F(X17ala" '7ap)7
(13)
Ym = F(xm, a1, ..., ap),

in the parameters ap,...,ap € R. 61/196



Examples

1. Exponential decay or growth: F(x, a, k) = ae®*, a and k are
parameters.

A quantity y changes at a rate proportional to its current value, which
can be described by the differential equation

dy

kK

dx 4
The solution to this equation (obtained by the use of separation of
variables) is y = F(x, a, k).

en(-/25)
T en(-x5) ———
\\; T e(x)
AN — e
\ Y 259 ———
0.8 1
\ \‘\‘
\ ™~
06 |- \ = S
0.4 B
T —]
i
|
02
|
\ T~
\ —
0 I | I rr—————
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Examples

X—b\2
2. Gaussian model: F(x,a, b,c) = 2e—(52%) , a,b, c € R parameters.

a is the value of the maximum obtained at x = b and ¢ determines the
width of the curve.

It is used in statistics to describe the normal distribution, but also in
signal and image processing.

In statistics a = %ﬁ b= u, c =20, where pu, o are the expected

oV2r’
value and the standard deviation of a normally distributed random

variable.

0.8

0.2

0.0

-5 -4 -3 -2 -1 0 1 2 3 4 5 63/196



Examples
a

3. Logistic model: F(x,a, b, k) = {Tbe) k>0
The logistic function was devised as a model of population size by
adjusting the exponential model which also considers the saturation of
the environment, hence the growth first changes to linear and then
stops.
The logistic function F(x, a, b, k) is a solution of the first order
non-linear differential equation

20 103 2)

100

80

Logistic

Exponential

@
=]

Population

40

20
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Examples

4. In the area around a radiotelescope the use of microwave ovens is forbidden, since
the radiation interferes with the telescope. We are looking for the location (a, b) of
a microwave oven that is causing problems.

The radiation intensity decreases with the distance r from the source according to
« . .
u(r) = ——. In cartesian coordinates:
1+r

a
1+/(x—a)2+(y— by’
where (a, b) is a position of the microwave.

u(x,y) =

Task: Find the position of the microwave, if the measured values of the signal at
three locations are u(0,0) = 0.27, u(1,1) = 0.36 in u(0,2) = 0.3.

This gives the following system of equations for the parameters «, a, b:

(0%
- = 027
1+Va2+ b2
(e
= 036
1++/(1—a)2+ (1 - b)?
e = 03

1+ +/a*>+ (2 - b)?
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An equivalent, more convenient formulation of the nonlinear system

» Qur goal is to fit the data points

{(leyl)a'-'a(xma}/m)}v Xi Gan Yi € R.
» We choose a fitting function
F(x,a1,...,ap)

which depends on the unknown parameters ay, ..., ap.
| 4 Equivalent formu|ati0n Of the System (]_3) ( which will be more suitable for solving with

numerical algorithms) IS:

1. Fori=1,..., m define the functions
g RP 5 R by the rule gi(ar,...,ap) =yi— F(xi,a1,...,ap).
2. Solve or approximate the following system by the least squares method
gi(ar,...,ap) =0,
(14)
gm(ai,...,ap) =0.
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An equivalent, more convenient formulation of the nonlinear system - continued

In a compact way (14) can be expressed by introducing a vector function

G:RP - R™  G(ar,...,ap) =(g1(a1,---53p), ..., &m(a1...,ap)),

(15)
and search for the tuples (ai, ..., ap) that solve the system (or minimize
the norm of the left-hand side)

G(a1,...,ap) =(0,...,0). (16)

Remark

Solving (16) is a difficult problem. Even if the exact solution exists, it is not easy
(or even impossible) to compute. For example, there does not even exist an
analytic formula to determine roots of a general polynomial of degree 5 or more.
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3.1 Vector functions of a vector variable

Neccessary terminology to achieve our plan

G from (15) is an example of

» a vector function: since it maps into R™, where m might be bigger
than 1.

P a vector variable: since it maps from RP, where p might be bigger than
1.

Remark
» |[fm=1andp>1, then G is a usual multivariate function.
» [fm=1and p=1, then G is a usual (univariate) function.

For easier reference in the continuation we call gi, ..., gm from (15) the
component (or coordinate) functions of G.
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Examples

1. A linear vector function G : R” — R™ is such that all the component
functions g; are linear:

g,'(Xl,...,X,,) =aj1-x1+ap-x2+...+ajp x,, wherea;€R. (17)

In this case
G(x) = Ax,
where
a1 a12 din
a1 axn azn
A= ]
dml dm2 --- dmn

2. Adding constants b; € R to the left side of (17) we get the definition
of an affine linear vector function,

g,'(Xl, .. ,Xn) = aj1x1 + apxo + ... aipxn + bi,
and then
G(x)=Ax+b,  where b=[b by ... b ] .
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Examples

3. Most of the (vector) functions are nonlinear, e.g.,

fiR = R% f(x,y,z)=(x*+y*+2°—1L,x+y+z),
g:R2 5 R3  g(z,w) = (zw, cos z + w? — 2, €%%),
h:R —R? h(t) = (t+3,e3).
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Derivative of a vector function - is needed in the algorithms we will use

The derivative of a vector function F : R” — R™ in the point
a:=(a1,...,ap) €R”

is called the Jacobian matrix of F in a:

() - )
@) =DF@)=|
Yoa) - 9m(a)

> If n=m =1, the Df(x) = f'(x) is the usual derivative.

ee i, FxAX)
i

0 x x+0Ax
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Derivative - continued
» For general nand m =1, f is a function of n variables and
Df (x) = grad f(x)

is its gradient.

¥ VFixg vol
~
P
-
Plxg, vyl W
g
level curve™
flx,v)=k
-
0 X
grad f
> For general m and n, Df(x) = : is a vector of gradients of
grad f,

component functions.
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Examples

1. For an affine linear function f: R” — R™, given by f(x) = Ax + b, it

is easy to check that
Df(x) = A.

2. For a vector function f: R3 — R?, given by
f(x,y,2) = (X +y* +2° = Lx +y+2),

then
2x 2y 22]

Df(x):[l 1 1
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Application of the derivative - linear approximation

A linear approximation of the vector function f : R” — R at the point
a € R" is the affine linear function

L,:R" - R™  Ly(x)=Ax+b

that satisfies the following conditions:

1. It has the same value as f in a: L,(a) = f(a).

2. It has the same derivative as f at a: DL,(a) = Df(a).
It is easy to check that

L.(x) = f(a) + Df(a)(x — a).

> n=m=1:
L,(x) = f(a) + f'(a)(x — a)

The graph y = L,(x) is the tangent to the graph y = f(x) at the point a.
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Application of the derivative - linear approximation continued

» If n=2and m=1, then

x—a
Lap)(x,y) = f(a, b) + gradf(a, b) [y _ b] )
The graph
zZ = L(a,b)(X7y)
is the tangent plane to the surface z = f(x, y) at the point (a, b).

z
Tangent plane at P

z=f(xy)
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Example

The linear approximation of the function
f:R3 - R2 f(x,y,2) = (P +y*+ 22— Lx+y+2)
at a = (1,—1,1) is the affine linear function

x—1
Li(x,y,z) =f(1,-1,1)+ Df(1,-1,1) |y + 1
z—1
_'2]+{2 -2 2} X:
1 1 11|
z—1
24+ 2(x—1)—2(y + 1) +2(z - 1)
1+ (x—1)+(y+1)+(z2-2)
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3.2 Solving systems of nonlinear equations

Let f : D — R™ be a vector function, defined on some set D C R".

We will study the Gauss-Newton method to solve the system f(x) =0 in
terms of least squares. This is one of the numerical methods for searching
approximate solution of this system. It is based on linear approximations of
f.
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Newton’s method for n = m =1
We are searching zeroes of the function
solving f(x) = 0.

