# Mathematical modelling 

Lecture 10, April 19th, 2022

Faculty of Computer and Information Science University of Ljubljana

2021/22

## General solution of a linear DE

$$
\begin{equation*}
y^{\prime}(x)=f(x) y(x)+g(x) \tag{1}
\end{equation*}
$$

1. The homogenous part is

$$
\begin{equation*}
y^{\prime}(x)=f(x) y(x) \tag{2}
\end{equation*}
$$

So the solution $y(x)$ to (2) is

$$
\log |y|=\int \frac{d y}{y}=\int f(x) d x+C \Rightarrow y(x)=C \cdot e^{\int f(x) d x}
$$

2. A particular solution of the nonhomogenous equation is obtained by the variation of the constant:

$$
\begin{gather*}
y(x)=C(x) \cdot e^{\int f(x) d x}  \tag{3}\\
y^{\prime}(x)=C^{\prime}(x) \cdot e^{\int f(x) d x}+C(x) f(x) e^{\int f(x) d x} \tag{4}
\end{gather*}
$$

Using that $(1)=(4)$ and by inserting the RHS of (3) instead of $y(x)$ in (1), we obtain

$$
C^{\prime}(x) \cdot e^{\int f(x) d x}+C(x) f(x) e^{\int f(x) d x}=f(x) C(x) \cdot e^{\int f(x) d x}+g(x)
$$

# Hence 

$$
C^{\prime}(x) \cdot e^{\int f(x) d x}=g(x)
$$

and so

$$
C(x)=\int\left(g(x) e^{-\int f(x) d x}\right) d x
$$

## Proposition

The solution of (1) is

$$
y(x)=e^{\int f(x) d x}\left(C+\int\left(g(x) e^{-\int f(x) d x}\right) d x\right)
$$

In the example $t^{2} \dot{x}+t x=1$ (or $\dot{x}=-\frac{1}{t} x+\frac{1}{t^{2}}$ ) above we get

$$
\begin{aligned}
x(t) & =e^{\int-\frac{1}{t} d t}\left(C+\int\left(\frac{1}{t^{2}} e^{\int \frac{1}{t} d t}\right) d t\right) \\
& =e^{\log \left|\frac{1}{t}\right|}\left(C+\int\left(\frac{1}{t^{2}} t\right) d t\right) \\
& =\frac{1}{t}(C+\log |t|)
\end{aligned}
$$

## Real life example: Newton's second law

A ball of mass $m \mathrm{~kg}$ is thrown vertically into the air with initial velocity $v_{0}=10 \mathrm{~m} / \mathrm{s}$. We follow its trajectory. By Newton's second law of motion,

$$
F=m a,
$$

where $m$ is the mass, $a=\dot{v}=\ddot{x}$ is acceleration and $v$ velocity, and $F$ is the sum of forces acting on the ball.

- Assuming no air friction the model is

$$
m \dot{v}=-m g
$$

where $g$ is the gravitational constant. The solution is

$$
v=-g t+C \quad \text { where } C \text { is a constant. }
$$

- Assuming the linear law of resistance (drag) $F_{u}=-k v$ the model is

$$
m \dot{v}=-m g-k v .
$$

The solution is $v=v_{h}+v_{p}$ where

$$
v_{h}=C e^{-k t / m} \quad \text { and } \quad v_{p}=-m g / k
$$

Motion of ball in the case $m=1, k=1$ and approximating $g \doteq 10$ (we will omit units)

Model
$m a=-m g$
$\dot{v}=-10$
$m a=-m g-k v$
$\dot{v}=-v-10$

Velocity and position



Solution

$$
\begin{aligned}
& v(t)=-10 t+10 \\
& x(t)=-5 t^{2}+10 t
\end{aligned}
$$

$$
\begin{aligned}
& v(t)=20 e^{-t}-10 \\
& x(t)=20-20 e^{-t}-10 t
\end{aligned}
$$

The ball reaches the top at time $t$ where $v(t)=0$ and the ground at time $t$ where $x(t)=0$.

- Assuming no friction, the ball is at the top at $t=10$.

At time $t=1, x(t)=0$, so it takes the same time going up and falling down.

- Assuming linear friction, the ball reaches the top at $t=\log 2$.

At time $2 \log 2, x(2 \log 2)=20-5-20 \log 2>0$ so it takes longer falling down than going up.

## Homogeneous DE

A homogeneous (nonlinear) DE is of the form

$$
\begin{equation*}
\dot{x}=f\left(\frac{x}{t}\right) . \tag{5}
\end{equation*}
$$

The solution is obtained by introducing a new dependent variable

$$
u=\frac{x}{t}
$$

Hence $x=u t$ and differentiating with respect to $t$ we get

$$
\begin{equation*}
\dot{x}=\dot{u} t+u . \tag{6}
\end{equation*}
$$

Plugging (6) into (5) we get

$$
\begin{equation*}
\dot{u} t+u=f(u) \text {. } \tag{7}
\end{equation*}
$$

Rearranging (7) we obtain

$$
t \dot{u}=f(u)-u,
$$

which is a separable DE.

