# Mathematical modelling 

Lecture 8, April 5th, 2022

Faculty of Computer and Information Science University of Ljubljana

2021/22

## Areas bounded by plane curve

$$
\begin{aligned}
& \text { I. Let } f(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right], \quad t \in[a, b] \\
& x^{\prime}(t)>0
\end{aligned}
$$

The area of the quadrilateral bounded by the curve and the $x$-axis is

$$
P=\int_{x(a)}^{x(b)}|y(x)| d x=\int_{a}^{b}|y(t)| x^{\prime}(t) d t
$$

Problem: the area under one arc of the cycloid:

$$
\begin{gathered}
x(t)=a t-a \sin t, \quad y(t)=a-a \cos t \\
P=\int_{0}^{2 \pi} a^{2}(1-\cos t)^{2} d t=a^{2} \int_{0}^{2 \pi}\left(\frac{3}{2}-2 \cos t+\frac{1}{2} \cos (2 t)\right) d t=3 a^{2} \pi
\end{gathered}
$$

II. The area of the triangular region bounded by the curve $f(t), t \in[a, b]$, and the two end-point position vectors $f(a)$ and $f(b)$ :


$$
P=\frac{1}{2} \int_{a}^{b}\left|x(t) y^{\prime}(t)-y(t) x^{\prime}(t)\right| d t .
$$

## Proof of the area formula

An approximate value of the area is the sum of areas of triangles obtained by subdividing the interval $[a, b]$ into $n$ intervals of length $\Delta t=(b-a) / n$.

The area of a triangle with vertices $(0,0), f\left(t_{i}\right), f\left(t_{i+1}\right)$ is

$$
\begin{gathered}
\Delta P_{i}=\frac{1}{2}\left\|f\left(t_{i+1}\right) \times f\left(t_{i}\right)\right\| \doteq \frac{1}{2}\left\|\left(f\left(t_{i}\right)+f^{\prime}\left(t_{i}\right) \Delta t\right) \times f\left(t_{i}\right)\right\| \\
=\frac{1}{2}\left\|f^{\prime}\left(t_{i}\right) \times f\left(t_{i}\right)\right\| \Delta t=\frac{1}{2}\left|y^{\prime}\left(t_{i}\right) x\left(t_{i}\right)-x^{\prime}\left(t_{i}\right) y\left(t_{i}\right)\right| \Delta t
\end{gathered}
$$

where the last equlatiy follows from the calculation

$$
\begin{aligned}
f^{\prime}\left(t_{i}\right) \times f\left(t_{i}\right) & =\left(x^{\prime}\left(t_{i}\right), y^{\prime}\left(t_{i}\right), 0\right) \times\left(x\left(t_{i}\right), y\left(t_{i}\right), 0\right) \\
& =\left(x^{\prime}\left(t_{i}\right) y\left(t_{i}\right)-y^{\prime}\left(t_{i}\right) x\left(t_{i}\right), 0,0\right)
\end{aligned}
$$

The area is obtained by adding these and letting $n \rightarrow \infty$ :

$$
\begin{aligned}
P & =\lim _{n \rightarrow \infty} \frac{1}{2} \sum_{i=0}^{n-1}\left|y^{\prime}\left(t_{i}\right) x\left(t_{i}\right)-x^{\prime}\left(t_{i}\right) y\left(t_{i}\right)\right| \Delta t \\
& =\frac{1}{2} \int_{a}^{b}\left|x(t) y^{\prime}(t)-y(t) x^{\prime}(t)\right| d t
\end{aligned}
$$

## Problem: the area bounded by

1. the asteroid $x(t)=\cos ^{3} t, y(t)=\sin ^{3} t, t \in[0,2 \pi]$ is

2. the elipse $x=a \cos t, y=b \sin t, t \in[0,2 \pi]$ is


Hint. In both problems use the identities

$$
\sin ^{2} t=\frac{1}{2}(1-\cos (2 t)), \quad \cos ^{2} t=\frac{1}{2}(1+\cos (2 t)) .
$$

In the first problem all you have to really integrate after subtractions of some terms is $1-\cos ^{2}(2 t)$. The results are $\frac{3 \pi}{8}$ for the first and $a b \pi$ for the second problem.