Newton's or tangent method:

We construct a recursive sequence with:

P> xg is an initial term,
P> xyx41 is a solution of

Lo, (%) = () + £/ (i) (x = x) =

y

f:D—R,DCR,ie., we are

f(x
0, SO Xk+1 = Xk — f,((xkk)).
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Newton’s method for n = m = 1 - continued

Theorem
The sequence x; converges to a solution o, f(a) =0, if:

(1) 0 # |f'(x)| for all x € I, where | is some interval containing «,
(2) xo is sufficiently close to «.

Under these assumptions the convergence is quadratic, meaning that:

If we denote by ¢j = |xj — «

, then gj41 < I\/l&:,?,

where M is some constant. If f is twice differentiable, then

M < max|f" in | F(x)].
< max [f7(x)|/ min|f'(x)|
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Proof.
Condition (1) implies in particular that « is a simple zero of f. Plugging «
in the Taylor expansion of f around x; we get

0= f(a) = f(x;) + F(x;)(a — x;) + ") (a — x;)?

= f(x;) + f'(x;) (e — x;) +

where 7 is between « and x;. Dividing (18) with f/(x;) we get

1) tam £
and hence () )
< . f'(x,-)> I T O
Thus, ) | s
S+l = ‘2f’(x,-) €
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Now
maxye; |F”(x)]

f"(n)
2f’(X,‘)
To prove that the sequence converges note that there exists dg > 0 such
that

= minge |[F(x)|

1
Még < 5
Hence, if ¢; < g, then
f'(n) | » 1
€i+1 = ‘2{,()(’) e = Ee,'.
Therefore
im en = Jim e =
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Newton’s method for n = m > 1

Newton's method generalizes to systems of n nonlinear equations in n
unknowns:

P> xg — initial approximation,

> X1 — solution of
Ly, (x) = f(xk) + Df (x)(x — xx) = 0,

S0
X1 = Xk — DF(xi) " F(xk)-

In practice inverses are difficult to calculate (require to many operations)
and the linear system for Axy = X1 — X

Df(Xk)AXk = —f(Xk)
is solved at each step (using LU decomposition of Df(xx)) and hence

Xk+1 = Xk + Ax.
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Example
Derive Newton's method for solving the system of quadratic equations:

x4y —10x+y =1,
x? —y? — x4 10y = 25.
We are searching for the zero of the vector function
F:R? 5 R? F(x,y)=(x*+y?>—10x+y —1,x> — y?> — x + 10y — 25).
The Jacobian of F in (x,y) is

_|2x=10 2x-1

DFOoY) =19y 41 —oy+10|"

Using Newton's metod we:
> Choose an initial term (xo, yo)-

» Calculate x,11 = x, + Ax,, where DF(x,, y,)Ax, = —F(x., y,) 7.
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Application of Newton’s method for n = m > 1 to optimization

Newton optimization method:

We would like to find the extrema of the function F: R" — R.

Since the extrema are critical (or stationary) points, the candidates are
zeroes of the gradient, i.e.,

G(x):=grad F(x) = | Fq(x) -+ Fq(x) ] =0. (19)

(19) is a system of n equations for n variables, the Jacobian of the vector
function G is the so called Hessian of F:

Faxi - Fax

Fox, -+ Fxx
If the sequence of iterates
X0, Xk+1 = Xk — Hfl(Xk)G(Xk)

converges, the limit is a critical point of F, i.e., a candidate for the
minimum (or maximum).
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Gradient descent

Optimization methods can also be used to ensure a sufficiently accurate starting
approximation for the Newton-based techniques. (Like bisection does for a single

one-variable equation.)
Finding solutions of the system F(x) = 0, where
F=[F,...,F]" :R" - R"
is equivalent to finding global minima of
g(x) = |F|?=FA(x)*+...4+ F(x)* :R" = R.
We search for the local minima of g
as follows:

1. Choose xp.
2. Determine the constant « in x, — « - grad(g(x,)) which mimimizes

h(a) = g(xr — « - grad(g(x,)).

(Or is significantly smaller than h(0) = g(x,).)
3. Xry1 = xr — - grad(g(x,)).
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Quasi-Newtonov methods: Broyden's method

» For large n, the Newton's method is very expensive, since we need to evaluate n?
partial derivatives at each step and use O(n®) flops (+, —, -, :) to solve the linear
system.

» Broyden’'s method avoids computing derivatives. For n = m =1 it replaces the
tangent by a secant throught the last two iterates. It mimicks this idea also for
larger n = m.

Let B, be an approximate for J¢(x,). Broyden's method works as follows:

1. Solve B,Ax, = —f(x,),

2. Xrp1 = Xr + AXp,
3. Determine B,y.
The last step searches for a matrix B,+1, which fulfils the
Br+l(xr+l - Xr) - f(Xr+l) - f(Xr)

and is the closest to B, in the spectral norm || - |2.

It turns out that
f(xrr1)(Ax) T

Bry1=B+
e 1Ax]3
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Application on the microwave oven example

Recall from above the microwave oven example. The system of equations
for the parameters a, a, b is:

https
https
https

https

://zalara
://zalara
://zalara

://zalara

(07
— 027 =
1+ va?+ b2
o

—-036 =

14+ /(1 —a)2+ (1 - b)2

.github.
.github.
.github.

.github.

«

1+ /21 @2_b2

io/Algoritmi/newtonsys.m
io/Algoritmi/broyden.m
io/Algoritmi/gradient_descent.m

io/Algoritmi/test_newtonsys_2.m

87/196


https://zalara.github.io/Algoritmi/newtonsys.m
https://zalara.github.io/Algoritmi/broyden.m
https://zalara.github.io/Algoritmi/gradient_descent.m
https://zalara.github.io/Algoritmi/test_newtonsys_2.m

Newton’s method for m > n > 0

We have an overdetermined system
f:R"—=R" f(x)=(0,...,0) (20)
of m nonlinear equations for n unknowns, where m > n.

The system (20) generally does not have a solution, so we are looking for a
solution of (20) by the least squares method, i.e., & € R" such that the
distance of f(«) from the origin is the smallest possible:

1£(@)lI? = min{|| £ (x)|*}.
The Gauss-Newton method is a generalization of the Newton's method,

where instead of the inverse of the Jacobian its MP inverse is used at each
step:

Xp ... initial approximation, X1 = xx — Df (xi )T F(xk),
where Df (xx)" is the MP inverse of Df(xx). If the matrix

(Df (xx) T Df (xx)) is nonsingular at each step k, then
X1 = xk — (DF(xi) T DF (%)) "2 DF (i) T £ ().
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Newton’s method for m > n > 0 - continued

At each step xk1 is the least squares approximation to the solution of the
overdetermined linear system L, (x) =0, that is,

1L (k)1 = min{ L, (x)[%, x € R"}.

Convergence is not guaranteed, but:

> if the sequence xx converges, the limit x = limy xx is a local (but not
necessarily global) minimum of ||f(x)|?.

It follows that the Gauss-Newton method is an algorithm for the local
minimum of | f(x)]|?.

89/196



Example

We are given point (x;,y;) € R2 for i = 1,...,m and are searching for the

function
f(x, a, b) = ae™

which fits this data best by the method of least squares.

So we have the overdetermined system F(a, b) = 0, where

F:R? > R™, F(a,b) = (y1 — aeP1 . S Ym — aebx’").
The Jacobian of F is
b axg et
DF(a, b) =
—ePm  axyebm

Using the Gauss-Newton method:
P We choose initianl approximation (ag, bp),

> Calculate iterates

[Z::ﬂ = [Z:] — DF(ar, br)+F(3h br)T<
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Chapter 4:

Curves and surfaces

» Curves

>

VVVVYVYYVYY

Definition and examples

Derivative

Arc length and the natural parametrization
Curvature

Plotting plane curves

Area bounded by plane curves

Curves in the polar form

Motion in R3

» Surfaces

>
>
>
>

Definition and examples

Cartesian, cylindrical and spherical coordinates
Surface of revolution

Tangent plane
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Curves - definition and examples

A parametric curve (or parametrized curve) in R™ is a vector function
fi(t)
f:l—R™ f(ty=1 |,
fm(t)

where | C R is a bounded or unbounded interval.