## Example (Homogeneous DE)

$$
y^{\prime}=\frac{y-x}{x}
$$

can be written as

$$
\begin{equation*}
y^{\prime}=\frac{y}{x}-1 \tag{8}
\end{equation*}
$$

Introducing a new dependent variable

$$
u=\frac{y}{x},
$$

plugging in (8), we get

$$
\begin{equation*}
u^{\prime} x+u=u-1 \tag{9}
\end{equation*}
$$

This is equivalent to

$$
u^{\prime} x=-1
$$

and hence

$$
u=\frac{y}{x}=\log \left(\frac{C}{x}\right)
$$

## Orthogonal trajectories

Given a 1-parametric family of curves

$$
F(x, y, a)=0 \quad \text { where } \quad a \in \mathbb{R}
$$

an orthogonal trajectory is a curve

$$
G(x, y)=0
$$

that intersects each curve from the given family at a right angle.

## Algorithm to obtain orthogonal trajectories:

1. The family $F(x, y, a)=0$ is the general solution of a 1 st order $D E$, that is obtained by differentiating the equation with respect to the independent variable (using implicit differentiation) and eliminating the parameter a.
2. By substituting $y^{\prime}$ for $-1 / y^{\prime}$ in the DE for the original family, we obtain a DE for curves with orthogonal tangents at every point of intersection.
3. The general solution to this equation is the family of orthogonal trajectories to the original equation.

## Example (Orthogonal trajectories to the family of circles)

Let us find the orthogonal trajectories to the family of circles through the origin with centers on the $y$ axis:

$$
\begin{equation*}
x^{2}+y^{2}-2 a y=0 \tag{10}
\end{equation*}
$$

Differentiating (10) w.r.t. the independent variable gives

$$
\begin{equation*}
2 x+2 y y^{\prime}-2 a y^{\prime}=0 \tag{11}
\end{equation*}
$$

Expressing a from (11) gives

$$
\begin{equation*}
a=\frac{x}{y^{\prime}}+y \tag{12}
\end{equation*}
$$

Inserting (12) into (10) we obtain the DE for the given family

$$
\begin{equation*}
x^{2}-y^{2}-\frac{2 x y}{y^{\prime}}=0 \tag{13}
\end{equation*}
$$

Next we express $y^{\prime}$ from (13) and obtain

$$
\begin{equation*}
y^{\prime}=\frac{2 x y}{x^{2}-y^{2}} \tag{14}
\end{equation*}
$$

The DE for orthogonal trajectories is obtained by substituting $y^{\prime}$ for $-1 / y^{\prime}$ in (14) to obtain

$$
\begin{equation*}
-\frac{1}{y^{\prime}}=\frac{2 x y}{x^{2}-y^{2}} \tag{15}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
y^{\prime}=-\frac{x^{2}-y^{2}}{2 x y} \tag{16}
\end{equation*}
$$

(16) is a homogeneous DE:

$$
y^{\prime}=-\frac{x^{2}-y^{2}}{2 x y}=-\frac{x}{2 y}+\frac{y}{2 x}
$$

By introducing $y=u x$ we obtain

$$
\begin{aligned}
& u^{\prime} x+u=-\frac{1}{2 u}+\frac{u}{2} \Rightarrow u^{\prime} x=-\frac{1+u^{2}}{2 u} \Rightarrow \frac{2 u d u}{1+u^{2}}=-\frac{d x}{x} \\
\Rightarrow & \log \left(1+u^{2}\right)=-\log x+\log C \quad \Rightarrow \quad 1+u^{2}=\frac{C}{x}
\end{aligned}
$$

Plugging in $u=\frac{y}{x}$ again gives the general solution

$$
x^{2}+y^{2}=C x
$$

Orthogonal trajectories to circles through the origin with centers on the $y$ axis are circles through the origin with centers on the $x$ axis.

Both families together form an orthogonal net:


## Exact ODEs

Notice first that a 1st order DE

$$
\dot{x}=f(t, x)
$$

can be rewritten in the form

$$
\begin{equation*}
M(t, x) d t+N(t, x) d x=0 \tag{17}
\end{equation*}
$$

Recall that the differential of a function $u(t, x)$ is equal to

$$
d u=\frac{\partial u}{\partial t} d t+\frac{\partial u}{\partial x} d x=\left(\frac{\partial u}{\partial t}, \frac{\partial u}{\partial x}\right) \cdot(d t, d x)
$$

where $\cdot$ denotes the usual inner product in $\mathbb{R}^{2}$.
DE (17) is exact if there exists a differentiable function $u(t, x)$ such that

$$
\frac{\partial u}{\partial t}=M(t, x) \quad \text { and } \quad \frac{\partial u}{\partial x}=N(t, x)
$$

## Proposition

If the $D E$ (17) is exact, then the solutions are level curves of the function $u$ :

$$
u(t, x)=C, \quad \text { where } \quad C \in \mathbb{R}
$$

Recall from Calculus that if $u$ has continuous second order partial derivatives then

$$
\frac{\partial u}{\partial x \partial t}=\frac{\partial u}{\partial t \partial x}
$$

## Proposition

The necessary condition for the $D E$ (17) to be exact is

$$
\begin{equation*}
\frac{\partial M}{\partial x}=\frac{\partial N}{\partial t} \tag{18}
\end{equation*}
$$

Moreover, if $M$ and $N$ are differentiable for every $(t, x) \in \mathbb{R}^{2}$, the condition (18) is also sufficient.