## Curves in the polar plane

Polar coordinates of a point in the plane are

- distance to the origin $r, r \geq 0$, and
- polar angle $\varphi$, determined up to a multiple of $2 \pi$, defined for $r \neq 0$.


Usually the polar axis corresponds to the positive part of the $x$-axis, so

- $x=r \cos \varphi, y=r \sin \varphi$
- $r=\sqrt{x^{2}+y^{2}}, \tan \varphi=\frac{y}{x}$

A curve in polar coordinates is given by $r=r(\varphi), \quad \varphi \in I \subset \mathbb{R}$.
Rule. If $r(\varphi)<0$, then the point on the curve at an angle $\varphi$ is equal to

$$
(x(\varphi), y(\varphi)):=|r(\varphi)|(\cos \varphi, \sin \varphi) \cdot e^{i \pi} .
$$

In other words, we reflect the point

$$
|r(\varphi)|(\cos \varphi, \sin \varphi)
$$

over the origin.
Example

$$
r=1
$$

$$
r=\varphi
$$



## unit circle

Arhimedean spiral

## Example

line $y=1, \quad r=\frac{1}{\sin \varphi}$

cardioid, $\quad r=1-\sin \varphi$


Example
a butterfly

$$
r=\sin ^{5}\left(\frac{\varphi-\pi}{12}\right)+e^{\sin \varphi}-2 \cos (4 \varphi)
$$



Matlab files:
https://zalara.github.io/Algoritmi/curves_polar.m

A parametrization of the curve with parameter being the polar angle is:

$$
f(\varphi)=\left[\begin{array}{c}
r(\varphi) \cos (\varphi) \\
r(\varphi) \sin (\varphi)
\end{array}\right], \varphi \in I
$$

## Example

The hyperbolic spiral $r=\frac{1}{\varphi}$ is parametrized by $f(t)=\left[\begin{array}{c}\frac{\cos \varphi}{\varphi} \\ \frac{\sin \varphi}{\varphi}\end{array}\right]$,

The tangent vector to the curve at a point $r(\varphi)$ is given by

$$
f^{\prime}(\varphi)=\left[\begin{array}{l}
r^{\prime}(\varphi) \cos (\varphi)-r(\varphi) \sin (\varphi) \\
r^{\prime}(\varphi) \sin (\varphi)+r(\varphi) \cos (\varphi)
\end{array}\right]
$$

Problem: compute the angle between the coordinate vector of a point on the logarithmic spiral $r(\varphi)=b e^{a \varphi}$ and the tangent vector at that point.
coordinate vector: $f(\varphi)=\left[\begin{array}{l}b e^{a \varphi} \cos (\varphi) \\ b e^{a \varphi} \sin (\varphi)\end{array}\right]$,
tangent vector: $f^{\prime}(\varphi)=\left[\begin{array}{l}b e^{a \varphi}(a \cos \varphi-\sin \varphi) \\ b e^{a \varphi}(a \sin \varphi+\cos \varphi)\end{array}\right]$,
angle: $\cos \alpha=\frac{f(t) \cdot f^{\prime}(t)}{\|f(t)\|\left\|f^{\prime}(t)\right\|}=\frac{a}{\sqrt{1+a^{2}}}$,

so the angle is independent of $\varphi$ so it is the same at every point on the curve.

## Area in polar coordinates

$$
P=\frac{1}{2} \int_{\alpha}^{\beta}\left|x y^{\prime}-x^{\prime} y\right| d \varphi=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \varphi
$$

Indeed:

$$
\begin{aligned}
x y^{\prime}-x^{\prime} y & =r \cos \varphi\left(r^{\prime} \sin \varphi+r \cos \varphi\right)-r \sin \varphi\left(r^{\prime} \cos \varphi-r \sin \varphi\right) \\
& =r^{2}\left(\cos ^{2} \varphi+\sin ^{2} \varphi\right)=r
\end{aligned}
$$

Problem: what is the area of one petal of the clover $r(\varphi)=\frac{\cos (3 \varphi)}{2}$ ?
To plot the clover it is convenient to sketch the function $r(\varphi)$ first.