The independent variable (in this case t) is the parameter of the curve.

For every value t € I, f(t) represents a in R™.

As t runs through /, f(t) , or a , in R™.
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If m=2, then for every t € [,

x(t)

f(t) = =r(t
) [y(t)] "
is the position vector of a point in the plane R?.

All points {f(t),t € I} form a plane curve:

(x(b)y(b)) (x(@)y(@)

L

(x{t).yith)

In this example x(t) = tcost, y(t) = tsint,t € [-37w /4,37 /4]

93/196



If m= 3, then
x(t)
f(t) = |y(t)| =r(t)
z(t)

is the position vector of a point in R3 for every t, and {f(t),t € I} is a
space curve:

xo)yby2io) |

G2 iavata)
I

In this example x(t) = cost, y(t) =sint,z(t) = t/5,t € [0, 47]
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Example

/,,,‘;,1\(2005 t,2sin t)

R VA

2cost / ,‘ L/
4

a circle with radius 2 and center (0, 0)

f(t)=ro+te,t € R,
r,ec R" e#0

line through rg in the direction of e in o,
R™ slope k = ey/e1 if 1 #0
vertical if e = (0, &)
horizontal if e = (e1,0)
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Example

32t
f(t):[ttz_t },teR

t +sin(3t)

f(t)=[t+cos(5t)},teR /@9
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A parametric curve f(t),t € [a, b] is closed if f(a) = f(b).

Example

cos 3t
f(t) = [ A } ,t €[0,27]
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Problem: What path does the valve on your bicycle wheel trace as you bike
along a straight road?

Represent the wheel as a circle of radius a rolling along the x-axis, the valve
as a fixed point on the circle, the parameter is the angle of rotation:

_ix

The curve is a cycloid: x(0) = af — asin6, y(§) = a — acos 6.

x = a(0 — sin )
y=a(l —cosf)

T af 2ra
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The following parametric curves all describe the circle with radius a around

the origin (as well as many others):

/ IIAN
_ | asint P
fi(t) = [ 2cos t } t € [0,27] \\ /,
/I
acos2t YO -
fZ(t) = asin 2t IS [0?27T] 7\\ l //""
|
acost
Alt) = [ asint } teR
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Derivative, linear approximation, tangent

x1(t)
The derivative of the vector function f(t) = 5 at the point a is
Xm(t)
the vector:
(2 1
Df(a) = : = f'(a) = lim =(f(a+ h) — f(a))
’ h—0 h
Xm(a)
T e

(f(a+h)-f(apin

The vector f’(a) (if it exists) represents the velocity vector of a point
moving along the curve at the point t = a.

If /(a) # 0 it points in the direction of the tangent at t = a.
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The linear approximation of the function f at t = a is

/

» If f’(a) # 0, this is a parametric line corresponding to the tangent line
to the curve f(t) at t = a. In this case f(a) is a regular point of the
parametrization.

> If f(a) = 0 (or if it does not exist), the parametrization of the curve is
singular in the point f(a).

> A curve C € R™ is smooth at a point P on C if there exists a
parametrization f(t) of C, such that f(a) = P and f’(a) # 0.

» A smooth curve has a tangent at every point P € C.
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VTN

Problem: s the curve C = {f(t),t € [0,V2n]}, / \‘
cos(t?) 5 T )

— \ /
f(t) Lin(tz)} , smooth? 1

Since x2 + y2 =1, f(t) is a parametrization of the unit circle which is a
smooth curve (it has a tangent at every point).

Since f'(0) = 0 the parametrization f is singular in the point (1,0).

However, a smooth parametrization exists. Can you find it?

102/196



Problem: Is the cycloid a smooth curve?

o b
Our parametrization .

f(t):{ t—sint ]’ F(t) = [ 1—cost]

1—cost sint

is not smooth at t = 2k since f'(2kw) = 0.

Does a tangent exist?
The slope of the tangent line at a point f(t) is:

y'(t) sint
kt = = —
x'(t) 1—cost
The left and right limits as t — 2k7 are

cost . . cost
= —00, limpokrke = lim — =
t\2km SIn t

lim ks = lim

t 2k t 72km sin t ’

so at these points the curve forms a sharp spike (a cusp) and a tangent does not exist.

So, the cycloid is not smooth at the points where it touches the x axis.

('Hospital’s rule was used to compute the limits.)
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Arc length and the natural parametrization

The arc length s of a parametric curve f(t), t € [a, b], in R™ is the length
of the curve between the points t = ain t = b, i.e. the distance covered by
a point moving along the curve between these two points.

Example

For example, what distance does a point on the circle cover when the circle makes one
full turn?

Proposition

The arc length s of a parametric curve f(t) between the points t = a and
t = b is given by

b
s = / I (t)] dt.
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Proof of the Proposition

An aproximate value for s is the length of a polygonal curve connecting close enough
points on the curve:

T

n

Sp = z lf(t:) — F(ti-a)|

i=1

=Y If'(t-y)llAe
i=1

b
N / 1F(2)] dt

where:

» The value f(t;) = f(ti—1 + At), where At = t; — t;_1, was approximated as
f(t,') = f(t,;l) + fl(t,;l)At and hence f(t,') = f(t,;l) + f’(t,;l)At. (Under the
assumption that f’ is continuous.

» In the last line we used that the sum represents a Riemannian sum of the function
I (&)l

» For n big enough, s, is a practical approximation for s.
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Problem: The length of the path traced by a point on the circle after a full turn?

t—sint
1—cost

2w 27 2w

s = / \/(1—C°st)2+sin2tdt:/ \/2—2costdt:/ 4sin®(t/2) dt
0 0 0
27

- /0 2sin(t/2) dt = —a(cos(r) — cos(0)) = 8.

A parametrization is f(t) = { ] and hence:

acost
Problem: What is the arc length of the helix f(t) = |asint|, 0 <t <2x?
bt
Problem: The circumference of the elipse {ZC:S j ,a#b?

27 /2
\/aQSin2t+b2cosztdt:4a/ V1 — e?sin® t dt = 4aF(e)
0 0

where e = /1 — (b/a)? is its eccentricity and the function E is the nonelementary elliptic
integral of 2nd kind. It can be computed numerically, which is briefly explained in the
next few slides.

106/196



Numerical integration

The integral fab f(x) dx can be approximated by a linear approximation of f over the
interval [a, b] and computing the area of the trapezoid formed.

la b

\

/ F(x) dx ~ F(a) + %(X )= T(b—a)

Of course the error of this approximation is usually large and we are not satisfied. How do

we estimate how good is this approximation?
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Adaptive trapezoid rule (integral(---) in Matlab)
1 T(b—a)=f(a) + =G (x _ ).

2. We add another point in the middle of the interval, i.e., x = %b and compute the

sum of the areas of two trapezoids formed:

b—a

T((b—2)/2) = 5 T(b—a) + °

f((a+ b)/2).

3. Ife:=|T(b—a)— T((b— a)/2)| is smaller than the tolerance tol, we are satisfied
and return T((b — a)/2).

4. Otherwise we have to repeat the procedure on each of the subintervals
[a,(a+ b)/2] and [(a + b)/2, b], where the tolerance on each of them must be
smaller than tol /2.

5. We can implement this recursively, obtaining the so called adaptive trapezoid rule,
where on different subintervals of [a, b] different number of recursions is needed
(this depends on the behaviour of the function f).
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Natural parametrization

The arc length from the initial t = a to an arbitrary t = T

s(1) = / 1F(u)] du

is an increasing function of t if f is a smooth parametrization, so it has an
inverse

t(s) : [0,s(T)] — [a, T].

