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Areas bounded by plane curve

. Let f(t):[;gg], t € [ab] T

The area of the quadrilateral bounded by the curve and the x-axis is

x(b) b
P / | Il / (B (2) dt

Problem: the area under one arc of the cycloid:

x(t) = at — asint, y(t)=a— acost,

21 21
P= / a’(1 — cost)’ dt = 32/ (g —2cost+ % cos(2t)) dt = 3a’r.
0 0
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Il. The area of the triangular region bounded by the curve f(t),t € [a, b],
and the two end-point position vectors f(a) and f(b):
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Proof of the area formula

An approximate value of the area is the sum of areas of triangles obtained by subdividing
the interval [a, b] into n intervals of length At = (b — a)/n.

The area of a triangle with vertices (0,0), f(t;), f(ti+1) is
1 .1 /
AP; = SIf(tiea) x F(&)] = SI(F(6) + () At) x f(&)]

1 1
= Sl (8) x F()[| At = Sy (t)x(t) — X' (6)y(8)|At,
where the last equlatiy follows from the calculation

f'(t) x f(t;) = (X' (&), y'(£:),0) x (x(t:), y(t),0)

= (X' (ti)y(t;) — y'(ti)x(%:),0,0).

The area is obtained by adding these and letting n — oc:

n—1

P = lim % Z ly'(t:)x(t;) — x'(ti)y (t:)| At

=3 | XOY(©) =y (1) .
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Problem: the area bounded by
1. the asteroid x(t) = cos® t, y(t) =sindt, t € [0,27] is

1
2. the elipse x = acost, y = bsint, te [0,27] is

i
\q//

Hint. In both problems use the identities

1
sin’t = %(1 — cos(2t)), cos’ t = 5(1 + cos(2t)).

In the first problem all you have to really integrate after subtractions of some terms is

1 — cos?(2t). The results are 3T for the first and abm for the second problem.
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Curves in the polar plane

Polar coordinates of a point in the plane are

> distance to the origin r, r > 0, and

P polar angle ¢, determined up to a r/
multiple of 27, defined for r #£ 0. 0

Usually the polar axis corresponds to the positive part of the x-axis, so

> x=rcosp, y =rsing

> r=x2+y% tanp=12
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A curve in polar coordinates is given by r = r(¢), ¢ €/l CR.

Rule. If r(¢) < 0, then the point on the curve at an angle ¢ is equal to
(x(9),¥(#)) = |r(¢)|(cos p,sin ) - €.
In other words, we the point

[r(0)[(cos @, sin )
over the origin.

Example
r=1 s ) unit circle
r=o i S Arhimedean spiral
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Example
liney=1 r=

-2

cardioid, r=1-—sinyp
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Example
a butterfly

r=sin® (£55) + e5"¥ — 2 cos(4¢p)

Matlab files:
https://zalara.github.io/Algoritmi/curves_polar.m
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https://zalara.github.io/Algoritmi/curves_polar.m

A parametrization of the curve with parameter being the polar angle is:

(o) ! r(¢) cos(y) ] el

r(¢)sin(y)

Example

cos
1

The hyperbolic spiral r = — is parametrized by f(t) = [ 7 ] ,
SD 2

as ¢ — 0, r(p) = oo A
x(@) = = 00
P g
=
sing -

y(p) =

as ¢ — 0o, r(g) = 0
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The tangent vector to the curve at a point r(y) is given by

r'(p) cos() — r(e) sin(@)]

F(¢) =
) [r'(w) sin(y) + () cos(¢)

Problem: compute the angle between the coordinate vector of a point on

the logarithmic spiral r(¢) = be® and the tangent vector at that point.

be?? cos(y)
coordinate vector: f(p) = s
be?? sin(y)

be?¥(acosp —sinp
tangent vector: f'(p) = ( . ) ) E
be??(asin ¢ + cos )

. f!
angle: cosa = Fe)-F1(1) 2

IFOIIF @1 vita?’

so the angle is independent of ¢ so it is the same at every point on the
curve.
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Area in polar coordinates

N =

p / / 1 B 2
y' =xyldp =5 [ ride
o J

Indeed:

xy' —x'y = rcosp(r'sinp -+ rcos ) — rsin(r' cosp — rsin p)

= r¥(cos’ p +sin @) = r
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Problem: what is the area of one petal of the clover r(p) =

cos(3¢)
—

To plot the clover it is convenient to sketch the function r(¢y) first.

Useful angles are

05

o4l
oaf |

o2 |

R I I A S I I el B e
¥ ol 6,1 6 6 6 6,16 6 6 6 6 6

re)ylzlof=3]0oflz]ofl-3[0f[z[0f[-3]0]3;
_ /6 cos?(3¢p) m
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Motion in R3

Let r(t) = f(t) be the position vector of a particle in space at time t,
2

Then v(t) = ¥'(t) is its velocity and a(t) = r”(t) is its acceleration at time
t.

t2

Problem: Let r(t) = | 2t
log t
1. Compute its position, velocity and acceleration at time t = 1, and the length of its
path between t =1 and t = 2.