Useful angles are

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c}
\varphi & 0 & \frac{\pi}{6} & \frac{2 \pi}{6} & \frac{3 \pi}{6} & \frac{4 \pi}{6} & \frac{5 \pi}{6} & \frac{6 \pi}{6} & \frac{7 \pi}{6} & \frac{8 \pi}{6} & \frac{9 \pi}{6} & \frac{10 \pi}{6} & \frac{11 \pi}{6} & \frac{12 \pi}{6} \\
\hline r(\varphi) & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & \frac{1}{2} \\
P=2 \int_{0}^{\pi / 6} \frac{\cos ^{2}(3 \varphi)}{4} d \varphi=\frac{\pi}{12} & & & & & & & & & & & & & \\
\hline
\end{array}
$$

## Motion in $\mathbb{R}^{3}$

Let $\mathbf{r}(t)=f(t)$ be the position vector of a particle in space at time $t$, $1 \leq t \leq 2$.

Then $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$ is its velocity and $\mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t)$ is its acceleration at time $t$.

Problem: Let $\mathbf{r}(t)=\left[\begin{array}{c}t^{2} \\ 2 t \\ \log t\end{array}\right]$

1. Compute its position, velocity and acceleration at time $t=1$, and the length of its path between $t=1$ and $t=2$.
2. If at time $t=2$ the particle leaves its path and goes off in the tangential direction with constant velocity, where will it be at time $t=3$ ? What is the length of its path from $t=1$ to $t=3$ ?
3. Since $\mathbf{r}^{\prime}(t)=\left[\begin{array}{c}2 t \\ 2 \\ 1 / t\end{array}\right]$ and $\mathbf{r}^{\prime \prime}(t)=\left[\begin{array}{c}2 \\ 0 \\ -1 / t^{2}\end{array}\right]$, the position, velocity and acceleration at $t=1$ are

$$
\mathbf{r}(1)=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \quad \mathbf{v}(1)=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right] \quad \mathbf{a}(1)=\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right]
$$

and the length of path

$$
\begin{gathered}
\int_{1}^{2}\left\|\mathbf{r}^{\prime}(t)\right\| d t=\int_{1}^{2} \sqrt{4 t^{2}+4+(1 / t)^{2}} d t=\int_{1}^{2}(2 t+1 / t) d t= \\
{\left[2 t^{2} / 2+\log t\right]_{1}^{2}=3+\log 2}
\end{gathered}
$$

2. The tangent line at $t=2$, and the position at $t=3$ are:

$$
L_{2}(t)=\left[\begin{array}{c}
4 \\
4 \\
\log 2
\end{array}\right]+(t-2)\left[\begin{array}{c}
4 \\
2 \\
1 / 2
\end{array}\right], L_{2}(3)=\left[\begin{array}{c}
8 \\
6 \\
\log 2+1 / 2
\end{array}\right]
$$

and length of the path along the tangent from $t=2$ to $t=3$ is

$$
\int_{2}^{3}\|\mathbf{v}(2)\| d t=9 / 2
$$

so the total length is $\log 2+7+\frac{1}{2}$.

### 3.4. Parametric surfaces

A parametric surface in $\mathbb{R}^{m}$ is given by a continuous vector function

$$
f: D \rightarrow \mathbb{R}^{m}, \quad D \subset \mathbb{R}^{2} .
$$

We will consider the case $m=3$ :

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right] \in D \quad f(u, v)=\left[\begin{array}{c}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right] \in \mathbb{R}^{3}
$$




## Example

1. A parametric plane through a given point $\mathbf{r}_{0} \in \mathbb{R}^{3}$ with given (noncolinear) vectors $\mathbf{e}_{1}$ and $\mathbf{e}_{2}$ :

$$
f(u, v)=\mathbf{r}_{0}+u \mathbf{e}_{1}+v \mathbf{e}_{2}, \quad u, v \in \mathbb{R}
$$