So, the original parameter t can be expressed as a funcion of the arc length
s.

Inserting this into the parametrization gives the same curve with a different
parametrization:

The arc length s is called the natural parameter of the curve.
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Proposition
A curve C is parametrized with the natural parameter s satisfies

lg"(s)ll =1,

i.e., the length of the velocity vector is 1 at every point and so a
parametrization with the natural parameter is the unit speed
parametrization.

Proof. Indeed,

’ d(f ] t) _ i ﬁ _ g ’
g(s)= %)= (5) = S(t(s)) - 2 (s) = F(1($)E'(s).
Now note that by the fundamental theorem of calculus we have that
s'(t) = I (1)
and hence 1
t'(s) = ———.
© = TP
Plugging this into (22) we get
_f'(t(s))

&) = (s’

which is equivalent to (21).

(21)

(22)
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Example
The standard parametrization of the circle

F(t) = [ acost ]

asint

is not the natural parametrization if a # 1, since

IF'(t)]| = Va?cos? t + a?sin?t = a # 1.
Since

t
s(t) :/ adt = at,
0

it follows that t = s/a and the natural parametrization is

acos(s/a) } '

asin(s/a)

g(s) = [
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Remember:

X1 ( t) txm.yr/c))/,,, /,,,,,,g(\-n‘v(-»
A parametric curve: f(t) = | @ |,
Xm (t)
tel CR,
x1(t) =
The derivative f'(t) = e
Xm(t)
is the velocity vector or
7

tangent vector if f/(t) # 0,

The image C = {f(t),t € I}: a (geometric) curve in R™.A curve C has many
parametrizations.

The arc length parametrization or natural parametrization f(s):
s is the length of the chord from f(a) to f(s), ||f'(s)|| = 1.
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Brachistochrone problem

Problem: Given points A and B what is the fastest path of a mass starting
in A and ending in B, being accelerated only by gravity? We assume no
friction is present.

» We denote A= (0,0) and B = (b,0). We are searching for a curve
y(x):[0,b] — R.

> Law of conservation of energy:

Potential energy + Kinetic energy=constant
1
SMv()? = mey(x) = v(x) =2 (x).
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> Let s(x) be the arc length of the curve from A to (x,y(x)). We have:

_ /OX,/1 +y/(x)2dx

ds
(X)) = —= =4/1 (x)2.
S(x) == = \[1+y(x)

» Let T(y) be the travel time along the curve {(x, y(x)): x € [0, b]}.
We have:

T(y)=

and hence

T(y) s(b) /1
/ g — / ds / + y
0 v(s) V28y(x)

» We need to minimize the functional T(y) : C[0, b] — R on the vector
space of continuous functions on [0, b].
Theorem (Euler-Lagrange equation)

If y* is the solution of the minimization problem min,cco 5 T(y), then it
satisfies the equation

) oy d 0 /
g, [0y, () = o570y (). v (x):
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Applying Euler-Lagrange equations for the brachistochrone problem, we
come to the differential equation

C —
y' = 4 for some constant C.
y

1/Ldy:dx.
-y

Integrating both sides and using the substitution y = C sin?(t) we get

1 1 1
x(t)=C (t— 2sm2t> , y(t)=C <2 — 2cos2t),

which is the cycloide.

Separation of variables:

For those who want to know more:
https://wiki.math.ntnu.no/_media/tma4180/2015v/calcvar.pdf
https://www.youtube.com/watch?v=CldOp3a43fU
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Curvature

1. Intuitively we would like to measure for what amount does the curve
deviate from being the straight line.

2. For the circle of radius R we would like that the curvature is
proportional to 1/R.

The curvature x(t) of a smooth curve f(t) at a point t = a is the rate of

/
change of the unit tangent vector T(t) = f/(t) :
17 (2)]
1
t) = T'(t)]] .
() ‘ dsjde | )

If the curve is parametrized by the arc length s, i.e., |f'(s)|| = 1, then this
is simply

w(s) = [[F(s)]

116/196



Problem: what is the curvature of a circle with radius a?

acos(s/a)] '

The natural parametrization of the circle is f(s) = [asin(s/a)

=[] m o o[

The curvature
w(s) = [If"(s)l =1/a

is constant along the circle.
> As a — oo, the circle goes towards a line and Kk — 0.

» On the other hand, as a — 0, the circle goes towards a point and
K — OQ.
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Problem: designing roads and railways

Roads, railway bends, roller coaster
loops, the ski jump in Planica ...are
designed so that the transitions from
the straight to the circular parts are
as smooth as possible.

The force acting on a moving point on the curve (car, train, ski jumper,...)
increases and decreases as evenly as possible.

The transition curve from
> the straight part (with curvature 0) to
» the circular part (with curvature a > 0)

has several names: clotoid, Euler spiral, Cornu

spiral ...

Its characteristic property is that the curvature k(s) is a linear function of
arc length s.
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Let us find its arc length parametrization f(s). Assume that
r(s) = [f"(s)ll = 2s.

Remember that the arc length parametrization is the unit speed
parametrization, so ||f'(s)|| = 1 and so f’(s) can be written in the form

o-[3)-[2:]

This gives

R(s) = \/x"(s2 +y"(s)2 = ¢(s) = 25, p(s) = <,

X'(s) = cos(s?), y'(s) =sin(s?),

SO

x(s) = /05 cos(u?) du, y(s) = /05 sin(u?) du
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The functions

X(s) = /O cos(t?) du = C(s), y(s) = /Otsin(uz) du = S(s)

are nonelementary functions called the Fresnel integrals

IR\VZAVZ V7 w2
] N[ .
S(x)fi
C09----
Fresnel integrals clotoid
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Plane curves

x(

For a plane curve f(t) = {y(g] the tangent at a regular point f(a) is

» the vertical line
x = x(a)

if x'(a) =0 and y/'(a) #0,
> the line

if x'(a) #0,
» the horizontal line

if y’(a) =0 and x'(a) # 0.
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Plotting a parametric plane curve

e——

;
|
£
%
. e
i1
i

Here is a general strategy:
» find the asymptotic behaviour: lim f(t), lim f(t)

t— o0 t——o0
> find intersections with coordinate axes: solve y(t) =0 and x(t) =0

> find points where the tangent is vertical or horizontal: solve x'(t) = 0 and y'(t) =0

» find self-intersections: solve f(t) = f(s), t#s
> and the two tangents there

» look for other helpful features ...

> connect points r(t) = f(t) by increasing t
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Problem: find the self-intersection (if there is one) of a parametric curve

3_
Let f(t) = { ttz _2tt ]

A self-intersection is at a point f(t) = f(s), with t # s, so:

3 _2t=s3-2s and t2—t=s2—5
= t3-s3=2t—-2s and t?—s2=t—s

Since t # s we can divide by t — s:

t?4+ts+s>=2 and t+s=1
= t=1-5s and (1—-5)®+s(l—s)+s?>=2.

The self-intersection (where s and t can be interchanged) is at
1
s= (VB2 = (- VB2 A =r)= | 7).
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Problem: do two parametric curves intersect. Imagine two cars speeding

along the two curves. Do they crash?