A potential function $u$ can be determined from the following equality

$$
u(x, t)=\int M(t, x) d t+C(x)=\int N(t, x) d x+D(t)
$$

where $C(x)$ and $D(t)$ are some functions.
Example. The DE

$$
x+y e^{2 x y}+x e^{2 x y} y^{\prime}=0
$$

can be rewritten as

$$
\left(x+y e^{2 x y}\right) d x+x e^{2 x y} d y=0
$$

The equation is exact since

$$
\frac{\partial\left(x+y e^{2 x y}\right)}{\partial y}=\frac{\partial\left(x e^{2 x y}\right)}{\partial x}=\left(e^{2 x y}+2 x y e^{2 x y}\right) .
$$

A potential function is equal to

$$
\begin{aligned}
u(x, y) & =\int\left(x+y e^{2 x y}\right) d x=\frac{x^{2}}{2}+\frac{1}{2} e^{2 x y}+C(y) \\
& =\int\left(x e^{2 x y}\right) d y=\frac{1}{2} e^{2 x y}+D(x)
\end{aligned}
$$

Defining $C(y)=0$ and $D(x)=x^{2} / 2$, we get $u(x, y)=\frac{x^{2}}{2}+\frac{1}{2} e^{2 x y}$. The general solution is the family of level curves $u(x, y)=E$, where $E \in \mathbb{R}$.

## Geometric picture of ODEs

Let $D \subset \mathbb{R}^{2}$ be the domain of the function $f(x, y)$. For each point $(x, y) \in D$ the $D E$

$$
y^{\prime}=f(x, y)
$$

gives the value $y^{\prime}$ of the coefficient of the tangent to the solution $y(x)$ through this specific point, that is, the direction in which the solution passes through the point.

All these directions together form the directional field of the equation.
A solution of the equation is represented by a curve $y=y(x)$ that follows the given directions at every point $x$, i.e., the coefficient of the tangent corresponds to the value $f(x, y(x))$.

The general solution to the equation is a family of curves, such that each of them follows the given direction.

Directional fields and solutions of

$$
y^{\prime}=k y
$$

$$
y^{\prime}=k y(1-y)
$$




Examples: https://zalara.github.io/Algoritmi/example_direction_fields.m

## Theorem (Existence and uniqueness of solutions)

If $f(x, y)$ is continuous and differentiable with respect to $y$ on the rectangle

$$
D=\left[x_{0}-a, x_{0}+a\right] \times\left[y_{0}-b, y_{0}+b\right], \quad a, b>0
$$

then the $D E$ with initial condition

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0},
$$

has a unique solution $y(x)$ defined at least on the interval

$$
\left[x_{0}-\alpha, x_{0}+\alpha\right], \quad \alpha=\min \left\{a, \frac{b}{M}, \frac{1}{N}\right\},
$$

where

$$
M=\max \{f(x, y):(x, y) \in D\} \text { and } N=\max \left\{\frac{\partial f(x, y)}{\partial y}:(x, y) \in D\right\} \text {. }
$$

## Numerical methods for solving DE's

We are given the DE with the initial condition

$$
y^{\prime}(x)=f(y, x), \quad y\left(x_{0}\right)=y_{0}
$$

Instead of analytically finding the solution $y(x)$, we construct a recursive sequence of points

$$
x_{i}=x_{0}+i h, \quad y_{i} \doteq y\left(x_{i}\right), \quad i \geq 0
$$

where $y_{i}$ is an approximation to the value of the exact solution $y\left(x_{i}\right)$, and $h$ is the step size.

A number of numerical methods exists, the choice depends on the type of equation, desired accuracy, computational time,...

We will first look at the simplest and best known method and then a more practical improvement.

## Euler's method

Euler's method is the simplest and most intuitive approach to numerically solve a DE.

At each step the value $y_{i+1}$ is obtained as the point on the tangent to the solution through $\left(x_{i}, y_{i}\right)$ at $x_{i+1}=x_{i}+h$ :

- initial condition: $\left(x_{0}, y_{0}\right)$
- for each $i: x_{i+1}=x_{i}+h, y_{i+1}=y_{i}+h f\left(x_{i}, y_{i}\right)$.


The point $\left(x_{i+1}, y_{i+1}\right)$ typically lies on a different particular solution than $\left(x_{i}, y_{i}\right)$, at each step, the error at each step is of order $\mathcal{O}\left(h^{2}\right)$. The cumulative error is of order $\mathcal{O}(h)$.