2. If at time t = 2 the particle leaves its path and goes off in the tangential direction
with constant velocity, where will it be at time t = 37 What is the length of its
path from t =1 to t = 37
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2t 2

. Sincer'(t)= | 2 | and r"(t) = 0 |, the position, velocity and acceleration
1/t —1/t?
att =1 are
1 2 2
r(l)=12|, v(1)=1[2] a(l)=]|0
0 1 -1

and the length of path
2 2 2
/ ¥ ()l dt:/ 4t2+4+(1/t)2dt=/ (2t +1/t) dt =
1 1 1

[2t°/2 + log t]; = 3 4 log 2

. The tangent line at t = 2, and the position at t = 3 are:

4 4 8
Le)=| 4 |+c-2)|2 |.LE)=| 6
log 2 1/2 log2+1/2

and length of the path along the tangent fromt =2tot=3is
3
| @ =o72,

so the total length is log2 + 7 + 1.
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3.4. Parametric surfaces

A parametric surface in R™ is given by a continuous vector function

f:D—R™, D c R2.

We will consider the case m = 3:

u x(u, v
[V]GD f(u.v) = | y(uv) | €R?

16/25



Example

1. A parametric plane through a given point ry € R3 with given
(noncolinear) vectors e; and e:

f(u,v) =ro+ ue; +vey, u,veR,

The normal to the plane is n = e; x e # 0.

The equation the plane: (r —rg)-n=0
Matlab file:
https://zalara.github.io/Algoritmi/plane.m
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 https://zalara.github.io/Algoritmi/plane.m 

cos u
f(u,v)=| sinu |, wel0,2x],ve]|0,1]
v

a cylinder with radius 1 and axis
the z-axis

Matlab file:
https://zalara.github.io/Algoritmi/cylinder.m
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 https://zalara.github.io/Algoritmi/cylinder.m 

For every point f(ug, vp) on the surface there are two coordinate curves
through it:

» f(uo, V),

> f(u,wv),

both lie on the surface.

Example

1. In the parametrized plane f(u,v) = ro + ue; + vey, €1 X e3 # 0,
coordinate curves are lines parallel to e, for a fixed u = ug and to e;
for a fixed v = v.

2. In the cylinder, coordinate curves u = ug are vertical lines, and v = v
are circles.
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Coordinate systems in R3

The parameters u and v in surface parametrizations often have a geometric
meaning.

For example, they could be two coordinates from one of the standard
coordinate systems in R3:

Cartesian coordinates x, y, z (we know these well)
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Example

f(x,y) = y ,0<x,y <2

The surface is the graph
z=1-(x—1P—(y -1

Coordinate curves: x
intersection with planes

x=xpand y =y

Matlab file:

https://zalara.github.io/Algoritmi/surfaces_coordinate_curves.m
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 https://zalara.github.io/Algoritmi/surfaces_coordinate_curves.m 

Cylindrical coordinates:

p > 0 distance from z axis, po-
lar radius in plane z =0

@ polar angle in plane z=0 / ~

Conversion to cartesian coordinates: x = pcosy,y = psinp,z =z
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Example
ucos v
f(u,v) = |usinv
v

Coordinate curves:

u = ug: helix with radius ug
v = vp: ray from z-axis with polar angle

and height v

Matlab file:

https://zalara.github.io/Algoritmi/cylindrical_coordinates_helix.m
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 https://zalara.github.io/Algoritmi/cylindrical_coordinates_helix.m 

Spherical coordinates: r, ¢, 1), where

r, r > 0: distance to the origin,
¢: polar angle in plane z =10

Y, —m/2 < 9 < w/2: azimuthal angle

-9
between the coordinate vector and plane \v T
/e \ —
zZ = 0, \ T
/‘ \\
Vg

1 = m/2: positive part of z axis
9 =0: planez=0

1) = —m/2 negative part of z-axis

Conversion to cartesian coordinates: x = rcos @ cos, y = rsin o cos,
z=rsiny

Conversion to cylindrical coordinates: p = rcost, z = rsiny
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Example
COS U COS V
f(u,v)=|sinucosv |, 0<u<2m —7/2<v<m7/2
sinv

The surface is the unit sphere r =1
Coordinate curves:

u = ug: latitude u = ug

v = vp: longitude v = vy

Matlab file:

https://zalara.github.io/Algoritmi/spherical_coordinates.m
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 https://zalara.github.io/Algoritmi/spherical_coordinates.m 
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