2 -1 s—1
Let fi(t) = [t3t2+t+1]’ h(s) = [152]'

To find the intersections, solve the system

t2—1=s—-1 and —t3—t’+t+1=1-—¢2

= s=t> and —s0—s*+s2+1=1-—¢2

There are three solutions:

t=-1,s=1 = x=0,y=0
t=0,5s=0 = x=-1,y=1
t=1,s=1 = x=0,y=0

The cars meet at t = 0,s = 0 at the point (—1,1) and at t = 1,5 = 1 at the point (0, 0).
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t2—1 , 2t
Problem: plot f(t) = B2 i1 f(t) = 32 ¢ 41

. . . 00 . oo
> : = =
Asymptotic behaviour: tln;o f(t) [—oo] t—LIToo f(t) Lo}

» intersections with axes:t = +1, at
(0,0) ; )
this is also a self-intersection :

2

> the two tangent lines at (0,0) ;—1/3

> att=-1: y =0,
> oatt=1 y=-2x A=
: t=—1
> vertical tangent: t =0 at (—1,1) ' t=1 ‘ ’ ’

» horizontal tangent
> attp =-1,y=0,
> attr, =1/3, y =32/27

125/196



Areas bounded by plane curve

. Let f(t):[;gg], t € [ab] T

The area of the quadrilateral bounded by the curve and the x-axis is

x(b) b
P / | Il / (B (2) dt

Problem: the area under one arc of the cycloid:

x(t) = at — asint, y(t)=a— acost,

21 21
P= / a’(1 — cost)’ dt = 32/ (g —2cost+ % cos(2t)) dt = 3a’r.
0 0
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Il. The area of the triangular region bounded by the curve f(t),t € [a, b],
and the two end-point position vectors f(a) and f(b):
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Proof of the area formula

An approximate value of the area is the sum of areas of triangles obtained by subdividing
the interval [a, b] into n intervals of length At = (b — a)/n.

The area of a triangle with vertices (0,0), f(t;), f(ti+1) is
1 .1 /
AP; = SIf(tiea) x F(&)] = SI(F(6) + () At) x f(&)]

= S () x F(8)1AE = 21y (6)x(8) — X (6)y(8)|At,

where the last equlatiy follows from the calculation
f'(t) x f(t;) = (X' (&), y'(£:),0) x (x(t:), y(t),0)
= (X'(t)y(t:) — y'(t)x(t:),0,0).

The area is obtained by adding these and letting n — oc:

n—1

P = lim % Z ly'(t:)x(t;) — x'(ti)y (t:)| At

=3 | XOY(©) =y (1) .
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Problem: the area bounded by
1. the asteroid x(t) = cos® t, y(t) =sindt, t € [0,27] is

2. the elipse x = acost, y = bsint, te [0,27] is
I
_ |

\I’_/

Hint. In both problems use the identities
1 1
sin’t = 5(1 — cos(2t)), cos’ t = 5(1 + cos(2t)).

In the first problem all you have to really integrate after subtractions of some terms is

1-— COS2 2t). The results are == for the first and abw for the second problen
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Curves in the polar plane

Polar coordinates of a point in the plane are

> distance to the origin r, r > 0, and

P polar angle ¢, determined up to a r/
multiple of 27, defined for r #£ 0. 0

Usually the polar axis corresponds to the positive part of the x-axis, so

> x=rcosp, y =rsing

> r=x2+y% tanp=12
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A curve in polar coordinates is given by r = r(¢), ¢ €/l CR.

Rule. If r(¢) < 0, then the point on the curve at an angle ¢ is equal to
(x(9),¥(#)) = |r(¢)|(cos p,sin ) - €.
In other words, we the point

[r(0)[(cos @, sin )
over the origin.

Example
r=1 s ) unit circle
r=o i S Arhimedean spiral
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Example
liney=1 r=

-2 -1 1 2

cardioid, r=1-—sinyp
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Example
a butterfly

r=sin® (£55) + e5"¥ — 2 cos(4¢p)

Matlab files:
https://zalara.github.io/Algoritmi/curves_polar.m

133/196
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A parametrization of the curve with parameter being the polar angle is:

(o) ! r(¢) cos(y) ] el

r(¢)sin(y)

Example

cos
1

The hyperbolic spiral r = — is parametrized by f(t) = [ 7 ] ,
SD 2

as ¢ — 0, r(p) = oo A
x(@) = = 00
P g
=
sing -

y(p) =

as ¢ — 0o, r(g) = 0
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The tangent vector to the curve at a point r(y) is given by

) - [”’W) cos() ~ r(¢) sin(so)l
r'(p)sin() + r(e) cos()

Problem: compute the angle between the coordinate vector of a point on
the logarithmic spiral r(¢) = be® and the tangent vector at that point.

be?? cos(y)
coordinate vector: f(p) = s
be?? sin(y)

be?¥(acosp —sinp
tangent vector: f'(p) = ( . ) ) E
be??(asin ¢ + cos )

. f!
angle: cosa = Fe)-F1(1) 2

IFOIIF @1 vita?’

so the angle is independent of ¢ so it is the same at every point on the
curve.
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Area in polar coordinates

p / / 1 B 2
y' =xyldp =5 [ ride
o J

N =

Indeed:

xy' —x'y = rcosp(r'sinp -+ rcos ) — rsin(r' cosp — rsin p)

= r¥(cos’ p +sin @) = r
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Problem: what is the area of one petal of the clover r(p) =

cos(3¢)
—

To plot the clover it is convenient to sketch the function r(¢y) first.

Useful angles are

05

o4l
oaf |

o2 |

R I I A S I I el B e
¥ ol 6,1 6 6 6 6,16 6 6 6 6 6

re)ylzlof=3]0oflz]ofl-3[0f[z[0f[-3]0]3;
_ /6 cos?(3¢p) m
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Motion in R3

Let r(t) = f(t) be the position vector of a particle in space at time t,
2

Then v(t) = ¥'(t) is its velocity and a(t) = r”(t) is its acceleration at time
t.

t2

Problem: Let r(t) = | 2t
log t
1. Compute its position, velocity and acceleration at time t = 1, and the length of its
path between t =1 and t = 2.

2. If at time t = 2 the particle leaves its path and goes off in the tangential direction
with constant velocity, where will it be at time t = 37 What is the length of its
path from t =1 to t = 37
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2t 2

. Sincer'(t)= | 2 | and r"(t) = 0 |, the position, velocity and acceleration
1/t —1/t?
att =1 are
1 2 2
r(l)=12|, v(1)=1[2] a(l)=]|0
0 1 -1

and the length of path
2 2 2
/ ¥ ()l dt:/ 4t2+4+(1/t)2dt=/ (2t +1/t) dt =
1 1 1

[2t°/2 + log t]; = 3 4 log 2

. The tangent line at t = 2, and the position at t = 3 are:

4 4 8
Le)=| 4 |+c-2)|2 |.LE)=| 6
log 2 1/2 log2+1/2

and length of the path along the tangent fromt =2tot=3is
3
| @ =o72,

so the total length is log2 + 7 + 1.
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Parametric surfaces

A parametric surface in R™ is given by a continuous vector function

f:D—R™, D c R2.

We will consider the case m = 3:
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Example

1. A parametric plane through a given point ry € R3 with given
(noncolinear) vectors e; and e:

f(u,v) =ro+ ue; +vey, u,veR,

The normal to the plane is n = e; x e # 0.

The equation the plane: (r —rg)-n=0
Matlab file:
https://zalara.github.io/Algoritmi/plane.m
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 https://zalara.github.io/Algoritmi/plane.m 

cos u
f(u,v)=| sinu |, wel0,2x],ve]|0,1]
v

a cylinder with radius 1 and axis
the z-axis

Matlab file:
https://zalara.github.io/Algoritmi/cylinder.m

142/196


 https://zalara.github.io/Algoritmi/cylinder.m 

For every point f(ug, vp) on the surface there are two coordinate curves
through it:

» f(uo, V),

> f(u,wv),

both lie on the surface.

Example

1. In the parametrized plane f(u,v) = ro + ue; + vey, €1 X e3 # 0,
coordinate curves are lines parallel to e, for a fixed u = ug and to e;
for a fixed v = v.

2. In the cylinder, coordinate curves u = ug are vertical lines, and v = v
are circles.
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Coordinate systems in R3

The parameters u and v in surface parametrizations often have a geometric
meaning.