The normal to the plane is $\mathbf{n}=\mathbf{e}_{1} \times \mathbf{e}_{2} \neq 0$.
The equation the plane: $\left(\mathbf{r}-\mathbf{r}_{0}\right) \cdot \mathbf{n}=0$
Matlab file:
https://zalara.github.io/Algoritmi/plane.m
2.

$$
f(u, v)=\left[\begin{array}{c}
\cos u \\
\sin u \\
v
\end{array}\right], \quad u \in[0,2 \pi], v \in[0,1]
$$


a cylinder with radius 1 and axis the $z$-axis

Matlab file:
https://zalara.github.io/Algoritmi/cylinder.m

For every point $f\left(u_{0}, v_{0}\right)$ on the surface there are two coordinate curves through it:

- $f\left(u_{0}, v\right)$,
- $f\left(u, v_{0}\right)$,
both lie on the surface.


## Example

1. In the parametrized plane $f(u, v)=r_{0}+u e_{1}+v e_{2}, e_{1} \times e_{2} \neq 0$, coordinate curves are lines parallel to $e_{2}$ for a fixed $u=u_{0}$ and to $e_{1}$ for a fixed $v=v_{0}$.
2. In the cylinder, coordinate curves $u=u_{0}$ are vertical lines, and $v=v_{0}$ are circles.

## Coordinate systems in $\mathbb{R}^{3}$

The parameters $u$ and $v$ in surface parametrizations often have a geometric meaning.

For example, they could be two coordinates from one of the standard coordinate systems in $\mathbb{R}^{3}$ :

Cartesian coordinates $x, y, z$ (we know these well)


Example
$f(x, y)=\left[\begin{array}{c}x \\ y \\ 1-(x-1)^{2}-(y-1)^{2}\end{array}\right], 0 \leq x, y \leq 2$

The surface is the graph $z=1-(x-1)^{2}-(y-1)^{2}$,

Coordinate curves:
intersection with planes
$x=x_{0}$ and $y=y_{0}$


Matlab file:
https://zalara.github.io/Algoritmi/surfaces_coordinate_curves.m

## Cylindrical coordinates:

$\rho \geq 0$ distance from $z$ axis, polar radius in plane $z=0$
$\varphi$ polar angle in plane $z=0$


Conversion to cartesian coordinates: $x=\rho \cos \varphi, y=\rho \sin \varphi, z=z$

## Example

$f(u, v)=\left[\begin{array}{c}u \cos v \\ u \sin v \\ v\end{array}\right]$

Coordinate curves:
$u=u_{0}$ : helix with radius $u_{0}$
$v=v_{0}$ : ray from $z$-axis with polar angle and height $v_{0}$


Matlab file:
https://zalara.github.io/Algoritmi/cylindrical_coordinates_helix.m

## Spherical coordinates: $r, \varphi, \psi$, where

$r, r \geq 0$ : distance to the origin,
$\varphi$ : polar angle in plane $z=0$
$\psi,-\pi / 2 \leq \psi \leq \pi / 2$ : azimuthal angle between the coordinate vector and plane $z=0$,
$\psi=\pi / 2$ : positive part of $z$ axis
$\psi=0$ : plane $z=0$
$\psi=-\pi / 2$ negative part of $z$-axis

Conversion to cartesian coordinates: $x=r \cos \varphi \cos \psi, y=r \sin \varphi \cos \psi$, $z=r \sin \psi$

Conversion to cylindrical coordinates: $\rho=r \cos \psi, z=r \sin \psi$

## Example

$f(u, v)=\left[\begin{array}{c}\cos u \cos v \\ \sin u \cos v \\ \sin v\end{array}\right], 0 \leq u \leq 2 \pi,-\pi / 2 \leq v \leq \pi / 2$

The surface is the unit sphere $r=1$
Coordinate curves:
$u=u_{0}$ : latitude $u=u_{0}$
$v=v_{0}$ : longitude $v=v_{0}$


Matlab file:
https://zalara.github.io/Algoritmi/spherical_coordinates.m