For example, they could be two coordinates from one of the standard
coordinate systems in R3:

Cartesian coordinates x, y, z (we know these well)
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Example

f(x,y) = y ,0<x,y <2

The surface is the graph
z=1-(x—1P—(y -1

Coordinate curves: x
intersection with planes

x=xpand y =y

Matlab file:

https://zalara.github.io/Algoritmi/surfaces_coordinate_curves.m
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Cylindrical coordinates:

p > 0 distance from z axis, po-
lar radius in plane z =0

@ polar angle in plane z=0 / ~

Conversion to cartesian coordinates: x = pcosy,y = psinp,z =z
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Example
ucos v
f(u,v) = |usinv
v

Coordinate curves:

u = ug: helix with radius ug
v = vp: ray from z-axis with polar angle

and height v

Matlab file:

https://zalara.github.io/Algoritmi/cylindrical_coordinates_helix.m
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 https://zalara.github.io/Algoritmi/cylindrical_coordinates_helix.m 

Spherical coordinates: r, ¢, 1), where

r, r > 0: distance to the origin,
¢: polar angle in plane z =10

Y, —m/2 < 9 < w/2: azimuthal angle

-9
between the coordinate vector and plane \v T
/e \ —
zZ = 0, \ T
/‘ \\
Vg

1 = m/2: positive part of z axis
9 =0: planez=0

1) = —m/2 negative part of z-axis

Conversion to cartesian coordinates: x = rcos @ cos, y = rsin o cos,
z=rsiny

Conversion to cylindrical coordinates: p = rcost, z = rsiny
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Example
COS U COS V
f(u,v)=|sinucosv |, 0<u<2m —7/2<v<m7/2
sinv

The surface is the unit sphere r =1
Coordinate curves:

u = ug: latitude u = ug

v = vp: longitude v = vy

Matlab file:

https://zalara.github.io/Algoritmi/spherical_coordinates.m
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Surfaces of revolution

A surface of revolution is obtained by revolving a curve x = x(u), z = z(u)
in the (x, z)-plane around the z axis:

x(u) cosv
f(u,v) = | x(u)sinv
z(u)
u € [a, b]
v € [0, 27],

x =2+ cost,z = t, from wikipedia

Coordinate curves:
x(up) cos v
» u = ug, horizonal circle | x(up)sinv |,
z(wo)
> v = vy, original curve rotated by the angle v
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Example
Revolving the line z = x = u: a cone

U Ccos v
usinv
u

Revolving the line x = a: a cylinder

acosv
f(u,v) = |asinv
u
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Revolving the half-circle
x =cost,z=sint,—m/2 < t < w/2: a sphere

cos t cos v o
f(t,v) = |costsinv
sin t
Revolving the circle x = 2 4+ cost,z = sint,

0 <t < 2w atorus

(24 cost)cosv
f(u,v) = | (24 cost)sinv
sint

Matlab file: https://zalara.github.io/Algoritmi/surface_of_revolution.

m
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Smooth surfaces

Let rog = f(up, vo) be a point on the surface.

Coordinate curves through this point:
» f(uo,v) with parameter v and tangent vector f,(up, v),

» f(u,vp) with parameter u and tangent vector f,(up, vo).

The parametric surface is smooth at the point f(up, v), if both tangent
vectors exist and

fu(uo, Vo) X fv(uo, Vo) 75 0.

The vector ng = f,(up, vo) % f,(ug, vo) is the normal vector to the surface
at the point rg.
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Tangent plane

If the surface is smooth at a point ro = f(ug, vp) then it has a tangent
plane at this point that is given:

» in implicit form by (r —rg) -ng =0
» in parametric form by

I‘(LI, V) =ro+ Ufu(u07 VO) + va(U07 VO) = L(uo,vo)(u7 V)

where L o)(u, v) = f(uo, vo) + Df (uo, vo) [ L\: ]

is the linear approximation and

xu(uo, vo) xv(uo, vo)
Df(UO,VO) = Yu(UO,VO) yv(u07V0)
zy(uo, vo)  zy(uo, v)

is the Jacobian.
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ucosv

Problem: find the tangent plane to the surface f(u,v) = |usinv | at

u2

u=1v=m/2.

cosv —usinv
Since fy(u,v) = |sinv| and f,(u,v) = | ucosv | the tangent plane in parametric form is
2u 0

0
r(u,v) = |:1

In implicit form:

0 -1
n = fy(uo, vo) X £, (uo, vo) = |: 1 :| X |: 0 } = |:
-2 0

SO:

[y
—_ 1

n-(r—r)=-2(y—-1)+(z—1)=0.
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A curve aft) = [ \7((:))) ] in the (u, v)-plane corresponds to a curve on the

parametric surface:

Example

. 3t
The line aft) = [ : } corresponds to a curve on the torus

(2 +sin3t)cost
(foa)(t)=| (2+sin3t)sint
cos 3t
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An application: the configuration space of a robot

A robot, or a mechanical device, is described by its
» work space : the space of points reached by the end effector

» configuration space: the space of parameter values that determine the
position of the robot

The number of parameters is the degrees of freedom, (DOF), this
determines the dimension of the configuration space.

If DOF=2, thet the configuration space is (often) a parametric surface.
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Classical example: A robotic arm with two links of lengths /; and k, /h < /; and two rotational
joints.

The work space is a ring with interior circle of radius /; — l and exterior circle of radius /1 + b,

The configuration space is parametrized by the angles u and v in the joints, the two independent
(a + bcos u) cos v
rotations can be represented by a torus: | (a+ bcosu)sinv | ,b < a,u € [0,27],v € [0, 27]
bsinu

In robot motion planning, the motion of the robotic arm from point Ty to T7 in the work space is

directed by a curve, or path, in the configuration space.
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» Solving first order ODEs
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Differential equations and dynamic models

Ordinary differential equation, ODE, is an equation of an unknown function
and an independent variable. ODE relates the independent variable with
the function and its derivatives.

If t is an independent variable, x(t) is a function of ¢, then the ODE is of
the form:
F(t,x, % %,...,xM)=0.

Similarly if x is an independent variable, y(x) a function of x, then the
ODE is of the form:

F(X7y7.y,’.y//7"'7y(n)) :O'

The order of a differential equation is the order of the highest derivative.
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Examples of ODEs
> x—3t2=0.
So,
dx

i 3t2> = x(t)=t>+ C, where C is a constant.

If we want to determine C, we need an additional condition, e.g.,
initial condition x(0) = xp, xo € R, or any other condition x(tp) = xo,
xo € R.

> y"(x) +2y'(x) = 3y(x).

We will learn how to solve such an ODE, but right now let us only
check that y(x) = Ce=3%, C € R a constant, is a solution:

> Calculate y"(x), y'(x):
y'(x) = =3Ce™>, y"(x) =9Ce 3.
» Plug into the given ODE:
9Ce ¥ — 6Ce™3* =3Ce .
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> cost-x —3t* x+5et =0.

Such ODE's cannot be solved analytically (or are at least hard to
solve). We will learn how to solve such ODE’s by using numerical
methods.

Partial differential equation, PDE, is an equation for an unknown function u
of n > 2 independent variables, e.g., for n = 2 we have

F(X7y7 UX7 u_}/7uXX7”-) = 07

where x, y are the independent variables.

We will not consider PDE's, from now on DE means an ODE.
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Applications of DEs

Differential equations are used for modelling a deterministic process: a law
relating a certain quantity depending on some independent variable (for
example time) with its rate of change, and higher derivatives.

1. Newton's law of cooling:

T=k(T—-Tx), (23)

where T(t) is the temperature of a homogeneous body (can of beer)
at time t, Tg is the initial temperature at time tg = 0, T is the
temperature of the environment, k is a constant (heat transfer
coefficient).

(23) is an example of a separable ODE and also the first order linear
ODE. We will see shortly how to solve such types of ODE's. For now
you can check easily by yourself that the solution is

T(t) = (To — Tao)ekt.
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2. Radioactive decay:

J(t) = —ky(t), k= B2

tio’

where y(t) is the remaining quantity of a radioactive isotope at time t,
t1/2 is the half-life and k is the decay constant. The solution is

y(t) = Ce ", where C is a constant.

Let's verify, that t;, really represents the time in which the amount of
the isotope decreases to half of its current amount. At time t = 0 the
amount is y(0) = Ce® = C. We have to check that y(t;/5) = %:

y(tiy2) = Ce ¥ = Ce 082 — Celog1/2 — %

3. Simple harmonic oscillator:

X+ wx = 0.
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Solution of a DE

The function x(t) is a solution of a DE

F(t,x,x,X,... ,x(”)) =0
on an interval / if it is at least n times differentiable and satisfies the

identity
F(t,x(t), x(t), %(t), ..., x"(t)) = 0

forall t € 1.
Analytically solving a DE is typically very difficult, very often impossible.

To find we use different simplifications and
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First order ODEs

We will (mostly) consider first order ODEs in the form
x = f(t,x).

P> The general solution is a one-parametric family of solutions
x = x(t, C).

» A particular solution is a specific function from the general solution,
that usually satisfies some initial condition x(ty) = xo.

» A singular solution is an exceptional solution that is not part of the
general solution.

We will first look at some simple types of 1.-st order DEs that are
analytically solvable.
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Separable DE
A separable DE is of the form

x = f(t)g(x).
This can be solved by:

d
» Inserting x = X into (24):

dt
dx
— =f(t .
™ = f(1)s()
» Separating variables in (25):
e f(t) dt.
g(x)

> Integrating both sides of (25):

/;sz/ﬂﬂm+c

(24)
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Example 1 of a separable DE

where k € Ris a fixed real number (27)

g d
Ix
=k
dt %
g d
K kdt,
X
g d
|%up::=/km:m+a
where C is a constant and so
kt+C

is a general solution to (27). Clearly, x(t) = 0 is also a solution of the
equation. By introducing a new constant e which, by abuse of notation,

we again denote by C, this is equivalent to
x(t) = Cekt C e R.
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Example 2 of a separable DE

‘)’( = kx(1 — x)‘ where k € Ris a fixed real number (28)
g d
d—: = kx(1 — x),
g d
7)( — kdt,
x(1 - x)
» By the method of partial fractions we get
log 1 = log |x|—log |1—x| = :/kdt: kt+C,
where C is a constant and so
X
- C kt
1—x ¢
Expressing x(t) we get
1
t)=—7F— 2
X( ) Cefkt_|_ 1 ( 9)

is a general solution to (28). x(t) from (29) is called a logistic function.
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Example 3 of a separable DE

—X
ye
>
dy _ —x
dx yeX27
»

ydy = —xe X dx,

1
— = /ydy = /(—xex2)dx = Ee’x2 +C,

where C is a constant.
»1=YO_1,c= c=0
Expressing y(x) we get y(x) = Ve~ and since y(0) > 0 we have

> Integrating:
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Real life DE example: population growth

Let x(t) be the size of a population (bacteria, trees, people, ...) at time t.
The most common models for population growth are:

P> exponential growth: the growth rate is proportional to the size,
modelled by x = kx, with the solution the exponential function
x(t) = xpekt, where xo = x(0) is the initial population size.

P logistic growth: the growth rate is proportional to the size and the
resources, modelled by x = kx(1 — x/Xmax), where xmax is the capacity
of the environment, i.e., maximal population size that it still supports,
with the solution is the logistic function.

> . the growth rate is proportional to the size, but the
proportionality factor depends on time and size, modelled by
x = k(x, t)f(x); the equation is not separable and is analytically
solvable only in very specific cases.
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Real life DE example: information spreading

x(t) is the ratio of people in a given group that at time t knows a certain
piece of information.

Let xp = x(to) be the ‘informed’ ratio at time t = tp.

Consider two possible models:

» spreading through an external source: the rate of change is
proportional to the uninformed ratio x = k(1 — x) with xo = 0,

» spreading through "word of mouth” the rate of change is proportional
to the number of encounters between informed and uninformed
members x = kx(1 — x) logistic law, again, with xg > 0.
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First order linear ODE

A first order linear DE is of the form

x+ f(t)x = g(t) (31)

The equation is homogeneous if g(t) =0 and if g(t) # 0.
A homogeneous part of (31),

x+f(t)x =0, (32)

has a general solution of the form
CXh(t), (33)

where C € R is a constant and xp(t) is a particular solution. Indeed:

» Every x(t) of the form (33) is a solution of (32):

X'(t) + £(t)x(t) = (Cxn) (t) + F(t) Cxn(t)
= Cxp(t) + f(t)Cxn(t)
= COx(t) + F(t)xa(1))
=0
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» If x(t) is a solution of (32), then it must be of the form (33). Indeed,
since x(t) and xp(t) both solve (32),

(X(t) )’ _ X(&)xa(t) — x(£)x4(t)
xh(t) xa(t)
—f(t)x(t)xn(t) + F(t)x(t)xn(t)
x;(t)

=0.

Hence, )Z((tt)) = C for some constant C and x(t) is of the form (33).

Let x,(t) be any particular solution of (31):

xp(t) + F(t)xp(t) = g(t). (34)

The general solution of (31) is a sum
x(t) = Cxp(t) + xp(t). (35)
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Indeed:
» Every x(t) of the form

X' (1) + F(£)x(t)

35) is a solution of (31):

(

(Cxn(t) +xp(1)) + F(E)(Cxn(t) + xp(1))
Cxi(t) + xp(t) + F(£) Cxa(t) + () (1)
(€
0+

Xp(t) + F(£) Oxn(t)) + (x5() + F(£)%p(1))
g(1),

where we used (34) in the last equality.

» If x(t) is a solution of (31), then it must be of the form (35). Indeed,
since x(t) and x,(t) both solve (31), x(t) — x(t) solves the
homogenous part (32) of (31). Hence, x(t) — xp(t) = Cxx(t) for some
C and x(t) = Cxp(t) + xp(t).

The particular solution x, can be obtained by variation of the constant,
that is, by substituting the constant C is the homogenous solution by an
unknown function C(t) which is then determined from the equation.
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Example of a linear ODEs

[Pire=1] [x1)=2] (36)

1. The homogenous part is

2% + tx = 0. (37)

So the solution x; to (37) is
d dt C
Rdx = —txdt = 2 = - = log|x| = —log |t]| + log C = Iogm

X

N C

Xp = —.

T

2. A particular solution of the nonhomogenous equation is obtained by
variation of the constant:

C(t) . C'(t)t—C(1)
t2

by inserting into (36) we obtain

Cl(t)t— C()+ C(t) =1 = C(¢) :% ~ C(t) = logt].
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3. So the general solution of the nonhomogenous equation is

log |¢|

C
X(t):?‘i‘ t

(38)
4. Finally, since x(1) = 2, we get by plugging t = 1 into (38)
2=x(1)=C

and hence the solution of (36) is

24 logt]
==

x(t)
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General solution of a linear DE

Y'(x) = fF)y(x) +8(x) (39)

1. The homogenous part is

y’(X) = F(x)y(x)- (40)

So the solution y(x

log |y| = / / X)dx + C = y(x) = C- el
2. A particular solution of the nonhomogenous equation is obtained by
the variation of the constant:
y(x) = C(x) - e 1%, (41)
Y'(x) = C'(x) - el FOI 4 C(x)f(x)el I, (42)

Using that (39)=(42) and by inserting the RHS of (41) instead of y(x)
in (39), we obtain

C'(x) - el T 1 Cc(x)F(x)el O = £(x)C(x) - e/ TX 4 g(x)
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Hence

and so

Proposition
The solution of (39) is

y(x) = el FRI9(C + / (g(x)e I 9% ) )

In the example t?x 4 tx = 1 (or x = —%x + t%) above we get

x(t) = ef_%dt<C+ / (t—lzef%dt>dt>

:e'°g1(C+/<t12t>dt)
- %(C—Hog\ﬂ).
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Real life example: Newton's second law
A ball of mass m kg is thrown vertically into the air with initial velocity
vo = 10 m/s. We follow its trajectory. By Newton's second law of motion,

F = ma,

where m is the mass, a = v = X is acceleration and v velocity, and F is the
sum of forces acting on the ball.
» Assuming no air friction the model is

mv = —mg,

where g is the gravitational constant. The solution is

v=—gt+ C whereC is a constant.
» Assuming the linear law of resistance (drag) F, = —kv the model is
mv = —mg — kv.

The solution is v = v + v, where

vy, = Ce /™ and vp = —mg/k.
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Motion of ball in the case m =1, k = 1 and approximating g = 10 (we will
omit units)

Model Velocity and position Solution

ma = —mg . v(t) = —10t + 10
v=-10 x(t) = —5t2 4 10t

ma = —mg — kv o5 v(t) =20e~* — 10

V= —v_10 x(t) = 20 — 20e~t — 10t
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The ball reaches the top at time t where v(t) = 0 and the ground at time t
where x(t) = 0.

» Assuming no friction, the ball is at the top at t = 10.

At time t = 1, x(t) = 0, so it takes the same time going up and falling
down.

» Assuming linear friction, the ball reaches the top at t = log 2.

At time 2log?2, x(2log2) =20 —5—20log?2 > 0 so it takes longer
falling down than going up.
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Homogeneous DE
A homogeneous (nonlinear) DE is of the form

= (2)

The solution is obtained by introducing a new dependent variable

u= —.
t

Hence x = ut and differentiating with respect to t we get
X = 0t + u.
Plugging (44) into (43) we get
ut+u = f(u).
Rearranging (45) we obtain
to = f(u) — u,

which is a separable DE.

(43)

(44)

(45)
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Example (Homogeneous DE)

;) Y —X
y =
X
can be written as y
== 1. 46
y'=7 (46)
Introducing a new dependent variable
Yy
u= -,
X
plugging in (46), we get
Ux+u=u-—1 (47)
This is equivalent to
ux=-1

and hence
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Orthogonal trajectories
Given a 1-parametric family of curves

F(x,y,a) =0 where acR,
an orthogonal trajectory is a curve
G(x,y)=0

that intersects each curve from the given family at a right angle.

1. The family F(x,y,a) = 0 is the general solution of a 1st order DE,
that is obtained by differentiating the equation with respect to the
independent variable (using implicit differentiation) and eliminating the
parameter a.

2. By substituting y’ for —1/y’ in the DE for the original family, we
obtain a DE for curves with orthogonal tangents at every point of
intersection.

3. The general solution to this equation is the family of orthogonal

trajectories to the original equation.
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Example (Orthogonal trajectories to the family of circles)

Let us find the orthogonal trajectories to the family of circles through the
origin with centers on the y axis:

x? +y? —2ay =0. (48)
Differentiating (48) w.r.t. the independent variable gives
2x + 2yy’ —2ay’ = 0. (49)
Expressing a from (49) gives

X

Inserting (50) into (48) we obtain the DE for the given family

X —y? - =" =0 (51)

y
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Next we express y’ from (51) and obtain

2xy
r_
Y =5 %3 (52)

The DE for orthogonal trajectories is obtained by substituting y’ for —1/y’
in (52) to obtain

1 2
- =wogn fyyz, (53)
which is equivalent to
2 2
’ XYy
=— . 54
y 5% (54)
(54) is a homogeneous DE:
o X x Ly
2xy 2y 2x
By introducing y = ux we obtain
I+ 1+u N , 1+ u? N 2udu dx
Ux+u=——+ = Ux = — e =
2u 2 2u 14 u? X

C
= log(14+v’)=—logx+logC = 14uv°=—,
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Plugging in u = £ again gives the general solution
x* 4 y? = Cx.

Orthogonal trajectories to circles through the origin with centers on the y
axis are circles through the origin with centers on the x axis.

Both families together form an orthogonal net:
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Exact ODEs

Notice first that a 1st order DE
x = f(t,x)
can be rewritten in the form
M(t, x)dt + N(t,x)dx = 0. (55)
Recall that the differential of a function u(t, x) is equal to

8u 6u Ju Ou

) - (dt, dx),

where - denotes the usual inner product in R?.

DE (55) is exact if there exists a differentiable function u(t, x) such that

@
ot

= M(t,x) and gi = N(t, x).
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Proposition
If the DE (55) is exact, then the solutions are level curves of the function u:

u(t,x) = C, where C € R.

Recall from Calculus that if u has continuous second order partial derivatives then

Ou _ Ou
Oxot  Otox’
Proposition
The necessary condition for the DE (55) to be exact is
oM ON
oM _ ON 56
0x ot (56)

Moreover, if M and N are differentiable for every (t,x) € R?, the condition
(56) is also sufficient.
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A potential function u can be determined from the following equality

u(x, t) :/M(t,x) dt + C(x) = /N(t,x) dx + D(t),

where C(x) and D(t) are some functions.

Example. The DE
X 4 ye2xy + Xeryy/ =0
can be rewritten as
(x + ye*¥)dx 4 xe*¥dy = 0.
The equation is exact since

o 2xy o 2xy
(X ‘g)}//e ) _ (Xaex ) _ (e2xy + 2Xye2xy).

A potential function is equal to

2
1
ulx.y) = /(X +ye)de = o + e + C(y)

1
— /(Xe2xy) dy = §e2Xy + D()()7

Defining C(y) = 0 and D(x) = x2/2, we get u(x,y) = X; + e®Y. The general

solution is the family of level curves u(x,y) = E, where E € R. 191/106



Geometric picture of ODEs

Let D C R? be the domain of the function f(x, y). For each point
(x,y) € D the DE

y'=f(x,y)

gives the value y’ of the coefficient of the tangent to the solution y(x)
through this specific point, that is, the direction in which the solution
passes through the point.

All these directions together form the directional field of the equation.

A solution of the equation is represented by a curve y = y(x) that follows
the given directions at every point x, i.e., the coefficient of the tangent
corresponds to the value f(x, y(x)).

The general solution to the equation is a family of curves, such that each of
them follows the given direction.
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Directional fields and solutions of

ky(1—y)

y' =

y' = ky

A A AN VA

y

Examples: https://zalara.github.io/Algoritmi/example_direction_fields.m
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Theorem (Existence and uniqueness of solutions)

If f(x,y) is continuous and differentiable with respect to y on the rectangle
D=[xo—a,xo+a] X[yo—b,yo+b], a,b>0
then the DE with initial condition
y'=f(xy), ylx)=y,

has a unique solution y(x) defined at least on the interval

[0 —a,x0 + ], «=min aEl
0 » X0 ) - "MN [

where

M = max{f(x,y): (x,y) € D} and N = max{af(axy’y): (x,y) € D}.

Proof: https://en.wikipedia.org/wiki/Picard%E2}80%93Lindel%C37,B6f _theorelrg‘.‘/196
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Numerical methods for solving DE's
We are given the DE with the initial condition
Y'(x) = f(y,x), y(x) = yo.

Instead of analytically finding the solution y(x), we construct a recursive
sequence of points

xi=xo+ih, yi=y(x), i>0

where y; is an approximation to the value of the exact solution y(x;), and h
is the step size.

A number of numerical methods exists, the choice depends on the type of
equation, desired accuracy, computational time,...

We will first look at the simplest and best known method and then a more
practical improvement.
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Euler's method
Euler's method is the simplest and most intuitive approach to numerically
solve a DE.
At each step the value yj;1 is obtained as the point on the tangent to the
solution through (x;, y;) at xj+1 = x; + h:

> initial condition: (xo, o)

» for each it xj11 = x; + h, yiy1 = yi + hf(x;, yi).

The point (xj+1,yi+1) typically lies on a different particular solution than
(xi, yi), at each step, the error at each step is of order O(h?). The
cumulative error is of order O(h). 196/106
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